1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             S E M _ U T I L                              --
6--                                                                          --
7--                                 S p e c                                  --
8--                                                                          --
9--          Copyright (C) 1992-2018, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26--  Package containing utility procedures used throughout the semantics
27
28with Einfo;   use Einfo;
29with Exp_Tss; use Exp_Tss;
30with Namet;   use Namet;
31with Opt;     use Opt;
32with Snames;  use Snames;
33with Types;   use Types;
34with Uintp;   use Uintp;
35with Urealp;  use Urealp;
36
37package Sem_Util is
38
39   function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
40   --  The list of interfaces implemented by Typ. Empty if there are none,
41   --  including the cases where there can't be any because e.g. the type is
42   --  not tagged.
43
44   procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
45   --  Add A to the list of access types to process when expanding the
46   --  freeze node of E.
47
48   procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id);
49   --  Given a block statement N, generate an internal E_Block label and make
50   --  it the identifier of the block. Id denotes the generated entity. If the
51   --  block already has an identifier, Id returns the entity of its label.
52
53   procedure Add_Global_Declaration (N : Node_Id);
54   --  These procedures adds a declaration N at the library level, to be
55   --  elaborated before any other code in the unit. It is used for example
56   --  for the entity that marks whether a unit has been elaborated. The
57   --  declaration is added to the Declarations list of the Aux_Decls_Node
58   --  for the current unit. The declarations are added in the current scope,
59   --  so the caller should push a new scope as required before the call.
60
61   function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
62   --  Returns the name of E adding Suffix
63
64   function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
65   --  Given two types, returns True if we are in Allow_Integer_Address mode
66   --  and one of the types is (a descendant of) System.Address (and this type
67   --  is private), and the other type is any integer type.
68
69   function Address_Value (N : Node_Id) return Node_Id;
70   --  Return the underlying value of the expression N of an address clause
71
72   function Addressable (V : Uint) return Boolean;
73   function Addressable (V : Int)  return Boolean;
74   pragma Inline (Addressable);
75   --  Returns True if the value of V is the word size or an addressable factor
76   --  of the word size (typically 8, 16, 32 or 64).
77
78   procedure Aggregate_Constraint_Checks
79     (Exp       : Node_Id;
80      Check_Typ : Entity_Id);
81   --  Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
82   --  and Check_Typ a constrained record type with discriminants, we generate
83   --  the appropriate discriminant checks. If Exp is an array aggregate then
84   --  emit the appropriate length checks. If Exp is a scalar type, or a string
85   --  literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
86   --  are performed at run time. Also used for expressions in the argument of
87   --  'Update, which shares some of the features of an aggregate.
88
89   function Alignment_In_Bits (E : Entity_Id) return Uint;
90   --  If the alignment of the type or object E is currently known to the
91   --  compiler, then this function returns the alignment value in bits.
92   --  Otherwise Uint_0 is returned, indicating that the alignment of the
93   --  entity is not yet known to the compiler.
94
95   function All_Composite_Constraints_Static (Constr : Node_Id) return Boolean;
96   --  Used to implement pragma Restrictions (No_Dynamic_Sized_Objects).
97   --  Given a constraint or subtree of a constraint on a composite
98   --  subtype/object, returns True if there are no nonstatic constraints,
99   --  which might cause objects to be created with dynamic size.
100   --  Called for subtype declarations (including implicit ones created for
101   --  subtype indications in object declarations, as well as discriminated
102   --  record aggregate cases). For record aggregates, only records containing
103   --  discriminant-dependent arrays matter, because the discriminants must be
104   --  static when governing a variant part. Access discriminants are
105   --  irrelevant. Also called for array aggregates, but only named notation,
106   --  because those are the only dynamic cases.
107
108   procedure Append_Entity_Name (Buf : in out Bounded_String; E : Entity_Id);
109   --  Recursive procedure to construct string for qualified name of enclosing
110   --  program unit. The qualification stops at an enclosing scope has no
111   --  source name (block or loop). If entity is a subprogram instance, skip
112   --  enclosing wrapper package. The name is appended to Buf.
113
114   procedure Append_Inherited_Subprogram (S : Entity_Id);
115   --  If the parent of the operation is declared in the visible part of
116   --  the current scope, the inherited operation is visible even though the
117   --  derived type that inherits the operation may be completed in the private
118   --  part of the current package.
119
120   procedure Apply_Compile_Time_Constraint_Error
121     (N      : Node_Id;
122      Msg    : String;
123      Reason : RT_Exception_Code;
124      Ent    : Entity_Id  := Empty;
125      Typ    : Entity_Id  := Empty;
126      Loc    : Source_Ptr := No_Location;
127      Rep    : Boolean    := True;
128      Warn   : Boolean    := False);
129   --  N is a subexpression which will raise constraint error when evaluated
130   --  at runtime. Msg is a message that explains the reason for raising the
131   --  exception. The last character is ? if the message is always a warning,
132   --  even in Ada 95, and is not a ? if the message represents an illegality
133   --  (because of violation of static expression rules) in Ada 95 (but not
134   --  in Ada 83). Typically this routine posts all messages at the Sloc of
135   --  node N. However, if Loc /= No_Location, Loc is the Sloc used to output
136   --  the message. After posting the appropriate message, and if the flag
137   --  Rep is set, this routine replaces the expression with an appropriate
138   --  N_Raise_Constraint_Error node using the given Reason code. This node
139   --  is then marked as being static if the original node is static, but
140   --  sets the flag Raises_Constraint_Error, preventing further evaluation.
141   --  The error message may contain a } or & insertion character. This
142   --  normally references Etype (N), unless the Ent argument is given
143   --  explicitly, in which case it is used instead. The type of the raise
144   --  node that is built is normally Etype (N), but if the Typ parameter
145   --  is present, this is used instead. Warn is normally False. If it is
146   --  True then the message is treated as a warning even though it does
147   --  not end with a ? (this is used when the caller wants to parameterize
148   --  whether an error or warning is given), or when the message should be
149   --  treated as a warning even when SPARK_Mode is On (which otherwise would
150   --  force an error).
151
152   function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
153   --  Given the entity of an abstract state or a variable, determine whether
154   --  Id is subject to external property Async_Readers and if it is, the
155   --  related expression evaluates to True.
156
157   function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
158   --  Given the entity of an abstract state or a variable, determine whether
159   --  Id is subject to external property Async_Writers and if it is, the
160   --  related expression evaluates to True.
161
162   function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
163   --  If at the point of declaration an array type has a private or limited
164   --  component, several array operations are not available on the type, and
165   --  the array type is flagged accordingly. If in the immediate scope of
166   --  the array type the component becomes non-private or non-limited, these
167   --  operations become available. This can happen if the scopes of both types
168   --  are open, and the scope of the array is not outside the scope of the
169   --  component.
170
171   procedure Bad_Attribute
172     (N    : Node_Id;
173      Nam  : Name_Id;
174      Warn : Boolean := False);
175   --  Called when node N is expected to contain a valid attribute name, and
176   --  Nam is found instead. If Warn is set True this is a warning, else this
177   --  is an error.
178
179   procedure Bad_Predicated_Subtype_Use
180     (Msg            : String;
181      N              : Node_Id;
182      Typ            : Entity_Id;
183      Suggest_Static : Boolean := False);
184   --  This is called when Typ, a predicated subtype, is used in a context
185   --  which does not allow the use of a predicated subtype. Msg is passed to
186   --  Error_Msg_FE to output an appropriate message using N as the location,
187   --  and Typ as the entity. The caller must set up any insertions other than
188   --  the & for the type itself. Note that if Typ is a generic actual type,
189   --  then the message will be output as a warning, and a raise Program_Error
190   --  is inserted using Insert_Action with node N as the insertion point. Node
191   --  N also supplies the source location for construction of the raise node.
192   --  If Typ does not have any predicates, the call has no effect. Set flag
193   --  Suggest_Static when the context warrants an advice on how to avoid the
194   --  use error.
195
196   function Bad_Unordered_Enumeration_Reference
197     (N : Node_Id;
198      T : Entity_Id) return Boolean;
199   --  Node N contains a potentially dubious reference to type T, either an
200   --  explicit comparison, or an explicit range. This function returns True
201   --  if the type T is an enumeration type for which No pragma Order has been
202   --  given, and the reference N is not in the same extended source unit as
203   --  the declaration of T.
204
205   function Begin_Keyword_Location (N : Node_Id) return Source_Ptr;
206   --  Given block statement, entry body, package body, subprogram body, or
207   --  task body N, return the closest source location to the "begin" keyword.
208
209   function Build_Actual_Subtype
210     (T : Entity_Id;
211      N : Node_Or_Entity_Id) return Node_Id;
212   --  Build an anonymous subtype for an entity or expression, using the
213   --  bounds of the entity or the discriminants of the enclosing record.
214   --  T is the type for which the actual subtype is required, and N is either
215   --  a defining identifier, or any subexpression.
216
217   function Build_Actual_Subtype_Of_Component
218     (T : Entity_Id;
219      N : Node_Id) return Node_Id;
220   --  Determine whether a selected component has a type that depends on
221   --  discriminants, and build actual subtype for it if so.
222
223   --  Handling of inherited primitives whose ancestors have class-wide
224   --  pre/postconditions.
225
226   --  If a primitive operation of a parent type has a class-wide pre/post-
227   --  condition that includes calls to other primitives, and that operation
228   --  is inherited by a descendant type that also overrides some of these
229   --  other primitives, the condition that applies to the inherited
230   --  operation has a modified condition in which the overridden primitives
231   --  have been replaced by the primitives of the descendent type. A call
232   --  to the inherited operation cannot be simply a call to the parent
233   --  operation (with an appropriate conversion) as is the case for other
234   --  inherited operations, but must appear with a wrapper subprogram to which
235   --  the modified conditions apply. Furthermore the call to the parent
236   --  operation must not be subject to the original class-wide condition,
237   --  given that modified conditions apply. To implement these semantics
238   --  economically we create a subprogram body (a "class-wide clone") to
239   --  which no pre/postconditions apply, and we create bodies for the
240   --  original and the inherited operation that have their respective
241   --  pre/postconditions and simply call the clone. The following operations
242   --  take care of constructing declaration and body of the clone, and
243   --  building the calls to it within the appropriate wrappers.
244
245   procedure Build_Class_Wide_Clone_Body
246     (Spec_Id  : Entity_Id;
247      Bod      : Node_Id);
248   --  Build body of subprogram that has a class-wide condition that contains
249   --  calls to other primitives. Spec_Id is the Id of the subprogram, and B
250   --  is its source body, which becomes the body of the clone.
251
252   function Build_Class_Wide_Clone_Call
253    (Loc      : Source_Ptr;
254     Decls    : List_Id;
255     Spec_Id  : Entity_Id;
256     Spec     : Node_Id) return Node_Id;
257   --  Build a call to the common class-wide clone of a subprogram with
258   --  class-wide conditions. The body of the subprogram becomes a wrapper
259   --  for a call to the clone. The inherited operation becomes a similar
260   --  wrapper to which modified conditions apply, and the call to the
261   --  clone includes the proper conversion in a call the parent operation.
262
263   procedure Build_Class_Wide_Clone_Decl (Spec_Id : Entity_Id);
264   --  For a subprogram that has a class-wide condition that contains calls
265   --  to other primitives, build an internal subprogram that is invoked
266   --  through a type-specific wrapper for all inherited subprograms that
267   --  may have a modified condition.
268
269   function Build_Default_Subtype
270     (T : Entity_Id;
271      N : Node_Id) return Entity_Id;
272   --  If T is an unconstrained type with defaulted discriminants, build a
273   --  subtype constrained by the default values, insert the subtype
274   --  declaration in the tree before N, and return the entity of that
275   --  subtype. Otherwise, simply return T.
276
277   function Build_Discriminal_Subtype_Of_Component
278     (T : Entity_Id) return Node_Id;
279   --  Determine whether a record component has a type that depends on
280   --  discriminants, and build actual subtype for it if so.
281
282   procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
283   --  Given a compilation unit node N, allocate an elaboration counter for
284   --  the compilation unit, and install it in the Elaboration_Entity field
285   --  of Spec_Id, the entity for the compilation unit.
286
287   function Build_Overriding_Spec
288     (Op  : Node_Id;
289      Typ : Entity_Id) return Node_Id;
290   --  Build a subprogram specification for the wrapper of an inherited
291   --  operation with a modified pre- or postcondition (See AI12-0113).
292   --  Op is the parent operation, and Typ is the descendant type that
293   --  inherits the operation.
294
295   procedure Build_Explicit_Dereference
296     (Expr : Node_Id;
297      Disc : Entity_Id);
298   --  AI05-139: Names with implicit dereference. If the expression N is a
299   --  reference type and the context imposes the corresponding designated
300   --  type, convert N into N.Disc.all. Such expressions are always over-
301   --  loaded with both interpretations, and the dereference interpretation
302   --  carries the name of the reference discriminant.
303
304   function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
305   --  Returns True if the expression cannot possibly raise Constraint_Error.
306   --  The response is conservative in the sense that a result of False does
307   --  not necessarily mean that CE could be raised, but a response of True
308   --  means that for sure CE cannot be raised.
309
310   procedure Check_Dynamically_Tagged_Expression
311     (Expr        : Node_Id;
312      Typ         : Entity_Id;
313      Related_Nod : Node_Id);
314   --  Check wrong use of dynamically tagged expression
315
316   procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
317   --  Verify that the full declaration of type T has been seen. If not, place
318   --  error message on node N. Used in object declarations, type conversions
319   --  and qualified expressions.
320
321   procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id);
322   --  A subprogram that has an Address parameter and is declared in a Pure
323   --  package is not considered Pure, because the parameter may be used as a
324   --  pointer and the referenced data may change even if the address value
325   --  itself does not.
326   --  If the programmer gave an explicit Pure_Function pragma, then we respect
327   --  the pragma and leave the subprogram Pure.
328
329   procedure Check_Function_Writable_Actuals (N : Node_Id);
330   --  (Ada 2012): If the construct N has two or more direct constituents that
331   --  are names or expressions whose evaluation may occur in an arbitrary
332   --  order, at least one of which contains a function call with an in out or
333   --  out parameter, then the construct is legal only if: for each name that
334   --  is passed as a parameter of mode in out or out to some inner function
335   --  call C2 (not including the construct N itself), there is no other name
336   --  anywhere within a direct constituent of the construct C other than
337   --  the one containing C2, that is known to refer to the same object (RM
338   --  6.4.1(6.17/3)).
339
340   procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id);
341   --  AI05-139-2: Accessors and iterators for containers. This procedure
342   --  checks whether T is a reference type, and if so it adds an interprettion
343   --  to N whose type is the designated type of the reference_discriminant.
344   --  If N is a generalized indexing operation, the interpretation is added
345   --  both to the corresponding function call, and to the indexing node.
346
347   procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
348   --  Within a protected function, the current object is a constant, and
349   --  internal calls to a procedure or entry are illegal. Similarly, other
350   --  uses of a protected procedure in a renaming or a generic instantiation
351   --  in the context of a protected function are illegal (AI05-0225).
352
353   procedure Check_Later_Vs_Basic_Declarations
354     (Decls          : List_Id;
355      During_Parsing : Boolean);
356   --  If During_Parsing is True, check for misplacement of later vs basic
357   --  declarations in Ada 83. If During_Parsing is False, and the SPARK
358   --  restriction is set, do the same: although SPARK 95 removes the
359   --  distinction between initial and later declarative items, the distinction
360   --  remains in the Examiner (JB01-005). Note that the Examiner does not
361   --  count package declarations in later declarative items.
362
363   procedure Check_No_Hidden_State (Id : Entity_Id);
364   --  Determine whether object or state Id introduces a hidden state. If this
365   --  is the case, emit an error.
366
367   procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id);
368   --  Verify that the profile of nonvolatile function Func_Id does not contain
369   --  effectively volatile parameters or return type.
370
371   procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id);
372   --  Verify the legality of reference Ref to variable Var_Id when the
373   --  variable is a constituent of a single protected/task type.
374
375   procedure Check_Potentially_Blocking_Operation (N : Node_Id);
376   --  N is one of the statement forms that is a potentially blocking
377   --  operation. If it appears within a protected action, emit warning.
378
379   procedure Check_Previous_Null_Procedure
380     (Decl : Node_Id;
381      Prev : Entity_Id);
382   --  A null procedure or a subprogram renaming can complete a previous
383   --  declaration, unless that previous declaration is itself a null
384   --  procedure. This must be treated specially because the analysis of
385   --  the null procedure leaves the corresponding entity as having no
386   --  completion, because its completion is provided by a generated body
387   --  inserted after all other declarations.
388
389   procedure Check_Result_And_Post_State (Subp_Id : Entity_Id);
390   --  Determine whether the contract of subprogram Subp_Id mentions attribute
391   --  'Result and it contains an expression that evaluates differently in pre-
392   --  and post-state.
393
394   procedure Check_State_Refinements
395     (Context      : Node_Id;
396      Is_Main_Unit : Boolean := False);
397   --  Verify that all abstract states declared in a block statement, entry
398   --  body, package body, protected body, subprogram body, task body, or a
399   --  package declaration denoted by Context have proper refinement. Emit an
400   --  error if this is not the case. Flag Is_Main_Unit should be set when
401   --  Context denotes the main compilation unit.
402
403   procedure Check_Unused_Body_States (Body_Id : Entity_Id);
404   --  Verify that all abstract states and objects declared in the state space
405   --  of package body Body_Id are used as constituents. Emit an error if this
406   --  is not the case.
407
408   procedure Check_Unprotected_Access
409     (Context : Node_Id;
410      Expr    : Node_Id);
411   --  Check whether the expression is a pointer to a protected component,
412   --  and the context is external to the protected operation, to warn against
413   --  a possible unlocked access to data.
414
415   function Choice_List (N : Node_Id) return List_Id;
416   --  Utility to retrieve the choices of a Component_Association or the
417   --  Discrete_Choices of an Iterated_Component_Association. For various
418   --  reasons these nodes have a different structure even though they play
419   --  similar roles in array aggregates.
420
421   function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id;
422   --  Gather the entities of all abstract states and objects declared in the
423   --  body state space of package body Body_Id.
424
425   procedure Collect_Interfaces
426     (T               : Entity_Id;
427      Ifaces_List     : out Elist_Id;
428      Exclude_Parents : Boolean := False;
429      Use_Full_View   : Boolean := True);
430   --  Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
431   --  directly or indirectly implemented by T. Exclude_Parents is used to
432   --  avoid the addition of inherited interfaces to the generated list.
433   --  Use_Full_View is used to collect the interfaces using the full-view
434   --  (if available).
435
436   procedure Collect_Interface_Components
437     (Tagged_Type     : Entity_Id;
438      Components_List : out Elist_Id);
439   --  Ada 2005 (AI-251): Collect all the tag components associated with the
440   --  secondary dispatch tables of a tagged type.
441
442   procedure Collect_Interfaces_Info
443     (T               : Entity_Id;
444      Ifaces_List     : out Elist_Id;
445      Components_List : out Elist_Id;
446      Tags_List       : out Elist_Id);
447   --  Ada 2005 (AI-251): Collect all the interfaces associated with T plus
448   --  the record component and tag associated with each of these interfaces.
449   --  On exit Ifaces_List, Components_List and Tags_List have the same number
450   --  of elements, and elements at the same position on these tables provide
451   --  information on the same interface type.
452
453   procedure Collect_Parents
454     (T             : Entity_Id;
455      List          : out Elist_Id;
456      Use_Full_View : Boolean := True);
457   --  Collect all the parents of Typ. Use_Full_View is used to collect them
458   --  using the full-view of private parents (if available).
459
460   function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
461   --  Called upon type derivation and extension. We scan the declarative part
462   --  in which the type appears, and collect subprograms that have one
463   --  subsidiary subtype of the type. These subprograms can only appear after
464   --  the type itself.
465
466   function Compile_Time_Constraint_Error
467     (N    : Node_Id;
468      Msg  : String;
469      Ent  : Entity_Id  := Empty;
470      Loc  : Source_Ptr := No_Location;
471      Warn : Boolean    := False) return Node_Id;
472   --  This is similar to Apply_Compile_Time_Constraint_Error in that it
473   --  generates a warning (or error) message in the same manner, but it does
474   --  not replace any nodes. For convenience, the function always returns its
475   --  first argument. The message is a warning if the message ends with ?, or
476   --  we are operating in Ada 83 mode, or the Warn parameter is set to True.
477
478   procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
479   --  Sets the Has_Delayed_Freeze flag of New_Ent if the Delayed_Freeze flag
480   --  of Old_Ent is set and Old_Ent has not yet been Frozen (i.e. Is_Frozen is
481   --  False).
482
483   function Copy_Component_List
484     (R_Typ : Entity_Id;
485      Loc   : Source_Ptr) return List_Id;
486   --  Copy components from record type R_Typ that come from source. Used to
487   --  create a new compatible record type. Loc is the source location assigned
488   --  to the created nodes.
489
490   function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
491   --  Utility to create a parameter profile for a new subprogram spec, when
492   --  the subprogram has a body that acts as spec. This is done for some cases
493   --  of inlining, and for private protected ops. Also used to create bodies
494   --  for stubbed subprograms.
495
496   procedure Copy_SPARK_Mode_Aspect (From : Node_Id; To : Node_Id);
497   --  Copy the SPARK_Mode aspect if present in the aspect specifications
498   --  of node From to node To. On entry it is assumed that To does not have
499   --  aspect specifications. If From has no aspects, the routine has no
500   --  effect.
501
502   function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id;
503   --  Replicate a function or a procedure specification denoted by Spec. The
504   --  resulting tree is an exact duplicate of the original tree. New entities
505   --  are created for the unit name and the formal parameters.
506
507   function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
508   --  If a type is a generic actual type, return the corresponding formal in
509   --  the generic parent unit. There is no direct link in the tree for this
510   --  attribute, except in the case of formal private and derived types.
511   --  Possible optimization???
512
513   function Current_Entity (N : Node_Id) return Entity_Id;
514   pragma Inline (Current_Entity);
515   --  Find the currently visible definition for a given identifier, that is to
516   --  say the first entry in the visibility chain for the Chars of N.
517
518   function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
519   --  Find whether there is a previous definition for identifier N in the
520   --  current scope. Because declarations for a scope are not necessarily
521   --  contiguous (e.g. for packages) the first entry on the visibility chain
522   --  for N is not necessarily in the current scope.
523
524   function Current_Scope return Entity_Id;
525   --  Get entity representing current scope
526
527   function Current_Scope_No_Loops return Entity_Id;
528   --  Return the current scope ignoring internally generated loops
529
530   function Current_Subprogram return Entity_Id;
531   --  Returns current enclosing subprogram. If Current_Scope is a subprogram,
532   --  then that is what is returned, otherwise the Enclosing_Subprogram of the
533   --  Current_Scope is returned. The returned value is Empty if this is called
534   --  from a library package which is not within any subprogram.
535
536   function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
537   --  Same as Type_Access_Level, except that if the type is the type of an Ada
538   --  2012 stand-alone object of an anonymous access type, then return the
539   --  static accesssibility level of the object. In that case, the dynamic
540   --  accessibility level of the object may take on values in a range. The low
541   --  bound of that range is returned by Type_Access_Level; this function
542   --  yields the high bound of that range. Also differs from Type_Access_Level
543   --  in the case of a descendant of a generic formal type (returns Int'Last
544   --  instead of 0).
545
546   function Defining_Entity
547     (N                  : Node_Id;
548      Empty_On_Errors    : Boolean := False;
549      Concurrent_Subunit : Boolean := False) return Entity_Id;
550   --  Given a declaration N, returns the associated defining entity. If the
551   --  declaration has a specification, the entity is obtained from the
552   --  specification. If the declaration has a defining unit name, then the
553   --  defining entity is obtained from the defining unit name ignoring any
554   --  child unit prefixes.
555   --
556   --  Iterator loops also have a defining entity, which holds the list of
557   --  local entities declared during loop expansion. These entities need
558   --  debugging information, generated through Qualify_Entity_Names, and
559   --  the loop declaration must be placed in the table Name_Qualify_Units.
560   --
561   --  Set flag Empty_On_Error to change the behavior of this routine as
562   --  follows:
563   --
564   --    * True  - A declaration that lacks a defining entity returns Empty.
565   --      A node that does not allow for a defining entity returns Empty.
566   --
567   --    * False - A declaration that lacks a defining entity is given a new
568   --      internally generated entity which is subsequently returned. A node
569   --      that does not allow for a defining entity raises Program_Error.
570   --
571   --  The former semantics is appropriate for the back end; the latter
572   --  semantics is appropriate for the front end.
573   --
574   --  Set flag Concurrent_Subunit to handle rewritings of concurrent bodies
575   --  which act as subunits. Such bodies are generally rewritten as null.
576
577   function Denotes_Discriminant
578     (N                : Node_Id;
579      Check_Concurrent : Boolean := False) return Boolean;
580   --  Returns True if node N is an Entity_Name node for a discriminant. If the
581   --  flag Check_Concurrent is true, function also returns true when N denotes
582   --  the discriminal of the discriminant of a concurrent type. This is needed
583   --  to disable some optimizations on private components of protected types,
584   --  and constraint checks on entry families constrained by discriminants.
585
586   function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
587   --  Detect suspicious overlapping between actuals in a call, when both are
588   --  writable (RM 2012 6.4.1(6.4/3))
589
590   function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
591   --  Functions to detect suspicious overlapping between actuals in a call,
592   --  when one of them is writable. The predicates are those proposed in
593   --  AI05-0144, to detect dangerous order dependence in complex calls.
594   --  I would add a parameter Warn which enables more extensive testing of
595   --  cases as we find appropriate when we are only warning ??? Or perhaps
596   --  return an indication of (Error, Warn, OK) ???
597
598   function Denotes_Variable (N : Node_Id) return Boolean;
599   --  Returns True if node N denotes a single variable without parentheses
600
601   function Depends_On_Discriminant (N : Node_Id) return Boolean;
602   --  Returns True if N denotes a discriminant or if N is a range, a subtype
603   --  indication or a scalar subtype where one of the bounds is a
604   --  discriminant.
605
606   function Designate_Same_Unit
607     (Name1 : Node_Id;
608      Name2 : Node_Id) return  Boolean;
609   --  Returns True if Name1 and Name2 designate the same unit name; each of
610   --  these names is supposed to be a selected component name, an expanded
611   --  name, a defining program unit name or an identifier.
612
613   procedure Diagnose_Iterated_Component_Association (N : Node_Id);
614   --  Emit an error if iterated component association N is actually an illegal
615   --  quantified expression lacking a quantifier.
616
617   function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id;
618   --  Expr should be an expression of an access type. Builds an integer
619   --  literal except in cases involving anonymous access types where
620   --  accessibility levels are tracked at runtime (access parameters and Ada
621   --  2012 stand-alone objects).
622
623   function Discriminated_Size (Comp : Entity_Id) return Boolean;
624   --  If a component size is not static then a warning will be emitted
625   --  in Ravenscar or other restricted contexts. When a component is non-
626   --  static because of a discriminant constraint we can specialize the
627   --  warning by mentioning discriminants explicitly. This was created for
628   --  private components of protected objects, but is generally useful when
629   --  retriction (No_Implicit_Heap_Allocation) is active.
630
631   function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
632   --  Same as Einfo.Extra_Accessibility except thtat object renames
633   --  are looked through.
634
635   function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
636   --  Given the entity of an abstract state or a variable, determine whether
637   --  Id is subject to external property Effective_Reads and if it is, the
638   --  related expression evaluates to True.
639
640   function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
641   --  Given the entity of an abstract state or a variable, determine whether
642   --  Id is subject to external property Effective_Writes and if it is, the
643   --  related expression evaluates to True.
644
645   function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
646   --  Returns the enclosing N_Compilation_Unit node that is the root of a
647   --  subtree containing N.
648
649   function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
650   --  Returns the closest ancestor of Typ that is a CPP type.
651
652   function Enclosing_Declaration (N : Node_Id) return Node_Id;
653   --  Returns the declaration node enclosing N (including possibly N itself),
654   --  if any, or Empty otherwise.
655
656   function Enclosing_Generic_Body (N : Node_Id) return Node_Id;
657   --  Returns the Node_Id associated with the innermost enclosing generic
658   --  body, if any. If none, then returns Empty.
659
660   function Enclosing_Generic_Unit (N : Node_Id) return Node_Id;
661   --  Returns the Node_Id associated with the innermost enclosing generic
662   --  unit, if any. If none, then returns Empty.
663
664   function Enclosing_Lib_Unit_Entity
665     (E : Entity_Id := Current_Scope) return Entity_Id;
666   --  Returns the entity of enclosing library unit node which is the root of
667   --  the current scope (which must not be Standard_Standard, and the caller
668   --  is responsible for ensuring this condition) or other specified entity.
669
670   function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
671   --  Returns the N_Compilation_Unit node of the library unit that is directly
672   --  or indirectly (through a subunit) at the root of a subtree containing
673   --  N. This may be either the same as Enclosing_Comp_Unit_Node, or if
674   --  Enclosing_Comp_Unit_Node returns a subunit, then the corresponding
675   --  library unit. If no such item is found, returns Empty.
676
677   function Enclosing_Package (E : Entity_Id) return Entity_Id;
678   --  Utility function to return the Ada entity of the package enclosing
679   --  the entity E, if any. Returns Empty if no enclosing package.
680
681   function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id;
682   --  Returns the entity of the package or subprogram enclosing E, if any.
683   --  Returns Empty if no enclosing package or subprogram.
684
685   function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
686   --  Utility function to return the Ada entity of the subprogram enclosing
687   --  the entity E, if any. Returns Empty if no enclosing subprogram.
688
689   function End_Keyword_Location (N : Node_Id) return Source_Ptr;
690   --  Given block statement, entry body, package body, package declaration,
691   --  protected body, [single] protected type declaration, subprogram body,
692   --  task body, or [single] task type declaration N, return the closest
693   --  source location of the "end" keyword.
694
695   procedure Ensure_Freeze_Node (E : Entity_Id);
696   --  Make sure a freeze node is allocated for entity E. If necessary, build
697   --  and initialize a new freeze node and set Has_Delayed_Freeze True for E.
698
699   procedure Enter_Name (Def_Id : Entity_Id);
700   --  Insert new name in symbol table of current scope with check for
701   --  duplications (error message is issued if a conflict is found).
702   --  Note: Enter_Name is not used for overloadable entities, instead these
703   --  are entered using Sem_Ch6.Enter_Overloadable_Entity.
704
705   function Entity_Of (N : Node_Id) return Entity_Id;
706   --  Obtain the entity of arbitrary node N. If N is a renaming, return the
707   --  entity of the earliest renamed source abstract state or whole object.
708   --  If no suitable entity is available, return Empty.
709
710   procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
711   --  This procedure is called after issuing a message complaining about an
712   --  inappropriate use of limited type T. If useful, it adds additional
713   --  continuation lines to the message explaining why type T is limited.
714   --  Messages are placed at node N.
715
716   function Expression_Of_Expression_Function
717     (Subp : Entity_Id) return Node_Id;
718   --  Return the expression of expression function Subp
719
720   type Extensions_Visible_Mode is
721     (Extensions_Visible_None,
722      --  Extensions_Visible does not yield a mode when SPARK_Mode is off. This
723      --  value acts as a default in a non-SPARK compilation.
724
725      Extensions_Visible_False,
726      --  A value of "False" signifies that Extensions_Visible is either
727      --  missing or the pragma is present and the value of its Boolean
728      --  expression is False.
729
730      Extensions_Visible_True);
731      --  A value of "True" signifies that Extensions_Visible is present and
732      --  the value of its Boolean expression is True.
733
734   function Extensions_Visible_Status
735     (Id : Entity_Id) return Extensions_Visible_Mode;
736   --  Given the entity of a subprogram or formal parameter subject to pragma
737   --  Extensions_Visible, return the Boolean value denoted by the expression
738   --  of the pragma.
739
740   procedure Find_Actual
741     (N      : Node_Id;
742      Formal : out Entity_Id;
743      Call   : out Node_Id);
744   --  Determines if the node N is an actual parameter of a function or a
745   --  procedure call. If so, then Formal points to the entity for the formal
746   --  (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
747   --  Call is set to the node for the corresponding call. If the node N is not
748   --  an actual parameter then Formal and Call are set to Empty.
749
750   function Find_Body_Discriminal
751     (Spec_Discriminant : Entity_Id) return Entity_Id;
752   --  Given a discriminant of the record type that implements a task or
753   --  protected type, return the discriminal of the corresponding discriminant
754   --  of the actual concurrent type.
755
756   function Find_Corresponding_Discriminant
757     (Id   : Node_Id;
758      Typ  : Entity_Id) return Entity_Id;
759   --  Because discriminants may have different names in a generic unit and in
760   --  an instance, they are resolved positionally when possible. A reference
761   --  to a discriminant carries the discriminant that it denotes when it is
762   --  analyzed. Subsequent uses of this id on a different type denotes the
763   --  discriminant at the same position in this new type.
764
765   function Find_DIC_Type (Typ : Entity_Id) return Entity_Id;
766   --  Subsidiary to all Build_DIC_Procedure_xxx routines. Find the type which
767   --  defines the Default_Initial_Condition pragma of type Typ. This is either
768   --  Typ itself or a parent type when the pragma is inherited.
769
770   function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
771   --  Find the nearest iterator loop which encloses arbitrary entity Id. If
772   --  such a loop exists, return the entity of its identifier (E_Loop scope),
773   --  otherwise return Empty.
774
775   function Find_Enclosing_Scope (N : Node_Id) return Entity_Id;
776   --  Find the nearest scope which encloses arbitrary node N
777
778   function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
779   --  Find the nested loop statement in a conditional block. Loops subject to
780   --  attribute 'Loop_Entry are transformed into blocks. Parts of the original
781   --  loop are nested within the block.
782
783   procedure Find_Overlaid_Entity
784     (N   : Node_Id;
785      Ent : out Entity_Id;
786      Off : out Boolean);
787   --  The node N should be an address representation clause. Determines if
788   --  the target expression is the address of an entity with an optional
789   --  offset. If so, set Ent to the entity and, if there is an offset, set
790   --  Off to True, otherwise to False. If N is not an address representation
791   --  clause, or if it is not possible to determine that the address is of
792   --  this form, then set Ent to Empty.
793
794   function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
795   --  Return the type of formal parameter Param as determined by its
796   --  specification.
797
798   --  The following type describes the placement of an arbitrary entity with
799   --  respect to SPARK visible / hidden state space.
800
801   type State_Space_Kind is
802     (Not_In_Package,
803      --  An entity is not in the visible, private or body state space when
804      --  the immediate enclosing construct is not a package.
805
806      Visible_State_Space,
807      --  An entity is in the visible state space when it appears immediately
808      --  within the visible declarations of a package or when it appears in
809      --  the visible state space of a nested package which in turn is declared
810      --  in the visible declarations of an enclosing package:
811
812      --    package Pack is
813      --       Visible_Variable : ...
814      --       package Nested
815      --         with Abstract_State => Visible_State
816      --       is
817      --          Visible_Nested_Variable : ...
818      --       end Nested;
819      --    end Pack;
820
821      --  Entities associated with a package instantiation inherit the state
822      --  space from the instance placement:
823
824      --     generic
825      --     package Gen is
826      --        Generic_Variable : ...
827      --     end Gen;
828
829      --     with Gen;
830      --     package Pack is
831      --        package Inst is new Gen;
832      --        --  Generic_Variable is in the visible state space of Pack
833      --     end Pack;
834
835      Private_State_Space,
836      --  An entity is in the private state space when it appears immediately
837      --  within the private declarations of a package or when it appears in
838      --  the visible state space of a nested package which in turn is declared
839      --  in the private declarations of an enclosing package:
840
841      --    package Pack is
842      --    private
843      --       Private_Variable : ...
844      --       package Nested
845      --         with Abstract_State => Private_State
846      --       is
847      --          Private_Nested_Variable : ...
848      --       end Nested;
849      --    end Pack;
850
851      --  The same placement principle applies to package instantiations
852
853      Body_State_Space);
854      --  An entity is in the body state space when it appears immediately
855      --  within the declarations of a package body or when it appears in the
856      --  visible state space of a nested package which in turn is declared in
857      --  the declarations of an enclosing package body:
858
859      --    package body Pack is
860      --       Body_Variable : ...
861      --       package Nested
862      --         with Abstract_State => Body_State
863      --       is
864      --          Body_Nested_Variable : ...
865      --       end Nested;
866      --    end Pack;
867
868      --  The same placement principle applies to package instantiations
869
870   procedure Find_Placement_In_State_Space
871     (Item_Id   : Entity_Id;
872      Placement : out State_Space_Kind;
873      Pack_Id   : out Entity_Id);
874   --  Determine the state space placement of an item. Item_Id denotes the
875   --  entity of an abstract state, object or package instantiation. Placement
876   --  captures the precise placement of the item in the enclosing state space.
877   --  If the state space is that of a package, Pack_Id denotes its entity,
878   --  otherwise Pack_Id is Empty.
879
880   function Find_Specific_Type (CW : Entity_Id) return Entity_Id;
881   --  Find specific type of a class-wide type, and handle the case of an
882   --  incomplete type coming either from a limited_with clause or from an
883   --  incomplete type declaration. If resulting type is private return its
884   --  full view.
885
886   function Find_Static_Alternative (N : Node_Id) return Node_Id;
887   --  N is a case statement whose expression is a compile-time value.
888   --  Determine the alternative chosen, so that the code of non-selected
889   --  alternatives, and the warnings that may apply to them, are removed.
890
891   function First_Actual (Node : Node_Id) return Node_Id;
892   --  Node is an N_Function_Call, N_Procedure_Call_Statement or
893   --  N_Entry_Call_Statement node. The result returned is the first actual
894   --  parameter in declaration order (not the order of parameters as they
895   --  appeared in the source, which can be quite different as a result of the
896   --  use of named parameters). Empty is returned for a call with no
897   --  parameters. The procedure for iterating through the actuals in
898   --  declaration order is to use this function to find the first actual, and
899   --  then use Next_Actual to obtain the next actual in declaration order.
900   --  Note that the value returned is always the expression (not the
901   --  N_Parameter_Association nodes, even if named association is used).
902
903   function First_Global
904     (Subp        : Entity_Id;
905      Global_Mode : Name_Id;
906      Refined     : Boolean := False) return Node_Id;
907   --  Returns the first global item of mode Global_Mode (which can be
908   --  Name_Input, Name_Output, Name_In_Out or Name_Proof_In) associated to
909   --  subprogram Subp, or Empty otherwise. If Refined is True, the global item
910   --  is retrieved from the Refined_Global aspect/pragma associated to the
911   --  body of Subp if present. Next_Global can be used to get the next global
912   --  item with the same mode.
913
914   function Fix_Msg (Id : Entity_Id; Msg : String) return String;
915   --  Replace all occurrences of a particular word in string Msg depending on
916   --  the Ekind of Id as follows:
917   --    * Replace "subprogram" with
918   --      - "entry" when Id is an entry [family]
919   --      - "task type" when Id is a single task object, task type or task
920   --         body.
921   --    * Replace "protected" with
922   --      - "task" when Id is a single task object, task type or task body
923   --  All other non-matching words remain as is
924
925   function From_Nested_Package (T : Entity_Id) return Boolean;
926   --  A type declared in a nested package may be frozen by a declaration
927   --  appearing after the package but before the package is frozen. If the
928   --  type has aspects that generate subprograms, these may contain references
929   --  to entities local to the nested package. In that case the package must
930   --  be installed on the scope stack to prevent spurious visibility errors.
931
932   procedure Gather_Components
933     (Typ           : Entity_Id;
934      Comp_List     : Node_Id;
935      Governed_By   : List_Id;
936      Into          : Elist_Id;
937      Report_Errors : out Boolean);
938   --  The purpose of this procedure is to gather the valid components in a
939   --  record type according to the values of its discriminants, in order to
940   --  validate the components of a record aggregate.
941   --
942   --    Typ is the type of the aggregate when its constrained discriminants
943   --      need to be collected, otherwise it is Empty.
944   --
945   --    Comp_List is an N_Component_List node.
946   --
947   --    Governed_By is a list of N_Component_Association nodes, where each
948   --     choice list contains the name of a discriminant and the expression
949   --     field gives its value. The values of the discriminants governing
950   --     the (possibly nested) variant parts in Comp_List are found in this
951   --     Component_Association List.
952   --
953   --    Into is the list where the valid components are appended. Note that
954   --     Into need not be an Empty list. If it's not, components are attached
955   --     to its tail.
956   --
957   --    Report_Errors is set to True if the values of the discriminants are
958   --     non-static.
959   --
960   --  This procedure is also used when building a record subtype. If the
961   --  discriminant constraint of the subtype is static, the components of the
962   --  subtype are only those of the variants selected by the values of the
963   --  discriminants. Otherwise all components of the parent must be included
964   --  in the subtype for semantic analysis.
965
966   function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
967   --  Given a node for an expression, obtain the actual subtype of the
968   --  expression. In the case of a parameter where the formal is an
969   --  unconstrained array or discriminated type, this will be the previously
970   --  constructed subtype of the actual. Note that this is not quite the
971   --  "Actual Subtype" of the RM, since it is always a constrained type, i.e.
972   --  it is the subtype of the value of the actual. The actual subtype is also
973   --  returned in other cases where it has already been constructed for an
974   --  object. Otherwise the expression type is returned unchanged, except for
975   --  the case of an unconstrained array type, where an actual subtype is
976   --  created, using Insert_Actions if necessary to insert any associated
977   --  actions.
978
979   function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
980   --  This is like Get_Actual_Subtype, except that it never constructs an
981   --  actual subtype. If an actual subtype is already available, i.e. the
982   --  Actual_Subtype field of the corresponding entity is set, then it is
983   --  returned. Otherwise the Etype of the node is returned.
984
985   function Get_Body_From_Stub (N : Node_Id) return Node_Id;
986   --  Return the body node for a stub
987
988   function Get_Cursor_Type
989     (Aspect : Node_Id;
990      Typ    : Entity_Id) return Entity_Id;
991   --  Find Cursor type in scope of type Typ with Iterable aspect, by locating
992   --  primitive operation First. For use in resolving the other primitive
993   --  operations of an Iterable type and expanding loops and quantified
994   --  expressions over formal containers.
995
996   function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
997   --  Find Cursor type in scope of type Typ with Iterable aspect, by locating
998   --  primitive operation First. For use after resolving the primitive
999   --  operations of an Iterable type.
1000
1001   function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
1002   --  This is used to construct the string literal node representing a
1003   --  default external name, i.e. one that is constructed from the name of an
1004   --  entity, or (in the case of extended DEC import/export pragmas, an
1005   --  identifier provided as the external name. Letters in the name are
1006   --  according to the setting of Opt.External_Name_Default_Casing.
1007
1008   function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
1009   --  If expression N references a part of an object, return this object.
1010   --  Otherwise return Empty. Expression N should have been resolved already.
1011
1012   function Get_Generic_Entity (N : Node_Id) return Entity_Id;
1013   --  Returns the true generic entity in an instantiation. If the name in the
1014   --  instantiation is a renaming, the function returns the renamed generic.
1015
1016   function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
1017   --  Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
1018   --  in a child unit a derived type is within the derivation class of an
1019   --  ancestor declared in a parent unit, even if there is an intermediate
1020   --  derivation that does not see the full view of that ancestor.
1021
1022   procedure Get_Index_Bounds
1023     (N             : Node_Id;
1024      L             : out Node_Id;
1025      H             : out Node_Id;
1026      Use_Full_View : Boolean := False);
1027   --  This procedure assigns to L and H respectively the values of the low and
1028   --  high bounds of node N, which must be a range, subtype indication, or the
1029   --  name of a scalar subtype. The result in L, H may be set to Error if
1030   --  there was an earlier error in the range.
1031   --  Use_Full_View is intended for use by clients other than the compiler
1032   --  (specifically, gnat2scil) to indicate that we want the full view if
1033   --  the index type turns out to be a partial view; this case should not
1034   --  arise during normal compilation of semantically correct programs.
1035
1036   procedure Get_Interfacing_Aspects
1037     (Iface_Asp : Node_Id;
1038      Conv_Asp  : out Node_Id;
1039      EN_Asp    : out Node_Id;
1040      Expo_Asp  : out Node_Id;
1041      Imp_Asp   : out Node_Id;
1042      LN_Asp    : out Node_Id;
1043      Do_Checks : Boolean := False);
1044   --  Given a single interfacing aspect Iface_Asp, retrieve other interfacing
1045   --  aspects that apply to the same related entity. The aspects considered by
1046   --  this routine are as follows:
1047   --
1048   --    Conv_Asp - aspect Convention
1049   --    EN_Asp   - aspect External_Name
1050   --    Expo_Asp - aspect Export
1051   --    Imp_Asp  - aspect Import
1052   --    LN_Asp   - aspect Link_Name
1053   --
1054   --  When flag Do_Checks is set, this routine will flag duplicate uses of
1055   --  aspects.
1056
1057   function Get_Enum_Lit_From_Pos
1058     (T   : Entity_Id;
1059      Pos : Uint;
1060      Loc : Source_Ptr) return Node_Id;
1061   --  This function returns an identifier denoting the E_Enumeration_Literal
1062   --  entity for the specified value from the enumeration type or subtype T.
1063   --  The second argument is the Pos value. Constraint_Error is raised if
1064   --  argument Pos is not in range. The third argument supplies a source
1065   --  location for constructed nodes returned by this function. If No_Location
1066   --  is supplied as source location, the location of the returned node is
1067   --  copied from the original source location for the enumeration literal,
1068   --  when available.
1069
1070   function Get_Iterable_Type_Primitive
1071     (Typ : Entity_Id;
1072      Nam : Name_Id) return Entity_Id;
1073   --  Retrieve one of the primitives First, Next, Has_Element, Element from
1074   --  the value of the Iterable aspect of a type.
1075
1076   procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
1077   --  Retrieve the fully expanded name of the library unit declared by
1078   --  Decl_Node into the name buffer.
1079
1080   function Get_Max_Queue_Length (Id : Entity_Id) return Uint;
1081   --  Return the argument of pragma Max_Queue_Length or zero if the annotation
1082   --  is not present. It is assumed that Id denotes an entry.
1083
1084   function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
1085   pragma Inline (Get_Name_Entity_Id);
1086   --  An entity value is associated with each name in the name table. The
1087   --  Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
1088   --  is the innermost visible entity with the given name. See the body of
1089   --  Sem_Ch8 for further details on handling of entity visibility.
1090
1091   function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
1092   --  Return the Name component of Test_Case pragma N
1093   --  Bad name now that this no longer applies to Contract_Case ???
1094
1095   function Get_Parent_Entity (Unit : Node_Id) return Entity_Id;
1096   --  Get defining entity of parent unit of a child unit. In most cases this
1097   --  is the defining entity of the unit, but for a child instance whose
1098   --  parent needs a body for inlining, the instantiation node of the parent
1099   --  has not yet been rewritten as a package declaration, and the entity has
1100   --  to be retrieved from the Instance_Spec of the unit.
1101
1102   function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
1103   pragma Inline (Get_Pragma_Id);
1104   --  Obtains the Pragma_Id from Pragma_Name_Unmapped (N)
1105
1106   function Get_Qualified_Name
1107     (Id     : Entity_Id;
1108      Suffix : Entity_Id := Empty) return Name_Id;
1109   --  Obtain the fully qualified form of entity Id. The format is:
1110   --    scope_of_id-1__scope_of_id__chars_of_id__chars_of_suffix
1111
1112   function Get_Qualified_Name
1113     (Nam    : Name_Id;
1114      Suffix : Name_Id   := No_Name;
1115      Scop   : Entity_Id := Current_Scope) return Name_Id;
1116   --  Obtain the fully qualified form of name Nam assuming it appears in scope
1117   --  Scop. The format is:
1118   --    scop-1__scop__nam__suffix
1119
1120   procedure Get_Reason_String (N : Node_Id);
1121   --  Recursive routine to analyze reason argument for pragma Warnings. The
1122   --  value of the reason argument is appended to the current string using
1123   --  Store_String_Chars. The reason argument is expected to be a string
1124   --  literal or concatenation of string literals. An error is given for
1125   --  any other form.
1126
1127   function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id;
1128   --  If Typ has Implicit_Dereference, return discriminant specified in the
1129   --  corresponding aspect.
1130
1131   function Get_Referenced_Object (N : Node_Id) return Node_Id;
1132   --  Given a node, return the renamed object if the node represents a renamed
1133   --  object, otherwise return the node unchanged. The node may represent an
1134   --  arbitrary expression.
1135
1136   function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
1137   --  Given an entity for an exception, package, subprogram or generic unit,
1138   --  returns the ultimately renamed entity if this is a renaming. If this is
1139   --  not a renamed entity, returns its argument. It is an error to call this
1140   --  with any other kind of entity.
1141
1142   function Get_Return_Object (N : Node_Id) return Entity_Id;
1143   --  Given an extended return statement, return the corresponding return
1144   --  object, identified as the one for which Is_Return_Object = True.
1145
1146   function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
1147   --  Nod is either a procedure call statement, or a function call, or an
1148   --  accept statement node. This procedure finds the Entity_Id of the related
1149   --  subprogram or entry and returns it, or if no subprogram can be found,
1150   --  returns Empty.
1151
1152   function Get_Task_Body_Procedure (E : Entity_Id) return Entity_Id;
1153   --  Given an entity for a task type or subtype, retrieves the
1154   --  Task_Body_Procedure field from the corresponding task type declaration.
1155
1156   function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id;
1157   --  For a type entity, return the entity of the primitive equality function
1158   --  for the type if it exists, otherwise return Empty.
1159
1160   procedure Get_Views
1161     (Typ       : Entity_Id;
1162      Priv_Typ  : out Entity_Id;
1163      Full_Typ  : out Entity_Id;
1164      Full_Base : out Entity_Id;
1165      CRec_Typ  : out Entity_Id);
1166   --  Obtain the partial and full view of type Typ and in addition any extra
1167   --  types the full view may have. The return entities are as follows:
1168   --
1169   --    Priv_Typ  - the partial view (a private type)
1170   --    Full_Typ  - the full view
1171   --    Full_Base - the base type of the full view
1172   --    CRec_Typ  - the corresponding record type of the full view
1173
1174   function Has_Access_Values (T : Entity_Id) return Boolean;
1175   --  Returns true if type or subtype T is an access type, or has a component
1176   --  (at any recursive level) that is an access type. This is a conservative
1177   --  predicate, if it is not known whether or not T contains access values
1178   --  (happens for generic formals in some cases), then False is returned.
1179   --  Note that tagged types return False. Even though the tag is implemented
1180   --  as an access type internally, this function tests only for access types
1181   --  known to the programmer. See also Has_Tagged_Component.
1182
1183   type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
1184   --  Result of Has_Compatible_Alignment test, description found below. Note
1185   --  that the values are arranged in increasing order of problematicness.
1186
1187   function Has_Compatible_Alignment
1188     (Obj         : Entity_Id;
1189      Expr        : Node_Id;
1190      Layout_Done : Boolean) return Alignment_Result;
1191   --  Obj is an object entity, and expr is a node for an object reference. If
1192   --  the alignment of the object referenced by Expr is known to be compatible
1193   --  with the alignment of Obj (i.e. is larger or the same), then the result
1194   --  is Known_Compatible. If the alignment of the object referenced by Expr
1195   --  is known to be less than the alignment of Obj, then Known_Incompatible
1196   --  is returned. If neither condition can be reliably established at compile
1197   --  time, then Unknown is returned. If Layout_Done is True, the function can
1198   --  assume that the information on size and alignment of types and objects
1199   --  is present in the tree. This is used to determine if alignment checks
1200   --  are required for address clauses (Layout_Done is False in this case) as
1201   --  well as to issue appropriate warnings for them in the post compilation
1202   --  phase (Layout_Done is True in this case).
1203   --
1204   --  Note: Known_Incompatible does not mean that at run time the alignment
1205   --  of Expr is known to be wrong for Obj, just that it can be determined
1206   --  that alignments have been explicitly or implicitly specified which are
1207   --  incompatible (whereas Unknown means that even this is not known). The
1208   --  appropriate reaction of a caller to Known_Incompatible is to treat it as
1209   --  Unknown, but issue a warning that there may be an alignment error.
1210
1211   function Has_Declarations (N : Node_Id) return Boolean;
1212   --  Determines if the node can have declarations
1213
1214   function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
1215   --  Simple predicate to test for defaulted discriminants
1216
1217   function Has_Denormals (E : Entity_Id) return Boolean;
1218   --  Determines if the floating-point type E supports denormal numbers.
1219   --  Returns False if E is not a floating-point type.
1220
1221   function Has_Discriminant_Dependent_Constraint
1222     (Comp : Entity_Id) return Boolean;
1223   --  Returns True if and only if Comp has a constrained subtype that depends
1224   --  on a discriminant.
1225
1226   function Has_Effectively_Volatile_Profile
1227     (Subp_Id : Entity_Id) return Boolean;
1228   --  Determine whether subprogram Subp_Id has an effectively volatile formal
1229   --  parameter or returns an effectively volatile value.
1230
1231   function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean;
1232   --  Determine whether type Typ defines "full default initialization" as
1233   --  specified by SPARK RM 3.1. To qualify as such, the type must be
1234   --    * A scalar type with specified Default_Value
1235   --    * An array-of-scalar type with specified Default_Component_Value
1236   --    * An array type whose element type defines full default initialization
1237   --    * A protected type, record type or type extension whose components
1238   --      either include a default expression or have a type which defines
1239   --      full default initialization. In the case of type extensions, the
1240   --      parent type defines full default initialization.
1241   --    * A task type
1242   --    * A private type with pragma Default_Initial_Condition that provides
1243   --      full default initialization.
1244
1245   function Has_Fully_Default_Initializing_DIC_Pragma
1246     (Typ : Entity_Id) return Boolean;
1247   --  Determine whether type Typ has a suitable Default_Initial_Condition
1248   --  pragma which provides the full default initialization of the type.
1249
1250   function Has_Infinities (E : Entity_Id) return Boolean;
1251   --  Determines if the range of the floating-point type E includes
1252   --  infinities. Returns False if E is not a floating-point type.
1253
1254   function Has_Interfaces
1255     (T             : Entity_Id;
1256      Use_Full_View : Boolean := True) return Boolean;
1257   --  Where T is a concurrent type or a record type, returns true if T covers
1258   --  any abstract interface types. In case of private types the argument
1259   --  Use_Full_View controls if the check is done using its full view (if
1260   --  available).
1261
1262   function Has_Max_Queue_Length (Id : Entity_Id) return Boolean;
1263   --  Determine whether Id is subject to pragma Max_Queue_Length. It is
1264   --  assumed that Id denotes an entry.
1265
1266   function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
1267   --  This is a simple minded function for determining whether an expression
1268   --  has no obvious side effects. It is used only for determining whether
1269   --  warnings are needed in certain situations, and is not guaranteed to
1270   --  be accurate in either direction. Exceptions may mean an expression
1271   --  does in fact have side effects, but this may be ignored and True is
1272   --  returned, or a complex expression may in fact be side effect free
1273   --  but we don't recognize it here and return False. The Side_Effect_Free
1274   --  routine in Remove_Side_Effects is much more extensive and perhaps could
1275   --  be shared, so that this routine would be more accurate.
1276
1277   function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean;
1278   --  Determine whether abstract state Id has at least one nonnull constituent
1279   --  as expressed in pragma Refined_State. This function does not take into
1280   --  account the visible refinement region of abstract state Id.
1281
1282   function Has_Non_Trivial_Precondition (Subp : Entity_Id) return Boolean;
1283   --  Determine whether subprogram Subp has a class-wide precondition that is
1284   --  not statically True.
1285
1286   function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
1287   --  Determine whether the body of procedure Proc_Id contains a sole null
1288   --  statement, possibly followed by an optional return. Used to optimize
1289   --  useless calls to assertion checks.
1290
1291   function Has_Null_Exclusion (N : Node_Id) return Boolean;
1292   --  Determine whether node N has a null exclusion
1293
1294   function Has_Null_Refinement (Id : Entity_Id) return Boolean;
1295   --  Determine whether abstract state Id has a null refinement as expressed
1296   --  in pragma Refined_State. This function does not take into account the
1297   --  visible refinement region of abstract state Id.
1298
1299   function Has_Non_Null_Statements (L : List_Id) return Boolean;
1300   --  Return True if L has non-null statements
1301
1302   function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
1303   --  Predicate to determine whether a controlled type has a user-defined
1304   --  Initialize primitive (and, in Ada 2012, whether that primitive is
1305   --  non-null), which causes the type to not have preelaborable
1306   --  initialization.
1307
1308   function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
1309   --  Return True iff type E has preelaborable initialization as defined in
1310   --  Ada 2005 (see AI-161 for details of the definition of this attribute).
1311
1312   function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
1313   --  Check if a type has a (sub)component of a private type that has not
1314   --  yet received a full declaration.
1315
1316   function Has_Signed_Zeros (E : Entity_Id) return Boolean;
1317   --  Determines if the floating-point type E supports signed zeros.
1318   --  Returns False if E is not a floating-point type.
1319
1320   function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean;
1321   --  Determine whether subprogram [body] Subp_Id has a significant contract.
1322   --  All subprograms have a N_Contract node, but this does not mean that the
1323   --  contract is useful.
1324
1325   function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
1326   --  Return whether an array type has static bounds
1327
1328   function Has_Stream (T : Entity_Id) return Boolean;
1329   --  Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1330   --  case of a composite type, has a component for which this predicate is
1331   --  True, and if so returns True. Otherwise a result of False means that
1332   --  there is no Stream type in sight. For a private type, the test is
1333   --  applied to the underlying type (or returns False if there is no
1334   --  underlying type).
1335
1336   function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
1337   --  Returns true if the last character of E is Suffix. Used in Assertions.
1338
1339   function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
1340   --  Returns True if Typ is a composite type (array or record) that is either
1341   --  a tagged type or has a subcomponent that is tagged. Returns False for a
1342   --  noncomposite type, or if no tagged subcomponents are present. This
1343   --  function is used to check if "=" has to be expanded into a bunch
1344   --  component comparisons.
1345
1346   function Has_Undefined_Reference (Expr : Node_Id) return Boolean;
1347   --  Given arbitrary expression Expr, determine whether it contains at
1348   --  least one name whose entity is Any_Id.
1349
1350   function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
1351   --  Given arbitrary type Typ, determine whether it contains at least one
1352   --  volatile component.
1353
1354   function Implementation_Kind (Subp : Entity_Id) return Name_Id;
1355   --  Subp is a subprogram marked with pragma Implemented. Return the specific
1356   --  implementation requirement which the pragma imposes. The return value is
1357   --  either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1358
1359   function Implements_Interface
1360     (Typ_Ent         : Entity_Id;
1361      Iface_Ent       : Entity_Id;
1362      Exclude_Parents : Boolean := False) return Boolean;
1363   --  Returns true if the Typ_Ent implements interface Iface_Ent
1364
1365   function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1366   --  Returns True if node N appears within a pragma that acts as an assertion
1367   --  expression. See Sem_Prag for the list of qualifying pragmas.
1368
1369   function In_Generic_Scope (E : Entity_Id) return Boolean;
1370   --  Returns True if entity E is inside a generic scope
1371
1372   function In_Instance return Boolean;
1373   --  Returns True if the current scope is within a generic instance
1374
1375   function In_Instance_Body return Boolean;
1376   --  Returns True if current scope is within the body of an instance, where
1377   --  several semantic checks (e.g. accessibility checks) are relaxed.
1378
1379   function In_Instance_Not_Visible return Boolean;
1380   --  Returns True if current scope is with the private part or the body of
1381   --  an instance. Other semantic checks are suppressed in this context.
1382
1383   function In_Instance_Visible_Part
1384     (Id : Entity_Id := Current_Scope) return Boolean;
1385   --  Returns True if arbitrary entity Id is within the visible part of a
1386   --  package instance, where several additional semantic checks apply.
1387
1388   function In_Package_Body return Boolean;
1389   --  Returns True if current scope is within a package body
1390
1391   function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1392   --  Returns true if the expression N occurs within a pragma with name Nam
1393
1394   function In_Pre_Post_Condition (N : Node_Id) return Boolean;
1395   --  Returns True if node N appears within a pre/postcondition pragma. Note
1396   --  the pragma Check equivalents are NOT considered.
1397
1398   function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1399   --  Returns True if N denotes a component or subcomponent in a record or
1400   --  array that has Reverse_Storage_Order.
1401
1402   function In_Subprogram_Or_Concurrent_Unit return Boolean;
1403   --  Determines if the current scope is within a subprogram compilation unit
1404   --  (inside a subprogram declaration, subprogram body, or generic subprogram
1405   --  declaration) or within a task or protected body. The test is for
1406   --  appearing anywhere within such a construct (that is it does not need
1407   --  to be directly within).
1408
1409   function In_Subtree (N : Node_Id; Root : Node_Id) return Boolean;
1410   --  Determine whether node N is within the subtree rooted at Root
1411
1412   function In_Subtree
1413     (N     : Node_Id;
1414      Root1 : Node_Id;
1415      Root2 : Node_Id) return Boolean;
1416   --  Determine whether node N is within the subtree rooted at Root1 or Root2.
1417   --  This version is more efficient than calling the single root version of
1418   --  Is_Subtree twice.
1419
1420   function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1421   --  Determine whether a declaration occurs within the visible part of a
1422   --  package specification. The package must be on the scope stack, and the
1423   --  corresponding private part must not.
1424
1425   function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id;
1426   --  Given the entity of a constant or a type, retrieve the incomplete or
1427   --  partial view of the same entity. Note that Id may not have a partial
1428   --  view in which case the function returns Empty.
1429
1430   function Incomplete_View_From_Limited_With
1431     (Typ : Entity_Id) return Entity_Id;
1432   --  Typ is a type entity. This normally returns Typ. However, if there is
1433   --  an incomplete view of this entity that comes from a limited-with'ed
1434   --  package, then this returns that incomplete view.
1435
1436   function Indexed_Component_Bit_Offset (N : Node_Id) return Uint;
1437   --  Given an N_Indexed_Component node, return the first bit position of the
1438   --  component if it is known at compile time. A value of No_Uint means that
1439   --  either the value is not yet known before back-end processing or it is
1440   --  not known at compile time after back-end processing.
1441
1442   procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id);
1443   --  Inherit the rep item chain of type From_Typ without clobbering any
1444   --  existing rep items on Typ's chain. Typ is the destination type.
1445
1446   procedure Insert_Explicit_Dereference (N : Node_Id);
1447   --  In a context that requires a composite or subprogram type and where a
1448   --  prefix is an access type, rewrite the access type node N (which is the
1449   --  prefix, e.g. of an indexed component) as an explicit dereference.
1450
1451   procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1452   --  Examine all deferred constants in the declaration list Decls and check
1453   --  whether they have been completed by a full constant declaration or an
1454   --  Import pragma. Emit the error message if that is not the case.
1455
1456   procedure Install_Generic_Formals (Subp_Id : Entity_Id);
1457   --  Install both the generic formal parameters and the formal parameters of
1458   --  generic subprogram Subp_Id into visibility.
1459
1460   procedure Install_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
1461   --  Establish the SPARK_Mode and SPARK_Mode_Pragma currently in effect
1462
1463   function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1464   --  Determines if N is an actual parameter of out mode in a subprogram call
1465
1466   function Is_Actual_Parameter (N : Node_Id) return Boolean;
1467   --  Determines if N is an actual parameter in a subprogram call
1468
1469   function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
1470   --  Determines if N is an actual parameter of a formal of tagged type in a
1471   --  subprogram call.
1472
1473   function Is_Aliased_View (Obj : Node_Id) return Boolean;
1474   --  Determine if Obj is an aliased view, i.e. the name of an object to which
1475   --  'Access or 'Unchecked_Access can apply. Note that this routine uses the
1476   --  rules of the language, it does not take into account the restriction
1477   --  No_Implicit_Aliasing, so it can return True if the restriction is active
1478   --  and Obj violates the restriction. The caller is responsible for calling
1479   --  Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1480   --  requirement for obeying the restriction in the call context.
1481
1482   function Is_Ancestor_Package
1483     (E1 : Entity_Id;
1484      E2 : Entity_Id) return Boolean;
1485   --  Determine whether package E1 is an ancestor of E2
1486
1487   function Is_Atomic_Object (N : Node_Id) return Boolean;
1488   --  Determines if the given node denotes an atomic object in the sense of
1489   --  the legality checks described in RM C.6(12).
1490
1491   function Is_Atomic_Or_VFA_Object (N : Node_Id) return Boolean;
1492   --  Determines if the given node is an atomic object (Is_Atomic_Object true)
1493   --  or else is an object for which VFA is present.
1494
1495   function Is_Attribute_Result (N : Node_Id) return Boolean;
1496   --  Determine whether node N denotes attribute 'Result
1497
1498   function Is_Attribute_Update (N : Node_Id) return Boolean;
1499   --  Determine whether node N denotes attribute 'Update
1500
1501   function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
1502   --  Determine whether node N denotes a body or a package declaration
1503
1504   function Is_Bounded_String (T : Entity_Id) return Boolean;
1505   --  True if T is a bounded string type. Used to make sure "=" composes
1506   --  properly for bounded string types.
1507
1508   function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1509   --  Exp is the expression for an array bound. Determines whether the
1510   --  bound is a compile-time known value, or a constant entity, or an
1511   --  enumeration literal, or an expression composed of constant-bound
1512   --  subexpressions which are evaluated by means of standard operators.
1513
1514   function Is_Container_Element (Exp : Node_Id) return Boolean;
1515   --  This routine recognizes expressions that denote an element of one of
1516   --  the predefined containers, when the source only contains an indexing
1517   --  operation and an implicit dereference is inserted by the compiler.
1518   --  In the absence of this optimization, the indexing creates a temporary
1519   --  controlled cursor that sets the tampering bit of the container, and
1520   --  restricts the use of the convenient notation C (X) to contexts that
1521   --  do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1522   --  explicit dereference. The transformation applies when it has the form
1523   --  F (X).Discr.all.
1524
1525   function Is_Contract_Annotation (Item : Node_Id) return Boolean;
1526   --  Determine whether aspect specification or pragma Item is a contract
1527   --  annotation.
1528
1529   function Is_Controlling_Limited_Procedure
1530     (Proc_Nam : Entity_Id) return Boolean;
1531   --  Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1532   --  of a limited interface with a controlling first parameter.
1533
1534   function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1535   --  Returns True if N is a call to a CPP constructor
1536
1537   function Is_CCT_Instance
1538     (Ref_Id     : Entity_Id;
1539      Context_Id : Entity_Id) return Boolean;
1540   --  Subsidiary to the analysis of pragmas [Refined_]Depends and [Refined_]
1541   --  Global; also used when analyzing default expressions of protected and
1542   --  record components. Determine whether entity Ref_Id (which must represent
1543   --  either a protected type or a task type) denotes the current instance of
1544   --  a concurrent type. Context_Id denotes the associated context where the
1545   --  pragma appears.
1546
1547   function Is_Child_Or_Sibling
1548     (Pack_1 : Entity_Id;
1549      Pack_2 : Entity_Id) return Boolean;
1550   --  Determine the following relations between two arbitrary packages:
1551   --    1) One package is the parent of a child package
1552   --    2) Both packages are siblings and share a common parent
1553
1554   function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1555   --  First determine whether type T is an interface and then check whether
1556   --  it is of protected, synchronized or task kind.
1557
1558   function Is_Current_Instance (N : Node_Id) return Boolean;
1559   --  Predicate is true if N legally denotes a type name within its own
1560   --  declaration. Prior to Ada 2012 this covered only synchronized type
1561   --  declarations. In Ada 2012 it also covers type and subtype declarations
1562   --  with aspects: Invariant, Predicate, and Default_Initial_Condition.
1563
1564   function Is_Declaration
1565     (N                : Node_Id;
1566      Body_OK          : Boolean := True;
1567      Concurrent_OK    : Boolean := True;
1568      Formal_OK        : Boolean := True;
1569      Generic_OK       : Boolean := True;
1570      Instantiation_OK : Boolean := True;
1571      Renaming_OK      : Boolean := True;
1572      Stub_OK          : Boolean := True;
1573      Subprogram_OK    : Boolean := True;
1574      Type_OK          : Boolean := True) return Boolean;
1575   --  Determine whether arbitrary node N denotes a declaration depending
1576   --  on the allowed subsets of declarations. Set the following flags to
1577   --  consider specific subsets of declarations:
1578   --
1579   --    * Body_OK - body declarations
1580   --
1581   --    * Concurrent_OK - concurrent type declarations
1582   --
1583   --    * Formal_OK - formal declarations
1584   --
1585   --    * Generic_OK - generic declarations, including generic renamings
1586   --
1587   --    * Instantiation_OK - generic instantiations
1588   --
1589   --    * Renaming_OK - renaming declarations, including generic renamings
1590   --
1591   --    * Stub_OK - stub declarations
1592   --
1593   --    * Subprogram_OK - entry, expression function, and subprogram
1594   --      declarations.
1595   --
1596   --    * Type_OK - type declarations, including concurrent types
1597
1598   function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
1599   --  Returns True iff component Comp is declared within a variant part
1600
1601   function Is_Dependent_Component_Of_Mutable_Object
1602     (Object : Node_Id) return Boolean;
1603   --  Returns True if Object is the name of a subcomponent that depends on
1604   --  discriminants of a variable whose nominal subtype is unconstrained and
1605   --  not indefinite, and the variable is not aliased. Otherwise returns
1606   --  False. The nodes passed to this function are assumed to denote objects.
1607
1608   function Is_Dereferenced (N : Node_Id) return Boolean;
1609   --  N is a subexpression node of an access type. This function returns true
1610   --  if N appears as the prefix of a node that does a dereference of the
1611   --  access value (selected/indexed component, explicit dereference or a
1612   --  slice), and false otherwise.
1613
1614   function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1615   --  Returns True if type T1 is a descendant of type T2, and false otherwise.
1616   --  This is the RM definition, a type is a descendant of another type if it
1617   --  is the same type or is derived from a descendant of the other type.
1618
1619   function Is_Descendant_Of_Suspension_Object
1620     (Typ : Entity_Id) return Boolean;
1621   --  Determine whether type Typ is a descendant of type Suspension_Object
1622   --  defined in Ada.Synchronous_Task_Control. This version is different from
1623   --  Is_Descendant_Of as the detection of Suspension_Object does not involve
1624   --  an entity and by extension a call to RTSfind.
1625
1626   function Is_Double_Precision_Floating_Point_Type
1627     (E : Entity_Id) return Boolean;
1628   --  Return whether E is a double precision floating point type,
1629   --  characterized by:
1630   --  . machine_radix = 2
1631   --  . machine_mantissa = 53
1632   --  . machine_emax = 2**10
1633   --  . machine_emin = 3 - machine_emax
1634
1635   function Is_Effectively_Volatile (Id : Entity_Id) return Boolean;
1636   --  Determine whether a type or object denoted by entity Id is effectively
1637   --  volatile (SPARK RM 7.1.2). To qualify as such, the entity must be either
1638   --    * Volatile
1639   --    * An array type subject to aspect Volatile_Components
1640   --    * An array type whose component type is effectively volatile
1641   --    * A protected type
1642   --    * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
1643
1644   function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean;
1645   --  Determine whether an arbitrary node denotes an effectively volatile
1646   --  object (SPARK RM 7.1.2).
1647
1648   function Is_Entry_Body (Id : Entity_Id) return Boolean;
1649   --  Determine whether entity Id is the body entity of an entry [family]
1650
1651   function Is_Entry_Declaration (Id : Entity_Id) return Boolean;
1652   --  Determine whether entity Id is the spec entity of an entry [family]
1653
1654   function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean;
1655   --  Check whether a function in a call is an expanded priority attribute,
1656   --  which is transformed into an Rtsfind call to Get_Ceiling. This expansion
1657   --  does not take place in a configurable runtime.
1658
1659   function Is_Expression_Function (Subp : Entity_Id) return Boolean;
1660   --  Determine whether subprogram [body] Subp denotes an expression function
1661
1662   function Is_Expression_Function_Or_Completion
1663     (Subp : Entity_Id) return Boolean;
1664   --  Determine whether subprogram [body] Subp denotes an expression function
1665   --  or is completed by an expression function body.
1666
1667   function Is_EVF_Expression (N : Node_Id) return Boolean;
1668   --  Determine whether node N denotes a reference to a formal parameter of
1669   --  a specific tagged type whose related subprogram is subject to pragma
1670   --  Extensions_Visible with value "False" (SPARK RM 6.1.7). Several other
1671   --  constructs fall under this category:
1672   --    1) A qualified expression whose operand is EVF
1673   --    2) A type conversion whose operand is EVF
1674   --    3) An if expression with at least one EVF dependent_expression
1675   --    4) A case expression with at least one EVF dependent_expression
1676
1677   function Is_False (U : Uint) return Boolean;
1678   pragma Inline (Is_False);
1679   --  The argument is a Uint value which is the Boolean'Pos value of a Boolean
1680   --  operand (i.e. is either 0 for False, or 1 for True). This function tests
1681   --  if it is False (i.e. zero).
1682
1683   function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
1684   --  Returns True iff the number U is a model number of the fixed-point type
1685   --  T, i.e. if it is an exact multiple of Small.
1686
1687   function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
1688   --  Typ is a type entity. This function returns true if this type is fully
1689   --  initialized, meaning that an object of the type is fully initialized.
1690   --  Note that initialization resulting from use of pragma Normalize_Scalars
1691   --  does not count. Note that this is only used for the purpose of issuing
1692   --  warnings for objects that are potentially referenced uninitialized. This
1693   --  means that the result returned is not crucial, but should err on the
1694   --  side of thinking things are fully initialized if it does not know.
1695
1696   function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean;
1697   --  Determine whether arbitrary declaration Decl denotes a generic package,
1698   --  a generic subprogram or a generic body.
1699
1700   function Is_Inherited_Operation (E : Entity_Id) return Boolean;
1701   --  E is a subprogram. Return True is E is an implicit operation inherited
1702   --  by a derived type declaration.
1703
1704   function Is_Inherited_Operation_For_Type
1705     (E   : Entity_Id;
1706      Typ : Entity_Id) return Boolean;
1707   --  E is a subprogram. Return True is E is an implicit operation inherited
1708   --  by the derived type declaration for type Typ.
1709
1710   function Is_Inlinable_Expression_Function (Subp : Entity_Id) return Boolean;
1711   --  Return True if Subp is an expression function that fulfills all the
1712   --  following requirements for inlining:
1713   --     1. pragma/aspect Inline_Always
1714   --     2. No formals
1715   --     3. No contracts
1716   --     4. No dispatching primitive
1717   --     5. Result subtype controlled (or with controlled components)
1718   --     6. Result subtype not subject to type-invariant checks
1719   --     7. Result subtype not a class-wide type
1720   --     8. Return expression naming an object global to the function
1721   --     9. Nominal subtype of the returned object statically compatible
1722   --        with the result subtype of the expression function.
1723
1724   function Is_Iterator (Typ : Entity_Id) return Boolean;
1725   --  AI05-0139-2: Check whether Typ is one of the predefined interfaces in
1726   --  Ada.Iterator_Interfaces, or it is derived from one.
1727
1728   function Is_Iterator_Over_Array (N : Node_Id) return Boolean;
1729   --  N is an iterator specification. Returns True iff N is an iterator over
1730   --  an array, either inside a loop of the form 'for X of A' or a quantified
1731   --  expression of the form 'for all/some X of A' where A is of array type.
1732
1733   type Is_LHS_Result is (Yes, No, Unknown);
1734   function Is_LHS (N : Node_Id) return Is_LHS_Result;
1735   --  Returns Yes if N is definitely used as Name in an assignment statement.
1736   --  Returns No if N is definitely NOT used as a Name in an assignment
1737   --  statement. Returns Unknown if we can't tell at this stage (happens in
1738   --  the case where we don't know the type of N yet, and we have something
1739   --  like N.A := 3, where this counts as N being used on the left side of
1740   --  an assignment only if N is not an access type. If it is an access type
1741   --  then it is N.all.A that is assigned, not N.
1742
1743   function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
1744   --  A library-level declaration is one that is accessible from Standard,
1745   --  i.e. a library unit or an entity declared in a library package.
1746
1747   function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
1748   --  Determine whether a given type is a limited class-wide type, in which
1749   --  case it needs a Master_Id, because extensions of its designated type
1750   --  may include task components. A class-wide type that comes from a
1751   --  limited view must be treated in the same way.
1752
1753   function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
1754   --  Determines whether Expr is a reference to a variable or IN OUT mode
1755   --  parameter of the current enclosing subprogram.
1756   --  Why are OUT parameters not considered here ???
1757
1758   function Is_Name_Reference (N : Node_Id) return Boolean;
1759   --  Determine whether arbitrary node N is a reference to a name. This is
1760   --  similar to Is_Object_Reference but returns True only if N can be renamed
1761   --  without the need for a temporary, the typical example of an object not
1762   --  in this category being a function call.
1763
1764   function Is_Non_Preelaborable_Construct (N : Node_Id) return Boolean;
1765   --  Determine whether arbitrary construct N violates preelaborability as
1766   --  defined in ARM 10.2.1 5-9/3. This routine takes into account both the
1767   --  syntactic and semantic properties of the construct.
1768
1769   function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean;
1770   --  Determine whether entity Id denotes the procedure that verifies the
1771   --  assertion expression of pragma Default_Initial_Condition and if it does,
1772   --  the encapsulated expression is nontrivial.
1773
1774   function Is_Null_Record_Type (T : Entity_Id) return Boolean;
1775   --  Determine whether T is declared with a null record definition or a
1776   --  null component list.
1777
1778   function Is_Object_Image (Prefix : Node_Id) return Boolean;
1779   --  Returns True if an 'Image, 'Wide_Image, or 'Wide_Wide_Image attribute
1780   --  is applied to a given object or named value prefix (see below).
1781
1782   --  AI12-00124: The ARG has adopted the GNAT semantics of 'Img for scalar
1783   --  types, so that the prefix of any 'Image attribute can be an object, a
1784   --  named value, or a type, and there is no need for an argument in the
1785   --  case it is an object reference.
1786
1787   function Is_Object_Reference (N : Node_Id) return Boolean;
1788   --  Determines if the tree referenced by N represents an object. Both
1789   --  variable and constant objects return True (compare Is_Variable).
1790
1791   function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
1792   --  Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
1793   --  Note that the Is_Variable function is not quite the right test because
1794   --  this is a case in which conversions whose expression is a variable (in
1795   --  the Is_Variable sense) with an untagged type target are considered view
1796   --  conversions and hence variables.
1797
1798   function Is_OK_Volatile_Context
1799     (Context : Node_Id;
1800      Obj_Ref : Node_Id) return Boolean;
1801   --  Determine whether node Context denotes a "non-interfering context" (as
1802   --  defined in SPARK RM 7.1.3(12)) where volatile reference Obj_Ref can
1803   --  safely reside.
1804
1805   function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean;
1806   --  Determine whether aspect specification or pragma Item is one of the
1807   --  following package contract annotations:
1808   --    Abstract_State
1809   --    Initial_Condition
1810   --    Initializes
1811   --    Refined_State
1812
1813   function Is_Partially_Initialized_Type
1814     (Typ              : Entity_Id;
1815      Include_Implicit : Boolean := True) return Boolean;
1816   --  Typ is a type entity. This function returns true if this type is partly
1817   --  initialized, meaning that an object of the type is at least partly
1818   --  initialized (in particular in the record case, that at least one
1819   --  component has an initialization expression). Note that initialization
1820   --  resulting from the use of pragma Normalize_Scalars does not count.
1821   --  Include_Implicit controls whether implicit initialization of access
1822   --  values to null, and of discriminant values, is counted as making the
1823   --  type be partially initialized. For the default setting of True, these
1824   --  implicit cases do count, and discriminated types or types containing
1825   --  access values not explicitly initialized will return True. Otherwise
1826   --  if Include_Implicit is False, these cases do not count as making the
1827   --  type be partially initialized.
1828
1829   function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
1830   --  Predicate to implement definition given in RM 6.1.1 (20/3)
1831
1832   function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
1833   --  Determines if type T is a potentially persistent type. A potentially
1834   --  persistent type is defined (recursively) as a scalar type, an untagged
1835   --  record whose components are all of a potentially persistent type, or an
1836   --  array with all static constraints whose component type is potentially
1837   --  persistent. A private type is potentially persistent if the full type
1838   --  is potentially persistent.
1839
1840   function Is_Preelaborable_Aggregate (Aggr : Node_Id) return Boolean;
1841   --  Determine whether aggregate Aggr violates the restrictions of
1842   --  preelaborable constructs as defined in ARM 10.2.1(5-9).
1843
1844   function Is_Preelaborable_Construct (N : Node_Id) return Boolean;
1845   --  Determine whether arbitrary node N violates the restrictions of
1846   --  preelaborable constructs as defined in ARM 10.2.1(5-9). Routine
1847   --  Is_Non_Preelaborable_Construct takes into account the syntactic
1848   --  and semantic properties of N for a more accurate diagnostic.
1849
1850   function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
1851   --  Return True if node N denotes a protected type name which represents
1852   --  the current instance of a protected object according to RM 9.4(21/2).
1853
1854   function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
1855   --  Return True if a compilation unit is the specification or the
1856   --  body of a remote call interface package.
1857
1858   function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
1859   --  Return True if E is a remote access-to-class-wide type
1860
1861   function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
1862   --  Return True if E is a remote access to subprogram type
1863
1864   function Is_Remote_Call (N : Node_Id) return Boolean;
1865   --  Return True if N denotes a potentially remote call
1866
1867   function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
1868   --  Return True if Proc_Nam is a procedure renaming of an entry
1869
1870   function Is_Renaming_Declaration (N : Node_Id) return Boolean;
1871   --  Determine whether arbitrary node N denotes a renaming declaration
1872
1873   function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
1874   --  AI05-0139-2: Check whether Typ is derived from the predefined interface
1875   --  Ada.Iterator_Interfaces.Reversible_Iterator.
1876
1877   function Is_Selector_Name (N : Node_Id) return Boolean;
1878   --  Given an N_Identifier node N, determines if it is a Selector_Name.
1879   --  As described in Sinfo, Selector_Names are special because they
1880   --  represent use of the N_Identifier node for a true identifier, when
1881   --  normally such nodes represent a direct name.
1882
1883   function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean;
1884   --  Determine whether arbitrary entity Id denotes the anonymous object
1885   --  created for a single protected or single task type.
1886
1887   function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean;
1888   --  Determine whether arbitrary entity Id denotes a single protected or
1889   --  single task type.
1890
1891   function Is_Single_Concurrent_Type_Declaration (N : Node_Id) return Boolean;
1892   --  Determine whether arbitrary node N denotes the declaration of a single
1893   --  protected type or single task type.
1894
1895   function Is_Single_Precision_Floating_Point_Type
1896     (E : Entity_Id) return Boolean;
1897   --  Return whether E is a single precision floating point type,
1898   --  characterized by:
1899   --  . machine_radix = 2
1900   --  . machine_mantissa = 24
1901   --  . machine_emax = 2**7
1902   --  . machine_emin = 3 - machine_emax
1903
1904   function Is_Single_Protected_Object (Id : Entity_Id) return Boolean;
1905   --  Determine whether arbitrary entity Id denotes the anonymous object
1906   --  created for a single protected type.
1907
1908   function Is_Single_Task_Object (Id : Entity_Id) return Boolean;
1909   --  Determine whether arbitrary entity Id denotes the anonymous object
1910   --  created for a single task type.
1911
1912   function Is_SPARK_05_Initialization_Expr (N : Node_Id) return Boolean;
1913   --  Determines if the tree referenced by N represents an initialization
1914   --  expression in SPARK 2005, suitable for initializing an object in an
1915   --  object declaration.
1916
1917   function Is_SPARK_05_Object_Reference (N : Node_Id) return Boolean;
1918   --  Determines if the tree referenced by N represents an object in SPARK
1919   --  2005. This differs from Is_Object_Reference in that only variables,
1920   --  constants, formal parameters, and selected_components of those are
1921   --  valid objects in SPARK 2005.
1922
1923   function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean;
1924   --  Determine whether an arbitrary [private] type is specifically tagged
1925
1926   function Is_Statement (N : Node_Id) return Boolean;
1927   pragma Inline (Is_Statement);
1928   --  Check if the node N is a statement node. Note that this includes
1929   --  the case of procedure call statements (unlike the direct use of
1930   --  the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
1931   --  Note that a label is *not* a statement, and will return False.
1932
1933   function Is_Subprogram_Contract_Annotation (Item : Node_Id) return Boolean;
1934   --  Determine whether aspect specification or pragma Item is one of the
1935   --  following subprogram contract annotations:
1936   --    Contract_Cases
1937   --    Depends
1938   --    Extensions_Visible
1939   --    Global
1940   --    Post
1941   --    Post_Class
1942   --    Postcondition
1943   --    Pre
1944   --    Pre_Class
1945   --    Precondition
1946   --    Refined_Depends
1947   --    Refined_Global
1948   --    Refined_Post
1949   --    Test_Case
1950
1951   function Is_Subprogram_Stub_Without_Prior_Declaration
1952     (N : Node_Id) return Boolean;
1953   --  Return True if N is a subprogram stub with no prior subprogram
1954   --  declaration.
1955
1956   function Is_Suspension_Object (Id : Entity_Id) return Boolean;
1957   --  Determine whether arbitrary entity Id denotes Suspension_Object defined
1958   --  in Ada.Synchronous_Task_Control.
1959
1960   function Is_Synchronized_Object (Id : Entity_Id) return Boolean;
1961   --  Determine whether entity Id denotes an object and if it does, whether
1962   --  this object is synchronized as specified in SPARK RM 9.1. To qualify as
1963   --  such, the object must be
1964   --    * Of a type that yields a synchronized object
1965   --    * An atomic object with enabled Async_Writers
1966   --    * A constant
1967   --    * A variable subject to pragma Constant_After_Elaboration
1968
1969   function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
1970   --  Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
1971
1972   function Is_Transfer (N : Node_Id) return Boolean;
1973   --  Returns True if the node N is a statement which is known to cause an
1974   --  unconditional transfer of control at runtime, i.e. the following
1975   --  statement definitely will not be executed.
1976
1977   function Is_True (U : Uint) return Boolean;
1978   pragma Inline (Is_True);
1979   --  The argument is a Uint value which is the Boolean'Pos value of a Boolean
1980   --  operand (i.e. is either 0 for False, or 1 for True). This function tests
1981   --  if it is True (i.e. non-zero).
1982
1983   function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
1984   --  Determine whether an arbitrary entity denotes an instance of function
1985   --  Ada.Unchecked_Conversion.
1986
1987   function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
1988   pragma Inline (Is_Universal_Numeric_Type);
1989   --  True if T is Universal_Integer or Universal_Real
1990
1991   function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
1992   --  Determine whether an entity denotes a user-defined equality
1993
1994   function Is_Validation_Variable_Reference (N : Node_Id) return Boolean;
1995   --  Determine whether N denotes a reference to a variable which captures the
1996   --  value of an object for validation purposes.
1997
1998   function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
1999   --  Returns true if E has variable size components
2000
2001   function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
2002   --  Returns true if E has variable size components
2003
2004   function Is_Variable
2005     (N                 : Node_Id;
2006      Use_Original_Node : Boolean := True) return Boolean;
2007   --  Determines if the tree referenced by N represents a variable, i.e. can
2008   --  appear on the left side of an assignment. There is one situation (formal
2009   --  parameters) in which untagged type conversions are also considered
2010   --  variables, but Is_Variable returns False for such cases, since it has
2011   --  no knowledge of the context. Note that this is the point at which
2012   --  Assignment_OK is checked, and True is returned for any tree thus marked.
2013   --  Use_Original_Node is used to perform the test on Original_Node (N). By
2014   --  default is True since this routine is commonly invoked as part of the
2015   --  semantic analysis and it must not be disturbed by the rewriten nodes.
2016
2017   function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
2018   --  Check whether T is derived from a visibly controlled type. This is true
2019   --  if the root type is declared in Ada.Finalization. If T is derived
2020   --  instead from a private type whose full view is controlled, an explicit
2021   --  Initialize/Adjust/Finalize subprogram does not override the inherited
2022   --  one.
2023
2024   function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean;
2025   --  Determine whether [generic] function Func_Id is subject to enabled
2026   --  pragma Volatile_Function. Protected functions are treated as volatile
2027   --  (SPARK RM 7.1.2).
2028
2029   function Is_Volatile_Object (N : Node_Id) return Boolean;
2030   --  Determines if the given node denotes an volatile object in the sense of
2031   --  the legality checks described in RM C.6(12). Note that the test here is
2032   --  for something actually declared as volatile, not for an object that gets
2033   --  treated as volatile (see Einfo.Treat_As_Volatile).
2034
2035   generic
2036      with procedure Handle_Parameter (Formal : Entity_Id; Actual : Node_Id);
2037   procedure Iterate_Call_Parameters (Call : Node_Id);
2038   --  Calls Handle_Parameter for each pair of formal and actual parameters of
2039   --  a function, procedure, or entry call.
2040
2041   function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
2042   --  Applies to Itypes. True if the Itype is attached to a declaration for
2043   --  the type through its Parent field, which may or not be present in the
2044   --  tree.
2045
2046   procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
2047   --  This procedure is called to clear all constant indications from all
2048   --  entities in the current scope and in any parent scopes if the current
2049   --  scope is a block or a package (and that recursion continues to the top
2050   --  scope that is not a block or a package). This is used when the
2051   --  sequential flow-of-control assumption is violated (occurrence of a
2052   --  label, head of a loop, or start of an exception handler). The effect of
2053   --  the call is to clear the Current_Value field (but we do not need to
2054   --  clear the Is_True_Constant flag, since that only gets reset if there
2055   --  really is an assignment somewhere in the entity scope). This procedure
2056   --  also calls Kill_All_Checks, since this is a special case of needing to
2057   --  forget saved values. This procedure also clears the Is_Known_Null and
2058   --  Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
2059   --  parameters since these are also not known to be trustable any more.
2060   --
2061   --  The Last_Assignment_Only flag is set True to clear only Last_Assignment
2062   --  fields and leave other fields unchanged. This is used when we encounter
2063   --  an unconditional flow of control change (return, goto, raise). In such
2064   --  cases we don't need to clear the current values, since it may be that
2065   --  the flow of control change occurs in a conditional context, and if it
2066   --  is not taken, then it is just fine to keep the current values. But the
2067   --  Last_Assignment field is different, if we have a sequence assign-to-v,
2068   --  conditional-return, assign-to-v, we do not want to complain that the
2069   --  second assignment clobbers the first.
2070
2071   procedure Kill_Current_Values
2072     (Ent                  : Entity_Id;
2073      Last_Assignment_Only : Boolean := False);
2074   --  This performs the same processing as described above for the form with
2075   --  no argument, but for the specific entity given. The call has no effect
2076   --  if the entity Ent is not for an object. Last_Assignment_Only has the
2077   --  same meaning as for the call with no Ent.
2078
2079   procedure Kill_Size_Check_Code (E : Entity_Id);
2080   --  Called when an address clause or pragma Import is applied to an entity.
2081   --  If the entity is a variable or a constant, and size check code is
2082   --  present, this size check code is killed, since the object will not be
2083   --  allocated by the program.
2084
2085   function Known_Non_Null (N : Node_Id) return Boolean;
2086   --  Given a node N for a subexpression of an access type, determines if
2087   --  this subexpression yields a value that is known at compile time to
2088   --  be non-null and returns True if so. Returns False otherwise. It is
2089   --  an error to call this function if N is not of an access type.
2090
2091   function Known_Null (N : Node_Id) return Boolean;
2092   --  Given a node N for a subexpression of an access type, determines if this
2093   --  subexpression yields a value that is known at compile time to be null
2094   --  and returns True if so. Returns False otherwise. It is an error to call
2095   --  this function if N is not of an access type.
2096
2097   function Known_To_Be_Assigned (N : Node_Id) return Boolean;
2098   --  The node N is an entity reference. This function determines whether the
2099   --  reference is for sure an assignment of the entity, returning True if
2100   --  so. This differs from May_Be_Lvalue in that it defaults in the other
2101   --  direction. Cases which may possibly be assignments but are not known to
2102   --  be may return True from May_Be_Lvalue, but False from this function.
2103
2104   function Last_Source_Statement (HSS : Node_Id) return Node_Id;
2105   --  HSS is a handled statement sequence. This function returns the last
2106   --  statement in Statements (HSS) that has Comes_From_Source set. If no
2107   --  such statement exists, Empty is returned.
2108
2109   procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
2110   --  Given a node which designates the context of analysis and an origin in
2111   --  the tree, traverse from Root_Nod and mark all allocators as either
2112   --  dynamic or static depending on Context_Nod. Any incorrect marking is
2113   --  cleaned up during resolution.
2114
2115   procedure Mark_Elaboration_Attributes
2116     (N_Id     : Node_Or_Entity_Id;
2117      Checks   : Boolean := False;
2118      Level    : Boolean := False;
2119      Modes    : Boolean := False;
2120      Warnings : Boolean := False);
2121   --  Preserve relevant elaboration-related properties of the context in
2122   --  arbitrary entity or node N_Id. The flags control the properties as
2123   --  follows:
2124   --
2125   --    Checks   - Save the status of Elaboration_Check
2126   --    Level    - Save the declaration level of N_Id (if appicable)
2127   --    Modes    - Save the Ghost and SPARK modes in effect (if applicable)
2128   --    Warnings - Save the status of Elab_Warnings
2129
2130   function Matching_Static_Array_Bounds
2131     (L_Typ : Node_Id;
2132      R_Typ : Node_Id) return Boolean;
2133   --  L_Typ and R_Typ are two array types. Returns True when they have the
2134   --  same number of dimensions, and the same static bounds for each index
2135   --  position.
2136
2137   function May_Be_Lvalue (N : Node_Id) return Boolean;
2138   --  Determines if N could be an lvalue (e.g. an assignment left hand side).
2139   --  An lvalue is defined as any expression which appears in a context where
2140   --  a name is required by the syntax, and the identity, rather than merely
2141   --  the value of the node is needed (for example, the prefix of an Access
2142   --  attribute is in this category). Note that, as implied by the name, this
2143   --  test is conservative. If it cannot be sure that N is NOT an lvalue, then
2144   --  it returns True. It tries hard to get the answer right, but it is hard
2145   --  to guarantee this in all cases. Note that it is more possible to give
2146   --  correct answer if the tree is fully analyzed.
2147
2148   function Might_Raise (N : Node_Id) return Boolean;
2149   --  True if evaluation of N might raise an exception. This is conservative;
2150   --  if we're not sure, we return True. If N is a subprogram body, this is
2151   --  about whether execution of that body can raise.
2152
2153   function Nearest_Enclosing_Instance (E : Entity_Id) return Entity_Id;
2154   --  Return the entity of the nearest enclosing instance which encapsulates
2155   --  entity E. If no such instance exits, return Empty.
2156
2157   function Needs_One_Actual (E : Entity_Id) return Boolean;
2158   --  Returns True if a function has defaults for all but its first formal,
2159   --  which is a controlling formal. Used in Ada 2005 mode to solve the
2160   --  syntactic ambiguity that results from an indexing of a function call
2161   --  that returns an array, so that Obj.F (X, Y) may mean F (Ob) (X, Y).
2162
2163   function New_Copy_List_Tree (List : List_Id) return List_Id;
2164   --  Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
2165   --  below. As for New_Copy_Tree, it is illegal to attempt to copy extended
2166   --  nodes (entities) either directly or indirectly using this function.
2167
2168   function New_Copy_Tree
2169     (Source    : Node_Id;
2170      Map       : Elist_Id   := No_Elist;
2171      New_Sloc  : Source_Ptr := No_Location;
2172      New_Scope : Entity_Id  := Empty) return Node_Id;
2173   --  Perform a deep copy of the subtree rooted at Source. Entities, itypes,
2174   --  and nodes are handled separately as follows:
2175   --
2176   --    * A node is replicated by first creating a shallow copy, then copying
2177   --      its syntactic fields, where all Parent pointers of the fields are
2178   --      updated to refer to the copy. In addition, the following semantic
2179   --      fields are recreated after the replication takes place.
2180   --
2181   --        First_Named_Actual
2182   --        First_Real_Statement
2183   --        Next_Named_Actual
2184   --
2185   --      If applicable, the Etype field (if any) is updated to refer to a
2186   --      local itype or type (see below).
2187   --
2188   --    * An entity defined within an N_Expression_With_Actions node in the
2189   --      subtree is given a new entity, and all references to the original
2190   --      entity are updated to refer to the new entity. In addition, the
2191   --      following semantic fields are replicated and/or updated to refer
2192   --      to a local entity or itype.
2193   --
2194   --        Discriminant_Constraint
2195   --        Etype
2196   --        First_Index
2197   --        Next_Entity
2198   --        Packed_Array_Impl_Type
2199   --        Scalar_Range
2200   --        Scope
2201   --
2202   --      Note that currently no other expression can define entities.
2203   --
2204   --    * An itype whose Associated_Node_For_Itype node is in the subtree
2205   --      is given a new entity, and all references to the original itype
2206   --      are updated to refer to the new itype. In addition, the following
2207   --      semantic fields are replicated and/or updated to refer to a local
2208   --      entity or itype.
2209   --
2210   --        Discriminant_Constraint
2211   --        Etype
2212   --        First_Index
2213   --        Next_Entity
2214   --        Packed_Array_Impl_Type
2215   --        Scalar_Range
2216   --        Scope
2217   --
2218   --      The Associated_Node_For_Itype is updated to refer to a replicated
2219   --      node.
2220   --
2221   --  The routine can replicate both analyzed and unanalyzed trees. Copying an
2222   --  Empty or Error node yields the same node.
2223   --
2224   --  Parameter Map may be used to specify a set of mappings between entities.
2225   --  These mappings are then taken into account when replicating entities.
2226   --  The format of Map must be as follows:
2227   --
2228   --    old entity 1
2229   --    new entity to replace references to entity 1
2230   --    old entity 2
2231   --    new entity to replace references to entity 2
2232   --    ...
2233   --
2234   --  Map and its contents are left unchanged.
2235   --
2236   --  Parameter New_Sloc may be used to specify a new source location for all
2237   --  replicated entities, itypes, and nodes. The Comes_From_Source indicator
2238   --  is defaulted if a new source location is provided.
2239   --
2240   --  Parameter New_Scope may be used to specify a new scope for all copied
2241   --  entities and itypes.
2242
2243   function New_External_Entity
2244     (Kind         : Entity_Kind;
2245      Scope_Id     : Entity_Id;
2246      Sloc_Value   : Source_Ptr;
2247      Related_Id   : Entity_Id;
2248      Suffix       : Character;
2249      Suffix_Index : Nat := 0;
2250      Prefix       : Character := ' ') return Entity_Id;
2251   --  This function creates an N_Defining_Identifier node for an internal
2252   --  created entity, such as an implicit type or subtype, or a record
2253   --  initialization procedure. The entity name is constructed with a call
2254   --  to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
2255   --  that the generated name may be referenced as a public entry, and the
2256   --  Is_Public flag is set if needed (using Set_Public_Status). If the
2257   --  entity is for a type or subtype, the size/align fields are initialized
2258   --  to unknown (Uint_0).
2259
2260   function New_Internal_Entity
2261     (Kind       : Entity_Kind;
2262      Scope_Id   : Entity_Id;
2263      Sloc_Value : Source_Ptr;
2264      Id_Char    : Character) return Entity_Id;
2265   --  This function is similar to New_External_Entity, except that the
2266   --  name is constructed by New_Internal_Name (Id_Char). This is used
2267   --  when the resulting entity does not have to be referenced as a
2268   --  public entity (and in this case Is_Public is not set).
2269
2270   procedure Next_Actual (Actual_Id : in out Node_Id);
2271   pragma Inline (Next_Actual);
2272   --  Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
2273   --  inline this procedural form, but not the functional form that follows.
2274
2275   function Next_Actual (Actual_Id : Node_Id) return Node_Id;
2276   --  Find next actual parameter in declaration order. As described for
2277   --  First_Actual, this is the next actual in the declaration order, not
2278   --  the call order, so this does not correspond to simply taking the
2279   --  next entry of the Parameter_Associations list. The argument is an
2280   --  actual previously returned by a call to First_Actual or Next_Actual.
2281   --  Note that the result produced is always an expression, not a parameter
2282   --  association node, even if named notation was used.
2283
2284   procedure Next_Global (Node : in out Node_Id);
2285   pragma Inline (Next_Actual);
2286   --  Next_Global (N) is equivalent to N := Next_Global (N). Note that we
2287   --  inline this procedural form, but not the functional form that follows.
2288
2289   function Next_Global (Node : Node_Id) return Node_Id;
2290   --  Node is a global item from a list, obtained through calling First_Global
2291   --  and possibly Next_Global a number of times. Returns the next global item
2292   --  with the same mode.
2293
2294   function No_Heap_Finalization (Typ : Entity_Id) return Boolean;
2295   --  Determine whether type Typ is subject to pragma No_Heap_Finalization
2296
2297   procedure Normalize_Actuals
2298     (N       : Node_Id;
2299      S       : Entity_Id;
2300      Report  : Boolean;
2301      Success : out Boolean);
2302   --  Reorders lists of actuals according to names of formals, value returned
2303   --  in Success indicates success of reordering. For more details, see body.
2304   --  Errors are reported only if Report is set to True.
2305
2306   procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
2307   --  This routine is called if the sub-expression N maybe the target of
2308   --  an assignment (e.g. it is the left side of an assignment, used as
2309   --  an out parameters, or used as prefixes of access attributes). It
2310   --  sets May_Be_Modified in the associated entity if there is one,
2311   --  taking into account the rule that in the case of renamed objects,
2312   --  it is the flag in the renamed object that must be set.
2313   --
2314   --  The parameter Sure is set True if the modification is sure to occur
2315   --  (e.g. target of assignment, or out parameter), and to False if the
2316   --  modification is only potential (e.g. address of entity taken).
2317
2318   function Null_To_Null_Address_Convert_OK
2319     (N   : Node_Id;
2320      Typ : Entity_Id := Empty) return Boolean;
2321   --  Return True if we are compiling in relaxed RM semantics mode and:
2322   --   1) N is a N_Null node and Typ is a descendant of System.Address, or
2323   --   2) N is a comparison operator, one of the operands is null, and the
2324   --      type of the other operand is a descendant of System.Address.
2325
2326   function Number_Of_Elements_In_Array (T : Entity_Id) return Int;
2327   --  Returns the number of elements in the array T if the index bounds of T
2328   --  is known at compile time. If the bounds are not known at compile time,
2329   --  the function returns the value zero.
2330
2331   function Object_Access_Level (Obj : Node_Id) return Uint;
2332   --  Return the accessibility level of the view of the object Obj. For
2333   --  convenience, qualified expressions applied to object names are also
2334   --  allowed as actuals for this function.
2335
2336   function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id;
2337   --  Retrieve the name of aspect or pragma N, taking into account a possible
2338   --  rewrite and whether the pragma is generated from an aspect as the names
2339   --  may be different. The routine also deals with 'Class in which case it
2340   --  returns the following values:
2341   --
2342   --    Invariant            -> Name_uInvariant
2343   --    Post'Class           -> Name_uPost
2344   --    Pre'Class            -> Name_uPre
2345   --    Type_Invariant       -> Name_uType_Invariant
2346   --    Type_Invariant'Class -> Name_uType_Invariant
2347
2348   function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
2349   --  [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
2350   --  or overrides an inherited dispatching primitive S2, the original
2351   --  corresponding operation of S is the original corresponding operation of
2352   --  S2. Otherwise, it is S itself.
2353
2354   procedure Output_Entity (Id : Entity_Id);
2355   --  Print entity Id to standard output. The name of the entity appears in
2356   --  fully qualified form.
2357   --
2358   --  WARNING: this routine should be used in debugging scenarios such as
2359   --  tracking down undefined symbols as it is fairly low level.
2360
2361   procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope);
2362   --  Print name Nam to standard output. The name appears in fully qualified
2363   --  form assuming it appears in scope Scop. Note that this may not reflect
2364   --  the final qualification as the entity which carries the name may be
2365   --  relocated to a different scope.
2366   --
2367   --  WARNING: this routine should be used in debugging scenarios such as
2368   --  tracking down undefined symbols as it is fairly low level.
2369
2370   function Policy_In_Effect (Policy : Name_Id) return Name_Id;
2371   --  Given a policy, return the policy identifier associated with it. If no
2372   --  such policy is in effect, the value returned is No_Name.
2373
2374   function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean;
2375   --  Subp is the entity for a subprogram call. This function returns True if
2376   --  predicate tests are required for the arguments in this call (this is the
2377   --  normal case). It returns False for special cases where these predicate
2378   --  tests should be skipped (see body for details).
2379
2380   function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
2381   --  Returns True if the names of both entities correspond with matching
2382   --  primitives. This routine includes support for the case in which one
2383   --  or both entities correspond with entities built by Derive_Subprogram
2384   --  with a special name to avoid being overridden (i.e. return true in case
2385   --  of entities with names "nameP" and "name" or vice versa).
2386
2387   function Private_Component (Type_Id : Entity_Id) return Entity_Id;
2388   --  Returns some private component (if any) of the given Type_Id.
2389   --  Used to enforce the rules on visibility of operations on composite
2390   --  types, that depend on the full view of the component type. For a
2391   --  record type there may be several such components, we just return
2392   --  the first one.
2393
2394   procedure Process_End_Label
2395     (N   : Node_Id;
2396      Typ : Character;
2397      Ent : Entity_Id);
2398   --  N is a node whose End_Label is to be processed, generating all
2399   --  appropriate cross-reference entries, and performing style checks
2400   --  for any identifier references in the end label. Typ is either
2401   --  'e' or 't indicating the type of the cross-reference entity
2402   --  (e for spec, t for body, see Lib.Xref spec for details). The
2403   --  parameter Ent gives the entity to which the End_Label refers,
2404   --  and to which cross-references are to be generated.
2405
2406   procedure Propagate_Concurrent_Flags
2407     (Typ      : Entity_Id;
2408      Comp_Typ : Entity_Id);
2409   --  Set Has_Task, Has_Protected and Has_Timing_Event on Typ when the flags
2410   --  are set on Comp_Typ. This follows the definition of these flags which
2411   --  are set (recursively) on any composite type which has a component marked
2412   --  by one of these flags. This procedure can only set flags for Typ, and
2413   --  never clear them. Comp_Typ is the type of a component or a parent.
2414
2415   procedure Propagate_DIC_Attributes
2416     (Typ      : Entity_Id;
2417      From_Typ : Entity_Id);
2418   --  Inherit all Default_Initial_Condition-related attributes from type
2419   --  From_Typ. Typ is the destination type.
2420
2421   procedure Propagate_Invariant_Attributes
2422     (Typ      : Entity_Id;
2423      From_Typ : Entity_Id);
2424   --  Inherit all invariant-related attributes form type From_Typ. Typ is the
2425   --  destination type.
2426
2427   procedure Record_Possible_Part_Of_Reference
2428     (Var_Id : Entity_Id;
2429      Ref    : Node_Id);
2430   --  Save reference Ref to variable Var_Id when the variable is subject to
2431   --  pragma Part_Of. If the variable is known to be a constituent of a single
2432   --  protected/task type, the legality of the reference is verified and the
2433   --  save does not take place.
2434
2435   function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
2436   --  Determine whether entity Id is referenced within expression Expr
2437
2438   function References_Generic_Formal_Type (N : Node_Id) return Boolean;
2439   --  Returns True if the expression Expr contains any references to a generic
2440   --  type. This can only happen within a generic template.
2441
2442   procedure Remove_Entity (Id : Entity_Id);
2443   --  Remove arbitrary entity Id from both the homonym and scope chains. Use
2444   --  Remove_Overloaded_Entity for overloadable entities. Note: the removal
2445   --  performed by this routine does not affect the visibility of existing
2446   --  homonyms.
2447
2448   procedure Remove_Homonym (E : Entity_Id);
2449   --  Removes E from the homonym chain
2450
2451   procedure Remove_Overloaded_Entity (Id : Entity_Id);
2452   --  Remove arbitrary entity Id from the homonym chain, the scope chain and
2453   --  the primitive operations list of the associated controlling type. Use
2454   --  Remove_Entity for non-overloadable entities. Note: the removal performed
2455   --  by this routine does not affect the visibility of existing homonyms.
2456
2457   function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
2458   --  Returns the name of E without Suffix
2459
2460   procedure Replace_Null_By_Null_Address (N : Node_Id);
2461   --  N is N_Null or a binary comparison operator, we are compiling in relaxed
2462   --  RM semantics mode, and one of the operands is null. Replace null with
2463   --  System.Null_Address.
2464
2465   function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
2466   --  This is used to construct the second argument in a call to Rep_To_Pos
2467   --  which is Standard_True if range checks are enabled (E is an entity to
2468   --  which the Range_Checks_Suppressed test is applied), and Standard_False
2469   --  if range checks are suppressed. Loc is the location for the node that
2470   --  is returned (which is a New_Occurrence of the appropriate entity).
2471   --
2472   --  Note: one might think that it would be fine to always use True and
2473   --  to ignore the suppress in this case, but it is generally better to
2474   --  believe a request to suppress exceptions if possible, and further
2475   --  more there is at least one case in the generated code (the code for
2476   --  array assignment in a loop) that depends on this suppression.
2477
2478   procedure Require_Entity (N : Node_Id);
2479   --  N is a node which should have an entity value if it is an entity name.
2480   --  If not, then check if there were previous errors. If so, just fill
2481   --  in with Any_Id and ignore. Otherwise signal a program error exception.
2482   --  This is used as a defense mechanism against ill-formed trees caused by
2483   --  previous errors (particularly in -gnatq mode).
2484
2485   function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
2486   --  Id is a type entity. The result is True when temporaries of this type
2487   --  need to be wrapped in a transient scope to be reclaimed properly when a
2488   --  secondary stack is in use. Examples of types requiring such wrapping are
2489   --  controlled types and variable-sized types including unconstrained
2490   --  arrays.
2491
2492   procedure Reset_Analyzed_Flags (N : Node_Id);
2493   --  Reset the Analyzed flags in all nodes of the tree whose root is N
2494
2495   procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
2496   --  Set the current SPARK_Mode to Mode and SPARK_Mode_Pragma to Prag. This
2497   --  routine must be used in tandem with Set_SPARK_Mode.
2498
2499   function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
2500   --  Return true if Subp is a function that returns an unconstrained type
2501
2502   function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id;
2503   --  Similar to attribute Root_Type, but this version always follows the
2504   --  Full_View of a private type (if available) while searching for the
2505   --  ultimate derivation ancestor.
2506
2507   function Safe_To_Capture_Value
2508     (N    : Node_Id;
2509      Ent  : Entity_Id;
2510      Cond : Boolean := False) return Boolean;
2511   --  The caller is interested in capturing a value (either the current value,
2512   --  or an indication that the value is non-null) for the given entity Ent.
2513   --  This value can only be captured if sequential execution semantics can be
2514   --  properly guaranteed so that a subsequent reference will indeed be sure
2515   --  that this current value indication is correct. The node N is the
2516   --  construct which resulted in the possible capture of the value (this
2517   --  is used to check if we are in a conditional).
2518   --
2519   --  Cond is used to skip the test for being inside a conditional. It is used
2520   --  in the case of capturing values from if/while tests, which already do a
2521   --  proper job of handling scoping issues without this help.
2522   --
2523   --  The only entities whose values can be captured are OUT and IN OUT formal
2524   --  parameters, and variables unless Cond is True, in which case we also
2525   --  allow IN formals, loop parameters and constants, where we cannot ever
2526   --  capture actual value information, but we can capture conditional tests.
2527
2528   function Same_Name (N1, N2 : Node_Id) return Boolean;
2529   --  Determine if two (possibly expanded) names are the same name. This is
2530   --  a purely syntactic test, and N1 and N2 need not be analyzed.
2531
2532   function Same_Object (Node1, Node2 : Node_Id) return Boolean;
2533   --  Determine if Node1 and Node2 are known to designate the same object.
2534   --  This is a semantic test and both nodes must be fully analyzed. A result
2535   --  of True is decisively correct. A result of False does not necessarily
2536   --  mean that different objects are designated, just that this could not
2537   --  be reliably determined at compile time.
2538
2539   function Same_Type (T1, T2 : Entity_Id) return Boolean;
2540   --  Determines if T1 and T2 represent exactly the same type. Two types
2541   --  are the same if they are identical, or if one is an unconstrained
2542   --  subtype of the other, or they are both common subtypes of the same
2543   --  type with identical constraints. The result returned is conservative.
2544   --  It is True if the types are known to be the same, but a result of
2545   --  False is indecisive (e.g. the compiler may not be able to tell that
2546   --  two constraints are identical).
2547
2548   function Same_Value (Node1, Node2 : Node_Id) return Boolean;
2549   --  Determines if Node1 and Node2 are known to be the same value, which is
2550   --  true if they are both compile time known values and have the same value,
2551   --  or if they are the same object (in the sense of function Same_Object).
2552   --  A result of False does not necessarily mean they have different values,
2553   --  just that it is not possible to determine they have the same value.
2554
2555   function Scalar_Part_Present (T : Entity_Id) return Boolean;
2556   --  Tests if type T can be determined at compile time to have at least one
2557   --  scalar part in the sense of the Valid_Scalars attribute. Returns True if
2558   --  this is the case, and False if no scalar parts are present (meaning that
2559   --  the result of Valid_Scalars applied to T is always vacuously True).
2560
2561   function Scope_Within
2562     (Inner : Entity_Id;
2563      Outer : Entity_Id) return Boolean;
2564   --  Determine whether scope Inner appears within scope Outer. Note that
2565   --  scopes are partially ordered, so Scope_Within (A, B) and Scope_Within
2566   --  (B, A) may both return False.
2567
2568   function Scope_Within_Or_Same
2569     (Inner : Entity_Id;
2570      Outer : Entity_Id) return Boolean;
2571   --  Determine whether scope Inner appears within scope Outer or both renote
2572   --  the same scope. Note that scopes are partially ordered, so Scope_Within
2573   --  (A, B) and Scope_Within (B, A) may both return False.
2574
2575   procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
2576   --  Same as Basic_Set_Convention, but with an extra check for access types.
2577   --  In particular, if E is an access-to-subprogram type, and Val is a
2578   --  foreign convention, then we set Can_Use_Internal_Rep to False on E.
2579   --  Also, if the Etype of E is set and is an anonymous access type with
2580   --  no convention set, this anonymous type inherits the convention of E.
2581
2582   procedure Set_Current_Entity (E : Entity_Id);
2583   pragma Inline (Set_Current_Entity);
2584   --  Establish the entity E as the currently visible definition of its
2585   --  associated name (i.e. the Node_Id associated with its name).
2586
2587   procedure Set_Debug_Info_Needed (T : Entity_Id);
2588   --  Sets the Debug_Info_Needed flag on entity T , and also on any entities
2589   --  that are needed by T (for an object, the type of the object is needed,
2590   --  and for a type, various subsidiary types are needed -- see body for
2591   --  details). Never has any effect on T if the Debug_Info_Off flag is set.
2592   --  This routine should always be used instead of Set_Needs_Debug_Info to
2593   --  ensure that subsidiary entities are properly handled.
2594
2595   procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
2596   --  This procedure has the same calling sequence as Set_Entity, but it
2597   --  performs additional checks as follows:
2598   --
2599   --    If Style_Check is set, then it calls a style checking routine which
2600   --    can check identifier spelling style. This procedure also takes care
2601   --    of checking the restriction No_Implementation_Identifiers.
2602   --
2603   --    If restriction No_Abort_Statements is set, then it checks that the
2604   --    entity is not Ada.Task_Identification.Abort_Task.
2605   --
2606   --    If restriction No_Dynamic_Attachment is set, then it checks that the
2607   --    entity is not one of the restricted names for this restriction.
2608   --
2609   --    If restriction No_Long_Long_Integers is set, then it checks that the
2610   --    entity is not Standard.Long_Long_Integer.
2611   --
2612   --    If restriction No_Implementation_Identifiers is set, then it checks
2613   --    that the entity is not implementation defined.
2614
2615   procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
2616   pragma Inline (Set_Name_Entity_Id);
2617   --  Sets the Entity_Id value associated with the given name, which is the
2618   --  Id of the innermost visible entity with the given name. See the body
2619   --  of package Sem_Ch8 for further details on the handling of visibility.
2620
2621   procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
2622   --  The arguments may be parameter associations, whose descendants
2623   --  are the optional formal name and the actual parameter. Positional
2624   --  parameters are already members of a list, and do not need to be
2625   --  chained separately. See also First_Actual and Next_Actual.
2626
2627   procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
2628   pragma Inline (Set_Optimize_Alignment_Flags);
2629   --  Sets Optimize_Alignment_Space/Time flags in E from current settings
2630
2631   procedure Set_Public_Status (Id : Entity_Id);
2632   --  If an entity (visible or otherwise) is defined in a library
2633   --  package, or a package that is itself public, then this subprogram
2634   --  labels the entity public as well.
2635
2636   procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
2637   --  N is the node for either a left hand side (Out_Param set to False),
2638   --  or an Out or In_Out parameter (Out_Param set to True). If there is
2639   --  an assignable entity being referenced, then the appropriate flag
2640   --  (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
2641   --  if Out_Param is True) is set True, and the other flag set False.
2642
2643   procedure Set_Rep_Info (T1 : Entity_Id; T2 : Entity_Id);
2644   pragma Inline (Set_Rep_Info);
2645   --  Copies the Is_Atomic, Is_Independent and Is_Volatile_Full_Access flags
2646   --  from sub(type) entity T2 to (sub)type entity T1, as well as Is_Volatile
2647   --  if T1 is a base type.
2648
2649   procedure Set_Scope_Is_Transient (V : Boolean := True);
2650   --  Set the flag Is_Transient of the current scope
2651
2652   procedure Set_Size_Info (T1, T2 : Entity_Id);
2653   pragma Inline (Set_Size_Info);
2654   --  Copies the Esize field and Has_Biased_Representation flag from sub(type)
2655   --  entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
2656   --  in the fixed-point and discrete cases, and also copies the alignment
2657   --  value from T2 to T1. It does NOT copy the RM_Size field, which must be
2658   --  separately set if this is required to be copied also.
2659
2660   procedure Set_SPARK_Mode (Context : Entity_Id);
2661   --  Establish the SPARK_Mode and SPARK_Mode_Pragma (if any) of a package or
2662   --  a subprogram denoted by Context. This routine must be used in tandem
2663   --  with Restore_SPARK_Mode.
2664
2665   function Scope_Is_Transient return Boolean;
2666   --  True if the current scope is transient
2667
2668   function Should_Ignore_Pragma_Par (Prag_Name : Name_Id) return Boolean;
2669   function Should_Ignore_Pragma_Sem (N : Node_Id) return Boolean;
2670   --  True if we should ignore pragmas with the specified name. In particular,
2671   --  this returns True if pragma Ignore_Pragma applies, and we are not in a
2672   --  predefined unit. The _Par version should be called only from the parser;
2673   --  the _Sem version should be called only during semantic analysis.
2674
2675   function Static_Boolean (N : Node_Id) return Uint;
2676   --  This function analyzes the given expression node and then resolves it
2677   --  as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
2678   --  returned corresponding to the value, otherwise an error message is
2679   --  output and No_Uint is returned.
2680
2681   function Static_Integer (N : Node_Id) return Uint;
2682   --  This function analyzes the given expression node and then resolves it
2683   --  as any integer type. If the result is static, then the value of the
2684   --  universal expression is returned, otherwise an error message is output
2685   --  and a value of No_Uint is returned.
2686
2687   function Statically_Different (E1, E2 : Node_Id) return Boolean;
2688   --  Return True if it can be statically determined that the Expressions
2689   --  E1 and E2 refer to different objects
2690
2691   function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
2692   --  Determine whether node N is a loop statement subject to at least one
2693   --  'Loop_Entry attribute.
2694
2695   function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
2696   --  Return the accessibility level of the view denoted by Subp
2697
2698   function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
2699   --  Return True if Typ supports the GCC built-in atomic operations (i.e. if
2700   --  Typ is properly sized and aligned).
2701
2702   procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
2703   --  Print debugging information on entry to each unit being analyzed
2704
2705   procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
2706   --  Move a list of entities from one scope to another, and recompute
2707   --  Is_Public based upon the new scope.
2708
2709   function Type_Access_Level (Typ : Entity_Id) return Uint;
2710   --  Return the accessibility level of Typ
2711
2712   function Type_Without_Stream_Operation
2713     (T  : Entity_Id;
2714      Op : TSS_Name_Type := TSS_Null) return Entity_Id;
2715   --  AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
2716   --  is active then we cannot generate stream subprograms for composite types
2717   --  with elementary subcomponents that lack user-defined stream subprograms.
2718   --  This predicate determines whether a type has such an elementary
2719   --  subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
2720   --  prevents the construction of a composite stream operation. If Op is
2721   --  specified we check only for the given stream operation.
2722
2723   function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
2724   --  Return the entity which represents declaration N, so that different
2725   --  views of the same entity have the same unique defining entity:
2726   --    * private view and full view of a deferred constant
2727   --        --> full view
2728   --    * entry spec and entry body
2729   --        --> entry spec
2730   --    * formal parameter on spec and body
2731   --        --> formal parameter on spec
2732   --    * package spec, body, and body stub
2733   --        --> package spec
2734   --    * protected type, protected body, and protected body stub
2735   --        --> protected type (full view if private)
2736   --    * subprogram spec, body, and body stub
2737   --        --> subprogram spec
2738   --    * task type, task body, and task body stub
2739   --        --> task type (full view if private)
2740   --    * private or incomplete view and full view of a type
2741   --        --> full view
2742   --  In other cases, return the defining entity for N.
2743
2744   function Unique_Entity (E : Entity_Id) return Entity_Id;
2745   --  Return the unique entity for entity E, which would be returned by
2746   --  Unique_Defining_Entity if applied to the enclosing declaration of E.
2747
2748   function Unique_Name (E : Entity_Id) return String;
2749   --  Return a unique name for entity E, which could be used to identify E
2750   --  across compilation units.
2751
2752   function Unit_Is_Visible (U : Entity_Id) return Boolean;
2753   --  Determine whether a compilation unit is visible in the current context,
2754   --  because there is a with_clause that makes the unit available. Used to
2755   --  provide better messages on common visiblity errors on operators.
2756
2757   function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
2758   --  Yields Universal_Integer or Universal_Real if this is a candidate
2759
2760   function Unqualify (Expr : Node_Id) return Node_Id;
2761   pragma Inline (Unqualify);
2762   --  Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
2763   --  returns X. If Expr is not a qualified expression, returns Expr.
2764
2765   function Unqual_Conv (Expr : Node_Id) return Node_Id;
2766   pragma Inline (Unqual_Conv);
2767   --  Similar to Unqualify, but removes qualified expressions, type
2768   --  conversions, and unchecked conversions.
2769
2770   function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
2771   --  [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
2772   --  of a type extension or private extension declaration. If the full-view
2773   --  of private parents and progenitors is available then it is used to
2774   --  generate the list of visible ancestors; otherwise their partial
2775   --  view is added to the resulting list.
2776
2777   function Within_Init_Proc return Boolean;
2778   --  Determines if Current_Scope is within an init proc
2779
2780   function Within_Protected_Type (E : Entity_Id) return Boolean;
2781   --  Returns True if entity E is declared within a protected type
2782
2783   function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
2784   --  Returns True if entity E is declared within scope S
2785
2786   function Within_Subprogram_Call (N : Node_Id) return Boolean;
2787   --  Determine whether arbitrary node N appears in an entry, function, or
2788   --  procedure call.
2789
2790   procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
2791   --  Output error message for incorrectly typed expression. Expr is the node
2792   --  for the incorrectly typed construct (Etype (Expr) is the type found),
2793   --  and Expected_Type is the entity for the expected type. Note that Expr
2794   --  does not have to be a subexpression, anything with an Etype field may
2795   --  be used.
2796
2797   function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean;
2798   --  Determine whether type Typ "yields synchronized object" as specified by
2799   --  SPARK RM 9.1. To qualify as such, a type must be
2800   --    * An array type whose element type yields a synchronized object
2801   --    * A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
2802   --    * A protected type
2803   --    * A record type or type extension without defaulted discriminants
2804   --      whose components are of a type that yields a synchronized object.
2805   --    * A synchronized interface type
2806   --    * A task type
2807
2808   function Yields_Universal_Type (N : Node_Id) return Boolean;
2809   --  Determine whether unanalyzed node N yields a universal type
2810
2811end Sem_Util;
2812