1 /* Copyright (C) 2007-2018 Free Software Foundation, Inc.
2
3 This file is part of GCC.
4
5 GCC is free software; you can redistribute it and/or modify it under
6 the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 3, or (at your option) any later
8 version.
9
10 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11 WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 for more details.
14
15 Under Section 7 of GPL version 3, you are granted additional
16 permissions described in the GCC Runtime Library Exception, version
17 3.1, as published by the Free Software Foundation.
18
19 You should have received a copy of the GNU General Public License and
20 a copy of the GCC Runtime Library Exception along with this program;
21 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
22 <http://www.gnu.org/licenses/>. */
23
24 /*****************************************************************************
25 *
26 * BID64 encoding:
27 * ****************************************
28 * 63 62 53 52 0
29 * |---|------------------|--------------|
30 * | S | Biased Exp (E) | Coeff (c) |
31 * |---|------------------|--------------|
32 *
33 * bias = 398
34 * number = (-1)^s * 10^(E-398) * c
35 * coefficient range - 0 to (2^53)-1
36 * COEFF_MAX = 2^53-1 = 9007199254740991
37 *
38 *****************************************************************************
39 *
40 * BID128 encoding:
41 * 1-bit sign
42 * 14-bit biased exponent in [0x21, 0x3020] = [33, 12320]
43 * unbiased exponent in [-6176, 6111]; exponent bias = 6176
44 * 113-bit unsigned binary integer coefficient (49-bit high + 64-bit low)
45 * Note: 10^34-1 ~ 2^112.945555... < 2^113 => coefficient fits in 113 bits
46 *
47 * Note: assume invalid encodings are not passed to this function
48 *
49 * Round a number C with q decimal digits, represented as a binary integer
50 * to q - x digits. Six different routines are provided for different values
51 * of q. The maximum value of q used in the library is q = 3 * P - 1 where
52 * P = 16 or P = 34 (so q <= 111 decimal digits).
53 * The partitioning is based on the following, where Kx is the scaled
54 * integer representing the value of 10^(-x) rounded up to a number of bits
55 * sufficient to ensure correct rounding:
56 *
57 * --------------------------------------------------------------------------
58 * q x max. value of a max number min. number
59 * of bits in C of bits in Kx
60 * --------------------------------------------------------------------------
61 *
62 * GROUP 1: 64 bits
63 * round64_2_18 ()
64 *
65 * 2 [1,1] 10^1 - 1 < 2^3.33 4 4
66 * ... ... ... ... ...
67 * 18 [1,17] 10^18 - 1 < 2^59.80 60 61
68 *
69 * GROUP 2: 128 bits
70 * round128_19_38 ()
71 *
72 * 19 [1,18] 10^19 - 1 < 2^63.11 64 65
73 * 20 [1,19] 10^20 - 1 < 2^66.44 67 68
74 * ... ... ... ... ...
75 * 38 [1,37] 10^38 - 1 < 2^126.24 127 128
76 *
77 * GROUP 3: 192 bits
78 * round192_39_57 ()
79 *
80 * 39 [1,38] 10^39 - 1 < 2^129.56 130 131
81 * ... ... ... ... ...
82 * 57 [1,56] 10^57 - 1 < 2^189.35 190 191
83 *
84 * GROUP 4: 256 bits
85 * round256_58_76 ()
86 *
87 * 58 [1,57] 10^58 - 1 < 2^192.68 193 194
88 * ... ... ... ... ...
89 * 76 [1,75] 10^76 - 1 < 2^252.47 253 254
90 *
91 * GROUP 5: 320 bits
92 * round320_77_96 ()
93 *
94 * 77 [1,76] 10^77 - 1 < 2^255.79 256 257
95 * 78 [1,77] 10^78 - 1 < 2^259.12 260 261
96 * ... ... ... ... ...
97 * 96 [1,95] 10^96 - 1 < 2^318.91 319 320
98 *
99 * GROUP 6: 384 bits
100 * round384_97_115 ()
101 *
102 * 97 [1,96] 10^97 - 1 < 2^322.23 323 324
103 * ... ... ... ... ...
104 * 115 [1,114] 10^115 - 1 < 2^382.03 383 384
105 *
106 ****************************************************************************/
107
108 #include "bid_internal.h"
109
110 void
round64_2_18(int q,int x,UINT64 C,UINT64 * ptr_Cstar,int * incr_exp,int * ptr_is_midpoint_lt_even,int * ptr_is_midpoint_gt_even,int * ptr_is_inexact_lt_midpoint,int * ptr_is_inexact_gt_midpoint)111 round64_2_18 (int q,
112 int x,
113 UINT64 C,
114 UINT64 * ptr_Cstar,
115 int *incr_exp,
116 int *ptr_is_midpoint_lt_even,
117 int *ptr_is_midpoint_gt_even,
118 int *ptr_is_inexact_lt_midpoint,
119 int *ptr_is_inexact_gt_midpoint) {
120
121 UINT128 P128;
122 UINT128 fstar;
123 UINT64 Cstar;
124 UINT64 tmp64;
125 int shift;
126 int ind;
127
128 // Note:
129 // In round128_2_18() positive numbers with 2 <= q <= 18 will be
130 // rounded to nearest only for 1 <= x <= 3:
131 // x = 1 or x = 2 when q = 17
132 // x = 2 or x = 3 when q = 18
133 // However, for generality and possible uses outside the frame of IEEE 754R
134 // this implementation works for 1 <= x <= q - 1
135
136 // assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even,
137 // *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are
138 // initialized to 0 by the caller
139
140 // round a number C with q decimal digits, 2 <= q <= 18
141 // to q - x digits, 1 <= x <= 17
142 // C = C + 1/2 * 10^x where the result C fits in 64 bits
143 // (because the largest value is 999999999999999999 + 50000000000000000 =
144 // 0x0e92596fd628ffff, which fits in 60 bits)
145 ind = x - 1; // 0 <= ind <= 16
146 C = C + midpoint64[ind];
147 // kx ~= 10^(-x), kx = Kx64[ind] * 2^(-Ex), 0 <= ind <= 16
148 // P128 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx
149 // the approximation kx of 10^(-x) was rounded up to 64 bits
150 __mul_64x64_to_128MACH (P128, C, Kx64[ind]);
151 // calculate C* = floor (P128) and f*
152 // Cstar = P128 >> Ex
153 // fstar = low Ex bits of P128
154 shift = Ex64m64[ind]; // in [3, 56]
155 Cstar = P128.w[1] >> shift;
156 fstar.w[1] = P128.w[1] & mask64[ind];
157 fstar.w[0] = P128.w[0];
158 // the top Ex bits of 10^(-x) are T* = ten2mxtrunc64[ind], e.g.
159 // if x=1, T*=ten2mxtrunc64[0]=0xcccccccccccccccc
160 // if (0 < f* < 10^(-x)) then the result is a midpoint
161 // if floor(C*) is even then C* = floor(C*) - logical right
162 // shift; C* has q - x decimal digits, correct by Prop. 1)
163 // else if floor(C*) is odd C* = floor(C*)-1 (logical right
164 // shift; C* has q - x decimal digits, correct by Pr. 1)
165 // else
166 // C* = floor(C*) (logical right shift; C has q - x decimal digits,
167 // correct by Property 1)
168 // in the caling function n = C* * 10^(e+x)
169
170 // determine inexactness of the rounding of C*
171 // if (0 < f* - 1/2 < 10^(-x)) then
172 // the result is exact
173 // else // if (f* - 1/2 > T*) then
174 // the result is inexact
175 if (fstar.w[1] > half64[ind] ||
176 (fstar.w[1] == half64[ind] && fstar.w[0])) {
177 // f* > 1/2 and the result may be exact
178 // Calculate f* - 1/2
179 tmp64 = fstar.w[1] - half64[ind];
180 if (tmp64 || fstar.w[0] > ten2mxtrunc64[ind]) { // f* - 1/2 > 10^(-x)
181 *ptr_is_inexact_lt_midpoint = 1;
182 } // else the result is exact
183 } else { // the result is inexact; f2* <= 1/2
184 *ptr_is_inexact_gt_midpoint = 1;
185 }
186 // check for midpoints (could do this before determining inexactness)
187 if (fstar.w[1] == 0 && fstar.w[0] <= ten2mxtrunc64[ind]) {
188 // the result is a midpoint
189 if (Cstar & 0x01) { // Cstar is odd; MP in [EVEN, ODD]
190 // if floor(C*) is odd C = floor(C*) - 1; the result may be 0
191 Cstar--; // Cstar is now even
192 *ptr_is_midpoint_gt_even = 1;
193 *ptr_is_inexact_lt_midpoint = 0;
194 *ptr_is_inexact_gt_midpoint = 0;
195 } else { // else MP in [ODD, EVEN]
196 *ptr_is_midpoint_lt_even = 1;
197 *ptr_is_inexact_lt_midpoint = 0;
198 *ptr_is_inexact_gt_midpoint = 0;
199 }
200 }
201 // check for rounding overflow, which occurs if Cstar = 10^(q-x)
202 ind = q - x; // 1 <= ind <= q - 1
203 if (Cstar == ten2k64[ind]) { // if Cstar = 10^(q-x)
204 Cstar = ten2k64[ind - 1]; // Cstar = 10^(q-x-1)
205 *incr_exp = 1;
206 } else { // 10^33 <= Cstar <= 10^34 - 1
207 *incr_exp = 0;
208 }
209 *ptr_Cstar = Cstar;
210 }
211
212
213 void
round128_19_38(int q,int x,UINT128 C,UINT128 * ptr_Cstar,int * incr_exp,int * ptr_is_midpoint_lt_even,int * ptr_is_midpoint_gt_even,int * ptr_is_inexact_lt_midpoint,int * ptr_is_inexact_gt_midpoint)214 round128_19_38 (int q,
215 int x,
216 UINT128 C,
217 UINT128 * ptr_Cstar,
218 int *incr_exp,
219 int *ptr_is_midpoint_lt_even,
220 int *ptr_is_midpoint_gt_even,
221 int *ptr_is_inexact_lt_midpoint,
222 int *ptr_is_inexact_gt_midpoint) {
223
224 UINT256 P256;
225 UINT256 fstar;
226 UINT128 Cstar;
227 UINT64 tmp64;
228 int shift;
229 int ind;
230
231 // Note:
232 // In round128_19_38() positive numbers with 19 <= q <= 38 will be
233 // rounded to nearest only for 1 <= x <= 23:
234 // x = 3 or x = 4 when q = 19
235 // x = 4 or x = 5 when q = 20
236 // ...
237 // x = 18 or x = 19 when q = 34
238 // x = 1 or x = 2 or x = 19 or x = 20 when q = 35
239 // x = 2 or x = 3 or x = 20 or x = 21 when q = 36
240 // x = 3 or x = 4 or x = 21 or x = 22 when q = 37
241 // x = 4 or x = 5 or x = 22 or x = 23 when q = 38
242 // However, for generality and possible uses outside the frame of IEEE 754R
243 // this implementation works for 1 <= x <= q - 1
244
245 // assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even,
246 // *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are
247 // initialized to 0 by the caller
248
249 // round a number C with q decimal digits, 19 <= q <= 38
250 // to q - x digits, 1 <= x <= 37
251 // C = C + 1/2 * 10^x where the result C fits in 128 bits
252 // (because the largest value is 99999999999999999999999999999999999999 +
253 // 5000000000000000000000000000000000000 =
254 // 0x4efe43b0c573e7e68a043d8fffffffff, which fits is 127 bits)
255
256 ind = x - 1; // 0 <= ind <= 36
257 if (ind <= 18) { // if 0 <= ind <= 18
258 tmp64 = C.w[0];
259 C.w[0] = C.w[0] + midpoint64[ind];
260 if (C.w[0] < tmp64)
261 C.w[1]++;
262 } else { // if 19 <= ind <= 37
263 tmp64 = C.w[0];
264 C.w[0] = C.w[0] + midpoint128[ind - 19].w[0];
265 if (C.w[0] < tmp64) {
266 C.w[1]++;
267 }
268 C.w[1] = C.w[1] + midpoint128[ind - 19].w[1];
269 }
270 // kx ~= 10^(-x), kx = Kx128[ind] * 2^(-Ex), 0 <= ind <= 36
271 // P256 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx
272 // the approximation kx of 10^(-x) was rounded up to 128 bits
273 __mul_128x128_to_256 (P256, C, Kx128[ind]);
274 // calculate C* = floor (P256) and f*
275 // Cstar = P256 >> Ex
276 // fstar = low Ex bits of P256
277 shift = Ex128m128[ind]; // in [2, 63] but have to consider two cases
278 if (ind <= 18) { // if 0 <= ind <= 18
279 Cstar.w[0] = (P256.w[2] >> shift) | (P256.w[3] << (64 - shift));
280 Cstar.w[1] = (P256.w[3] >> shift);
281 fstar.w[0] = P256.w[0];
282 fstar.w[1] = P256.w[1];
283 fstar.w[2] = P256.w[2] & mask128[ind];
284 fstar.w[3] = 0x0ULL;
285 } else { // if 19 <= ind <= 37
286 Cstar.w[0] = P256.w[3] >> shift;
287 Cstar.w[1] = 0x0ULL;
288 fstar.w[0] = P256.w[0];
289 fstar.w[1] = P256.w[1];
290 fstar.w[2] = P256.w[2];
291 fstar.w[3] = P256.w[3] & mask128[ind];
292 }
293 // the top Ex bits of 10^(-x) are T* = ten2mxtrunc64[ind], e.g.
294 // if x=1, T*=ten2mxtrunc128[0]=0xcccccccccccccccccccccccccccccccc
295 // if (0 < f* < 10^(-x)) then the result is a midpoint
296 // if floor(C*) is even then C* = floor(C*) - logical right
297 // shift; C* has q - x decimal digits, correct by Prop. 1)
298 // else if floor(C*) is odd C* = floor(C*)-1 (logical right
299 // shift; C* has q - x decimal digits, correct by Pr. 1)
300 // else
301 // C* = floor(C*) (logical right shift; C has q - x decimal digits,
302 // correct by Property 1)
303 // in the caling function n = C* * 10^(e+x)
304
305 // determine inexactness of the rounding of C*
306 // if (0 < f* - 1/2 < 10^(-x)) then
307 // the result is exact
308 // else // if (f* - 1/2 > T*) then
309 // the result is inexact
310 if (ind <= 18) { // if 0 <= ind <= 18
311 if (fstar.w[2] > half128[ind] ||
312 (fstar.w[2] == half128[ind] && (fstar.w[1] || fstar.w[0]))) {
313 // f* > 1/2 and the result may be exact
314 // Calculate f* - 1/2
315 tmp64 = fstar.w[2] - half128[ind];
316 if (tmp64 || fstar.w[1] > ten2mxtrunc128[ind].w[1] || (fstar.w[1] == ten2mxtrunc128[ind].w[1] && fstar.w[0] > ten2mxtrunc128[ind].w[0])) { // f* - 1/2 > 10^(-x)
317 *ptr_is_inexact_lt_midpoint = 1;
318 } // else the result is exact
319 } else { // the result is inexact; f2* <= 1/2
320 *ptr_is_inexact_gt_midpoint = 1;
321 }
322 } else { // if 19 <= ind <= 37
323 if (fstar.w[3] > half128[ind] || (fstar.w[3] == half128[ind] &&
324 (fstar.w[2] || fstar.w[1]
325 || fstar.w[0]))) {
326 // f* > 1/2 and the result may be exact
327 // Calculate f* - 1/2
328 tmp64 = fstar.w[3] - half128[ind];
329 if (tmp64 || fstar.w[2] || fstar.w[1] > ten2mxtrunc128[ind].w[1] || (fstar.w[1] == ten2mxtrunc128[ind].w[1] && fstar.w[0] > ten2mxtrunc128[ind].w[0])) { // f* - 1/2 > 10^(-x)
330 *ptr_is_inexact_lt_midpoint = 1;
331 } // else the result is exact
332 } else { // the result is inexact; f2* <= 1/2
333 *ptr_is_inexact_gt_midpoint = 1;
334 }
335 }
336 // check for midpoints (could do this before determining inexactness)
337 if (fstar.w[3] == 0 && fstar.w[2] == 0 &&
338 (fstar.w[1] < ten2mxtrunc128[ind].w[1] ||
339 (fstar.w[1] == ten2mxtrunc128[ind].w[1] &&
340 fstar.w[0] <= ten2mxtrunc128[ind].w[0]))) {
341 // the result is a midpoint
342 if (Cstar.w[0] & 0x01) { // Cstar is odd; MP in [EVEN, ODD]
343 // if floor(C*) is odd C = floor(C*) - 1; the result may be 0
344 Cstar.w[0]--; // Cstar is now even
345 if (Cstar.w[0] == 0xffffffffffffffffULL) {
346 Cstar.w[1]--;
347 }
348 *ptr_is_midpoint_gt_even = 1;
349 *ptr_is_inexact_lt_midpoint = 0;
350 *ptr_is_inexact_gt_midpoint = 0;
351 } else { // else MP in [ODD, EVEN]
352 *ptr_is_midpoint_lt_even = 1;
353 *ptr_is_inexact_lt_midpoint = 0;
354 *ptr_is_inexact_gt_midpoint = 0;
355 }
356 }
357 // check for rounding overflow, which occurs if Cstar = 10^(q-x)
358 ind = q - x; // 1 <= ind <= q - 1
359 if (ind <= 19) {
360 if (Cstar.w[1] == 0x0ULL && Cstar.w[0] == ten2k64[ind]) {
361 // if Cstar = 10^(q-x)
362 Cstar.w[0] = ten2k64[ind - 1]; // Cstar = 10^(q-x-1)
363 *incr_exp = 1;
364 } else {
365 *incr_exp = 0;
366 }
367 } else if (ind == 20) {
368 // if ind = 20
369 if (Cstar.w[1] == ten2k128[0].w[1]
370 && Cstar.w[0] == ten2k128[0].w[0]) {
371 // if Cstar = 10^(q-x)
372 Cstar.w[0] = ten2k64[19]; // Cstar = 10^(q-x-1)
373 Cstar.w[1] = 0x0ULL;
374 *incr_exp = 1;
375 } else {
376 *incr_exp = 0;
377 }
378 } else { // if 21 <= ind <= 37
379 if (Cstar.w[1] == ten2k128[ind - 20].w[1] &&
380 Cstar.w[0] == ten2k128[ind - 20].w[0]) {
381 // if Cstar = 10^(q-x)
382 Cstar.w[0] = ten2k128[ind - 21].w[0]; // Cstar = 10^(q-x-1)
383 Cstar.w[1] = ten2k128[ind - 21].w[1];
384 *incr_exp = 1;
385 } else {
386 *incr_exp = 0;
387 }
388 }
389 ptr_Cstar->w[1] = Cstar.w[1];
390 ptr_Cstar->w[0] = Cstar.w[0];
391 }
392
393
394 void
round192_39_57(int q,int x,UINT192 C,UINT192 * ptr_Cstar,int * incr_exp,int * ptr_is_midpoint_lt_even,int * ptr_is_midpoint_gt_even,int * ptr_is_inexact_lt_midpoint,int * ptr_is_inexact_gt_midpoint)395 round192_39_57 (int q,
396 int x,
397 UINT192 C,
398 UINT192 * ptr_Cstar,
399 int *incr_exp,
400 int *ptr_is_midpoint_lt_even,
401 int *ptr_is_midpoint_gt_even,
402 int *ptr_is_inexact_lt_midpoint,
403 int *ptr_is_inexact_gt_midpoint) {
404
405 UINT384 P384;
406 UINT384 fstar;
407 UINT192 Cstar;
408 UINT64 tmp64;
409 int shift;
410 int ind;
411
412 // Note:
413 // In round192_39_57() positive numbers with 39 <= q <= 57 will be
414 // rounded to nearest only for 5 <= x <= 42:
415 // x = 23 or x = 24 or x = 5 or x = 6 when q = 39
416 // x = 24 or x = 25 or x = 6 or x = 7 when q = 40
417 // ...
418 // x = 41 or x = 42 or x = 23 or x = 24 when q = 57
419 // However, for generality and possible uses outside the frame of IEEE 754R
420 // this implementation works for 1 <= x <= q - 1
421
422 // assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even,
423 // *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are
424 // initialized to 0 by the caller
425
426 // round a number C with q decimal digits, 39 <= q <= 57
427 // to q - x digits, 1 <= x <= 56
428 // C = C + 1/2 * 10^x where the result C fits in 192 bits
429 // (because the largest value is
430 // 999999999999999999999999999999999999999999999999999999999 +
431 // 50000000000000000000000000000000000000000000000000000000 =
432 // 0x2ad282f212a1da846afdaf18c034ff09da7fffffffffffff, which fits in 190 bits)
433 ind = x - 1; // 0 <= ind <= 55
434 if (ind <= 18) { // if 0 <= ind <= 18
435 tmp64 = C.w[0];
436 C.w[0] = C.w[0] + midpoint64[ind];
437 if (C.w[0] < tmp64) {
438 C.w[1]++;
439 if (C.w[1] == 0x0) {
440 C.w[2]++;
441 }
442 }
443 } else if (ind <= 37) { // if 19 <= ind <= 37
444 tmp64 = C.w[0];
445 C.w[0] = C.w[0] + midpoint128[ind - 19].w[0];
446 if (C.w[0] < tmp64) {
447 C.w[1]++;
448 if (C.w[1] == 0x0) {
449 C.w[2]++;
450 }
451 }
452 tmp64 = C.w[1];
453 C.w[1] = C.w[1] + midpoint128[ind - 19].w[1];
454 if (C.w[1] < tmp64) {
455 C.w[2]++;
456 }
457 } else { // if 38 <= ind <= 57 (actually ind <= 55)
458 tmp64 = C.w[0];
459 C.w[0] = C.w[0] + midpoint192[ind - 38].w[0];
460 if (C.w[0] < tmp64) {
461 C.w[1]++;
462 if (C.w[1] == 0x0ull) {
463 C.w[2]++;
464 }
465 }
466 tmp64 = C.w[1];
467 C.w[1] = C.w[1] + midpoint192[ind - 38].w[1];
468 if (C.w[1] < tmp64) {
469 C.w[2]++;
470 }
471 C.w[2] = C.w[2] + midpoint192[ind - 38].w[2];
472 }
473 // kx ~= 10^(-x), kx = Kx192[ind] * 2^(-Ex), 0 <= ind <= 55
474 // P384 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx
475 // the approximation kx of 10^(-x) was rounded up to 192 bits
476 __mul_192x192_to_384 (P384, C, Kx192[ind]);
477 // calculate C* = floor (P384) and f*
478 // Cstar = P384 >> Ex
479 // fstar = low Ex bits of P384
480 shift = Ex192m192[ind]; // in [1, 63] but have to consider three cases
481 if (ind <= 18) { // if 0 <= ind <= 18
482 Cstar.w[2] = (P384.w[5] >> shift);
483 Cstar.w[1] = (P384.w[5] << (64 - shift)) | (P384.w[4] >> shift);
484 Cstar.w[0] = (P384.w[4] << (64 - shift)) | (P384.w[3] >> shift);
485 fstar.w[5] = 0x0ULL;
486 fstar.w[4] = 0x0ULL;
487 fstar.w[3] = P384.w[3] & mask192[ind];
488 fstar.w[2] = P384.w[2];
489 fstar.w[1] = P384.w[1];
490 fstar.w[0] = P384.w[0];
491 } else if (ind <= 37) { // if 19 <= ind <= 37
492 Cstar.w[2] = 0x0ULL;
493 Cstar.w[1] = P384.w[5] >> shift;
494 Cstar.w[0] = (P384.w[5] << (64 - shift)) | (P384.w[4] >> shift);
495 fstar.w[5] = 0x0ULL;
496 fstar.w[4] = P384.w[4] & mask192[ind];
497 fstar.w[3] = P384.w[3];
498 fstar.w[2] = P384.w[2];
499 fstar.w[1] = P384.w[1];
500 fstar.w[0] = P384.w[0];
501 } else { // if 38 <= ind <= 57
502 Cstar.w[2] = 0x0ULL;
503 Cstar.w[1] = 0x0ULL;
504 Cstar.w[0] = P384.w[5] >> shift;
505 fstar.w[5] = P384.w[5] & mask192[ind];
506 fstar.w[4] = P384.w[4];
507 fstar.w[3] = P384.w[3];
508 fstar.w[2] = P384.w[2];
509 fstar.w[1] = P384.w[1];
510 fstar.w[0] = P384.w[0];
511 }
512
513 // the top Ex bits of 10^(-x) are T* = ten2mxtrunc192[ind], e.g. if x=1,
514 // T*=ten2mxtrunc192[0]=0xcccccccccccccccccccccccccccccccccccccccccccccccc
515 // if (0 < f* < 10^(-x)) then the result is a midpoint
516 // if floor(C*) is even then C* = floor(C*) - logical right
517 // shift; C* has q - x decimal digits, correct by Prop. 1)
518 // else if floor(C*) is odd C* = floor(C*)-1 (logical right
519 // shift; C* has q - x decimal digits, correct by Pr. 1)
520 // else
521 // C* = floor(C*) (logical right shift; C has q - x decimal digits,
522 // correct by Property 1)
523 // in the caling function n = C* * 10^(e+x)
524
525 // determine inexactness of the rounding of C*
526 // if (0 < f* - 1/2 < 10^(-x)) then
527 // the result is exact
528 // else // if (f* - 1/2 > T*) then
529 // the result is inexact
530 if (ind <= 18) { // if 0 <= ind <= 18
531 if (fstar.w[3] > half192[ind] || (fstar.w[3] == half192[ind] &&
532 (fstar.w[2] || fstar.w[1]
533 || fstar.w[0]))) {
534 // f* > 1/2 and the result may be exact
535 // Calculate f* - 1/2
536 tmp64 = fstar.w[3] - half192[ind];
537 if (tmp64 || fstar.w[2] > ten2mxtrunc192[ind].w[2] || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] > ten2mxtrunc192[ind].w[1]) || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] == ten2mxtrunc192[ind].w[1] && fstar.w[0] > ten2mxtrunc192[ind].w[0])) { // f* - 1/2 > 10^(-x)
538 *ptr_is_inexact_lt_midpoint = 1;
539 } // else the result is exact
540 } else { // the result is inexact; f2* <= 1/2
541 *ptr_is_inexact_gt_midpoint = 1;
542 }
543 } else if (ind <= 37) { // if 19 <= ind <= 37
544 if (fstar.w[4] > half192[ind] || (fstar.w[4] == half192[ind] &&
545 (fstar.w[3] || fstar.w[2]
546 || fstar.w[1] || fstar.w[0]))) {
547 // f* > 1/2 and the result may be exact
548 // Calculate f* - 1/2
549 tmp64 = fstar.w[4] - half192[ind];
550 if (tmp64 || fstar.w[3] || fstar.w[2] > ten2mxtrunc192[ind].w[2] || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] > ten2mxtrunc192[ind].w[1]) || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] == ten2mxtrunc192[ind].w[1] && fstar.w[0] > ten2mxtrunc192[ind].w[0])) { // f* - 1/2 > 10^(-x)
551 *ptr_is_inexact_lt_midpoint = 1;
552 } // else the result is exact
553 } else { // the result is inexact; f2* <= 1/2
554 *ptr_is_inexact_gt_midpoint = 1;
555 }
556 } else { // if 38 <= ind <= 55
557 if (fstar.w[5] > half192[ind] || (fstar.w[5] == half192[ind] &&
558 (fstar.w[4] || fstar.w[3]
559 || fstar.w[2] || fstar.w[1]
560 || fstar.w[0]))) {
561 // f* > 1/2 and the result may be exact
562 // Calculate f* - 1/2
563 tmp64 = fstar.w[5] - half192[ind];
564 if (tmp64 || fstar.w[4] || fstar.w[3] || fstar.w[2] > ten2mxtrunc192[ind].w[2] || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] > ten2mxtrunc192[ind].w[1]) || (fstar.w[2] == ten2mxtrunc192[ind].w[2] && fstar.w[1] == ten2mxtrunc192[ind].w[1] && fstar.w[0] > ten2mxtrunc192[ind].w[0])) { // f* - 1/2 > 10^(-x)
565 *ptr_is_inexact_lt_midpoint = 1;
566 } // else the result is exact
567 } else { // the result is inexact; f2* <= 1/2
568 *ptr_is_inexact_gt_midpoint = 1;
569 }
570 }
571 // check for midpoints (could do this before determining inexactness)
572 if (fstar.w[5] == 0 && fstar.w[4] == 0 && fstar.w[3] == 0 &&
573 (fstar.w[2] < ten2mxtrunc192[ind].w[2] ||
574 (fstar.w[2] == ten2mxtrunc192[ind].w[2] &&
575 fstar.w[1] < ten2mxtrunc192[ind].w[1]) ||
576 (fstar.w[2] == ten2mxtrunc192[ind].w[2] &&
577 fstar.w[1] == ten2mxtrunc192[ind].w[1] &&
578 fstar.w[0] <= ten2mxtrunc192[ind].w[0]))) {
579 // the result is a midpoint
580 if (Cstar.w[0] & 0x01) { // Cstar is odd; MP in [EVEN, ODD]
581 // if floor(C*) is odd C = floor(C*) - 1; the result may be 0
582 Cstar.w[0]--; // Cstar is now even
583 if (Cstar.w[0] == 0xffffffffffffffffULL) {
584 Cstar.w[1]--;
585 if (Cstar.w[1] == 0xffffffffffffffffULL) {
586 Cstar.w[2]--;
587 }
588 }
589 *ptr_is_midpoint_gt_even = 1;
590 *ptr_is_inexact_lt_midpoint = 0;
591 *ptr_is_inexact_gt_midpoint = 0;
592 } else { // else MP in [ODD, EVEN]
593 *ptr_is_midpoint_lt_even = 1;
594 *ptr_is_inexact_lt_midpoint = 0;
595 *ptr_is_inexact_gt_midpoint = 0;
596 }
597 }
598 // check for rounding overflow, which occurs if Cstar = 10^(q-x)
599 ind = q - x; // 1 <= ind <= q - 1
600 if (ind <= 19) {
601 if (Cstar.w[2] == 0x0ULL && Cstar.w[1] == 0x0ULL &&
602 Cstar.w[0] == ten2k64[ind]) {
603 // if Cstar = 10^(q-x)
604 Cstar.w[0] = ten2k64[ind - 1]; // Cstar = 10^(q-x-1)
605 *incr_exp = 1;
606 } else {
607 *incr_exp = 0;
608 }
609 } else if (ind == 20) {
610 // if ind = 20
611 if (Cstar.w[2] == 0x0ULL && Cstar.w[1] == ten2k128[0].w[1] &&
612 Cstar.w[0] == ten2k128[0].w[0]) {
613 // if Cstar = 10^(q-x)
614 Cstar.w[0] = ten2k64[19]; // Cstar = 10^(q-x-1)
615 Cstar.w[1] = 0x0ULL;
616 *incr_exp = 1;
617 } else {
618 *incr_exp = 0;
619 }
620 } else if (ind <= 38) { // if 21 <= ind <= 38
621 if (Cstar.w[2] == 0x0ULL && Cstar.w[1] == ten2k128[ind - 20].w[1] &&
622 Cstar.w[0] == ten2k128[ind - 20].w[0]) {
623 // if Cstar = 10^(q-x)
624 Cstar.w[0] = ten2k128[ind - 21].w[0]; // Cstar = 10^(q-x-1)
625 Cstar.w[1] = ten2k128[ind - 21].w[1];
626 *incr_exp = 1;
627 } else {
628 *incr_exp = 0;
629 }
630 } else if (ind == 39) {
631 if (Cstar.w[2] == ten2k256[0].w[2] && Cstar.w[1] == ten2k256[0].w[1]
632 && Cstar.w[0] == ten2k256[0].w[0]) {
633 // if Cstar = 10^(q-x)
634 Cstar.w[0] = ten2k128[18].w[0]; // Cstar = 10^(q-x-1)
635 Cstar.w[1] = ten2k128[18].w[1];
636 Cstar.w[2] = 0x0ULL;
637 *incr_exp = 1;
638 } else {
639 *incr_exp = 0;
640 }
641 } else { // if 40 <= ind <= 56
642 if (Cstar.w[2] == ten2k256[ind - 39].w[2] &&
643 Cstar.w[1] == ten2k256[ind - 39].w[1] &&
644 Cstar.w[0] == ten2k256[ind - 39].w[0]) {
645 // if Cstar = 10^(q-x)
646 Cstar.w[0] = ten2k256[ind - 40].w[0]; // Cstar = 10^(q-x-1)
647 Cstar.w[1] = ten2k256[ind - 40].w[1];
648 Cstar.w[2] = ten2k256[ind - 40].w[2];
649 *incr_exp = 1;
650 } else {
651 *incr_exp = 0;
652 }
653 }
654 ptr_Cstar->w[2] = Cstar.w[2];
655 ptr_Cstar->w[1] = Cstar.w[1];
656 ptr_Cstar->w[0] = Cstar.w[0];
657 }
658
659
660 void
round256_58_76(int q,int x,UINT256 C,UINT256 * ptr_Cstar,int * incr_exp,int * ptr_is_midpoint_lt_even,int * ptr_is_midpoint_gt_even,int * ptr_is_inexact_lt_midpoint,int * ptr_is_inexact_gt_midpoint)661 round256_58_76 (int q,
662 int x,
663 UINT256 C,
664 UINT256 * ptr_Cstar,
665 int *incr_exp,
666 int *ptr_is_midpoint_lt_even,
667 int *ptr_is_midpoint_gt_even,
668 int *ptr_is_inexact_lt_midpoint,
669 int *ptr_is_inexact_gt_midpoint) {
670
671 UINT512 P512;
672 UINT512 fstar;
673 UINT256 Cstar;
674 UINT64 tmp64;
675 int shift;
676 int ind;
677
678 // Note:
679 // In round256_58_76() positive numbers with 58 <= q <= 76 will be
680 // rounded to nearest only for 24 <= x <= 61:
681 // x = 42 or x = 43 or x = 24 or x = 25 when q = 58
682 // x = 43 or x = 44 or x = 25 or x = 26 when q = 59
683 // ...
684 // x = 60 or x = 61 or x = 42 or x = 43 when q = 76
685 // However, for generality and possible uses outside the frame of IEEE 754R
686 // this implementation works for 1 <= x <= q - 1
687
688 // assume *ptr_is_midpoint_lt_even, *ptr_is_midpoint_gt_even,
689 // *ptr_is_inexact_lt_midpoint, and *ptr_is_inexact_gt_midpoint are
690 // initialized to 0 by the caller
691
692 // round a number C with q decimal digits, 58 <= q <= 76
693 // to q - x digits, 1 <= x <= 75
694 // C = C + 1/2 * 10^x where the result C fits in 256 bits
695 // (because the largest value is 9999999999999999999999999999999999999999
696 // 999999999999999999999999999999999999 + 500000000000000000000000000
697 // 000000000000000000000000000000000000000000000000 =
698 // 0x1736ca15d27a56cae15cf0e7b403d1f2bd6ebb0a50dc83ffffffffffffffffff,
699 // which fits in 253 bits)
700 ind = x - 1; // 0 <= ind <= 74
701 if (ind <= 18) { // if 0 <= ind <= 18
702 tmp64 = C.w[0];
703 C.w[0] = C.w[0] + midpoint64[ind];
704 if (C.w[0] < tmp64) {
705 C.w[1]++;
706 if (C.w[1] == 0x0) {
707 C.w[2]++;
708 if (C.w[2] == 0x0) {
709 C.w[3]++;
710 }
711 }
712 }
713 } else if (ind <= 37) { // if 19 <= ind <= 37
714 tmp64 = C.w[0];
715 C.w[0] = C.w[0] + midpoint128[ind - 19].w[0];
716 if (C.w[0] < tmp64) {
717 C.w[1]++;
718 if (C.w[1] == 0x0) {
719 C.w[2]++;
720 if (C.w[2] == 0x0) {
721 C.w[3]++;
722 }
723 }
724 }
725 tmp64 = C.w[1];
726 C.w[1] = C.w[1] + midpoint128[ind - 19].w[1];
727 if (C.w[1] < tmp64) {
728 C.w[2]++;
729 if (C.w[2] == 0x0) {
730 C.w[3]++;
731 }
732 }
733 } else if (ind <= 57) { // if 38 <= ind <= 57
734 tmp64 = C.w[0];
735 C.w[0] = C.w[0] + midpoint192[ind - 38].w[0];
736 if (C.w[0] < tmp64) {
737 C.w[1]++;
738 if (C.w[1] == 0x0ull) {
739 C.w[2]++;
740 if (C.w[2] == 0x0) {
741 C.w[3]++;
742 }
743 }
744 }
745 tmp64 = C.w[1];
746 C.w[1] = C.w[1] + midpoint192[ind - 38].w[1];
747 if (C.w[1] < tmp64) {
748 C.w[2]++;
749 if (C.w[2] == 0x0) {
750 C.w[3]++;
751 }
752 }
753 tmp64 = C.w[2];
754 C.w[2] = C.w[2] + midpoint192[ind - 38].w[2];
755 if (C.w[2] < tmp64) {
756 C.w[3]++;
757 }
758 } else { // if 58 <= ind <= 76 (actually 58 <= ind <= 74)
759 tmp64 = C.w[0];
760 C.w[0] = C.w[0] + midpoint256[ind - 58].w[0];
761 if (C.w[0] < tmp64) {
762 C.w[1]++;
763 if (C.w[1] == 0x0ull) {
764 C.w[2]++;
765 if (C.w[2] == 0x0) {
766 C.w[3]++;
767 }
768 }
769 }
770 tmp64 = C.w[1];
771 C.w[1] = C.w[1] + midpoint256[ind - 58].w[1];
772 if (C.w[1] < tmp64) {
773 C.w[2]++;
774 if (C.w[2] == 0x0) {
775 C.w[3]++;
776 }
777 }
778 tmp64 = C.w[2];
779 C.w[2] = C.w[2] + midpoint256[ind - 58].w[2];
780 if (C.w[2] < tmp64) {
781 C.w[3]++;
782 }
783 C.w[3] = C.w[3] + midpoint256[ind - 58].w[3];
784 }
785 // kx ~= 10^(-x), kx = Kx256[ind] * 2^(-Ex), 0 <= ind <= 74
786 // P512 = (C + 1/2 * 10^x) * kx * 2^Ex = (C + 1/2 * 10^x) * Kx
787 // the approximation kx of 10^(-x) was rounded up to 192 bits
788 __mul_256x256_to_512 (P512, C, Kx256[ind]);
789 // calculate C* = floor (P512) and f*
790 // Cstar = P512 >> Ex
791 // fstar = low Ex bits of P512
792 shift = Ex256m256[ind]; // in [0, 63] but have to consider four cases
793 if (ind <= 18) { // if 0 <= ind <= 18
794 Cstar.w[3] = (P512.w[7] >> shift);
795 Cstar.w[2] = (P512.w[7] << (64 - shift)) | (P512.w[6] >> shift);
796 Cstar.w[1] = (P512.w[6] << (64 - shift)) | (P512.w[5] >> shift);
797 Cstar.w[0] = (P512.w[5] << (64 - shift)) | (P512.w[4] >> shift);
798 fstar.w[7] = 0x0ULL;
799 fstar.w[6] = 0x0ULL;
800 fstar.w[5] = 0x0ULL;
801 fstar.w[4] = P512.w[4] & mask256[ind];
802 fstar.w[3] = P512.w[3];
803 fstar.w[2] = P512.w[2];
804 fstar.w[1] = P512.w[1];
805 fstar.w[0] = P512.w[0];
806 } else if (ind <= 37) { // if 19 <= ind <= 37
807 Cstar.w[3] = 0x0ULL;
808 Cstar.w[2] = P512.w[7] >> shift;
809 Cstar.w[1] = (P512.w[7] << (64 - shift)) | (P512.w[6] >> shift);
810 Cstar.w[0] = (P512.w[6] << (64 - shift)) | (P512.w[5] >> shift);
811 fstar.w[7] = 0x0ULL;
812 fstar.w[6] = 0x0ULL;
813 fstar.w[5] = P512.w[5] & mask256[ind];
814 fstar.w[4] = P512.w[4];
815 fstar.w[3] = P512.w[3];
816 fstar.w[2] = P512.w[2];
817 fstar.w[1] = P512.w[1];
818 fstar.w[0] = P512.w[0];
819 } else if (ind <= 56) { // if 38 <= ind <= 56
820 Cstar.w[3] = 0x0ULL;
821 Cstar.w[2] = 0x0ULL;
822 Cstar.w[1] = P512.w[7] >> shift;
823 Cstar.w[0] = (P512.w[7] << (64 - shift)) | (P512.w[6] >> shift);
824 fstar.w[7] = 0x0ULL;
825 fstar.w[6] = P512.w[6] & mask256[ind];
826 fstar.w[5] = P512.w[5];
827 fstar.w[4] = P512.w[4];
828 fstar.w[3] = P512.w[3];
829 fstar.w[2] = P512.w[2];
830 fstar.w[1] = P512.w[1];
831 fstar.w[0] = P512.w[0];
832 } else if (ind == 57) {
833 Cstar.w[3] = 0x0ULL;
834 Cstar.w[2] = 0x0ULL;
835 Cstar.w[1] = 0x0ULL;
836 Cstar.w[0] = P512.w[7];
837 fstar.w[7] = 0x0ULL;
838 fstar.w[6] = P512.w[6];
839 fstar.w[5] = P512.w[5];
840 fstar.w[4] = P512.w[4];
841 fstar.w[3] = P512.w[3];
842 fstar.w[2] = P512.w[2];
843 fstar.w[1] = P512.w[1];
844 fstar.w[0] = P512.w[0];
845 } else { // if 58 <= ind <= 74
846 Cstar.w[3] = 0x0ULL;
847 Cstar.w[2] = 0x0ULL;
848 Cstar.w[1] = 0x0ULL;
849 Cstar.w[0] = P512.w[7] >> shift;
850 fstar.w[7] = P512.w[7] & mask256[ind];
851 fstar.w[6] = P512.w[6];
852 fstar.w[5] = P512.w[5];
853 fstar.w[4] = P512.w[4];
854 fstar.w[3] = P512.w[3];
855 fstar.w[2] = P512.w[2];
856 fstar.w[1] = P512.w[1];
857 fstar.w[0] = P512.w[0];
858 }
859
860 // the top Ex bits of 10^(-x) are T* = ten2mxtrunc256[ind], e.g. if x=1,
861 // T*=ten2mxtrunc256[0]=
862 // 0xcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
863 // if (0 < f* < 10^(-x)) then the result is a midpoint
864 // if floor(C*) is even then C* = floor(C*) - logical right
865 // shift; C* has q - x decimal digits, correct by Prop. 1)
866 // else if floor(C*) is odd C* = floor(C*)-1 (logical right
867 // shift; C* has q - x decimal digits, correct by Pr. 1)
868 // else
869 // C* = floor(C*) (logical right shift; C has q - x decimal digits,
870 // correct by Property 1)
871 // in the caling function n = C* * 10^(e+x)
872
873 // determine inexactness of the rounding of C*
874 // if (0 < f* - 1/2 < 10^(-x)) then
875 // the result is exact
876 // else // if (f* - 1/2 > T*) then
877 // the result is inexact
878 if (ind <= 18) { // if 0 <= ind <= 18
879 if (fstar.w[4] > half256[ind] || (fstar.w[4] == half256[ind] &&
880 (fstar.w[3] || fstar.w[2]
881 || fstar.w[1] || fstar.w[0]))) {
882 // f* > 1/2 and the result may be exact
883 // Calculate f* - 1/2
884 tmp64 = fstar.w[4] - half256[ind];
885 if (tmp64 || fstar.w[3] > ten2mxtrunc256[ind].w[2] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) { // f* - 1/2 > 10^(-x)
886 *ptr_is_inexact_lt_midpoint = 1;
887 } // else the result is exact
888 } else { // the result is inexact; f2* <= 1/2
889 *ptr_is_inexact_gt_midpoint = 1;
890 }
891 } else if (ind <= 37) { // if 19 <= ind <= 37
892 if (fstar.w[5] > half256[ind] || (fstar.w[5] == half256[ind] &&
893 (fstar.w[4] || fstar.w[3]
894 || fstar.w[2] || fstar.w[1]
895 || fstar.w[0]))) {
896 // f* > 1/2 and the result may be exact
897 // Calculate f* - 1/2
898 tmp64 = fstar.w[5] - half256[ind];
899 if (tmp64 || fstar.w[4] || fstar.w[3] > ten2mxtrunc256[ind].w[3] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) { // f* - 1/2 > 10^(-x)
900 *ptr_is_inexact_lt_midpoint = 1;
901 } // else the result is exact
902 } else { // the result is inexact; f2* <= 1/2
903 *ptr_is_inexact_gt_midpoint = 1;
904 }
905 } else if (ind <= 57) { // if 38 <= ind <= 57
906 if (fstar.w[6] > half256[ind] || (fstar.w[6] == half256[ind] &&
907 (fstar.w[5] || fstar.w[4]
908 || fstar.w[3] || fstar.w[2]
909 || fstar.w[1] || fstar.w[0]))) {
910 // f* > 1/2 and the result may be exact
911 // Calculate f* - 1/2
912 tmp64 = fstar.w[6] - half256[ind];
913 if (tmp64 || fstar.w[5] || fstar.w[4] || fstar.w[3] > ten2mxtrunc256[ind].w[3] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) { // f* - 1/2 > 10^(-x)
914 *ptr_is_inexact_lt_midpoint = 1;
915 } // else the result is exact
916 } else { // the result is inexact; f2* <= 1/2
917 *ptr_is_inexact_gt_midpoint = 1;
918 }
919 } else { // if 58 <= ind <= 74
920 if (fstar.w[7] > half256[ind] || (fstar.w[7] == half256[ind] &&
921 (fstar.w[6] || fstar.w[5]
922 || fstar.w[4] || fstar.w[3]
923 || fstar.w[2] || fstar.w[1]
924 || fstar.w[0]))) {
925 // f* > 1/2 and the result may be exact
926 // Calculate f* - 1/2
927 tmp64 = fstar.w[7] - half256[ind];
928 if (tmp64 || fstar.w[6] || fstar.w[5] || fstar.w[4] || fstar.w[3] > ten2mxtrunc256[ind].w[3] || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] > ten2mxtrunc256[ind].w[2]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] > ten2mxtrunc256[ind].w[1]) || (fstar.w[3] == ten2mxtrunc256[ind].w[3] && fstar.w[2] == ten2mxtrunc256[ind].w[2] && fstar.w[1] == ten2mxtrunc256[ind].w[1] && fstar.w[0] > ten2mxtrunc256[ind].w[0])) { // f* - 1/2 > 10^(-x)
929 *ptr_is_inexact_lt_midpoint = 1;
930 } // else the result is exact
931 } else { // the result is inexact; f2* <= 1/2
932 *ptr_is_inexact_gt_midpoint = 1;
933 }
934 }
935 // check for midpoints (could do this before determining inexactness)
936 if (fstar.w[7] == 0 && fstar.w[6] == 0 &&
937 fstar.w[5] == 0 && fstar.w[4] == 0 &&
938 (fstar.w[3] < ten2mxtrunc256[ind].w[3] ||
939 (fstar.w[3] == ten2mxtrunc256[ind].w[3] &&
940 fstar.w[2] < ten2mxtrunc256[ind].w[2]) ||
941 (fstar.w[3] == ten2mxtrunc256[ind].w[3] &&
942 fstar.w[2] == ten2mxtrunc256[ind].w[2] &&
943 fstar.w[1] < ten2mxtrunc256[ind].w[1]) ||
944 (fstar.w[3] == ten2mxtrunc256[ind].w[3] &&
945 fstar.w[2] == ten2mxtrunc256[ind].w[2] &&
946 fstar.w[1] == ten2mxtrunc256[ind].w[1] &&
947 fstar.w[0] <= ten2mxtrunc256[ind].w[0]))) {
948 // the result is a midpoint
949 if (Cstar.w[0] & 0x01) { // Cstar is odd; MP in [EVEN, ODD]
950 // if floor(C*) is odd C = floor(C*) - 1; the result may be 0
951 Cstar.w[0]--; // Cstar is now even
952 if (Cstar.w[0] == 0xffffffffffffffffULL) {
953 Cstar.w[1]--;
954 if (Cstar.w[1] == 0xffffffffffffffffULL) {
955 Cstar.w[2]--;
956 if (Cstar.w[2] == 0xffffffffffffffffULL) {
957 Cstar.w[3]--;
958 }
959 }
960 }
961 *ptr_is_midpoint_gt_even = 1;
962 *ptr_is_inexact_lt_midpoint = 0;
963 *ptr_is_inexact_gt_midpoint = 0;
964 } else { // else MP in [ODD, EVEN]
965 *ptr_is_midpoint_lt_even = 1;
966 *ptr_is_inexact_lt_midpoint = 0;
967 *ptr_is_inexact_gt_midpoint = 0;
968 }
969 }
970 // check for rounding overflow, which occurs if Cstar = 10^(q-x)
971 ind = q - x; // 1 <= ind <= q - 1
972 if (ind <= 19) {
973 if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == 0x0ULL &&
974 Cstar.w[1] == 0x0ULL && Cstar.w[0] == ten2k64[ind]) {
975 // if Cstar = 10^(q-x)
976 Cstar.w[0] = ten2k64[ind - 1]; // Cstar = 10^(q-x-1)
977 *incr_exp = 1;
978 } else {
979 *incr_exp = 0;
980 }
981 } else if (ind == 20) {
982 // if ind = 20
983 if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == 0x0ULL &&
984 Cstar.w[1] == ten2k128[0].w[1]
985 && Cstar.w[0] == ten2k128[0].w[0]) {
986 // if Cstar = 10^(q-x)
987 Cstar.w[0] = ten2k64[19]; // Cstar = 10^(q-x-1)
988 Cstar.w[1] = 0x0ULL;
989 *incr_exp = 1;
990 } else {
991 *incr_exp = 0;
992 }
993 } else if (ind <= 38) { // if 21 <= ind <= 38
994 if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == 0x0ULL &&
995 Cstar.w[1] == ten2k128[ind - 20].w[1] &&
996 Cstar.w[0] == ten2k128[ind - 20].w[0]) {
997 // if Cstar = 10^(q-x)
998 Cstar.w[0] = ten2k128[ind - 21].w[0]; // Cstar = 10^(q-x-1)
999 Cstar.w[1] = ten2k128[ind - 21].w[1];
1000 *incr_exp = 1;
1001 } else {
1002 *incr_exp = 0;
1003 }
1004 } else if (ind == 39) {
1005 if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == ten2k256[0].w[2] &&
1006 Cstar.w[1] == ten2k256[0].w[1]
1007 && Cstar.w[0] == ten2k256[0].w[0]) {
1008 // if Cstar = 10^(q-x)
1009 Cstar.w[0] = ten2k128[18].w[0]; // Cstar = 10^(q-x-1)
1010 Cstar.w[1] = ten2k128[18].w[1];
1011 Cstar.w[2] = 0x0ULL;
1012 *incr_exp = 1;
1013 } else {
1014 *incr_exp = 0;
1015 }
1016 } else if (ind <= 57) { // if 40 <= ind <= 57
1017 if (Cstar.w[3] == 0x0ULL && Cstar.w[2] == ten2k256[ind - 39].w[2] &&
1018 Cstar.w[1] == ten2k256[ind - 39].w[1] &&
1019 Cstar.w[0] == ten2k256[ind - 39].w[0]) {
1020 // if Cstar = 10^(q-x)
1021 Cstar.w[0] = ten2k256[ind - 40].w[0]; // Cstar = 10^(q-x-1)
1022 Cstar.w[1] = ten2k256[ind - 40].w[1];
1023 Cstar.w[2] = ten2k256[ind - 40].w[2];
1024 *incr_exp = 1;
1025 } else {
1026 *incr_exp = 0;
1027 }
1028 // else if (ind == 58) is not needed becauae we do not have ten2k192[] yet
1029 } else { // if 58 <= ind <= 77 (actually 58 <= ind <= 74)
1030 if (Cstar.w[3] == ten2k256[ind - 39].w[3] &&
1031 Cstar.w[2] == ten2k256[ind - 39].w[2] &&
1032 Cstar.w[1] == ten2k256[ind - 39].w[1] &&
1033 Cstar.w[0] == ten2k256[ind - 39].w[0]) {
1034 // if Cstar = 10^(q-x)
1035 Cstar.w[0] = ten2k256[ind - 40].w[0]; // Cstar = 10^(q-x-1)
1036 Cstar.w[1] = ten2k256[ind - 40].w[1];
1037 Cstar.w[2] = ten2k256[ind - 40].w[2];
1038 Cstar.w[3] = ten2k256[ind - 40].w[3];
1039 *incr_exp = 1;
1040 } else {
1041 *incr_exp = 0;
1042 }
1043 }
1044 ptr_Cstar->w[3] = Cstar.w[3];
1045 ptr_Cstar->w[2] = Cstar.w[2];
1046 ptr_Cstar->w[1] = Cstar.w[1];
1047 ptr_Cstar->w[0] = Cstar.w[0];
1048
1049 }
1050