1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef ABSL_RANDOM_BERNOULLI_DISTRIBUTION_H_
16 #define ABSL_RANDOM_BERNOULLI_DISTRIBUTION_H_
17 
18 #include <cstdint>
19 #include <istream>
20 #include <limits>
21 
22 #include "absl/base/optimization.h"
23 #include "absl/random/internal/fast_uniform_bits.h"
24 #include "absl/random/internal/iostream_state_saver.h"
25 
26 namespace absl {
27 ABSL_NAMESPACE_BEGIN
28 
29 // absl::bernoulli_distribution is a drop in replacement for
30 // std::bernoulli_distribution. It guarantees that (given a perfect
31 // UniformRandomBitGenerator) the acceptance probability is *exactly* equal to
32 // the given double.
33 //
34 // The implementation assumes that double is IEEE754
35 class bernoulli_distribution {
36  public:
37   using result_type = bool;
38 
39   class param_type {
40    public:
41     using distribution_type = bernoulli_distribution;
42 
prob_(p)43     explicit param_type(double p = 0.5) : prob_(p) {
44       assert(p >= 0.0 && p <= 1.0);
45     }
46 
p()47     double p() const { return prob_; }
48 
49     friend bool operator==(const param_type& p1, const param_type& p2) {
50       return p1.p() == p2.p();
51     }
52     friend bool operator!=(const param_type& p1, const param_type& p2) {
53       return p1.p() != p2.p();
54     }
55 
56    private:
57     double prob_;
58   };
59 
bernoulli_distribution()60   bernoulli_distribution() : bernoulli_distribution(0.5) {}
61 
bernoulli_distribution(double p)62   explicit bernoulli_distribution(double p) : param_(p) {}
63 
bernoulli_distribution(param_type p)64   explicit bernoulli_distribution(param_type p) : param_(p) {}
65 
66   // no-op
reset()67   void reset() {}
68 
69   template <typename URBG>
operator()70   bool operator()(URBG& g) {  // NOLINT(runtime/references)
71     return Generate(param_.p(), g);
72   }
73 
74   template <typename URBG>
operator()75   bool operator()(URBG& g,  // NOLINT(runtime/references)
76                   const param_type& param) {
77     return Generate(param.p(), g);
78   }
79 
param()80   param_type param() const { return param_; }
param(const param_type & param)81   void param(const param_type& param) { param_ = param; }
82 
p()83   double p() const { return param_.p(); }
84 
result_type(min)85   result_type(min)() const { return false; }
result_type(max)86   result_type(max)() const { return true; }
87 
88   friend bool operator==(const bernoulli_distribution& d1,
89                          const bernoulli_distribution& d2) {
90     return d1.param_ == d2.param_;
91   }
92 
93   friend bool operator!=(const bernoulli_distribution& d1,
94                          const bernoulli_distribution& d2) {
95     return d1.param_ != d2.param_;
96   }
97 
98  private:
99   static constexpr uint64_t kP32 = static_cast<uint64_t>(1) << 32;
100 
101   template <typename URBG>
102   static bool Generate(double p, URBG& g);  // NOLINT(runtime/references)
103 
104   param_type param_;
105 };
106 
107 template <typename CharT, typename Traits>
108 std::basic_ostream<CharT, Traits>& operator<<(
109     std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
110     const bernoulli_distribution& x) {
111   auto saver = random_internal::make_ostream_state_saver(os);
112   os.precision(random_internal::stream_precision_helper<double>::kPrecision);
113   os << x.p();
114   return os;
115 }
116 
117 template <typename CharT, typename Traits>
118 std::basic_istream<CharT, Traits>& operator>>(
119     std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)
120     bernoulli_distribution& x) {            // NOLINT(runtime/references)
121   auto saver = random_internal::make_istream_state_saver(is);
122   auto p = random_internal::read_floating_point<double>(is);
123   if (!is.fail()) {
124     x.param(bernoulli_distribution::param_type(p));
125   }
126   return is;
127 }
128 
129 template <typename URBG>
Generate(double p,URBG & g)130 bool bernoulli_distribution::Generate(double p,
131                                       URBG& g) {  // NOLINT(runtime/references)
132   random_internal::FastUniformBits<uint32_t> fast_u32;
133 
134   while (true) {
135     // There are two aspects of the definition of `c` below that are worth
136     // commenting on.  First, because `p` is in the range [0, 1], `c` is in the
137     // range [0, 2^32] which does not fit in a uint32_t and therefore requires
138     // 64 bits.
139     //
140     // Second, `c` is constructed by first casting explicitly to a signed
141     // integer and then converting implicitly to an unsigned integer of the same
142     // size.  This is done because the hardware conversion instructions produce
143     // signed integers from double; if taken as a uint64_t the conversion would
144     // be wrong for doubles greater than 2^63 (not relevant in this use-case).
145     // If converted directly to an unsigned integer, the compiler would end up
146     // emitting code to handle such large values that are not relevant due to
147     // the known bounds on `c`.  To avoid these extra instructions this
148     // implementation converts first to the signed type and then use the
149     // implicit conversion to unsigned (which is a no-op).
150     const uint64_t c = static_cast<int64_t>(p * kP32);
151     const uint32_t v = fast_u32(g);
152     // FAST PATH: this path fails with probability 1/2^32.  Note that simply
153     // returning v <= c would approximate P very well (up to an absolute error
154     // of 1/2^32); the slow path (taken in that range of possible error, in the
155     // case of equality) eliminates the remaining error.
156     if (ABSL_PREDICT_TRUE(v != c)) return v < c;
157 
158     // It is guaranteed that `q` is strictly less than 1, because if `q` were
159     // greater than or equal to 1, the same would be true for `p`. Certainly `p`
160     // cannot be greater than 1, and if `p == 1`, then the fast path would
161     // necessary have been taken already.
162     const double q = static_cast<double>(c) / kP32;
163 
164     // The probability of acceptance on the fast path is `q` and so the
165     // probability of acceptance here should be `p - q`.
166     //
167     // Note that `q` is obtained from `p` via some shifts and conversions, the
168     // upshot of which is that `q` is simply `p` with some of the
169     // least-significant bits of its mantissa set to zero. This means that the
170     // difference `p - q` will not have any rounding errors. To see why, pretend
171     // that double has 10 bits of resolution and q is obtained from `p` in such
172     // a way that the 4 least-significant bits of its mantissa are set to zero.
173     // For example:
174     //   p   = 1.1100111011 * 2^-1
175     //   q   = 1.1100110000 * 2^-1
176     // p - q = 1.011        * 2^-8
177     // The difference `p - q` has exactly the nonzero mantissa bits that were
178     // "lost" in `q` producing a number which is certainly representable in a
179     // double.
180     const double left = p - q;
181 
182     // By construction, the probability of being on this slow path is 1/2^32, so
183     // P(accept in slow path) = P(accept| in slow path) * P(slow path),
184     // which means the probability of acceptance here is `1 / (left * kP32)`:
185     const double here = left * kP32;
186 
187     // The simplest way to compute the result of this trial is to repeat the
188     // whole algorithm with the new probability. This terminates because even
189     // given  arbitrarily unfriendly "random" bits, each iteration either
190     // multiplies a tiny probability by 2^32 (if c == 0) or strips off some
191     // number of nonzero mantissa bits. That process is bounded.
192     if (here == 0) return false;
193     p = here;
194   }
195 }
196 
197 ABSL_NAMESPACE_END
198 }  // namespace absl
199 
200 #endif  // ABSL_RANDOM_BERNOULLI_DISTRIBUTION_H_
201