1 /* This is a software floating point library which can be used
2 for targets without hardware floating point.
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 /* This implements IEEE 754 format arithmetic, but does not provide a
27 mechanism for setting the rounding mode, or for generating or handling
28 exceptions.
29
30 The original code by Steve Chamberlain, hacked by Mark Eichin and Jim
31 Wilson, all of Cygnus Support. */
32
33 /* The intended way to use this file is to make two copies, add `#define FLOAT'
34 to one copy, then compile both copies and add them to libgcc.a. */
35
36 #include "tconfig.h"
37 #include "coretypes.h"
38 #include "tm.h"
39 #include "libgcc_tm.h"
40 #include "fp-bit.h"
41
42 /* The following macros can be defined to change the behavior of this file:
43 FLOAT: Implement a `float', aka SFmode, fp library. If this is not
44 defined, then this file implements a `double', aka DFmode, fp library.
45 FLOAT_ONLY: Used with FLOAT, to implement a `float' only library, i.e.
46 don't include float->double conversion which requires the double library.
47 This is useful only for machines which can't support doubles, e.g. some
48 8-bit processors.
49 CMPtype: Specify the type that floating point compares should return.
50 This defaults to SItype, aka int.
51 _DEBUG_BITFLOAT: This makes debugging the code a little easier, by adding
52 two integers to the FLO_union_type.
53 NO_DENORMALS: Disable handling of denormals.
54 NO_NANS: Disable nan and infinity handling
55 SMALL_MACHINE: Useful when operations on QIs and HIs are faster
56 than on an SI */
57
58 /* We don't currently support extended floats (long doubles) on machines
59 without hardware to deal with them.
60
61 These stubs are just to keep the linker from complaining about unresolved
62 references which can be pulled in from libio & libstdc++, even if the
63 user isn't using long doubles. However, they may generate an unresolved
64 external to abort if abort is not used by the function, and the stubs
65 are referenced from within libc, since libgcc goes before and after the
66 system library. */
67
68 #ifdef DECLARE_LIBRARY_RENAMES
69 DECLARE_LIBRARY_RENAMES
70 #endif
71
72 #ifdef EXTENDED_FLOAT_STUBS
73 extern void abort (void);
__extendsfxf2(void)74 void __extendsfxf2 (void) { abort(); }
__extenddfxf2(void)75 void __extenddfxf2 (void) { abort(); }
__truncxfdf2(void)76 void __truncxfdf2 (void) { abort(); }
__truncxfsf2(void)77 void __truncxfsf2 (void) { abort(); }
__fixxfsi(void)78 void __fixxfsi (void) { abort(); }
__floatsixf(void)79 void __floatsixf (void) { abort(); }
__addxf3(void)80 void __addxf3 (void) { abort(); }
__subxf3(void)81 void __subxf3 (void) { abort(); }
__mulxf3(void)82 void __mulxf3 (void) { abort(); }
__divxf3(void)83 void __divxf3 (void) { abort(); }
__negxf2(void)84 void __negxf2 (void) { abort(); }
__eqxf2(void)85 void __eqxf2 (void) { abort(); }
__nexf2(void)86 void __nexf2 (void) { abort(); }
__gtxf2(void)87 void __gtxf2 (void) { abort(); }
__gexf2(void)88 void __gexf2 (void) { abort(); }
__lexf2(void)89 void __lexf2 (void) { abort(); }
__ltxf2(void)90 void __ltxf2 (void) { abort(); }
91
__extendsftf2(void)92 void __extendsftf2 (void) { abort(); }
__extenddftf2(void)93 void __extenddftf2 (void) { abort(); }
__trunctfdf2(void)94 void __trunctfdf2 (void) { abort(); }
__trunctfsf2(void)95 void __trunctfsf2 (void) { abort(); }
__fixtfsi(void)96 void __fixtfsi (void) { abort(); }
__floatsitf(void)97 void __floatsitf (void) { abort(); }
__addtf3(void)98 void __addtf3 (void) { abort(); }
__subtf3(void)99 void __subtf3 (void) { abort(); }
__multf3(void)100 void __multf3 (void) { abort(); }
__divtf3(void)101 void __divtf3 (void) { abort(); }
__negtf2(void)102 void __negtf2 (void) { abort(); }
__eqtf2(void)103 void __eqtf2 (void) { abort(); }
__netf2(void)104 void __netf2 (void) { abort(); }
__gttf2(void)105 void __gttf2 (void) { abort(); }
__getf2(void)106 void __getf2 (void) { abort(); }
__letf2(void)107 void __letf2 (void) { abort(); }
__lttf2(void)108 void __lttf2 (void) { abort(); }
109 #else /* !EXTENDED_FLOAT_STUBS, rest of file */
110
111 /* IEEE "special" number predicates */
112
113 #ifdef NO_NANS
114
115 #define nan() 0
116 #define isnan(x) 0
117 #define isinf(x) 0
118 #else
119
120 #if defined L_thenan_sf
121 const fp_number_type __thenan_sf = { CLASS_SNAN, 0, 0, {(fractype) 0} };
122 #elif defined L_thenan_df
123 const fp_number_type __thenan_df = { CLASS_SNAN, 0, 0, {(fractype) 0} };
124 #elif defined L_thenan_tf
125 const fp_number_type __thenan_tf = { CLASS_SNAN, 0, 0, {(fractype) 0} };
126 #elif defined TFLOAT
127 extern const fp_number_type __thenan_tf;
128 #elif defined FLOAT
129 extern const fp_number_type __thenan_sf;
130 #else
131 extern const fp_number_type __thenan_df;
132 #endif
133
134 INLINE
135 static const fp_number_type *
136 makenan (void)
137 {
138 #ifdef TFLOAT
139 return & __thenan_tf;
140 #elif defined FLOAT
141 return & __thenan_sf;
142 #else
143 return & __thenan_df;
144 #endif
145 }
146
147 INLINE
148 static int
149 isnan (const fp_number_type *x)
150 {
151 return __builtin_expect (x->class == CLASS_SNAN || x->class == CLASS_QNAN,
152 0);
153 }
154
155 INLINE
156 static int
157 isinf (const fp_number_type * x)
158 {
159 return __builtin_expect (x->class == CLASS_INFINITY, 0);
160 }
161
162 #endif /* NO_NANS */
163
164 INLINE
165 static int
166 iszero (const fp_number_type * x)
167 {
168 return x->class == CLASS_ZERO;
169 }
170
171 INLINE
172 static void
173 flip_sign ( fp_number_type * x)
174 {
175 x->sign = !x->sign;
176 }
177
178 /* Count leading zeroes in N. */
179 INLINE
180 static int
181 clzusi (USItype n)
182 {
183 extern int __clzsi2 (USItype);
184 if (sizeof (USItype) == sizeof (unsigned int))
185 return __builtin_clz (n);
186 else if (sizeof (USItype) == sizeof (unsigned long))
187 return __builtin_clzl (n);
188 else if (sizeof (USItype) == sizeof (unsigned long long))
189 return __builtin_clzll (n);
190 else
191 return __clzsi2 (n);
192 }
193
194 extern FLO_type pack_d (const fp_number_type * );
195
196 #if defined(L_pack_df) || defined(L_pack_sf) || defined(L_pack_tf)
197 FLO_type
198 pack_d (const fp_number_type *src)
199 {
200 FLO_union_type dst;
201 fractype fraction = src->fraction.ll; /* wasn't unsigned before? */
202 int sign = src->sign;
203 int exp = 0;
204
205 if (isnan (src))
206 {
207 exp = EXPMAX;
208 /* Restore the NaN's payload. */
209 fraction >>= NGARDS;
210 fraction &= QUIET_NAN - 1;
211 if (src->class == CLASS_QNAN || 1)
212 {
213 #ifdef QUIET_NAN_NEGATED
214 /* The quiet/signaling bit remains unset. */
215 /* Make sure the fraction has a non-zero value. */
216 if (fraction == 0)
217 fraction |= QUIET_NAN - 1;
218 #else
219 /* Set the quiet/signaling bit. */
220 fraction |= QUIET_NAN;
221 #endif
222 }
223 }
224 else if (isinf (src))
225 {
226 exp = EXPMAX;
227 fraction = 0;
228 }
229 else if (iszero (src))
230 {
231 exp = 0;
232 fraction = 0;
233 }
234 else if (fraction == 0)
235 {
236 exp = 0;
237 }
238 else
239 {
240 if (__builtin_expect (src->normal_exp < NORMAL_EXPMIN, 0))
241 {
242 #ifdef NO_DENORMALS
243 /* Go straight to a zero representation if denormals are not
244 supported. The denormal handling would be harmless but
245 isn't unnecessary. */
246 exp = 0;
247 fraction = 0;
248 #else /* NO_DENORMALS */
249 /* This number's exponent is too low to fit into the bits
250 available in the number, so we'll store 0 in the exponent and
251 shift the fraction to the right to make up for it. */
252
253 int shift = NORMAL_EXPMIN - src->normal_exp;
254
255 exp = 0;
256
257 if (shift > FRAC_NBITS - NGARDS)
258 {
259 /* No point shifting, since it's more that 64 out. */
260 fraction = 0;
261 }
262 else
263 {
264 int lowbit = (fraction & (((fractype)1 << shift) - 1)) ? 1 : 0;
265 fraction = (fraction >> shift) | lowbit;
266 }
267 if ((fraction & GARDMASK) == GARDMSB)
268 {
269 if ((fraction & (1 << NGARDS)))
270 fraction += GARDROUND + 1;
271 }
272 else
273 {
274 /* Add to the guards to round up. */
275 fraction += GARDROUND;
276 }
277 /* Perhaps the rounding means we now need to change the
278 exponent, because the fraction is no longer denormal. */
279 if (fraction >= IMPLICIT_1)
280 {
281 exp += 1;
282 }
283 fraction >>= NGARDS;
284 #endif /* NO_DENORMALS */
285 }
286 else if (__builtin_expect (src->normal_exp > EXPBIAS, 0))
287 {
288 exp = EXPMAX;
289 fraction = 0;
290 }
291 else
292 {
293 exp = src->normal_exp + EXPBIAS;
294 /* IF the gard bits are the all zero, but the first, then we're
295 half way between two numbers, choose the one which makes the
296 lsb of the answer 0. */
297 if ((fraction & GARDMASK) == GARDMSB)
298 {
299 if (fraction & (1 << NGARDS))
300 fraction += GARDROUND + 1;
301 }
302 else
303 {
304 /* Add a one to the guards to round up */
305 fraction += GARDROUND;
306 }
307 if (fraction >= IMPLICIT_2)
308 {
309 fraction >>= 1;
310 exp += 1;
311 }
312 fraction >>= NGARDS;
313 }
314 }
315
316 /* We previously used bitfields to store the number, but this doesn't
317 handle little/big endian systems conveniently, so use shifts and
318 masks */
319 #ifdef FLOAT_BIT_ORDER_MISMATCH
320 dst.bits.fraction = fraction;
321 dst.bits.exp = exp;
322 dst.bits.sign = sign;
323 #else
324 # if defined TFLOAT && defined HALFFRACBITS
325 {
326 halffractype high, low, unity;
327 int lowsign, lowexp;
328
329 unity = (halffractype) 1 << HALFFRACBITS;
330
331 /* Set HIGH to the high double's significand, masking out the implicit 1.
332 Set LOW to the low double's full significand. */
333 high = (fraction >> (FRACBITS - HALFFRACBITS)) & (unity - 1);
334 low = fraction & (unity * 2 - 1);
335
336 /* Get the initial sign and exponent of the low double. */
337 lowexp = exp - HALFFRACBITS - 1;
338 lowsign = sign;
339
340 /* HIGH should be rounded like a normal double, making |LOW| <=
341 0.5 ULP of HIGH. Assume round-to-nearest. */
342 if (exp < EXPMAX)
343 if (low > unity || (low == unity && (high & 1) == 1))
344 {
345 /* Round HIGH up and adjust LOW to match. */
346 high++;
347 if (high == unity)
348 {
349 /* May make it infinite, but that's OK. */
350 high = 0;
351 exp++;
352 }
353 low = unity * 2 - low;
354 lowsign ^= 1;
355 }
356
357 high |= (halffractype) exp << HALFFRACBITS;
358 high |= (halffractype) sign << (HALFFRACBITS + EXPBITS);
359
360 if (exp == EXPMAX || exp == 0 || low == 0)
361 low = 0;
362 else
363 {
364 while (lowexp > 0 && low < unity)
365 {
366 low <<= 1;
367 lowexp--;
368 }
369
370 if (lowexp <= 0)
371 {
372 halffractype roundmsb, round;
373 int shift;
374
375 shift = 1 - lowexp;
376 roundmsb = (1 << (shift - 1));
377 round = low & ((roundmsb << 1) - 1);
378
379 low >>= shift;
380 lowexp = 0;
381
382 if (round > roundmsb || (round == roundmsb && (low & 1) == 1))
383 {
384 low++;
385 if (low == unity)
386 /* LOW rounds up to the smallest normal number. */
387 lowexp++;
388 }
389 }
390
391 low &= unity - 1;
392 low |= (halffractype) lowexp << HALFFRACBITS;
393 low |= (halffractype) lowsign << (HALFFRACBITS + EXPBITS);
394 }
395 dst.value_raw = ((fractype) high << HALFSHIFT) | low;
396 }
397 # else
398 dst.value_raw = fraction & ((((fractype)1) << FRACBITS) - (fractype)1);
399 dst.value_raw |= ((fractype) (exp & ((1 << EXPBITS) - 1))) << FRACBITS;
400 dst.value_raw |= ((fractype) (sign & 1)) << (FRACBITS | EXPBITS);
401 # endif
402 #endif
403
404 #if defined(FLOAT_WORD_ORDER_MISMATCH) && !defined(FLOAT)
405 #ifdef TFLOAT
406 {
407 qrtrfractype tmp1 = dst.words[0];
408 qrtrfractype tmp2 = dst.words[1];
409 dst.words[0] = dst.words[3];
410 dst.words[1] = dst.words[2];
411 dst.words[2] = tmp2;
412 dst.words[3] = tmp1;
413 }
414 #else
415 {
416 halffractype tmp = dst.words[0];
417 dst.words[0] = dst.words[1];
418 dst.words[1] = tmp;
419 }
420 #endif
421 #endif
422
423 return dst.value;
424 }
425 #endif
426
427 #if defined(L_unpack_df) || defined(L_unpack_sf) || defined(L_unpack_tf)
428 void
429 unpack_d (FLO_union_type * src, fp_number_type * dst)
430 {
431 /* We previously used bitfields to store the number, but this doesn't
432 handle little/big endian systems conveniently, so use shifts and
433 masks */
434 fractype fraction;
435 int exp;
436 int sign;
437
438 #if defined(FLOAT_WORD_ORDER_MISMATCH) && !defined(FLOAT)
439 FLO_union_type swapped;
440
441 #ifdef TFLOAT
442 swapped.words[0] = src->words[3];
443 swapped.words[1] = src->words[2];
444 swapped.words[2] = src->words[1];
445 swapped.words[3] = src->words[0];
446 #else
447 swapped.words[0] = src->words[1];
448 swapped.words[1] = src->words[0];
449 #endif
450 src = &swapped;
451 #endif
452
453 #ifdef FLOAT_BIT_ORDER_MISMATCH
454 fraction = src->bits.fraction;
455 exp = src->bits.exp;
456 sign = src->bits.sign;
457 #else
458 # if defined TFLOAT && defined HALFFRACBITS
459 {
460 halffractype high, low;
461
462 high = src->value_raw >> HALFSHIFT;
463 low = src->value_raw & (((fractype)1 << HALFSHIFT) - 1);
464
465 fraction = high & ((((fractype)1) << HALFFRACBITS) - 1);
466 fraction <<= FRACBITS - HALFFRACBITS;
467 exp = ((int)(high >> HALFFRACBITS)) & ((1 << EXPBITS) - 1);
468 sign = ((int)(high >> (((HALFFRACBITS + EXPBITS))))) & 1;
469
470 if (exp != EXPMAX && exp != 0 && low != 0)
471 {
472 int lowexp = ((int)(low >> HALFFRACBITS)) & ((1 << EXPBITS) - 1);
473 int lowsign = ((int)(low >> (((HALFFRACBITS + EXPBITS))))) & 1;
474 int shift;
475 fractype xlow;
476
477 xlow = low & ((((fractype)1) << HALFFRACBITS) - 1);
478 if (lowexp)
479 xlow |= (((halffractype)1) << HALFFRACBITS);
480 else
481 lowexp = 1;
482 shift = (FRACBITS - HALFFRACBITS) - (exp - lowexp);
483 if (shift > 0)
484 xlow <<= shift;
485 else if (shift < 0)
486 xlow >>= -shift;
487 if (sign == lowsign)
488 fraction += xlow;
489 else if (fraction >= xlow)
490 fraction -= xlow;
491 else
492 {
493 /* The high part is a power of two but the full number is lower.
494 This code will leave the implicit 1 in FRACTION, but we'd
495 have added that below anyway. */
496 fraction = (((fractype) 1 << FRACBITS) - xlow) << 1;
497 exp--;
498 }
499 }
500 }
501 # else
502 fraction = src->value_raw & ((((fractype)1) << FRACBITS) - 1);
503 exp = ((int)(src->value_raw >> FRACBITS)) & ((1 << EXPBITS) - 1);
504 sign = ((int)(src->value_raw >> (FRACBITS + EXPBITS))) & 1;
505 # endif
506 #endif
507
508 dst->sign = sign;
509 if (exp == 0)
510 {
511 /* Hmm. Looks like 0 */
512 if (fraction == 0
513 #ifdef NO_DENORMALS
514 || 1
515 #endif
516 )
517 {
518 /* tastes like zero */
519 dst->class = CLASS_ZERO;
520 }
521 else
522 {
523 /* Zero exponent with nonzero fraction - it's denormalized,
524 so there isn't a leading implicit one - we'll shift it so
525 it gets one. */
526 dst->normal_exp = exp - EXPBIAS + 1;
527 fraction <<= NGARDS;
528
529 dst->class = CLASS_NUMBER;
530 #if 1
531 while (fraction < IMPLICIT_1)
532 {
533 fraction <<= 1;
534 dst->normal_exp--;
535 }
536 #endif
537 dst->fraction.ll = fraction;
538 }
539 }
540 else if (__builtin_expect (exp == EXPMAX, 0))
541 {
542 /* Huge exponent*/
543 if (fraction == 0)
544 {
545 /* Attached to a zero fraction - means infinity */
546 dst->class = CLASS_INFINITY;
547 }
548 else
549 {
550 /* Nonzero fraction, means nan */
551 #ifdef QUIET_NAN_NEGATED
552 if ((fraction & QUIET_NAN) == 0)
553 #else
554 if (fraction & QUIET_NAN)
555 #endif
556 {
557 dst->class = CLASS_QNAN;
558 }
559 else
560 {
561 dst->class = CLASS_SNAN;
562 }
563 /* Now that we know which kind of NaN we got, discard the
564 quiet/signaling bit, but do preserve the NaN payload. */
565 fraction &= ~QUIET_NAN;
566 dst->fraction.ll = fraction << NGARDS;
567 }
568 }
569 else
570 {
571 /* Nothing strange about this number */
572 dst->normal_exp = exp - EXPBIAS;
573 dst->class = CLASS_NUMBER;
574 dst->fraction.ll = (fraction << NGARDS) | IMPLICIT_1;
575 }
576 }
577 #endif /* L_unpack_df || L_unpack_sf */
578
579 #if defined(L_addsub_sf) || defined(L_addsub_df) || defined(L_addsub_tf)
580 static const fp_number_type *
581 _fpadd_parts (fp_number_type * a,
582 fp_number_type * b,
583 fp_number_type * tmp)
584 {
585 intfrac tfraction;
586
587 /* Put commonly used fields in local variables. */
588 int a_normal_exp;
589 int b_normal_exp;
590 fractype a_fraction;
591 fractype b_fraction;
592
593 if (isnan (a))
594 {
595 return a;
596 }
597 if (isnan (b))
598 {
599 return b;
600 }
601 if (isinf (a))
602 {
603 /* Adding infinities with opposite signs yields a NaN. */
604 if (isinf (b) && a->sign != b->sign)
605 return makenan ();
606 return a;
607 }
608 if (isinf (b))
609 {
610 return b;
611 }
612 if (iszero (b))
613 {
614 if (iszero (a))
615 {
616 *tmp = *a;
617 tmp->sign = a->sign & b->sign;
618 return tmp;
619 }
620 return a;
621 }
622 if (iszero (a))
623 {
624 return b;
625 }
626
627 /* Got two numbers. shift the smaller and increment the exponent till
628 they're the same */
629 {
630 int diff;
631 int sdiff;
632
633 a_normal_exp = a->normal_exp;
634 b_normal_exp = b->normal_exp;
635 a_fraction = a->fraction.ll;
636 b_fraction = b->fraction.ll;
637
638 diff = a_normal_exp - b_normal_exp;
639 sdiff = diff;
640
641 if (diff < 0)
642 diff = -diff;
643 if (diff < FRAC_NBITS)
644 {
645 if (sdiff > 0)
646 {
647 b_normal_exp += diff;
648 LSHIFT (b_fraction, diff);
649 }
650 else if (sdiff < 0)
651 {
652 a_normal_exp += diff;
653 LSHIFT (a_fraction, diff);
654 }
655 }
656 else
657 {
658 /* Somethings's up.. choose the biggest */
659 if (a_normal_exp > b_normal_exp)
660 {
661 b_normal_exp = a_normal_exp;
662 b_fraction = 0;
663 }
664 else
665 {
666 a_normal_exp = b_normal_exp;
667 a_fraction = 0;
668 }
669 }
670 }
671
672 if (a->sign != b->sign)
673 {
674 if (a->sign)
675 {
676 tfraction = -a_fraction + b_fraction;
677 }
678 else
679 {
680 tfraction = a_fraction - b_fraction;
681 }
682 if (tfraction >= 0)
683 {
684 tmp->sign = 0;
685 tmp->normal_exp = a_normal_exp;
686 tmp->fraction.ll = tfraction;
687 }
688 else
689 {
690 tmp->sign = 1;
691 tmp->normal_exp = a_normal_exp;
692 tmp->fraction.ll = -tfraction;
693 }
694 /* and renormalize it */
695
696 while (tmp->fraction.ll < IMPLICIT_1 && tmp->fraction.ll)
697 {
698 tmp->fraction.ll <<= 1;
699 tmp->normal_exp--;
700 }
701 }
702 else
703 {
704 tmp->sign = a->sign;
705 tmp->normal_exp = a_normal_exp;
706 tmp->fraction.ll = a_fraction + b_fraction;
707 }
708 tmp->class = CLASS_NUMBER;
709 /* Now the fraction is added, we have to shift down to renormalize the
710 number */
711
712 if (tmp->fraction.ll >= IMPLICIT_2)
713 {
714 LSHIFT (tmp->fraction.ll, 1);
715 tmp->normal_exp++;
716 }
717 return tmp;
718 }
719
720 FLO_type
721 add (FLO_type arg_a, FLO_type arg_b)
722 {
723 fp_number_type a;
724 fp_number_type b;
725 fp_number_type tmp;
726 const fp_number_type *res;
727 FLO_union_type au, bu;
728
729 au.value = arg_a;
730 bu.value = arg_b;
731
732 unpack_d (&au, &a);
733 unpack_d (&bu, &b);
734
735 res = _fpadd_parts (&a, &b, &tmp);
736
737 return pack_d (res);
738 }
739
740 FLO_type
741 sub (FLO_type arg_a, FLO_type arg_b)
742 {
743 fp_number_type a;
744 fp_number_type b;
745 fp_number_type tmp;
746 const fp_number_type *res;
747 FLO_union_type au, bu;
748
749 au.value = arg_a;
750 bu.value = arg_b;
751
752 unpack_d (&au, &a);
753 unpack_d (&bu, &b);
754
755 b.sign ^= 1;
756
757 res = _fpadd_parts (&a, &b, &tmp);
758
759 return pack_d (res);
760 }
761 #endif /* L_addsub_sf || L_addsub_df */
762
763 #if defined(L_mul_sf) || defined(L_mul_df) || defined(L_mul_tf)
764 static inline __attribute__ ((__always_inline__)) const fp_number_type *
765 _fpmul_parts ( fp_number_type * a,
766 fp_number_type * b,
767 fp_number_type * tmp)
768 {
769 fractype low = 0;
770 fractype high = 0;
771
772 if (isnan (a))
773 {
774 a->sign = a->sign != b->sign;
775 return a;
776 }
777 if (isnan (b))
778 {
779 b->sign = a->sign != b->sign;
780 return b;
781 }
782 if (isinf (a))
783 {
784 if (iszero (b))
785 return makenan ();
786 a->sign = a->sign != b->sign;
787 return a;
788 }
789 if (isinf (b))
790 {
791 if (iszero (a))
792 {
793 return makenan ();
794 }
795 b->sign = a->sign != b->sign;
796 return b;
797 }
798 if (iszero (a))
799 {
800 a->sign = a->sign != b->sign;
801 return a;
802 }
803 if (iszero (b))
804 {
805 b->sign = a->sign != b->sign;
806 return b;
807 }
808
809 /* Calculate the mantissa by multiplying both numbers to get a
810 twice-as-wide number. */
811 {
812 #if defined(NO_DI_MODE) || defined(TFLOAT)
813 {
814 fractype x = a->fraction.ll;
815 fractype ylow = b->fraction.ll;
816 fractype yhigh = 0;
817 int bit;
818
819 /* ??? This does multiplies one bit at a time. Optimize. */
820 for (bit = 0; bit < FRAC_NBITS; bit++)
821 {
822 int carry;
823
824 if (x & 1)
825 {
826 carry = (low += ylow) < ylow;
827 high += yhigh + carry;
828 }
829 yhigh <<= 1;
830 if (ylow & FRACHIGH)
831 {
832 yhigh |= 1;
833 }
834 ylow <<= 1;
835 x >>= 1;
836 }
837 }
838 #elif defined(FLOAT)
839 /* Multiplying two USIs to get a UDI, we're safe. */
840 {
841 UDItype answer = (UDItype)a->fraction.ll * (UDItype)b->fraction.ll;
842
843 high = answer >> BITS_PER_SI;
844 low = answer;
845 }
846 #else
847 /* fractype is DImode, but we need the result to be twice as wide.
848 Assuming a widening multiply from DImode to TImode is not
849 available, build one by hand. */
850 {
851 USItype nl = a->fraction.ll;
852 USItype nh = a->fraction.ll >> BITS_PER_SI;
853 USItype ml = b->fraction.ll;
854 USItype mh = b->fraction.ll >> BITS_PER_SI;
855 UDItype pp_ll = (UDItype) ml * nl;
856 UDItype pp_hl = (UDItype) mh * nl;
857 UDItype pp_lh = (UDItype) ml * nh;
858 UDItype pp_hh = (UDItype) mh * nh;
859 UDItype res2 = 0;
860 UDItype res0 = 0;
861 UDItype ps_hh__ = pp_hl + pp_lh;
862 if (ps_hh__ < pp_hl)
863 res2 += (UDItype)1 << BITS_PER_SI;
864 pp_hl = (UDItype)(USItype)ps_hh__ << BITS_PER_SI;
865 res0 = pp_ll + pp_hl;
866 if (res0 < pp_ll)
867 res2++;
868 res2 += (ps_hh__ >> BITS_PER_SI) + pp_hh;
869 high = res2;
870 low = res0;
871 }
872 #endif
873 }
874
875 tmp->normal_exp = a->normal_exp + b->normal_exp
876 + FRAC_NBITS - (FRACBITS + NGARDS);
877 tmp->sign = a->sign != b->sign;
878 while (high >= IMPLICIT_2)
879 {
880 tmp->normal_exp++;
881 if (high & 1)
882 {
883 low >>= 1;
884 low |= FRACHIGH;
885 }
886 high >>= 1;
887 }
888 while (high < IMPLICIT_1)
889 {
890 tmp->normal_exp--;
891
892 high <<= 1;
893 if (low & FRACHIGH)
894 high |= 1;
895 low <<= 1;
896 }
897
898 if ((high & GARDMASK) == GARDMSB)
899 {
900 if (high & (1 << NGARDS))
901 {
902 /* Because we're half way, we would round to even by adding
903 GARDROUND + 1, except that's also done in the packing
904 function, and rounding twice will lose precision and cause
905 the result to be too far off. Example: 32-bit floats with
906 bit patterns 0xfff * 0x3f800400 ~= 0xfff (less than 0.5ulp
907 off), not 0x1000 (more than 0.5ulp off). */
908 }
909 else if (low)
910 {
911 /* We're a further than half way by a small amount corresponding
912 to the bits set in "low". Knowing that, we round here and
913 not in pack_d, because there we don't have "low" available
914 anymore. */
915 high += GARDROUND + 1;
916
917 /* Avoid further rounding in pack_d. */
918 high &= ~(fractype) GARDMASK;
919 }
920 }
921 tmp->fraction.ll = high;
922 tmp->class = CLASS_NUMBER;
923 return tmp;
924 }
925
926 FLO_type
927 multiply (FLO_type arg_a, FLO_type arg_b)
928 {
929 fp_number_type a;
930 fp_number_type b;
931 fp_number_type tmp;
932 const fp_number_type *res;
933 FLO_union_type au, bu;
934
935 au.value = arg_a;
936 bu.value = arg_b;
937
938 unpack_d (&au, &a);
939 unpack_d (&bu, &b);
940
941 res = _fpmul_parts (&a, &b, &tmp);
942
943 return pack_d (res);
944 }
945 #endif /* L_mul_sf || L_mul_df || L_mul_tf */
946
947 #if defined(L_div_sf) || defined(L_div_df) || defined(L_div_tf)
948 static inline __attribute__ ((__always_inline__)) const fp_number_type *
949 _fpdiv_parts (fp_number_type * a,
950 fp_number_type * b)
951 {
952 fractype bit;
953 fractype numerator;
954 fractype denominator;
955 fractype quotient;
956
957 if (isnan (a))
958 {
959 return a;
960 }
961 if (isnan (b))
962 {
963 return b;
964 }
965
966 a->sign = a->sign ^ b->sign;
967
968 if (isinf (a) || iszero (a))
969 {
970 if (a->class == b->class)
971 return makenan ();
972 return a;
973 }
974
975 if (isinf (b))
976 {
977 a->fraction.ll = 0;
978 a->normal_exp = 0;
979 return a;
980 }
981 if (iszero (b))
982 {
983 a->class = CLASS_INFINITY;
984 return a;
985 }
986
987 /* Calculate the mantissa by multiplying both 64bit numbers to get a
988 128 bit number */
989 {
990 /* quotient =
991 ( numerator / denominator) * 2^(numerator exponent - denominator exponent)
992 */
993
994 a->normal_exp = a->normal_exp - b->normal_exp;
995 numerator = a->fraction.ll;
996 denominator = b->fraction.ll;
997
998 if (numerator < denominator)
999 {
1000 /* Fraction will be less than 1.0 */
1001 numerator *= 2;
1002 a->normal_exp--;
1003 }
1004 bit = IMPLICIT_1;
1005 quotient = 0;
1006 /* ??? Does divide one bit at a time. Optimize. */
1007 while (bit)
1008 {
1009 if (numerator >= denominator)
1010 {
1011 quotient |= bit;
1012 numerator -= denominator;
1013 }
1014 bit >>= 1;
1015 numerator *= 2;
1016 }
1017
1018 if ((quotient & GARDMASK) == GARDMSB)
1019 {
1020 if (quotient & (1 << NGARDS))
1021 {
1022 /* Because we're half way, we would round to even by adding
1023 GARDROUND + 1, except that's also done in the packing
1024 function, and rounding twice will lose precision and cause
1025 the result to be too far off. */
1026 }
1027 else if (numerator)
1028 {
1029 /* We're a further than half way by the small amount
1030 corresponding to the bits set in "numerator". Knowing
1031 that, we round here and not in pack_d, because there we
1032 don't have "numerator" available anymore. */
1033 quotient += GARDROUND + 1;
1034
1035 /* Avoid further rounding in pack_d. */
1036 quotient &= ~(fractype) GARDMASK;
1037 }
1038 }
1039
1040 a->fraction.ll = quotient;
1041 return (a);
1042 }
1043 }
1044
1045 FLO_type
1046 divide (FLO_type arg_a, FLO_type arg_b)
1047 {
1048 fp_number_type a;
1049 fp_number_type b;
1050 const fp_number_type *res;
1051 FLO_union_type au, bu;
1052
1053 au.value = arg_a;
1054 bu.value = arg_b;
1055
1056 unpack_d (&au, &a);
1057 unpack_d (&bu, &b);
1058
1059 res = _fpdiv_parts (&a, &b);
1060
1061 return pack_d (res);
1062 }
1063 #endif /* L_div_sf || L_div_df */
1064
1065 #if defined(L_fpcmp_parts_sf) || defined(L_fpcmp_parts_df) \
1066 || defined(L_fpcmp_parts_tf)
1067 /* according to the demo, fpcmp returns a comparison with 0... thus
1068 a<b -> -1
1069 a==b -> 0
1070 a>b -> +1
1071 */
1072
1073 int
1074 __fpcmp_parts (fp_number_type * a, fp_number_type * b)
1075 {
1076 #if 0
1077 /* either nan -> unordered. Must be checked outside of this routine. */
1078 if (isnan (a) && isnan (b))
1079 {
1080 return 1; /* still unordered! */
1081 }
1082 #endif
1083
1084 if (isnan (a) || isnan (b))
1085 {
1086 return 1; /* how to indicate unordered compare? */
1087 }
1088 if (isinf (a) && isinf (b))
1089 {
1090 /* +inf > -inf, but +inf != +inf */
1091 /* b \a| +inf(0)| -inf(1)
1092 ______\+--------+--------
1093 +inf(0)| a==b(0)| a<b(-1)
1094 -------+--------+--------
1095 -inf(1)| a>b(1) | a==b(0)
1096 -------+--------+--------
1097 So since unordered must be nonzero, just line up the columns...
1098 */
1099 return b->sign - a->sign;
1100 }
1101 /* but not both... */
1102 if (isinf (a))
1103 {
1104 return a->sign ? -1 : 1;
1105 }
1106 if (isinf (b))
1107 {
1108 return b->sign ? 1 : -1;
1109 }
1110 if (iszero (a) && iszero (b))
1111 {
1112 return 0;
1113 }
1114 if (iszero (a))
1115 {
1116 return b->sign ? 1 : -1;
1117 }
1118 if (iszero (b))
1119 {
1120 return a->sign ? -1 : 1;
1121 }
1122 /* now both are "normal". */
1123 if (a->sign != b->sign)
1124 {
1125 /* opposite signs */
1126 return a->sign ? -1 : 1;
1127 }
1128 /* same sign; exponents? */
1129 if (a->normal_exp > b->normal_exp)
1130 {
1131 return a->sign ? -1 : 1;
1132 }
1133 if (a->normal_exp < b->normal_exp)
1134 {
1135 return a->sign ? 1 : -1;
1136 }
1137 /* same exponents; check size. */
1138 if (a->fraction.ll > b->fraction.ll)
1139 {
1140 return a->sign ? -1 : 1;
1141 }
1142 if (a->fraction.ll < b->fraction.ll)
1143 {
1144 return a->sign ? 1 : -1;
1145 }
1146 /* after all that, they're equal. */
1147 return 0;
1148 }
1149 #endif
1150
1151 #if defined(L_compare_sf) || defined(L_compare_df) || defined(L_compoare_tf)
1152 CMPtype
1153 compare (FLO_type arg_a, FLO_type arg_b)
1154 {
1155 fp_number_type a;
1156 fp_number_type b;
1157 FLO_union_type au, bu;
1158
1159 au.value = arg_a;
1160 bu.value = arg_b;
1161
1162 unpack_d (&au, &a);
1163 unpack_d (&bu, &b);
1164
1165 return __fpcmp_parts (&a, &b);
1166 }
1167 #endif /* L_compare_sf || L_compare_df */
1168
1169 /* These should be optimized for their specific tasks someday. */
1170
1171 #if defined(L_eq_sf) || defined(L_eq_df) || defined(L_eq_tf)
1172 CMPtype
1173 _eq_f2 (FLO_type arg_a, FLO_type arg_b)
1174 {
1175 fp_number_type a;
1176 fp_number_type b;
1177 FLO_union_type au, bu;
1178
1179 au.value = arg_a;
1180 bu.value = arg_b;
1181
1182 unpack_d (&au, &a);
1183 unpack_d (&bu, &b);
1184
1185 if (isnan (&a) || isnan (&b))
1186 return 1; /* false, truth == 0 */
1187
1188 return __fpcmp_parts (&a, &b) ;
1189 }
1190 #endif /* L_eq_sf || L_eq_df */
1191
1192 #if defined(L_ne_sf) || defined(L_ne_df) || defined(L_ne_tf)
1193 CMPtype
1194 _ne_f2 (FLO_type arg_a, FLO_type arg_b)
1195 {
1196 fp_number_type a;
1197 fp_number_type b;
1198 FLO_union_type au, bu;
1199
1200 au.value = arg_a;
1201 bu.value = arg_b;
1202
1203 unpack_d (&au, &a);
1204 unpack_d (&bu, &b);
1205
1206 if (isnan (&a) || isnan (&b))
1207 return 1; /* true, truth != 0 */
1208
1209 return __fpcmp_parts (&a, &b) ;
1210 }
1211 #endif /* L_ne_sf || L_ne_df */
1212
1213 #if defined(L_gt_sf) || defined(L_gt_df) || defined(L_gt_tf)
1214 CMPtype
1215 _gt_f2 (FLO_type arg_a, FLO_type arg_b)
1216 {
1217 fp_number_type a;
1218 fp_number_type b;
1219 FLO_union_type au, bu;
1220
1221 au.value = arg_a;
1222 bu.value = arg_b;
1223
1224 unpack_d (&au, &a);
1225 unpack_d (&bu, &b);
1226
1227 if (isnan (&a) || isnan (&b))
1228 return -1; /* false, truth > 0 */
1229
1230 return __fpcmp_parts (&a, &b);
1231 }
1232 #endif /* L_gt_sf || L_gt_df */
1233
1234 #if defined(L_ge_sf) || defined(L_ge_df) || defined(L_ge_tf)
1235 CMPtype
1236 _ge_f2 (FLO_type arg_a, FLO_type arg_b)
1237 {
1238 fp_number_type a;
1239 fp_number_type b;
1240 FLO_union_type au, bu;
1241
1242 au.value = arg_a;
1243 bu.value = arg_b;
1244
1245 unpack_d (&au, &a);
1246 unpack_d (&bu, &b);
1247
1248 if (isnan (&a) || isnan (&b))
1249 return -1; /* false, truth >= 0 */
1250 return __fpcmp_parts (&a, &b) ;
1251 }
1252 #endif /* L_ge_sf || L_ge_df */
1253
1254 #if defined(L_lt_sf) || defined(L_lt_df) || defined(L_lt_tf)
1255 CMPtype
1256 _lt_f2 (FLO_type arg_a, FLO_type arg_b)
1257 {
1258 fp_number_type a;
1259 fp_number_type b;
1260 FLO_union_type au, bu;
1261
1262 au.value = arg_a;
1263 bu.value = arg_b;
1264
1265 unpack_d (&au, &a);
1266 unpack_d (&bu, &b);
1267
1268 if (isnan (&a) || isnan (&b))
1269 return 1; /* false, truth < 0 */
1270
1271 return __fpcmp_parts (&a, &b);
1272 }
1273 #endif /* L_lt_sf || L_lt_df */
1274
1275 #if defined(L_le_sf) || defined(L_le_df) || defined(L_le_tf)
1276 CMPtype
1277 _le_f2 (FLO_type arg_a, FLO_type arg_b)
1278 {
1279 fp_number_type a;
1280 fp_number_type b;
1281 FLO_union_type au, bu;
1282
1283 au.value = arg_a;
1284 bu.value = arg_b;
1285
1286 unpack_d (&au, &a);
1287 unpack_d (&bu, &b);
1288
1289 if (isnan (&a) || isnan (&b))
1290 return 1; /* false, truth <= 0 */
1291
1292 return __fpcmp_parts (&a, &b) ;
1293 }
1294 #endif /* L_le_sf || L_le_df */
1295
1296 #if defined(L_unord_sf) || defined(L_unord_df) || defined(L_unord_tf)
1297 CMPtype
1298 _unord_f2 (FLO_type arg_a, FLO_type arg_b)
1299 {
1300 fp_number_type a;
1301 fp_number_type b;
1302 FLO_union_type au, bu;
1303
1304 au.value = arg_a;
1305 bu.value = arg_b;
1306
1307 unpack_d (&au, &a);
1308 unpack_d (&bu, &b);
1309
1310 return (isnan (&a) || isnan (&b));
1311 }
1312 #endif /* L_unord_sf || L_unord_df */
1313
1314 #if defined(L_si_to_sf) || defined(L_si_to_df) || defined(L_si_to_tf)
1315 FLO_type
1316 si_to_float (SItype arg_a)
1317 {
1318 fp_number_type in;
1319
1320 in.class = CLASS_NUMBER;
1321 in.sign = arg_a < 0;
1322 if (!arg_a)
1323 {
1324 in.class = CLASS_ZERO;
1325 }
1326 else
1327 {
1328 USItype uarg;
1329 int shift;
1330 in.normal_exp = FRACBITS + NGARDS;
1331 if (in.sign)
1332 {
1333 /* Special case for minint, since there is no +ve integer
1334 representation for it */
1335 if (arg_a == (- MAX_SI_INT - 1))
1336 {
1337 return (FLO_type)(- MAX_SI_INT - 1);
1338 }
1339 uarg = (-arg_a);
1340 }
1341 else
1342 uarg = arg_a;
1343
1344 in.fraction.ll = uarg;
1345 shift = clzusi (uarg) - (BITS_PER_SI - 1 - FRACBITS - NGARDS);
1346 if (shift > 0)
1347 {
1348 in.fraction.ll <<= shift;
1349 in.normal_exp -= shift;
1350 }
1351 }
1352 return pack_d (&in);
1353 }
1354 #endif /* L_si_to_sf || L_si_to_df */
1355
1356 #if defined(L_usi_to_sf) || defined(L_usi_to_df) || defined(L_usi_to_tf)
1357 FLO_type
1358 usi_to_float (USItype arg_a)
1359 {
1360 fp_number_type in;
1361
1362 in.sign = 0;
1363 if (!arg_a)
1364 {
1365 in.class = CLASS_ZERO;
1366 }
1367 else
1368 {
1369 int shift;
1370 in.class = CLASS_NUMBER;
1371 in.normal_exp = FRACBITS + NGARDS;
1372 in.fraction.ll = arg_a;
1373
1374 shift = clzusi (arg_a) - (BITS_PER_SI - 1 - FRACBITS - NGARDS);
1375 if (shift < 0)
1376 {
1377 fractype guard = in.fraction.ll & (((fractype)1 << -shift) - 1);
1378 in.fraction.ll >>= -shift;
1379 in.fraction.ll |= (guard != 0);
1380 in.normal_exp -= shift;
1381 }
1382 else if (shift > 0)
1383 {
1384 in.fraction.ll <<= shift;
1385 in.normal_exp -= shift;
1386 }
1387 }
1388 return pack_d (&in);
1389 }
1390 #endif
1391
1392 #if defined(L_sf_to_si) || defined(L_df_to_si) || defined(L_tf_to_si)
1393 SItype
1394 float_to_si (FLO_type arg_a)
1395 {
1396 fp_number_type a;
1397 SItype tmp;
1398 FLO_union_type au;
1399
1400 au.value = arg_a;
1401 unpack_d (&au, &a);
1402
1403 if (iszero (&a))
1404 return 0;
1405 if (isnan (&a))
1406 return 0;
1407 /* get reasonable MAX_SI_INT... */
1408 if (isinf (&a))
1409 return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT;
1410 /* it is a number, but a small one */
1411 if (a.normal_exp < 0)
1412 return 0;
1413 if (a.normal_exp > BITS_PER_SI - 2)
1414 return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT;
1415 tmp = a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp);
1416 return a.sign ? (-tmp) : (tmp);
1417 }
1418 #endif /* L_sf_to_si || L_df_to_si */
1419
1420 #if defined(L_tf_to_usi)
1421 USItype
1422 float_to_usi (FLO_type arg_a)
1423 {
1424 fp_number_type a;
1425 FLO_union_type au;
1426
1427 au.value = arg_a;
1428 unpack_d (&au, &a);
1429
1430 if (iszero (&a))
1431 return 0;
1432 if (isnan (&a))
1433 return 0;
1434 /* it is a negative number */
1435 if (a.sign)
1436 return 0;
1437 /* get reasonable MAX_USI_INT... */
1438 if (isinf (&a))
1439 return MAX_USI_INT;
1440 /* it is a number, but a small one */
1441 if (a.normal_exp < 0)
1442 return 0;
1443 if (a.normal_exp > BITS_PER_SI - 1)
1444 return MAX_USI_INT;
1445 else if (a.normal_exp > (FRACBITS + NGARDS))
1446 return a.fraction.ll << (a.normal_exp - (FRACBITS + NGARDS));
1447 else
1448 return a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp);
1449 }
1450 #endif /* L_tf_to_usi */
1451
1452 #if defined(L_negate_sf) || defined(L_negate_df) || defined(L_negate_tf)
1453 FLO_type
1454 negate (FLO_type arg_a)
1455 {
1456 fp_number_type a;
1457 FLO_union_type au;
1458
1459 au.value = arg_a;
1460 unpack_d (&au, &a);
1461
1462 flip_sign (&a);
1463 return pack_d (&a);
1464 }
1465 #endif /* L_negate_sf || L_negate_df */
1466
1467 #ifdef FLOAT
1468
1469 #if defined(L_make_sf)
1470 SFtype
1471 __make_fp(fp_class_type class,
1472 unsigned int sign,
1473 int exp,
1474 USItype frac)
1475 {
1476 fp_number_type in;
1477
1478 in.class = class;
1479 in.sign = sign;
1480 in.normal_exp = exp;
1481 in.fraction.ll = frac;
1482 return pack_d (&in);
1483 }
1484 #endif /* L_make_sf */
1485
1486 #ifndef FLOAT_ONLY
1487
1488 /* This enables one to build an fp library that supports float but not double.
1489 Otherwise, we would get an undefined reference to __make_dp.
1490 This is needed for some 8-bit ports that can't handle well values that
1491 are 8-bytes in size, so we just don't support double for them at all. */
1492
1493 #if defined(L_sf_to_df)
1494 DFtype
1495 sf_to_df (SFtype arg_a)
1496 {
1497 fp_number_type in;
1498 FLO_union_type au;
1499
1500 au.value = arg_a;
1501 unpack_d (&au, &in);
1502
1503 return __make_dp (in.class, in.sign, in.normal_exp,
1504 ((UDItype) in.fraction.ll) << F_D_BITOFF);
1505 }
1506 #endif /* L_sf_to_df */
1507
1508 #if defined(L_sf_to_tf) && defined(TMODES)
1509 TFtype
1510 sf_to_tf (SFtype arg_a)
1511 {
1512 fp_number_type in;
1513 FLO_union_type au;
1514
1515 au.value = arg_a;
1516 unpack_d (&au, &in);
1517
1518 return __make_tp (in.class, in.sign, in.normal_exp,
1519 ((UTItype) in.fraction.ll) << F_T_BITOFF);
1520 }
1521 #endif /* L_sf_to_df */
1522
1523 #endif /* ! FLOAT_ONLY */
1524 #endif /* FLOAT */
1525
1526 #ifndef FLOAT
1527
1528 extern SFtype __make_fp (fp_class_type, unsigned int, int, USItype);
1529
1530 #if defined(L_make_df)
1531 DFtype
1532 __make_dp (fp_class_type class, unsigned int sign, int exp, UDItype frac)
1533 {
1534 fp_number_type in;
1535
1536 in.class = class;
1537 in.sign = sign;
1538 in.normal_exp = exp;
1539 in.fraction.ll = frac;
1540 return pack_d (&in);
1541 }
1542 #endif /* L_make_df */
1543
1544 #if defined(L_df_to_sf)
1545 SFtype
1546 df_to_sf (DFtype arg_a)
1547 {
1548 fp_number_type in;
1549 USItype sffrac;
1550 FLO_union_type au;
1551
1552 au.value = arg_a;
1553 unpack_d (&au, &in);
1554
1555 sffrac = in.fraction.ll >> F_D_BITOFF;
1556
1557 /* We set the lowest guard bit in SFFRAC if we discarded any non
1558 zero bits. */
1559 if ((in.fraction.ll & (((USItype) 1 << F_D_BITOFF) - 1)) != 0)
1560 sffrac |= 1;
1561
1562 return __make_fp (in.class, in.sign, in.normal_exp, sffrac);
1563 }
1564 #endif /* L_df_to_sf */
1565
1566 #if defined(L_df_to_tf) && defined(TMODES) \
1567 && !defined(FLOAT) && !defined(TFLOAT)
1568 TFtype
1569 df_to_tf (DFtype arg_a)
1570 {
1571 fp_number_type in;
1572 FLO_union_type au;
1573
1574 au.value = arg_a;
1575 unpack_d (&au, &in);
1576
1577 return __make_tp (in.class, in.sign, in.normal_exp,
1578 ((UTItype) in.fraction.ll) << D_T_BITOFF);
1579 }
1580 #endif /* L_sf_to_df */
1581
1582 #ifdef TFLOAT
1583 #if defined(L_make_tf)
1584 TFtype
1585 __make_tp(fp_class_type class,
1586 unsigned int sign,
1587 int exp,
1588 UTItype frac)
1589 {
1590 fp_number_type in;
1591
1592 in.class = class;
1593 in.sign = sign;
1594 in.normal_exp = exp;
1595 in.fraction.ll = frac;
1596 return pack_d (&in);
1597 }
1598 #endif /* L_make_tf */
1599
1600 #if defined(L_tf_to_df)
1601 DFtype
1602 tf_to_df (TFtype arg_a)
1603 {
1604 fp_number_type in;
1605 UDItype sffrac;
1606 FLO_union_type au;
1607
1608 au.value = arg_a;
1609 unpack_d (&au, &in);
1610
1611 sffrac = in.fraction.ll >> D_T_BITOFF;
1612
1613 /* We set the lowest guard bit in SFFRAC if we discarded any non
1614 zero bits. */
1615 if ((in.fraction.ll & (((UTItype) 1 << D_T_BITOFF) - 1)) != 0)
1616 sffrac |= 1;
1617
1618 return __make_dp (in.class, in.sign, in.normal_exp, sffrac);
1619 }
1620 #endif /* L_tf_to_df */
1621
1622 #if defined(L_tf_to_sf)
1623 SFtype
1624 tf_to_sf (TFtype arg_a)
1625 {
1626 fp_number_type in;
1627 USItype sffrac;
1628 FLO_union_type au;
1629
1630 au.value = arg_a;
1631 unpack_d (&au, &in);
1632
1633 sffrac = in.fraction.ll >> F_T_BITOFF;
1634
1635 /* We set the lowest guard bit in SFFRAC if we discarded any non
1636 zero bits. */
1637 if ((in.fraction.ll & (((UTItype) 1 << F_T_BITOFF) - 1)) != 0)
1638 sffrac |= 1;
1639
1640 return __make_fp (in.class, in.sign, in.normal_exp, sffrac);
1641 }
1642 #endif /* L_tf_to_sf */
1643 #endif /* TFLOAT */
1644
1645 #endif /* ! FLOAT */
1646 #endif /* !EXTENDED_FLOAT_STUBS */
1647