1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2    Copyright (C) 1999-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "alias.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "memmodel.h"
28 #include "tm_p.h"
29 #include "diagnostic-core.h"
30 #include "flags.h"
31 #include "ggc-internal.h"
32 #include "timevar.h"
33 #include "params.h"
34 #include "cgraph.h"
35 #include "cfgloop.h"
36 #include "plugin.h"
37 
38 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
39    file open.  Prefer either to valloc.  */
40 #ifdef HAVE_MMAP_ANON
41 # undef HAVE_MMAP_DEV_ZERO
42 # define USING_MMAP
43 #endif
44 
45 #ifdef HAVE_MMAP_DEV_ZERO
46 # define USING_MMAP
47 #endif
48 
49 #ifndef USING_MMAP
50 #define USING_MALLOC_PAGE_GROUPS
51 #endif
52 
53 #if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
54     && defined(USING_MMAP)
55 # define USING_MADVISE
56 #endif
57 
58 /* Strategy:
59 
60    This garbage-collecting allocator allocates objects on one of a set
61    of pages.  Each page can allocate objects of a single size only;
62    available sizes are powers of two starting at four bytes.  The size
63    of an allocation request is rounded up to the next power of two
64    (`order'), and satisfied from the appropriate page.
65 
66    Each page is recorded in a page-entry, which also maintains an
67    in-use bitmap of object positions on the page.  This allows the
68    allocation state of a particular object to be flipped without
69    touching the page itself.
70 
71    Each page-entry also has a context depth, which is used to track
72    pushing and popping of allocation contexts.  Only objects allocated
73    in the current (highest-numbered) context may be collected.
74 
75    Page entries are arranged in an array of singly-linked lists.  The
76    array is indexed by the allocation size, in bits, of the pages on
77    it; i.e. all pages on a list allocate objects of the same size.
78    Pages are ordered on the list such that all non-full pages precede
79    all full pages, with non-full pages arranged in order of decreasing
80    context depth.
81 
82    Empty pages (of all orders) are kept on a single page cache list,
83    and are considered first when new pages are required; they are
84    deallocated at the start of the next collection if they haven't
85    been recycled by then.  */
86 
87 /* Define GGC_DEBUG_LEVEL to print debugging information.
88      0: No debugging output.
89      1: GC statistics only.
90      2: Page-entry allocations/deallocations as well.
91      3: Object allocations as well.
92      4: Object marks as well.  */
93 #define GGC_DEBUG_LEVEL (0)
94 
95 /* A two-level tree is used to look up the page-entry for a given
96    pointer.  Two chunks of the pointer's bits are extracted to index
97    the first and second levels of the tree, as follows:
98 
99 				   HOST_PAGE_SIZE_BITS
100 			   32		|      |
101        msb +----------------+----+------+------+ lsb
102 			    |    |      |
103 			 PAGE_L1_BITS   |
104 				 |      |
105 			       PAGE_L2_BITS
106 
107    The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
108    pages are aligned on system page boundaries.  The next most
109    significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
110    index values in the lookup table, respectively.
111 
112    For 32-bit architectures and the settings below, there are no
113    leftover bits.  For architectures with wider pointers, the lookup
114    tree points to a list of pages, which must be scanned to find the
115    correct one.  */
116 
117 #define PAGE_L1_BITS	(8)
118 #define PAGE_L2_BITS	(32 - PAGE_L1_BITS - G.lg_pagesize)
119 #define PAGE_L1_SIZE	((uintptr_t) 1 << PAGE_L1_BITS)
120 #define PAGE_L2_SIZE	((uintptr_t) 1 << PAGE_L2_BITS)
121 
122 #define LOOKUP_L1(p) \
123   (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
124 
125 #define LOOKUP_L2(p) \
126   (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
127 
128 /* The number of objects per allocation page, for objects on a page of
129    the indicated ORDER.  */
130 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
131 
132 /* The number of objects in P.  */
133 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
134 
135 /* The size of an object on a page of the indicated ORDER.  */
136 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
137 
138 /* For speed, we avoid doing a general integer divide to locate the
139    offset in the allocation bitmap, by precalculating numbers M, S
140    such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
141    within the page which is evenly divisible by the object size Z.  */
142 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
143 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
144 #define OFFSET_TO_BIT(OFFSET, ORDER) \
145   (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
146 
147 /* We use this structure to determine the alignment required for
148    allocations.  For power-of-two sized allocations, that's not a
149    problem, but it does matter for odd-sized allocations.
150    We do not care about alignment for floating-point types.  */
151 
152 struct max_alignment {
153   char c;
154   union {
155     int64_t i;
156     void *p;
157   } u;
158 };
159 
160 /* The biggest alignment required.  */
161 
162 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
163 
164 
165 /* The number of extra orders, not corresponding to power-of-two sized
166    objects.  */
167 
168 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
169 
170 #define RTL_SIZE(NSLOTS) \
171   (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
172 
173 #define TREE_EXP_SIZE(OPS) \
174   (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
175 
176 /* The Ith entry is the maximum size of an object to be stored in the
177    Ith extra order.  Adding a new entry to this array is the *only*
178    thing you need to do to add a new special allocation size.  */
179 
180 static const size_t extra_order_size_table[] = {
181   /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
182      There are a lot of structures with these sizes and explicitly
183      listing them risks orders being dropped because they changed size.  */
184   MAX_ALIGNMENT * 3,
185   MAX_ALIGNMENT * 5,
186   MAX_ALIGNMENT * 6,
187   MAX_ALIGNMENT * 7,
188   MAX_ALIGNMENT * 9,
189   MAX_ALIGNMENT * 10,
190   MAX_ALIGNMENT * 11,
191   MAX_ALIGNMENT * 12,
192   MAX_ALIGNMENT * 13,
193   MAX_ALIGNMENT * 14,
194   MAX_ALIGNMENT * 15,
195   sizeof (struct tree_decl_non_common),
196   sizeof (struct tree_field_decl),
197   sizeof (struct tree_parm_decl),
198   sizeof (struct tree_var_decl),
199   sizeof (struct tree_type_non_common),
200   sizeof (struct function),
201   sizeof (struct basic_block_def),
202   sizeof (struct cgraph_node),
203   sizeof (struct loop),
204 };
205 
206 /* The total number of orders.  */
207 
208 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
209 
210 /* Compute the smallest nonnegative number which when added to X gives
211    a multiple of F.  */
212 
213 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
214 
215 /* Round X to next multiple of the page size */
216 
217 #define PAGE_ALIGN(x) ROUND_UP ((x), G.pagesize)
218 
219 /* The Ith entry is the number of objects on a page or order I.  */
220 
221 static unsigned objects_per_page_table[NUM_ORDERS];
222 
223 /* The Ith entry is the size of an object on a page of order I.  */
224 
225 static size_t object_size_table[NUM_ORDERS];
226 
227 /* The Ith entry is a pair of numbers (mult, shift) such that
228    ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
229    for all k evenly divisible by OBJECT_SIZE(I).  */
230 
231 static struct
232 {
233   size_t mult;
234   unsigned int shift;
235 }
236 inverse_table[NUM_ORDERS];
237 
238 /* A page_entry records the status of an allocation page.  This
239    structure is dynamically sized to fit the bitmap in_use_p.  */
240 struct page_entry
241 {
242   /* The next page-entry with objects of the same size, or NULL if
243      this is the last page-entry.  */
244   struct page_entry *next;
245 
246   /* The previous page-entry with objects of the same size, or NULL if
247      this is the first page-entry.   The PREV pointer exists solely to
248      keep the cost of ggc_free manageable.  */
249   struct page_entry *prev;
250 
251   /* The number of bytes allocated.  (This will always be a multiple
252      of the host system page size.)  */
253   size_t bytes;
254 
255   /* The address at which the memory is allocated.  */
256   char *page;
257 
258 #ifdef USING_MALLOC_PAGE_GROUPS
259   /* Back pointer to the page group this page came from.  */
260   struct page_group *group;
261 #endif
262 
263   /* This is the index in the by_depth varray where this page table
264      can be found.  */
265   unsigned long index_by_depth;
266 
267   /* Context depth of this page.  */
268   unsigned short context_depth;
269 
270   /* The number of free objects remaining on this page.  */
271   unsigned short num_free_objects;
272 
273   /* A likely candidate for the bit position of a free object for the
274      next allocation from this page.  */
275   unsigned short next_bit_hint;
276 
277   /* The lg of size of objects allocated from this page.  */
278   unsigned char order;
279 
280   /* Discarded page? */
281   bool discarded;
282 
283   /* A bit vector indicating whether or not objects are in use.  The
284      Nth bit is one if the Nth object on this page is allocated.  This
285      array is dynamically sized.  */
286   unsigned long in_use_p[1];
287 };
288 
289 #ifdef USING_MALLOC_PAGE_GROUPS
290 /* A page_group describes a large allocation from malloc, from which
291    we parcel out aligned pages.  */
292 struct page_group
293 {
294   /* A linked list of all extant page groups.  */
295   struct page_group *next;
296 
297   /* The address we received from malloc.  */
298   char *allocation;
299 
300   /* The size of the block.  */
301   size_t alloc_size;
302 
303   /* A bitmask of pages in use.  */
304   unsigned int in_use;
305 };
306 #endif
307 
308 #if HOST_BITS_PER_PTR <= 32
309 
310 /* On 32-bit hosts, we use a two level page table, as pictured above.  */
311 typedef page_entry **page_table[PAGE_L1_SIZE];
312 
313 #else
314 
315 /* On 64-bit hosts, we use the same two level page tables plus a linked
316    list that disambiguates the top 32-bits.  There will almost always be
317    exactly one entry in the list.  */
318 typedef struct page_table_chain
319 {
320   struct page_table_chain *next;
321   size_t high_bits;
322   page_entry **table[PAGE_L1_SIZE];
323 } *page_table;
324 
325 #endif
326 
327 class finalizer
328 {
329 public:
finalizer(void * addr,void (* f)(void *))330   finalizer (void *addr, void (*f)(void *)) : m_addr (addr), m_function (f) {}
331 
addr()332   void *addr () const { return m_addr; }
333 
call()334   void call () const { m_function (m_addr); }
335 
336 private:
337   void *m_addr;
338   void (*m_function)(void *);
339 };
340 
341 class vec_finalizer
342 {
343 public:
vec_finalizer(uintptr_t addr,void (* f)(void *),size_t s,size_t n)344   vec_finalizer (uintptr_t addr, void (*f)(void *), size_t s, size_t n) :
345     m_addr (addr), m_function (f), m_object_size (s), m_n_objects (n) {}
346 
call()347   void call () const
348     {
349       for (size_t i = 0; i < m_n_objects; i++)
350 	m_function (reinterpret_cast<void *> (m_addr + (i * m_object_size)));
351     }
352 
addr()353   void *addr () const { return reinterpret_cast<void *> (m_addr); }
354 
355 private:
356   uintptr_t m_addr;
357   void (*m_function)(void *);
358   size_t m_object_size;
359   size_t m_n_objects;
360 };
361 
362 #ifdef ENABLE_GC_ALWAYS_COLLECT
363 /* List of free objects to be verified as actually free on the
364    next collection.  */
365 struct free_object
366 {
367   void *object;
368   struct free_object *next;
369 };
370 #endif
371 
372 /* The rest of the global variables.  */
373 static struct ggc_globals
374 {
375   /* The Nth element in this array is a page with objects of size 2^N.
376      If there are any pages with free objects, they will be at the
377      head of the list.  NULL if there are no page-entries for this
378      object size.  */
379   page_entry *pages[NUM_ORDERS];
380 
381   /* The Nth element in this array is the last page with objects of
382      size 2^N.  NULL if there are no page-entries for this object
383      size.  */
384   page_entry *page_tails[NUM_ORDERS];
385 
386   /* Lookup table for associating allocation pages with object addresses.  */
387   page_table lookup;
388 
389   /* The system's page size.  */
390   size_t pagesize;
391   size_t lg_pagesize;
392 
393   /* Bytes currently allocated.  */
394   size_t allocated;
395 
396   /* Bytes currently allocated at the end of the last collection.  */
397   size_t allocated_last_gc;
398 
399   /* Total amount of memory mapped.  */
400   size_t bytes_mapped;
401 
402   /* Bit N set if any allocations have been done at context depth N.  */
403   unsigned long context_depth_allocations;
404 
405   /* Bit N set if any collections have been done at context depth N.  */
406   unsigned long context_depth_collections;
407 
408   /* The current depth in the context stack.  */
409   unsigned short context_depth;
410 
411   /* A file descriptor open to /dev/zero for reading.  */
412 #if defined (HAVE_MMAP_DEV_ZERO)
413   int dev_zero_fd;
414 #endif
415 
416   /* A cache of free system pages.  */
417   page_entry *free_pages;
418 
419 #ifdef USING_MALLOC_PAGE_GROUPS
420   page_group *page_groups;
421 #endif
422 
423   /* The file descriptor for debugging output.  */
424   FILE *debug_file;
425 
426   /* Current number of elements in use in depth below.  */
427   unsigned int depth_in_use;
428 
429   /* Maximum number of elements that can be used before resizing.  */
430   unsigned int depth_max;
431 
432   /* Each element of this array is an index in by_depth where the given
433      depth starts.  This structure is indexed by that given depth we
434      are interested in.  */
435   unsigned int *depth;
436 
437   /* Current number of elements in use in by_depth below.  */
438   unsigned int by_depth_in_use;
439 
440   /* Maximum number of elements that can be used before resizing.  */
441   unsigned int by_depth_max;
442 
443   /* Each element of this array is a pointer to a page_entry, all
444      page_entries can be found in here by increasing depth.
445      index_by_depth in the page_entry is the index into this data
446      structure where that page_entry can be found.  This is used to
447      speed up finding all page_entries at a particular depth.  */
448   page_entry **by_depth;
449 
450   /* Each element is a pointer to the saved in_use_p bits, if any,
451      zero otherwise.  We allocate them all together, to enable a
452      better runtime data access pattern.  */
453   unsigned long **save_in_use;
454 
455   /* Finalizers for single objects.  The first index is collection_depth.  */
456   vec<vec<finalizer> > finalizers;
457 
458   /* Finalizers for vectors of objects.  */
459   vec<vec<vec_finalizer> > vec_finalizers;
460 
461 #ifdef ENABLE_GC_ALWAYS_COLLECT
462   /* List of free objects to be verified as actually free on the
463      next collection.  */
464   struct free_object *free_object_list;
465 #endif
466 
467   struct
468   {
469     /* Total GC-allocated memory.  */
470     unsigned long long total_allocated;
471     /* Total overhead for GC-allocated memory.  */
472     unsigned long long total_overhead;
473 
474     /* Total allocations and overhead for sizes less than 32, 64 and 128.
475        These sizes are interesting because they are typical cache line
476        sizes.  */
477 
478     unsigned long long total_allocated_under32;
479     unsigned long long total_overhead_under32;
480 
481     unsigned long long total_allocated_under64;
482     unsigned long long total_overhead_under64;
483 
484     unsigned long long total_allocated_under128;
485     unsigned long long total_overhead_under128;
486 
487     /* The allocations for each of the allocation orders.  */
488     unsigned long long total_allocated_per_order[NUM_ORDERS];
489 
490     /* The overhead for each of the allocation orders.  */
491     unsigned long long total_overhead_per_order[NUM_ORDERS];
492   } stats;
493 } G;
494 
495 /* True if a gc is currently taking place.  */
496 
497 static bool in_gc = false;
498 
499 /* The size in bytes required to maintain a bitmap for the objects
500    on a page-entry.  */
501 #define BITMAP_SIZE(Num_objects) \
502   (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof (long))
503 
504 /* Allocate pages in chunks of this size, to throttle calls to memory
505    allocation routines.  The first page is used, the rest go onto the
506    free list.  This cannot be larger than HOST_BITS_PER_INT for the
507    in_use bitmask for page_group.  Hosts that need a different value
508    can override this by defining GGC_QUIRE_SIZE explicitly.  */
509 #ifndef GGC_QUIRE_SIZE
510 # ifdef USING_MMAP
511 #  define GGC_QUIRE_SIZE 512	/* 2MB for 4K pages */
512 # else
513 #  define GGC_QUIRE_SIZE 16
514 # endif
515 #endif
516 
517 /* Initial guess as to how many page table entries we might need.  */
518 #define INITIAL_PTE_COUNT 128
519 
520 static page_entry *lookup_page_table_entry (const void *);
521 static void set_page_table_entry (void *, page_entry *);
522 #ifdef USING_MMAP
523 static char *alloc_anon (char *, size_t, bool check);
524 #endif
525 #ifdef USING_MALLOC_PAGE_GROUPS
526 static size_t page_group_index (char *, char *);
527 static void set_page_group_in_use (page_group *, char *);
528 static void clear_page_group_in_use (page_group *, char *);
529 #endif
530 static struct page_entry * alloc_page (unsigned);
531 static void free_page (struct page_entry *);
532 static void release_pages (void);
533 static void clear_marks (void);
534 static void sweep_pages (void);
535 static void ggc_recalculate_in_use_p (page_entry *);
536 static void compute_inverse (unsigned);
537 static inline void adjust_depth (void);
538 static void move_ptes_to_front (int, int);
539 
540 void debug_print_page_list (int);
541 static void push_depth (unsigned int);
542 static void push_by_depth (page_entry *, unsigned long *);
543 
544 /* Push an entry onto G.depth.  */
545 
546 inline static void
push_depth(unsigned int i)547 push_depth (unsigned int i)
548 {
549   if (G.depth_in_use >= G.depth_max)
550     {
551       G.depth_max *= 2;
552       G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
553     }
554   G.depth[G.depth_in_use++] = i;
555 }
556 
557 /* Push an entry onto G.by_depth and G.save_in_use.  */
558 
559 inline static void
push_by_depth(page_entry * p,unsigned long * s)560 push_by_depth (page_entry *p, unsigned long *s)
561 {
562   if (G.by_depth_in_use >= G.by_depth_max)
563     {
564       G.by_depth_max *= 2;
565       G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
566       G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
567 				  G.by_depth_max);
568     }
569   G.by_depth[G.by_depth_in_use] = p;
570   G.save_in_use[G.by_depth_in_use++] = s;
571 }
572 
573 #if (GCC_VERSION < 3001)
574 #define prefetch(X) ((void) X)
575 #else
576 #define prefetch(X) __builtin_prefetch (X)
577 #endif
578 
579 #define save_in_use_p_i(__i) \
580   (G.save_in_use[__i])
581 #define save_in_use_p(__p) \
582   (save_in_use_p_i (__p->index_by_depth))
583 
584 /* Traverse the page table and find the entry for a page.
585    If the object wasn't allocated in GC return NULL.  */
586 
587 static inline page_entry *
safe_lookup_page_table_entry(const void * p)588 safe_lookup_page_table_entry (const void *p)
589 {
590   page_entry ***base;
591   size_t L1, L2;
592 
593 #if HOST_BITS_PER_PTR <= 32
594   base = &G.lookup[0];
595 #else
596   page_table table = G.lookup;
597   uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
598   while (1)
599     {
600       if (table == NULL)
601 	return NULL;
602       if (table->high_bits == high_bits)
603 	break;
604       table = table->next;
605     }
606   base = &table->table[0];
607 #endif
608 
609   /* Extract the level 1 and 2 indices.  */
610   L1 = LOOKUP_L1 (p);
611   L2 = LOOKUP_L2 (p);
612   if (! base[L1])
613     return NULL;
614 
615   return base[L1][L2];
616 }
617 
618 /* Traverse the page table and find the entry for a page.
619    Die (probably) if the object wasn't allocated via GC.  */
620 
621 static inline page_entry *
lookup_page_table_entry(const void * p)622 lookup_page_table_entry (const void *p)
623 {
624   page_entry ***base;
625   size_t L1, L2;
626 
627 #if HOST_BITS_PER_PTR <= 32
628   base = &G.lookup[0];
629 #else
630   page_table table = G.lookup;
631   uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
632   while (table->high_bits != high_bits)
633     table = table->next;
634   base = &table->table[0];
635 #endif
636 
637   /* Extract the level 1 and 2 indices.  */
638   L1 = LOOKUP_L1 (p);
639   L2 = LOOKUP_L2 (p);
640 
641   return base[L1][L2];
642 }
643 
644 /* Set the page table entry for a page.  */
645 
646 static void
set_page_table_entry(void * p,page_entry * entry)647 set_page_table_entry (void *p, page_entry *entry)
648 {
649   page_entry ***base;
650   size_t L1, L2;
651 
652 #if HOST_BITS_PER_PTR <= 32
653   base = &G.lookup[0];
654 #else
655   page_table table;
656   uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
657   for (table = G.lookup; table; table = table->next)
658     if (table->high_bits == high_bits)
659       goto found;
660 
661   /* Not found -- allocate a new table.  */
662   table = XCNEW (struct page_table_chain);
663   table->next = G.lookup;
664   table->high_bits = high_bits;
665   G.lookup = table;
666 found:
667   base = &table->table[0];
668 #endif
669 
670   /* Extract the level 1 and 2 indices.  */
671   L1 = LOOKUP_L1 (p);
672   L2 = LOOKUP_L2 (p);
673 
674   if (base[L1] == NULL)
675     base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
676 
677   base[L1][L2] = entry;
678 }
679 
680 /* Prints the page-entry for object size ORDER, for debugging.  */
681 
682 DEBUG_FUNCTION void
debug_print_page_list(int order)683 debug_print_page_list (int order)
684 {
685   page_entry *p;
686   printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
687 	  (void *) G.page_tails[order]);
688   p = G.pages[order];
689   while (p != NULL)
690     {
691       printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
692 	      p->num_free_objects);
693       p = p->next;
694     }
695   printf ("NULL\n");
696   fflush (stdout);
697 }
698 
699 #ifdef USING_MMAP
700 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
701    (if non-null).  The ifdef structure here is intended to cause a
702    compile error unless exactly one of the HAVE_* is defined.  */
703 
704 static inline char *
alloc_anon(char * pref ATTRIBUTE_UNUSED,size_t size,bool check)705 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
706 {
707 #ifdef HAVE_MMAP_ANON
708   char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
709 			      MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
710 #endif
711 #ifdef HAVE_MMAP_DEV_ZERO
712   char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
713 			      MAP_PRIVATE, G.dev_zero_fd, 0);
714 #endif
715 
716   if (page == (char *) MAP_FAILED)
717     {
718       if (!check)
719         return NULL;
720       perror ("virtual memory exhausted");
721       exit (FATAL_EXIT_CODE);
722     }
723 
724   /* Remember that we allocated this memory.  */
725   G.bytes_mapped += size;
726 
727   /* Pretend we don't have access to the allocated pages.  We'll enable
728      access to smaller pieces of the area in ggc_internal_alloc.  Discard the
729      handle to avoid handle leak.  */
730   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
731 
732   return page;
733 }
734 #endif
735 #ifdef USING_MALLOC_PAGE_GROUPS
736 /* Compute the index for this page into the page group.  */
737 
738 static inline size_t
page_group_index(char * allocation,char * page)739 page_group_index (char *allocation, char *page)
740 {
741   return (size_t) (page - allocation) >> G.lg_pagesize;
742 }
743 
744 /* Set and clear the in_use bit for this page in the page group.  */
745 
746 static inline void
set_page_group_in_use(page_group * group,char * page)747 set_page_group_in_use (page_group *group, char *page)
748 {
749   group->in_use |= 1 << page_group_index (group->allocation, page);
750 }
751 
752 static inline void
clear_page_group_in_use(page_group * group,char * page)753 clear_page_group_in_use (page_group *group, char *page)
754 {
755   group->in_use &= ~(1 << page_group_index (group->allocation, page));
756 }
757 #endif
758 
759 /* Allocate a new page for allocating objects of size 2^ORDER,
760    and return an entry for it.  The entry is not added to the
761    appropriate page_table list.  */
762 
763 static inline struct page_entry *
alloc_page(unsigned order)764 alloc_page (unsigned order)
765 {
766   struct page_entry *entry, *p, **pp;
767   char *page;
768   size_t num_objects;
769   size_t bitmap_size;
770   size_t page_entry_size;
771   size_t entry_size;
772 #ifdef USING_MALLOC_PAGE_GROUPS
773   page_group *group;
774 #endif
775 
776   num_objects = OBJECTS_PER_PAGE (order);
777   bitmap_size = BITMAP_SIZE (num_objects + 1);
778   page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
779   entry_size = num_objects * OBJECT_SIZE (order);
780   if (entry_size < G.pagesize)
781     entry_size = G.pagesize;
782   entry_size = PAGE_ALIGN (entry_size);
783 
784   entry = NULL;
785   page = NULL;
786 
787   /* Check the list of free pages for one we can use.  */
788   for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
789     if (p->bytes == entry_size)
790       break;
791 
792   if (p != NULL)
793     {
794       if (p->discarded)
795         G.bytes_mapped += p->bytes;
796       p->discarded = false;
797 
798       /* Recycle the allocated memory from this page ...  */
799       *pp = p->next;
800       page = p->page;
801 
802 #ifdef USING_MALLOC_PAGE_GROUPS
803       group = p->group;
804 #endif
805 
806       /* ... and, if possible, the page entry itself.  */
807       if (p->order == order)
808 	{
809 	  entry = p;
810 	  memset (entry, 0, page_entry_size);
811 	}
812       else
813 	free (p);
814     }
815 #ifdef USING_MMAP
816   else if (entry_size == G.pagesize)
817     {
818       /* We want just one page.  Allocate a bunch of them and put the
819 	 extras on the freelist.  (Can only do this optimization with
820 	 mmap for backing store.)  */
821       struct page_entry *e, *f = G.free_pages;
822       int i, entries = GGC_QUIRE_SIZE;
823 
824       page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false);
825       if (page == NULL)
826      	{
827 	  page = alloc_anon (NULL, G.pagesize, true);
828           entries = 1;
829 	}
830 
831       /* This loop counts down so that the chain will be in ascending
832 	 memory order.  */
833       for (i = entries - 1; i >= 1; i--)
834 	{
835 	  e = XCNEWVAR (struct page_entry, page_entry_size);
836 	  e->order = order;
837 	  e->bytes = G.pagesize;
838 	  e->page = page + (i << G.lg_pagesize);
839 	  e->next = f;
840 	  f = e;
841 	}
842 
843       G.free_pages = f;
844     }
845   else
846     page = alloc_anon (NULL, entry_size, true);
847 #endif
848 #ifdef USING_MALLOC_PAGE_GROUPS
849   else
850     {
851       /* Allocate a large block of memory and serve out the aligned
852 	 pages therein.  This results in much less memory wastage
853 	 than the traditional implementation of valloc.  */
854 
855       char *allocation, *a, *enda;
856       size_t alloc_size, head_slop, tail_slop;
857       int multiple_pages = (entry_size == G.pagesize);
858 
859       if (multiple_pages)
860 	alloc_size = GGC_QUIRE_SIZE * G.pagesize;
861       else
862 	alloc_size = entry_size + G.pagesize - 1;
863       allocation = XNEWVEC (char, alloc_size);
864 
865       page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize);
866       head_slop = page - allocation;
867       if (multiple_pages)
868 	tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
869       else
870 	tail_slop = alloc_size - entry_size - head_slop;
871       enda = allocation + alloc_size - tail_slop;
872 
873       /* We allocated N pages, which are likely not aligned, leaving
874 	 us with N-1 usable pages.  We plan to place the page_group
875 	 structure somewhere in the slop.  */
876       if (head_slop >= sizeof (page_group))
877 	group = (page_group *)page - 1;
878       else
879 	{
880 	  /* We magically got an aligned allocation.  Too bad, we have
881 	     to waste a page anyway.  */
882 	  if (tail_slop == 0)
883 	    {
884 	      enda -= G.pagesize;
885 	      tail_slop += G.pagesize;
886 	    }
887 	  gcc_assert (tail_slop >= sizeof (page_group));
888 	  group = (page_group *)enda;
889 	  tail_slop -= sizeof (page_group);
890 	}
891 
892       /* Remember that we allocated this memory.  */
893       group->next = G.page_groups;
894       group->allocation = allocation;
895       group->alloc_size = alloc_size;
896       group->in_use = 0;
897       G.page_groups = group;
898       G.bytes_mapped += alloc_size;
899 
900       /* If we allocated multiple pages, put the rest on the free list.  */
901       if (multiple_pages)
902 	{
903 	  struct page_entry *e, *f = G.free_pages;
904 	  for (a = enda - G.pagesize; a != page; a -= G.pagesize)
905 	    {
906 	      e = XCNEWVAR (struct page_entry, page_entry_size);
907 	      e->order = order;
908 	      e->bytes = G.pagesize;
909 	      e->page = a;
910 	      e->group = group;
911 	      e->next = f;
912 	      f = e;
913 	    }
914 	  G.free_pages = f;
915 	}
916     }
917 #endif
918 
919   if (entry == NULL)
920     entry = XCNEWVAR (struct page_entry, page_entry_size);
921 
922   entry->bytes = entry_size;
923   entry->page = page;
924   entry->context_depth = G.context_depth;
925   entry->order = order;
926   entry->num_free_objects = num_objects;
927   entry->next_bit_hint = 1;
928 
929   G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
930 
931 #ifdef USING_MALLOC_PAGE_GROUPS
932   entry->group = group;
933   set_page_group_in_use (group, page);
934 #endif
935 
936   /* Set the one-past-the-end in-use bit.  This acts as a sentry as we
937      increment the hint.  */
938   entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
939     = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
940 
941   set_page_table_entry (page, entry);
942 
943   if (GGC_DEBUG_LEVEL >= 2)
944     fprintf (G.debug_file,
945 	     "Allocating page at %p, object size=%lu, data %p-%p\n",
946 	     (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
947 	     page + entry_size - 1);
948 
949   return entry;
950 }
951 
952 /* Adjust the size of G.depth so that no index greater than the one
953    used by the top of the G.by_depth is used.  */
954 
955 static inline void
adjust_depth(void)956 adjust_depth (void)
957 {
958   page_entry *top;
959 
960   if (G.by_depth_in_use)
961     {
962       top = G.by_depth[G.by_depth_in_use-1];
963 
964       /* Peel back indices in depth that index into by_depth, so that
965 	 as new elements are added to by_depth, we note the indices
966 	 of those elements, if they are for new context depths.  */
967       while (G.depth_in_use > (size_t)top->context_depth+1)
968 	--G.depth_in_use;
969     }
970 }
971 
972 /* For a page that is no longer needed, put it on the free page list.  */
973 
974 static void
free_page(page_entry * entry)975 free_page (page_entry *entry)
976 {
977   if (GGC_DEBUG_LEVEL >= 2)
978     fprintf (G.debug_file,
979 	     "Deallocating page at %p, data %p-%p\n", (void *) entry,
980 	     entry->page, entry->page + entry->bytes - 1);
981 
982   /* Mark the page as inaccessible.  Discard the handle to avoid handle
983      leak.  */
984   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
985 
986   set_page_table_entry (entry->page, NULL);
987 
988 #ifdef USING_MALLOC_PAGE_GROUPS
989   clear_page_group_in_use (entry->group, entry->page);
990 #endif
991 
992   if (G.by_depth_in_use > 1)
993     {
994       page_entry *top = G.by_depth[G.by_depth_in_use-1];
995       int i = entry->index_by_depth;
996 
997       /* We cannot free a page from a context deeper than the current
998 	 one.  */
999       gcc_assert (entry->context_depth == top->context_depth);
1000 
1001       /* Put top element into freed slot.  */
1002       G.by_depth[i] = top;
1003       G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
1004       top->index_by_depth = i;
1005     }
1006   --G.by_depth_in_use;
1007 
1008   adjust_depth ();
1009 
1010   entry->next = G.free_pages;
1011   G.free_pages = entry;
1012 }
1013 
1014 /* Release the free page cache to the system.  */
1015 
1016 static void
release_pages(void)1017 release_pages (void)
1018 {
1019 #ifdef USING_MADVISE
1020   page_entry *p, *start_p;
1021   char *start;
1022   size_t len;
1023   size_t mapped_len;
1024   page_entry *next, *prev, *newprev;
1025   size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
1026 
1027   /* First free larger continuous areas to the OS.
1028      This allows other allocators to grab these areas if needed.
1029      This is only done on larger chunks to avoid fragmentation.
1030      This does not always work because the free_pages list is only
1031      approximately sorted. */
1032 
1033   p = G.free_pages;
1034   prev = NULL;
1035   while (p)
1036     {
1037       start = p->page;
1038       start_p = p;
1039       len = 0;
1040       mapped_len = 0;
1041       newprev = prev;
1042       while (p && p->page == start + len)
1043         {
1044           len += p->bytes;
1045 	  if (!p->discarded)
1046 	      mapped_len += p->bytes;
1047 	  newprev = p;
1048           p = p->next;
1049         }
1050       if (len >= free_unit)
1051         {
1052           while (start_p != p)
1053             {
1054               next = start_p->next;
1055               free (start_p);
1056               start_p = next;
1057             }
1058           munmap (start, len);
1059 	  if (prev)
1060 	    prev->next = p;
1061           else
1062             G.free_pages = p;
1063           G.bytes_mapped -= mapped_len;
1064 	  continue;
1065         }
1066       prev = newprev;
1067    }
1068 
1069   /* Now give back the fragmented pages to the OS, but keep the address
1070      space to reuse it next time. */
1071 
1072   for (p = G.free_pages; p; )
1073     {
1074       if (p->discarded)
1075         {
1076           p = p->next;
1077           continue;
1078         }
1079       start = p->page;
1080       len = p->bytes;
1081       start_p = p;
1082       p = p->next;
1083       while (p && p->page == start + len)
1084         {
1085           len += p->bytes;
1086           p = p->next;
1087         }
1088       /* Give the page back to the kernel, but don't free the mapping.
1089          This avoids fragmentation in the virtual memory map of the
1090  	 process. Next time we can reuse it by just touching it. */
1091       madvise (start, len, MADV_DONTNEED);
1092       /* Don't count those pages as mapped to not touch the garbage collector
1093          unnecessarily. */
1094       G.bytes_mapped -= len;
1095       while (start_p != p)
1096         {
1097           start_p->discarded = true;
1098           start_p = start_p->next;
1099         }
1100     }
1101 #endif
1102 #if defined(USING_MMAP) && !defined(USING_MADVISE)
1103   page_entry *p, *next;
1104   char *start;
1105   size_t len;
1106 
1107   /* Gather up adjacent pages so they are unmapped together.  */
1108   p = G.free_pages;
1109 
1110   while (p)
1111     {
1112       start = p->page;
1113       next = p->next;
1114       len = p->bytes;
1115       free (p);
1116       p = next;
1117 
1118       while (p && p->page == start + len)
1119 	{
1120 	  next = p->next;
1121 	  len += p->bytes;
1122 	  free (p);
1123 	  p = next;
1124 	}
1125 
1126       munmap (start, len);
1127       G.bytes_mapped -= len;
1128     }
1129 
1130   G.free_pages = NULL;
1131 #endif
1132 #ifdef USING_MALLOC_PAGE_GROUPS
1133   page_entry **pp, *p;
1134   page_group **gp, *g;
1135 
1136   /* Remove all pages from free page groups from the list.  */
1137   pp = &G.free_pages;
1138   while ((p = *pp) != NULL)
1139     if (p->group->in_use == 0)
1140       {
1141 	*pp = p->next;
1142 	free (p);
1143       }
1144     else
1145       pp = &p->next;
1146 
1147   /* Remove all free page groups, and release the storage.  */
1148   gp = &G.page_groups;
1149   while ((g = *gp) != NULL)
1150     if (g->in_use == 0)
1151       {
1152 	*gp = g->next;
1153 	G.bytes_mapped -= g->alloc_size;
1154 	free (g->allocation);
1155       }
1156     else
1157       gp = &g->next;
1158 #endif
1159 }
1160 
1161 /* This table provides a fast way to determine ceil(log_2(size)) for
1162    allocation requests.  The minimum allocation size is eight bytes.  */
1163 #define NUM_SIZE_LOOKUP 512
1164 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1165 {
1166   3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1167   4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1168   5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1169   6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1170   6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1171   7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1172   7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1173   7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1174   7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1175   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1176   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1177   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1178   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1179   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1180   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1181   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1182   8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1183   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1184   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1185   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1186   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1187   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1188   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1189   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1190   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1191   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1192   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1193   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1194   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1195   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1196   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1197   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1198 };
1199 
1200 /* For a given size of memory requested for allocation, return the
1201    actual size that is going to be allocated, as well as the size
1202    order.  */
1203 
1204 static void
ggc_round_alloc_size_1(size_t requested_size,size_t * size_order,size_t * alloced_size)1205 ggc_round_alloc_size_1 (size_t requested_size,
1206 			size_t *size_order,
1207 			size_t *alloced_size)
1208 {
1209   size_t order, object_size;
1210 
1211   if (requested_size < NUM_SIZE_LOOKUP)
1212     {
1213       order = size_lookup[requested_size];
1214       object_size = OBJECT_SIZE (order);
1215     }
1216   else
1217     {
1218       order = 10;
1219       while (requested_size > (object_size = OBJECT_SIZE (order)))
1220         order++;
1221     }
1222 
1223   if (size_order)
1224     *size_order = order;
1225   if (alloced_size)
1226     *alloced_size = object_size;
1227 }
1228 
1229 /* For a given size of memory requested for allocation, return the
1230    actual size that is going to be allocated.  */
1231 
1232 size_t
ggc_round_alloc_size(size_t requested_size)1233 ggc_round_alloc_size (size_t requested_size)
1234 {
1235   size_t size = 0;
1236 
1237   ggc_round_alloc_size_1 (requested_size, NULL, &size);
1238   return size;
1239 }
1240 
1241 /* Push a finalizer onto the appropriate vec.  */
1242 
1243 static void
add_finalizer(void * result,void (* f)(void *),size_t s,size_t n)1244 add_finalizer (void *result, void (*f)(void *), size_t s, size_t n)
1245 {
1246   if (f == NULL)
1247     /* No finalizer.  */;
1248   else if (n == 1)
1249     {
1250       finalizer fin (result, f);
1251       G.finalizers[G.context_depth].safe_push (fin);
1252     }
1253   else
1254     {
1255       vec_finalizer fin (reinterpret_cast<uintptr_t> (result), f, s, n);
1256       G.vec_finalizers[G.context_depth].safe_push (fin);
1257     }
1258 }
1259 
1260 /* Allocate a chunk of memory of SIZE bytes.  Its contents are undefined.  */
1261 
1262 void *
ggc_internal_alloc(size_t size,void (* f)(void *),size_t s,size_t n MEM_STAT_DECL)1263 ggc_internal_alloc (size_t size, void (*f)(void *), size_t s, size_t n
1264 		    MEM_STAT_DECL)
1265 {
1266   size_t order, word, bit, object_offset, object_size;
1267   struct page_entry *entry;
1268   void *result;
1269 
1270   ggc_round_alloc_size_1 (size, &order, &object_size);
1271 
1272   /* If there are non-full pages for this size allocation, they are at
1273      the head of the list.  */
1274   entry = G.pages[order];
1275 
1276   /* If there is no page for this object size, or all pages in this
1277      context are full, allocate a new page.  */
1278   if (entry == NULL || entry->num_free_objects == 0)
1279     {
1280       struct page_entry *new_entry;
1281       new_entry = alloc_page (order);
1282 
1283       new_entry->index_by_depth = G.by_depth_in_use;
1284       push_by_depth (new_entry, 0);
1285 
1286       /* We can skip context depths, if we do, make sure we go all the
1287 	 way to the new depth.  */
1288       while (new_entry->context_depth >= G.depth_in_use)
1289 	push_depth (G.by_depth_in_use-1);
1290 
1291       /* If this is the only entry, it's also the tail.  If it is not
1292 	 the only entry, then we must update the PREV pointer of the
1293 	 ENTRY (G.pages[order]) to point to our new page entry.  */
1294       if (entry == NULL)
1295 	G.page_tails[order] = new_entry;
1296       else
1297 	entry->prev = new_entry;
1298 
1299       /* Put new pages at the head of the page list.  By definition the
1300 	 entry at the head of the list always has a NULL pointer.  */
1301       new_entry->next = entry;
1302       new_entry->prev = NULL;
1303       entry = new_entry;
1304       G.pages[order] = new_entry;
1305 
1306       /* For a new page, we know the word and bit positions (in the
1307 	 in_use bitmap) of the first available object -- they're zero.  */
1308       new_entry->next_bit_hint = 1;
1309       word = 0;
1310       bit = 0;
1311       object_offset = 0;
1312     }
1313   else
1314     {
1315       /* First try to use the hint left from the previous allocation
1316 	 to locate a clear bit in the in-use bitmap.  We've made sure
1317 	 that the one-past-the-end bit is always set, so if the hint
1318 	 has run over, this test will fail.  */
1319       unsigned hint = entry->next_bit_hint;
1320       word = hint / HOST_BITS_PER_LONG;
1321       bit = hint % HOST_BITS_PER_LONG;
1322 
1323       /* If the hint didn't work, scan the bitmap from the beginning.  */
1324       if ((entry->in_use_p[word] >> bit) & 1)
1325 	{
1326 	  word = bit = 0;
1327 	  while (~entry->in_use_p[word] == 0)
1328 	    ++word;
1329 
1330 #if GCC_VERSION >= 3004
1331 	  bit = __builtin_ctzl (~entry->in_use_p[word]);
1332 #else
1333 	  while ((entry->in_use_p[word] >> bit) & 1)
1334 	    ++bit;
1335 #endif
1336 
1337 	  hint = word * HOST_BITS_PER_LONG + bit;
1338 	}
1339 
1340       /* Next time, try the next bit.  */
1341       entry->next_bit_hint = hint + 1;
1342 
1343       object_offset = hint * object_size;
1344     }
1345 
1346   /* Set the in-use bit.  */
1347   entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1348 
1349   /* Keep a running total of the number of free objects.  If this page
1350      fills up, we may have to move it to the end of the list if the
1351      next page isn't full.  If the next page is full, all subsequent
1352      pages are full, so there's no need to move it.  */
1353   if (--entry->num_free_objects == 0
1354       && entry->next != NULL
1355       && entry->next->num_free_objects > 0)
1356     {
1357       /* We have a new head for the list.  */
1358       G.pages[order] = entry->next;
1359 
1360       /* We are moving ENTRY to the end of the page table list.
1361 	 The new page at the head of the list will have NULL in
1362 	 its PREV field and ENTRY will have NULL in its NEXT field.  */
1363       entry->next->prev = NULL;
1364       entry->next = NULL;
1365 
1366       /* Append ENTRY to the tail of the list.  */
1367       entry->prev = G.page_tails[order];
1368       G.page_tails[order]->next = entry;
1369       G.page_tails[order] = entry;
1370     }
1371 
1372   /* Calculate the object's address.  */
1373   result = entry->page + object_offset;
1374   if (GATHER_STATISTICS)
1375     ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1376 			 result FINAL_PASS_MEM_STAT);
1377 
1378 #ifdef ENABLE_GC_CHECKING
1379   /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1380      exact same semantics in presence of memory bugs, regardless of
1381      ENABLE_VALGRIND_CHECKING.  We override this request below.  Drop the
1382      handle to avoid handle leak.  */
1383   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1384 
1385   /* `Poison' the entire allocated object, including any padding at
1386      the end.  */
1387   memset (result, 0xaf, object_size);
1388 
1389   /* Make the bytes after the end of the object unaccessible.  Discard the
1390      handle to avoid handle leak.  */
1391   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1392 						object_size - size));
1393 #endif
1394 
1395   /* Tell Valgrind that the memory is there, but its content isn't
1396      defined.  The bytes at the end of the object are still marked
1397      unaccessible.  */
1398   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1399 
1400   /* Keep track of how many bytes are being allocated.  This
1401      information is used in deciding when to collect.  */
1402   G.allocated += object_size;
1403 
1404   /* For timevar statistics.  */
1405   timevar_ggc_mem_total += object_size;
1406 
1407   if (f)
1408     add_finalizer (result, f, s, n);
1409 
1410   if (GATHER_STATISTICS)
1411     {
1412       size_t overhead = object_size - size;
1413 
1414       G.stats.total_overhead += overhead;
1415       G.stats.total_allocated += object_size;
1416       G.stats.total_overhead_per_order[order] += overhead;
1417       G.stats.total_allocated_per_order[order] += object_size;
1418 
1419       if (size <= 32)
1420 	{
1421 	  G.stats.total_overhead_under32 += overhead;
1422 	  G.stats.total_allocated_under32 += object_size;
1423 	}
1424       if (size <= 64)
1425 	{
1426 	  G.stats.total_overhead_under64 += overhead;
1427 	  G.stats.total_allocated_under64 += object_size;
1428 	}
1429       if (size <= 128)
1430 	{
1431 	  G.stats.total_overhead_under128 += overhead;
1432 	  G.stats.total_allocated_under128 += object_size;
1433 	}
1434     }
1435 
1436   if (GGC_DEBUG_LEVEL >= 3)
1437     fprintf (G.debug_file,
1438 	     "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1439 	     (unsigned long) size, (unsigned long) object_size, result,
1440 	     (void *) entry);
1441 
1442   return result;
1443 }
1444 
1445 /* Mark function for strings.  */
1446 
1447 void
gt_ggc_m_S(const void * p)1448 gt_ggc_m_S (const void *p)
1449 {
1450   page_entry *entry;
1451   unsigned bit, word;
1452   unsigned long mask;
1453   unsigned long offset;
1454 
1455   if (!p)
1456     return;
1457 
1458   /* Look up the page on which the object is alloced.  If it was not
1459      GC allocated, gracefully bail out.  */
1460   entry = safe_lookup_page_table_entry (p);
1461   if (!entry)
1462     return;
1463 
1464   /* Calculate the index of the object on the page; this is its bit
1465      position in the in_use_p bitmap.  Note that because a char* might
1466      point to the middle of an object, we need special code here to
1467      make sure P points to the start of an object.  */
1468   offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1469   if (offset)
1470     {
1471       /* Here we've seen a char* which does not point to the beginning
1472 	 of an allocated object.  We assume it points to the middle of
1473 	 a STRING_CST.  */
1474       gcc_assert (offset == offsetof (struct tree_string, str));
1475       p = ((const char *) p) - offset;
1476       gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
1477       return;
1478     }
1479 
1480   bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1481   word = bit / HOST_BITS_PER_LONG;
1482   mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1483 
1484   /* If the bit was previously set, skip it.  */
1485   if (entry->in_use_p[word] & mask)
1486     return;
1487 
1488   /* Otherwise set it, and decrement the free object count.  */
1489   entry->in_use_p[word] |= mask;
1490   entry->num_free_objects -= 1;
1491 
1492   if (GGC_DEBUG_LEVEL >= 4)
1493     fprintf (G.debug_file, "Marking %p\n", p);
1494 
1495   return;
1496 }
1497 
1498 
1499 /* User-callable entry points for marking string X.  */
1500 
1501 void
gt_ggc_mx(const char * & x)1502 gt_ggc_mx (const char *& x)
1503 {
1504   gt_ggc_m_S (x);
1505 }
1506 
1507 void
gt_ggc_mx(unsigned char * & x)1508 gt_ggc_mx (unsigned char *& x)
1509 {
1510   gt_ggc_m_S (x);
1511 }
1512 
1513 void
gt_ggc_mx(unsigned char & x ATTRIBUTE_UNUSED)1514 gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED)
1515 {
1516 }
1517 
1518 /* If P is not marked, marks it and return false.  Otherwise return true.
1519    P must have been allocated by the GC allocator; it mustn't point to
1520    static objects, stack variables, or memory allocated with malloc.  */
1521 
1522 int
ggc_set_mark(const void * p)1523 ggc_set_mark (const void *p)
1524 {
1525   page_entry *entry;
1526   unsigned bit, word;
1527   unsigned long mask;
1528 
1529   /* Look up the page on which the object is alloced.  If the object
1530      wasn't allocated by the collector, we'll probably die.  */
1531   entry = lookup_page_table_entry (p);
1532   gcc_assert (entry);
1533 
1534   /* Calculate the index of the object on the page; this is its bit
1535      position in the in_use_p bitmap.  */
1536   bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1537   word = bit / HOST_BITS_PER_LONG;
1538   mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1539 
1540   /* If the bit was previously set, skip it.  */
1541   if (entry->in_use_p[word] & mask)
1542     return 1;
1543 
1544   /* Otherwise set it, and decrement the free object count.  */
1545   entry->in_use_p[word] |= mask;
1546   entry->num_free_objects -= 1;
1547 
1548   if (GGC_DEBUG_LEVEL >= 4)
1549     fprintf (G.debug_file, "Marking %p\n", p);
1550 
1551   return 0;
1552 }
1553 
1554 /* Return 1 if P has been marked, zero otherwise.
1555    P must have been allocated by the GC allocator; it mustn't point to
1556    static objects, stack variables, or memory allocated with malloc.  */
1557 
1558 int
ggc_marked_p(const void * p)1559 ggc_marked_p (const void *p)
1560 {
1561   page_entry *entry;
1562   unsigned bit, word;
1563   unsigned long mask;
1564 
1565   /* Look up the page on which the object is alloced.  If the object
1566      wasn't allocated by the collector, we'll probably die.  */
1567   entry = lookup_page_table_entry (p);
1568   gcc_assert (entry);
1569 
1570   /* Calculate the index of the object on the page; this is its bit
1571      position in the in_use_p bitmap.  */
1572   bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1573   word = bit / HOST_BITS_PER_LONG;
1574   mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1575 
1576   return (entry->in_use_p[word] & mask) != 0;
1577 }
1578 
1579 /* Return the size of the gc-able object P.  */
1580 
1581 size_t
ggc_get_size(const void * p)1582 ggc_get_size (const void *p)
1583 {
1584   page_entry *pe = lookup_page_table_entry (p);
1585   return OBJECT_SIZE (pe->order);
1586 }
1587 
1588 /* Release the memory for object P.  */
1589 
1590 void
ggc_free(void * p)1591 ggc_free (void *p)
1592 {
1593   if (in_gc)
1594     return;
1595 
1596   page_entry *pe = lookup_page_table_entry (p);
1597   size_t order = pe->order;
1598   size_t size = OBJECT_SIZE (order);
1599 
1600   if (GATHER_STATISTICS)
1601     ggc_free_overhead (p);
1602 
1603   if (GGC_DEBUG_LEVEL >= 3)
1604     fprintf (G.debug_file,
1605 	     "Freeing object, actual size=%lu, at %p on %p\n",
1606 	     (unsigned long) size, p, (void *) pe);
1607 
1608 #ifdef ENABLE_GC_CHECKING
1609   /* Poison the data, to indicate the data is garbage.  */
1610   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1611   memset (p, 0xa5, size);
1612 #endif
1613   /* Let valgrind know the object is free.  */
1614   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1615 
1616 #ifdef ENABLE_GC_ALWAYS_COLLECT
1617   /* In the completely-anal-checking mode, we do *not* immediately free
1618      the data, but instead verify that the data is *actually* not
1619      reachable the next time we collect.  */
1620   {
1621     struct free_object *fo = XNEW (struct free_object);
1622     fo->object = p;
1623     fo->next = G.free_object_list;
1624     G.free_object_list = fo;
1625   }
1626 #else
1627   {
1628     unsigned int bit_offset, word, bit;
1629 
1630     G.allocated -= size;
1631 
1632     /* Mark the object not-in-use.  */
1633     bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1634     word = bit_offset / HOST_BITS_PER_LONG;
1635     bit = bit_offset % HOST_BITS_PER_LONG;
1636     pe->in_use_p[word] &= ~(1UL << bit);
1637 
1638     if (pe->num_free_objects++ == 0)
1639       {
1640 	page_entry *p, *q;
1641 
1642 	/* If the page is completely full, then it's supposed to
1643 	   be after all pages that aren't.  Since we've freed one
1644 	   object from a page that was full, we need to move the
1645 	   page to the head of the list.
1646 
1647 	   PE is the node we want to move.  Q is the previous node
1648 	   and P is the next node in the list.  */
1649 	q = pe->prev;
1650 	if (q && q->num_free_objects == 0)
1651 	  {
1652 	    p = pe->next;
1653 
1654 	    q->next = p;
1655 
1656 	    /* If PE was at the end of the list, then Q becomes the
1657 	       new end of the list.  If PE was not the end of the
1658 	       list, then we need to update the PREV field for P.  */
1659 	    if (!p)
1660 	      G.page_tails[order] = q;
1661 	    else
1662 	      p->prev = q;
1663 
1664 	    /* Move PE to the head of the list.  */
1665 	    pe->next = G.pages[order];
1666 	    pe->prev = NULL;
1667 	    G.pages[order]->prev = pe;
1668 	    G.pages[order] = pe;
1669 	  }
1670 
1671 	/* Reset the hint bit to point to the only free object.  */
1672 	pe->next_bit_hint = bit_offset;
1673       }
1674   }
1675 #endif
1676 }
1677 
1678 /* Subroutine of init_ggc which computes the pair of numbers used to
1679    perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1680 
1681    This algorithm is taken from Granlund and Montgomery's paper
1682    "Division by Invariant Integers using Multiplication"
1683    (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1684    constants).  */
1685 
1686 static void
compute_inverse(unsigned order)1687 compute_inverse (unsigned order)
1688 {
1689   size_t size, inv;
1690   unsigned int e;
1691 
1692   size = OBJECT_SIZE (order);
1693   e = 0;
1694   while (size % 2 == 0)
1695     {
1696       e++;
1697       size >>= 1;
1698     }
1699 
1700   inv = size;
1701   while (inv * size != 1)
1702     inv = inv * (2 - inv*size);
1703 
1704   DIV_MULT (order) = inv;
1705   DIV_SHIFT (order) = e;
1706 }
1707 
1708 /* Initialize the ggc-mmap allocator.  */
1709 void
init_ggc(void)1710 init_ggc (void)
1711 {
1712   static bool init_p = false;
1713   unsigned order;
1714 
1715   if (init_p)
1716     return;
1717   init_p = true;
1718 
1719   G.pagesize = getpagesize ();
1720   G.lg_pagesize = exact_log2 (G.pagesize);
1721 
1722 #ifdef HAVE_MMAP_DEV_ZERO
1723   G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1724   if (G.dev_zero_fd == -1)
1725     internal_error ("open /dev/zero: %m");
1726 #endif
1727 
1728 #if 0
1729   G.debug_file = fopen ("ggc-mmap.debug", "w");
1730 #else
1731   G.debug_file = stdout;
1732 #endif
1733 
1734 #ifdef USING_MMAP
1735   /* StunOS has an amazing off-by-one error for the first mmap allocation
1736      after fiddling with RLIMIT_STACK.  The result, as hard as it is to
1737      believe, is an unaligned page allocation, which would cause us to
1738      hork badly if we tried to use it.  */
1739   {
1740     char *p = alloc_anon (NULL, G.pagesize, true);
1741     struct page_entry *e;
1742     if ((uintptr_t)p & (G.pagesize - 1))
1743       {
1744 	/* How losing.  Discard this one and try another.  If we still
1745 	   can't get something useful, give up.  */
1746 
1747 	p = alloc_anon (NULL, G.pagesize, true);
1748 	gcc_assert (!((uintptr_t)p & (G.pagesize - 1)));
1749       }
1750 
1751     /* We have a good page, might as well hold onto it...  */
1752     e = XCNEW (struct page_entry);
1753     e->bytes = G.pagesize;
1754     e->page = p;
1755     e->next = G.free_pages;
1756     G.free_pages = e;
1757   }
1758 #endif
1759 
1760   /* Initialize the object size table.  */
1761   for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1762     object_size_table[order] = (size_t) 1 << order;
1763   for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1764     {
1765       size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1766 
1767       /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1768 	 so that we're sure of getting aligned memory.  */
1769       s = ROUND_UP (s, MAX_ALIGNMENT);
1770       object_size_table[order] = s;
1771     }
1772 
1773   /* Initialize the objects-per-page and inverse tables.  */
1774   for (order = 0; order < NUM_ORDERS; ++order)
1775     {
1776       objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1777       if (objects_per_page_table[order] == 0)
1778 	objects_per_page_table[order] = 1;
1779       compute_inverse (order);
1780     }
1781 
1782   /* Reset the size_lookup array to put appropriately sized objects in
1783      the special orders.  All objects bigger than the previous power
1784      of two, but no greater than the special size, should go in the
1785      new order.  */
1786   for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1787     {
1788       int o;
1789       int i;
1790 
1791       i = OBJECT_SIZE (order);
1792       if (i >= NUM_SIZE_LOOKUP)
1793 	continue;
1794 
1795       for (o = size_lookup[i]; o == size_lookup [i]; --i)
1796 	size_lookup[i] = order;
1797     }
1798 
1799   G.depth_in_use = 0;
1800   G.depth_max = 10;
1801   G.depth = XNEWVEC (unsigned int, G.depth_max);
1802 
1803   G.by_depth_in_use = 0;
1804   G.by_depth_max = INITIAL_PTE_COUNT;
1805   G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1806   G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1807 
1808   /* Allocate space for the depth 0 finalizers.  */
1809   G.finalizers.safe_push (vNULL);
1810   G.vec_finalizers.safe_push (vNULL);
1811   gcc_assert (G.finalizers.length() == 1);
1812 }
1813 
1814 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1815    reflects reality.  Recalculate NUM_FREE_OBJECTS as well.  */
1816 
1817 static void
ggc_recalculate_in_use_p(page_entry * p)1818 ggc_recalculate_in_use_p (page_entry *p)
1819 {
1820   unsigned int i;
1821   size_t num_objects;
1822 
1823   /* Because the past-the-end bit in in_use_p is always set, we
1824      pretend there is one additional object.  */
1825   num_objects = OBJECTS_IN_PAGE (p) + 1;
1826 
1827   /* Reset the free object count.  */
1828   p->num_free_objects = num_objects;
1829 
1830   /* Combine the IN_USE_P and SAVE_IN_USE_P arrays.  */
1831   for (i = 0;
1832        i < CEIL (BITMAP_SIZE (num_objects),
1833 		 sizeof (*p->in_use_p));
1834        ++i)
1835     {
1836       unsigned long j;
1837 
1838       /* Something is in use if it is marked, or if it was in use in a
1839 	 context further down the context stack.  */
1840       p->in_use_p[i] |= save_in_use_p (p)[i];
1841 
1842       /* Decrement the free object count for every object allocated.  */
1843       for (j = p->in_use_p[i]; j; j >>= 1)
1844 	p->num_free_objects -= (j & 1);
1845     }
1846 
1847   gcc_assert (p->num_free_objects < num_objects);
1848 }
1849 
1850 /* Unmark all objects.  */
1851 
1852 static void
clear_marks(void)1853 clear_marks (void)
1854 {
1855   unsigned order;
1856 
1857   for (order = 2; order < NUM_ORDERS; order++)
1858     {
1859       page_entry *p;
1860 
1861       for (p = G.pages[order]; p != NULL; p = p->next)
1862 	{
1863 	  size_t num_objects = OBJECTS_IN_PAGE (p);
1864 	  size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1865 
1866 	  /* The data should be page-aligned.  */
1867 	  gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1)));
1868 
1869 	  /* Pages that aren't in the topmost context are not collected;
1870 	     nevertheless, we need their in-use bit vectors to store GC
1871 	     marks.  So, back them up first.  */
1872 	  if (p->context_depth < G.context_depth)
1873 	    {
1874 	      if (! save_in_use_p (p))
1875 		save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
1876 	      memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1877 	    }
1878 
1879 	  /* Reset reset the number of free objects and clear the
1880              in-use bits.  These will be adjusted by mark_obj.  */
1881 	  p->num_free_objects = num_objects;
1882 	  memset (p->in_use_p, 0, bitmap_size);
1883 
1884 	  /* Make sure the one-past-the-end bit is always set.  */
1885 	  p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1886 	    = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1887 	}
1888     }
1889 }
1890 
1891 /* Check if any blocks with a registered finalizer have become unmarked. If so
1892    run the finalizer and unregister it because the block is about to be freed.
1893    Note that no garantee is made about what order finalizers will run in so
1894    touching other objects in gc memory is extremely unwise.  */
1895 
1896 static void
ggc_handle_finalizers()1897 ggc_handle_finalizers ()
1898 {
1899   unsigned dlen = G.finalizers.length();
1900   for (unsigned d = G.context_depth; d < dlen; ++d)
1901     {
1902       vec<finalizer> &v = G.finalizers[d];
1903       unsigned length = v.length ();
1904       for (unsigned int i = 0; i < length;)
1905 	{
1906 	  finalizer &f = v[i];
1907 	  if (!ggc_marked_p (f.addr ()))
1908 	    {
1909 	      f.call ();
1910 	      v.unordered_remove (i);
1911 	      length--;
1912 	    }
1913 	  else
1914 	    i++;
1915 	}
1916     }
1917 
1918   gcc_assert (dlen == G.vec_finalizers.length());
1919   for (unsigned d = G.context_depth; d < dlen; ++d)
1920     {
1921       vec<vec_finalizer> &vv = G.vec_finalizers[d];
1922       unsigned length = vv.length ();
1923       for (unsigned int i = 0; i < length;)
1924 	{
1925 	  vec_finalizer &f = vv[i];
1926 	  if (!ggc_marked_p (f.addr ()))
1927 	    {
1928 	      f.call ();
1929 	      vv.unordered_remove (i);
1930 	      length--;
1931 	    }
1932 	  else
1933 	    i++;
1934 	}
1935     }
1936 }
1937 
1938 /* Free all empty pages.  Partially empty pages need no attention
1939    because the `mark' bit doubles as an `unused' bit.  */
1940 
1941 static void
sweep_pages(void)1942 sweep_pages (void)
1943 {
1944   unsigned order;
1945 
1946   for (order = 2; order < NUM_ORDERS; order++)
1947     {
1948       /* The last page-entry to consider, regardless of entries
1949 	 placed at the end of the list.  */
1950       page_entry * const last = G.page_tails[order];
1951 
1952       size_t num_objects;
1953       size_t live_objects;
1954       page_entry *p, *previous;
1955       int done;
1956 
1957       p = G.pages[order];
1958       if (p == NULL)
1959 	continue;
1960 
1961       previous = NULL;
1962       do
1963 	{
1964 	  page_entry *next = p->next;
1965 
1966 	  /* Loop until all entries have been examined.  */
1967 	  done = (p == last);
1968 
1969 	  num_objects = OBJECTS_IN_PAGE (p);
1970 
1971 	  /* Add all live objects on this page to the count of
1972              allocated memory.  */
1973 	  live_objects = num_objects - p->num_free_objects;
1974 
1975 	  G.allocated += OBJECT_SIZE (order) * live_objects;
1976 
1977 	  /* Only objects on pages in the topmost context should get
1978 	     collected.  */
1979 	  if (p->context_depth < G.context_depth)
1980 	    ;
1981 
1982 	  /* Remove the page if it's empty.  */
1983 	  else if (live_objects == 0)
1984 	    {
1985 	      /* If P was the first page in the list, then NEXT
1986 		 becomes the new first page in the list, otherwise
1987 		 splice P out of the forward pointers.  */
1988 	      if (! previous)
1989 		G.pages[order] = next;
1990 	      else
1991 		previous->next = next;
1992 
1993 	      /* Splice P out of the back pointers too.  */
1994 	      if (next)
1995 		next->prev = previous;
1996 
1997 	      /* Are we removing the last element?  */
1998 	      if (p == G.page_tails[order])
1999 		G.page_tails[order] = previous;
2000 	      free_page (p);
2001 	      p = previous;
2002 	    }
2003 
2004 	  /* If the page is full, move it to the end.  */
2005 	  else if (p->num_free_objects == 0)
2006 	    {
2007 	      /* Don't move it if it's already at the end.  */
2008 	      if (p != G.page_tails[order])
2009 		{
2010 		  /* Move p to the end of the list.  */
2011 		  p->next = NULL;
2012 		  p->prev = G.page_tails[order];
2013 		  G.page_tails[order]->next = p;
2014 
2015 		  /* Update the tail pointer...  */
2016 		  G.page_tails[order] = p;
2017 
2018 		  /* ... and the head pointer, if necessary.  */
2019 		  if (! previous)
2020 		    G.pages[order] = next;
2021 		  else
2022 		    previous->next = next;
2023 
2024 		  /* And update the backpointer in NEXT if necessary.  */
2025 		  if (next)
2026 		    next->prev = previous;
2027 
2028 		  p = previous;
2029 		}
2030 	    }
2031 
2032 	  /* If we've fallen through to here, it's a page in the
2033 	     topmost context that is neither full nor empty.  Such a
2034 	     page must precede pages at lesser context depth in the
2035 	     list, so move it to the head.  */
2036 	  else if (p != G.pages[order])
2037 	    {
2038 	      previous->next = p->next;
2039 
2040 	      /* Update the backchain in the next node if it exists.  */
2041 	      if (p->next)
2042 		p->next->prev = previous;
2043 
2044 	      /* Move P to the head of the list.  */
2045 	      p->next = G.pages[order];
2046 	      p->prev = NULL;
2047 	      G.pages[order]->prev = p;
2048 
2049 	      /* Update the head pointer.  */
2050 	      G.pages[order] = p;
2051 
2052 	      /* Are we moving the last element?  */
2053 	      if (G.page_tails[order] == p)
2054 	        G.page_tails[order] = previous;
2055 	      p = previous;
2056 	    }
2057 
2058 	  previous = p;
2059 	  p = next;
2060 	}
2061       while (! done);
2062 
2063       /* Now, restore the in_use_p vectors for any pages from contexts
2064          other than the current one.  */
2065       for (p = G.pages[order]; p; p = p->next)
2066 	if (p->context_depth != G.context_depth)
2067 	  ggc_recalculate_in_use_p (p);
2068     }
2069 }
2070 
2071 #ifdef ENABLE_GC_CHECKING
2072 /* Clobber all free objects.  */
2073 
2074 static void
poison_pages(void)2075 poison_pages (void)
2076 {
2077   unsigned order;
2078 
2079   for (order = 2; order < NUM_ORDERS; order++)
2080     {
2081       size_t size = OBJECT_SIZE (order);
2082       page_entry *p;
2083 
2084       for (p = G.pages[order]; p != NULL; p = p->next)
2085 	{
2086 	  size_t num_objects;
2087 	  size_t i;
2088 
2089 	  if (p->context_depth != G.context_depth)
2090 	    /* Since we don't do any collection for pages in pushed
2091 	       contexts, there's no need to do any poisoning.  And
2092 	       besides, the IN_USE_P array isn't valid until we pop
2093 	       contexts.  */
2094 	    continue;
2095 
2096 	  num_objects = OBJECTS_IN_PAGE (p);
2097 	  for (i = 0; i < num_objects; i++)
2098 	    {
2099 	      size_t word, bit;
2100 	      word = i / HOST_BITS_PER_LONG;
2101 	      bit = i % HOST_BITS_PER_LONG;
2102 	      if (((p->in_use_p[word] >> bit) & 1) == 0)
2103 		{
2104 		  char *object = p->page + i * size;
2105 
2106 		  /* Keep poison-by-write when we expect to use Valgrind,
2107 		     so the exact same memory semantics is kept, in case
2108 		     there are memory errors.  We override this request
2109 		     below.  */
2110 		  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
2111 								 size));
2112 		  memset (object, 0xa5, size);
2113 
2114 		  /* Drop the handle to avoid handle leak.  */
2115 		  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
2116 		}
2117 	    }
2118 	}
2119     }
2120 }
2121 #else
2122 #define poison_pages()
2123 #endif
2124 
2125 #ifdef ENABLE_GC_ALWAYS_COLLECT
2126 /* Validate that the reportedly free objects actually are.  */
2127 
2128 static void
validate_free_objects(void)2129 validate_free_objects (void)
2130 {
2131   struct free_object *f, *next, *still_free = NULL;
2132 
2133   for (f = G.free_object_list; f ; f = next)
2134     {
2135       page_entry *pe = lookup_page_table_entry (f->object);
2136       size_t bit, word;
2137 
2138       bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2139       word = bit / HOST_BITS_PER_LONG;
2140       bit = bit % HOST_BITS_PER_LONG;
2141       next = f->next;
2142 
2143       /* Make certain it isn't visible from any root.  Notice that we
2144 	 do this check before sweep_pages merges save_in_use_p.  */
2145       gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
2146 
2147       /* If the object comes from an outer context, then retain the
2148 	 free_object entry, so that we can verify that the address
2149 	 isn't live on the stack in some outer context.  */
2150       if (pe->context_depth != G.context_depth)
2151 	{
2152 	  f->next = still_free;
2153 	  still_free = f;
2154 	}
2155       else
2156 	free (f);
2157     }
2158 
2159   G.free_object_list = still_free;
2160 }
2161 #else
2162 #define validate_free_objects()
2163 #endif
2164 
2165 /* Top level mark-and-sweep routine.  */
2166 
2167 void
ggc_collect(void)2168 ggc_collect (void)
2169 {
2170   /* Avoid frequent unnecessary work by skipping collection if the
2171      total allocations haven't expanded much since the last
2172      collection.  */
2173   float allocated_last_gc =
2174     MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2175 
2176   float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
2177   if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
2178     return;
2179 
2180   timevar_push (TV_GC);
2181   if (!quiet_flag)
2182     fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
2183   if (GGC_DEBUG_LEVEL >= 2)
2184     fprintf (G.debug_file, "BEGIN COLLECTING\n");
2185 
2186   /* Zero the total allocated bytes.  This will be recalculated in the
2187      sweep phase.  */
2188   G.allocated = 0;
2189 
2190   /* Release the pages we freed the last time we collected, but didn't
2191      reuse in the interim.  */
2192   release_pages ();
2193 
2194   /* Indicate that we've seen collections at this context depth.  */
2195   G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2196 
2197   invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2198 
2199   in_gc = true;
2200   clear_marks ();
2201   ggc_mark_roots ();
2202   ggc_handle_finalizers ();
2203 
2204   if (GATHER_STATISTICS)
2205     ggc_prune_overhead_list ();
2206 
2207   poison_pages ();
2208   validate_free_objects ();
2209   sweep_pages ();
2210 
2211   in_gc = false;
2212   G.allocated_last_gc = G.allocated;
2213 
2214   invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2215 
2216   timevar_pop (TV_GC);
2217 
2218   if (!quiet_flag)
2219     fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
2220   if (GGC_DEBUG_LEVEL >= 2)
2221     fprintf (G.debug_file, "END COLLECTING\n");
2222 }
2223 
2224 /* Assume that all GGC memory is reachable and grow the limits for next collection.
2225    With checking, trigger GGC so -Q compilation outputs how much of memory really is
2226    reachable.  */
2227 
2228 void
ggc_grow(void)2229 ggc_grow (void)
2230 {
2231   if (!flag_checking)
2232     G.allocated_last_gc = MAX (G.allocated_last_gc,
2233 			       G.allocated);
2234   else
2235     ggc_collect ();
2236   if (!quiet_flag)
2237     fprintf (stderr, " {GC start %luk} ", (unsigned long) G.allocated / 1024);
2238 }
2239 
2240 /* Print allocation statistics.  */
2241 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2242 		  ? (x) \
2243 		  : ((x) < 1024*1024*10 \
2244 		     ? (x) / 1024 \
2245 		     : (x) / (1024*1024))))
2246 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2247 
2248 void
ggc_print_statistics(void)2249 ggc_print_statistics (void)
2250 {
2251   struct ggc_statistics stats;
2252   unsigned int i;
2253   size_t total_overhead = 0;
2254 
2255   /* Clear the statistics.  */
2256   memset (&stats, 0, sizeof (stats));
2257 
2258   /* Make sure collection will really occur.  */
2259   G.allocated_last_gc = 0;
2260 
2261   /* Collect and print the statistics common across collectors.  */
2262   ggc_print_common_statistics (stderr, &stats);
2263 
2264   /* Release free pages so that we will not count the bytes allocated
2265      there as part of the total allocated memory.  */
2266   release_pages ();
2267 
2268   /* Collect some information about the various sizes of
2269      allocation.  */
2270   fprintf (stderr,
2271            "Memory still allocated at the end of the compilation process\n");
2272   fprintf (stderr, "%-8s %10s  %10s  %10s\n",
2273 	   "Size", "Allocated", "Used", "Overhead");
2274   for (i = 0; i < NUM_ORDERS; ++i)
2275     {
2276       page_entry *p;
2277       size_t allocated;
2278       size_t in_use;
2279       size_t overhead;
2280 
2281       /* Skip empty entries.  */
2282       if (!G.pages[i])
2283 	continue;
2284 
2285       overhead = allocated = in_use = 0;
2286 
2287       /* Figure out the total number of bytes allocated for objects of
2288 	 this size, and how many of them are actually in use.  Also figure
2289 	 out how much memory the page table is using.  */
2290       for (p = G.pages[i]; p; p = p->next)
2291 	{
2292 	  allocated += p->bytes;
2293 	  in_use +=
2294 	    (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2295 
2296 	  overhead += (sizeof (page_entry) - sizeof (long)
2297 		       + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2298 	}
2299       fprintf (stderr, "%-8lu %10lu%c %10lu%c %10lu%c\n",
2300 	       (unsigned long) OBJECT_SIZE (i),
2301 	       SCALE (allocated), STAT_LABEL (allocated),
2302 	       SCALE (in_use), STAT_LABEL (in_use),
2303 	       SCALE (overhead), STAT_LABEL (overhead));
2304       total_overhead += overhead;
2305     }
2306   fprintf (stderr, "%-8s %10lu%c %10lu%c %10lu%c\n", "Total",
2307 	   SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2308 	   SCALE (G.allocated), STAT_LABEL (G.allocated),
2309 	   SCALE (total_overhead), STAT_LABEL (total_overhead));
2310 
2311   if (GATHER_STATISTICS)
2312     {
2313       fprintf (stderr, "\nTotal allocations and overheads during "
2314 	       "the compilation process\n");
2315 
2316       fprintf (stderr, "Total Overhead:                          %10"
2317 	       HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead);
2318       fprintf (stderr, "Total Allocated:                         %10"
2319 	       HOST_LONG_LONG_FORMAT "d\n",
2320 	       G.stats.total_allocated);
2321 
2322       fprintf (stderr, "Total Overhead  under  32B:              %10"
2323 	       HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead_under32);
2324       fprintf (stderr, "Total Allocated under  32B:              %10"
2325 	       HOST_LONG_LONG_FORMAT "d\n", G.stats.total_allocated_under32);
2326       fprintf (stderr, "Total Overhead  under  64B:              %10"
2327 	       HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead_under64);
2328       fprintf (stderr, "Total Allocated under  64B:              %10"
2329 	       HOST_LONG_LONG_FORMAT "d\n", G.stats.total_allocated_under64);
2330       fprintf (stderr, "Total Overhead  under 128B:              %10"
2331 	       HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead_under128);
2332       fprintf (stderr, "Total Allocated under 128B:              %10"
2333 	       HOST_LONG_LONG_FORMAT "d\n", G.stats.total_allocated_under128);
2334 
2335       for (i = 0; i < NUM_ORDERS; i++)
2336 	if (G.stats.total_allocated_per_order[i])
2337 	  {
2338 	    fprintf (stderr, "Total Overhead  page size %9lu:     %10"
2339 		     HOST_LONG_LONG_FORMAT "d\n",
2340 		     (unsigned long) OBJECT_SIZE (i),
2341 		     G.stats.total_overhead_per_order[i]);
2342 	    fprintf (stderr, "Total Allocated page size %9lu:     %10"
2343 		     HOST_LONG_LONG_FORMAT "d\n",
2344 		     (unsigned long) OBJECT_SIZE (i),
2345 		     G.stats.total_allocated_per_order[i]);
2346 	  }
2347   }
2348 }
2349 
2350 struct ggc_pch_ondisk
2351 {
2352   unsigned totals[NUM_ORDERS];
2353 };
2354 
2355 struct ggc_pch_data
2356 {
2357   struct ggc_pch_ondisk d;
2358   uintptr_t base[NUM_ORDERS];
2359   size_t written[NUM_ORDERS];
2360 };
2361 
2362 struct ggc_pch_data *
init_ggc_pch(void)2363 init_ggc_pch (void)
2364 {
2365   return XCNEW (struct ggc_pch_data);
2366 }
2367 
2368 void
ggc_pch_count_object(struct ggc_pch_data * d,void * x ATTRIBUTE_UNUSED,size_t size,bool is_string ATTRIBUTE_UNUSED)2369 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2370 		      size_t size, bool is_string ATTRIBUTE_UNUSED)
2371 {
2372   unsigned order;
2373 
2374   if (size < NUM_SIZE_LOOKUP)
2375     order = size_lookup[size];
2376   else
2377     {
2378       order = 10;
2379       while (size > OBJECT_SIZE (order))
2380 	order++;
2381     }
2382 
2383   d->d.totals[order]++;
2384 }
2385 
2386 size_t
ggc_pch_total_size(struct ggc_pch_data * d)2387 ggc_pch_total_size (struct ggc_pch_data *d)
2388 {
2389   size_t a = 0;
2390   unsigned i;
2391 
2392   for (i = 0; i < NUM_ORDERS; i++)
2393     a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2394   return a;
2395 }
2396 
2397 void
ggc_pch_this_base(struct ggc_pch_data * d,void * base)2398 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2399 {
2400   uintptr_t a = (uintptr_t) base;
2401   unsigned i;
2402 
2403   for (i = 0; i < NUM_ORDERS; i++)
2404     {
2405       d->base[i] = a;
2406       a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2407     }
2408 }
2409 
2410 
2411 char *
ggc_pch_alloc_object(struct ggc_pch_data * d,void * x ATTRIBUTE_UNUSED,size_t size,bool is_string ATTRIBUTE_UNUSED)2412 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2413 		      size_t size, bool is_string ATTRIBUTE_UNUSED)
2414 {
2415   unsigned order;
2416   char *result;
2417 
2418   if (size < NUM_SIZE_LOOKUP)
2419     order = size_lookup[size];
2420   else
2421     {
2422       order = 10;
2423       while (size > OBJECT_SIZE (order))
2424 	order++;
2425     }
2426 
2427   result = (char *) d->base[order];
2428   d->base[order] += OBJECT_SIZE (order);
2429   return result;
2430 }
2431 
2432 void
ggc_pch_prepare_write(struct ggc_pch_data * d ATTRIBUTE_UNUSED,FILE * f ATTRIBUTE_UNUSED)2433 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2434 		       FILE *f ATTRIBUTE_UNUSED)
2435 {
2436   /* Nothing to do.  */
2437 }
2438 
2439 void
ggc_pch_write_object(struct ggc_pch_data * d,FILE * f,void * x,void * newx ATTRIBUTE_UNUSED,size_t size,bool is_string ATTRIBUTE_UNUSED)2440 ggc_pch_write_object (struct ggc_pch_data *d,
2441 		      FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2442 		      size_t size, bool is_string ATTRIBUTE_UNUSED)
2443 {
2444   unsigned order;
2445   static const char emptyBytes[256] = { 0 };
2446 
2447   if (size < NUM_SIZE_LOOKUP)
2448     order = size_lookup[size];
2449   else
2450     {
2451       order = 10;
2452       while (size > OBJECT_SIZE (order))
2453 	order++;
2454     }
2455 
2456   if (fwrite (x, size, 1, f) != 1)
2457     fatal_error (input_location, "can%'t write PCH file: %m");
2458 
2459   /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2460      object out to OBJECT_SIZE(order).  This happens for strings.  */
2461 
2462   if (size != OBJECT_SIZE (order))
2463     {
2464       unsigned padding = OBJECT_SIZE (order) - size;
2465 
2466       /* To speed small writes, we use a nulled-out array that's larger
2467          than most padding requests as the source for our null bytes.  This
2468          permits us to do the padding with fwrite() rather than fseek(), and
2469          limits the chance the OS may try to flush any outstanding writes.  */
2470       if (padding <= sizeof (emptyBytes))
2471         {
2472           if (fwrite (emptyBytes, 1, padding, f) != padding)
2473             fatal_error (input_location, "can%'t write PCH file");
2474         }
2475       else
2476         {
2477           /* Larger than our buffer?  Just default to fseek.  */
2478           if (fseek (f, padding, SEEK_CUR) != 0)
2479             fatal_error (input_location, "can%'t write PCH file");
2480         }
2481     }
2482 
2483   d->written[order]++;
2484   if (d->written[order] == d->d.totals[order]
2485       && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2486 				   G.pagesize),
2487 		SEEK_CUR) != 0)
2488     fatal_error (input_location, "can%'t write PCH file: %m");
2489 }
2490 
2491 void
ggc_pch_finish(struct ggc_pch_data * d,FILE * f)2492 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2493 {
2494   if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2495     fatal_error (input_location, "can%'t write PCH file: %m");
2496   free (d);
2497 }
2498 
2499 /* Move the PCH PTE entries just added to the end of by_depth, to the
2500    front.  */
2501 
2502 static void
move_ptes_to_front(int count_old_page_tables,int count_new_page_tables)2503 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2504 {
2505   /* First, we swap the new entries to the front of the varrays.  */
2506   page_entry **new_by_depth;
2507   unsigned long **new_save_in_use;
2508 
2509   new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2510   new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2511 
2512   memcpy (&new_by_depth[0],
2513 	  &G.by_depth[count_old_page_tables],
2514 	  count_new_page_tables * sizeof (void *));
2515   memcpy (&new_by_depth[count_new_page_tables],
2516 	  &G.by_depth[0],
2517 	  count_old_page_tables * sizeof (void *));
2518   memcpy (&new_save_in_use[0],
2519 	  &G.save_in_use[count_old_page_tables],
2520 	  count_new_page_tables * sizeof (void *));
2521   memcpy (&new_save_in_use[count_new_page_tables],
2522 	  &G.save_in_use[0],
2523 	  count_old_page_tables * sizeof (void *));
2524 
2525   free (G.by_depth);
2526   free (G.save_in_use);
2527 
2528   G.by_depth = new_by_depth;
2529   G.save_in_use = new_save_in_use;
2530 
2531   /* Now update all the index_by_depth fields.  */
2532   for (unsigned i = G.by_depth_in_use; i--;)
2533     {
2534       page_entry *p = G.by_depth[i];
2535       p->index_by_depth = i;
2536     }
2537 
2538   /* And last, we update the depth pointers in G.depth.  The first
2539      entry is already 0, and context 0 entries always start at index
2540      0, so there is nothing to update in the first slot.  We need a
2541      second slot, only if we have old ptes, and if we do, they start
2542      at index count_new_page_tables.  */
2543   if (count_old_page_tables)
2544     push_depth (count_new_page_tables);
2545 }
2546 
2547 void
ggc_pch_read(FILE * f,void * addr)2548 ggc_pch_read (FILE *f, void *addr)
2549 {
2550   struct ggc_pch_ondisk d;
2551   unsigned i;
2552   char *offs = (char *) addr;
2553   unsigned long count_old_page_tables;
2554   unsigned long count_new_page_tables;
2555 
2556   count_old_page_tables = G.by_depth_in_use;
2557 
2558   if (fread (&d, sizeof (d), 1, f) != 1)
2559     fatal_error (input_location, "cannot read PCH file: %m");
2560 
2561   /* We've just read in a PCH file.  So, every object that used to be
2562      allocated is now free.  */
2563   clear_marks ();
2564 #ifdef ENABLE_GC_CHECKING
2565   poison_pages ();
2566 #endif
2567   /* Since we free all the allocated objects, the free list becomes
2568      useless.  Validate it now, which will also clear it.  */
2569   validate_free_objects ();
2570 
2571   /* No object read from a PCH file should ever be freed.  So, set the
2572      context depth to 1, and set the depth of all the currently-allocated
2573      pages to be 1 too.  PCH pages will have depth 0.  */
2574   gcc_assert (!G.context_depth);
2575   G.context_depth = 1;
2576   /* Allocate space for the depth 1 finalizers.  */
2577   G.finalizers.safe_push (vNULL);
2578   G.vec_finalizers.safe_push (vNULL);
2579   gcc_assert (G.finalizers.length() == 2);
2580   for (i = 0; i < NUM_ORDERS; i++)
2581     {
2582       page_entry *p;
2583       for (p = G.pages[i]; p != NULL; p = p->next)
2584 	p->context_depth = G.context_depth;
2585     }
2586 
2587   /* Allocate the appropriate page-table entries for the pages read from
2588      the PCH file.  */
2589 
2590   for (i = 0; i < NUM_ORDERS; i++)
2591     {
2592       struct page_entry *entry;
2593       char *pte;
2594       size_t bytes;
2595       size_t num_objs;
2596       size_t j;
2597 
2598       if (d.totals[i] == 0)
2599 	continue;
2600 
2601       bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
2602       num_objs = bytes / OBJECT_SIZE (i);
2603       entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2604 					    - sizeof (long)
2605 					    + BITMAP_SIZE (num_objs + 1)));
2606       entry->bytes = bytes;
2607       entry->page = offs;
2608       entry->context_depth = 0;
2609       offs += bytes;
2610       entry->num_free_objects = 0;
2611       entry->order = i;
2612 
2613       for (j = 0;
2614 	   j + HOST_BITS_PER_LONG <= num_objs + 1;
2615 	   j += HOST_BITS_PER_LONG)
2616 	entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2617       for (; j < num_objs + 1; j++)
2618 	entry->in_use_p[j / HOST_BITS_PER_LONG]
2619 	  |= 1L << (j % HOST_BITS_PER_LONG);
2620 
2621       for (pte = entry->page;
2622 	   pte < entry->page + entry->bytes;
2623 	   pte += G.pagesize)
2624 	set_page_table_entry (pte, entry);
2625 
2626       if (G.page_tails[i] != NULL)
2627 	G.page_tails[i]->next = entry;
2628       else
2629 	G.pages[i] = entry;
2630       G.page_tails[i] = entry;
2631 
2632       /* We start off by just adding all the new information to the
2633 	 end of the varrays, later, we will move the new information
2634 	 to the front of the varrays, as the PCH page tables are at
2635 	 context 0.  */
2636       push_by_depth (entry, 0);
2637     }
2638 
2639   /* Now, we update the various data structures that speed page table
2640      handling.  */
2641   count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2642 
2643   move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2644 
2645   /* Update the statistics.  */
2646   G.allocated = G.allocated_last_gc = offs - (char *)addr;
2647 }
2648