1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 //
31 // The Google C++ Testing Framework (Google Test)
32 //
33 // This header file declares functions and macros used internally by
34 // Google Test.  They are subject to change without notice.
35 
36 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
37 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38 
39 #include "gtest/internal/gtest-port.h"
40 
41 #if GTEST_OS_LINUX
42 # include <stdlib.h>
43 # include <sys/types.h>
44 # include <sys/wait.h>
45 # include <unistd.h>
46 #endif  // GTEST_OS_LINUX
47 
48 #if GTEST_HAS_EXCEPTIONS
49 # include <stdexcept>
50 #endif
51 
52 #include <ctype.h>
53 #include <float.h>
54 #include <string.h>
55 #include <iomanip>
56 #include <limits>
57 #include <map>
58 #include <set>
59 #include <string>
60 #include <vector>
61 
62 #include "gtest/gtest-message.h"
63 #include "gtest/internal/gtest-filepath.h"
64 #include "gtest/internal/gtest-string.h"
65 #include "gtest/internal/gtest-type-util.h"
66 
67 // Due to C++ preprocessor weirdness, we need double indirection to
68 // concatenate two tokens when one of them is __LINE__.  Writing
69 //
70 //   foo ## __LINE__
71 //
72 // will result in the token foo__LINE__, instead of foo followed by
73 // the current line number.  For more details, see
74 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
75 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
76 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
77 
78 class ProtocolMessage;
79 namespace proto2 { class Message; }
80 
81 namespace testing {
82 
83 // Forward declarations.
84 
85 class AssertionResult;                 // Result of an assertion.
86 class Message;                         // Represents a failure message.
87 class Test;                            // Represents a test.
88 class TestInfo;                        // Information about a test.
89 class TestPartResult;                  // Result of a test part.
90 class UnitTest;                        // A collection of test cases.
91 
92 template <typename T>
93 ::std::string PrintToString(const T& value);
94 
95 namespace internal {
96 
97 struct TraceInfo;                      // Information about a trace point.
98 class TestInfoImpl;                    // Opaque implementation of TestInfo
99 class UnitTestImpl;                    // Opaque implementation of UnitTest
100 
101 // The text used in failure messages to indicate the start of the
102 // stack trace.
103 GTEST_API_ extern const char kStackTraceMarker[];
104 
105 // Two overloaded helpers for checking at compile time whether an
106 // expression is a null pointer literal (i.e. NULL or any 0-valued
107 // compile-time integral constant).  Their return values have
108 // different sizes, so we can use sizeof() to test which version is
109 // picked by the compiler.  These helpers have no implementations, as
110 // we only need their signatures.
111 //
112 // Given IsNullLiteralHelper(x), the compiler will pick the first
113 // version if x can be implicitly converted to Secret*, and pick the
114 // second version otherwise.  Since Secret is a secret and incomplete
115 // type, the only expression a user can write that has type Secret* is
116 // a null pointer literal.  Therefore, we know that x is a null
117 // pointer literal if and only if the first version is picked by the
118 // compiler.
119 char IsNullLiteralHelper(Secret* p);
120 char (&IsNullLiteralHelper(...))[2];  // NOLINT
121 
122 // A compile-time bool constant that is true if and only if x is a
123 // null pointer literal (i.e. NULL or any 0-valued compile-time
124 // integral constant).
125 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
126 // We lose support for NULL detection where the compiler doesn't like
127 // passing non-POD classes through ellipsis (...).
128 # define GTEST_IS_NULL_LITERAL_(x) false
129 #else
130 # define GTEST_IS_NULL_LITERAL_(x) \
131     (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
132 #endif  // GTEST_ELLIPSIS_NEEDS_POD_
133 
134 // Appends the user-supplied message to the Google-Test-generated message.
135 GTEST_API_ std::string AppendUserMessage(
136     const std::string& gtest_msg, const Message& user_msg);
137 
138 #if GTEST_HAS_EXCEPTIONS
139 
140 // This exception is thrown by (and only by) a failed Google Test
141 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
142 // are enabled).  We derive it from std::runtime_error, which is for
143 // errors presumably detectable only at run time.  Since
144 // std::runtime_error inherits from std::exception, many testing
145 // frameworks know how to extract and print the message inside it.
146 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
147  public:
148   explicit GoogleTestFailureException(const TestPartResult& failure);
149 };
150 
151 #endif  // GTEST_HAS_EXCEPTIONS
152 
153 namespace edit_distance {
154 // Returns the optimal edits to go from 'left' to 'right'.
155 // All edits cost the same, with replace having lower priority than
156 // add/remove.
157 // Simple implementation of the Wagner–Fischer algorithm.
158 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
159 enum EditType { kMatch, kAdd, kRemove, kReplace };
160 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
161     const std::vector<size_t>& left, const std::vector<size_t>& right);
162 
163 // Same as above, but the input is represented as strings.
164 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
165     const std::vector<std::string>& left,
166     const std::vector<std::string>& right);
167 
168 // Create a diff of the input strings in Unified diff format.
169 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
170                                          const std::vector<std::string>& right,
171                                          size_t context = 2);
172 
173 }  // namespace edit_distance
174 
175 // Calculate the diff between 'left' and 'right' and return it in unified diff
176 // format.
177 // If not null, stores in 'total_line_count' the total number of lines found
178 // in left + right.
179 GTEST_API_ std::string DiffStrings(const std::string& left,
180                                    const std::string& right,
181                                    size_t* total_line_count);
182 
183 // Constructs and returns the message for an equality assertion
184 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
185 //
186 // The first four parameters are the expressions used in the assertion
187 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
188 // where foo is 5 and bar is 6, we have:
189 //
190 //   expected_expression: "foo"
191 //   actual_expression:   "bar"
192 //   expected_value:      "5"
193 //   actual_value:        "6"
194 //
195 // The ignoring_case parameter is true iff the assertion is a
196 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
197 // be inserted into the message.
198 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
199                                      const char* actual_expression,
200                                      const std::string& expected_value,
201                                      const std::string& actual_value,
202                                      bool ignoring_case);
203 
204 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
205 GTEST_API_ std::string GetBoolAssertionFailureMessage(
206     const AssertionResult& assertion_result,
207     const char* expression_text,
208     const char* actual_predicate_value,
209     const char* expected_predicate_value);
210 
211 // This template class represents an IEEE floating-point number
212 // (either single-precision or double-precision, depending on the
213 // template parameters).
214 //
215 // The purpose of this class is to do more sophisticated number
216 // comparison.  (Due to round-off error, etc, it's very unlikely that
217 // two floating-points will be equal exactly.  Hence a naive
218 // comparison by the == operation often doesn't work.)
219 //
220 // Format of IEEE floating-point:
221 //
222 //   The most-significant bit being the leftmost, an IEEE
223 //   floating-point looks like
224 //
225 //     sign_bit exponent_bits fraction_bits
226 //
227 //   Here, sign_bit is a single bit that designates the sign of the
228 //   number.
229 //
230 //   For float, there are 8 exponent bits and 23 fraction bits.
231 //
232 //   For double, there are 11 exponent bits and 52 fraction bits.
233 //
234 //   More details can be found at
235 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
236 //
237 // Template parameter:
238 //
239 //   RawType: the raw floating-point type (either float or double)
240 template <typename RawType>
241 class FloatingPoint {
242  public:
243   // Defines the unsigned integer type that has the same size as the
244   // floating point number.
245   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
246 
247   // Constants.
248 
249   // # of bits in a number.
250   static const size_t kBitCount = 8*sizeof(RawType);
251 
252   // # of fraction bits in a number.
253   static const size_t kFractionBitCount =
254     std::numeric_limits<RawType>::digits - 1;
255 
256   // # of exponent bits in a number.
257   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
258 
259   // The mask for the sign bit.
260   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
261 
262   // The mask for the fraction bits.
263   static const Bits kFractionBitMask =
264     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
265 
266   // The mask for the exponent bits.
267   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
268 
269   // How many ULP's (Units in the Last Place) we want to tolerate when
270   // comparing two numbers.  The larger the value, the more error we
271   // allow.  A 0 value means that two numbers must be exactly the same
272   // to be considered equal.
273   //
274   // The maximum error of a single floating-point operation is 0.5
275   // units in the last place.  On Intel CPU's, all floating-point
276   // calculations are done with 80-bit precision, while double has 64
277   // bits.  Therefore, 4 should be enough for ordinary use.
278   //
279   // See the following article for more details on ULP:
280   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
281   static const size_t kMaxUlps = 4;
282 
283   // Constructs a FloatingPoint from a raw floating-point number.
284   //
285   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
286   // around may change its bits, although the new value is guaranteed
287   // to be also a NAN.  Therefore, don't expect this constructor to
288   // preserve the bits in x when x is a NAN.
FloatingPoint(const RawType & x)289   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
290 
291   // Static methods
292 
293   // Reinterprets a bit pattern as a floating-point number.
294   //
295   // This function is needed to test the AlmostEquals() method.
ReinterpretBits(const Bits bits)296   static RawType ReinterpretBits(const Bits bits) {
297     FloatingPoint fp(0);
298     fp.u_.bits_ = bits;
299     return fp.u_.value_;
300   }
301 
302   // Returns the floating-point number that represent positive infinity.
Infinity()303   static RawType Infinity() {
304     return ReinterpretBits(kExponentBitMask);
305   }
306 
307   // Returns the maximum representable finite floating-point number.
308   static RawType Max();
309 
310   // Non-static methods
311 
312   // Returns the bits that represents this number.
bits()313   const Bits &bits() const { return u_.bits_; }
314 
315   // Returns the exponent bits of this number.
exponent_bits()316   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
317 
318   // Returns the fraction bits of this number.
fraction_bits()319   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
320 
321   // Returns the sign bit of this number.
sign_bit()322   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
323 
324   // Returns true iff this is NAN (not a number).
is_nan()325   bool is_nan() const {
326     // It's a NAN if the exponent bits are all ones and the fraction
327     // bits are not entirely zeros.
328     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
329   }
330 
331   // Returns true iff this number is at most kMaxUlps ULP's away from
332   // rhs.  In particular, this function:
333   //
334   //   - returns false if either number is (or both are) NAN.
335   //   - treats really large numbers as almost equal to infinity.
336   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
AlmostEquals(const FloatingPoint & rhs)337   bool AlmostEquals(const FloatingPoint& rhs) const {
338     // The IEEE standard says that any comparison operation involving
339     // a NAN must return false.
340     if (is_nan() || rhs.is_nan()) return false;
341 
342     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
343         <= kMaxUlps;
344   }
345 
346  private:
347   // The data type used to store the actual floating-point number.
348   union FloatingPointUnion {
349     RawType value_;  // The raw floating-point number.
350     Bits bits_;      // The bits that represent the number.
351   };
352 
353   // Converts an integer from the sign-and-magnitude representation to
354   // the biased representation.  More precisely, let N be 2 to the
355   // power of (kBitCount - 1), an integer x is represented by the
356   // unsigned number x + N.
357   //
358   // For instance,
359   //
360   //   -N + 1 (the most negative number representable using
361   //          sign-and-magnitude) is represented by 1;
362   //   0      is represented by N; and
363   //   N - 1  (the biggest number representable using
364   //          sign-and-magnitude) is represented by 2N - 1.
365   //
366   // Read http://en.wikipedia.org/wiki/Signed_number_representations
367   // for more details on signed number representations.
SignAndMagnitudeToBiased(const Bits & sam)368   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
369     if (kSignBitMask & sam) {
370       // sam represents a negative number.
371       return ~sam + 1;
372     } else {
373       // sam represents a positive number.
374       return kSignBitMask | sam;
375     }
376   }
377 
378   // Given two numbers in the sign-and-magnitude representation,
379   // returns the distance between them as an unsigned number.
DistanceBetweenSignAndMagnitudeNumbers(const Bits & sam1,const Bits & sam2)380   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
381                                                      const Bits &sam2) {
382     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
383     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
384     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
385   }
386 
387   FloatingPointUnion u_;
388 };
389 
390 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
391 // macro defined by <windows.h>.
392 template <>
Max()393 inline float FloatingPoint<float>::Max() { return FLT_MAX; }
394 template <>
Max()395 inline double FloatingPoint<double>::Max() { return DBL_MAX; }
396 
397 // Typedefs the instances of the FloatingPoint template class that we
398 // care to use.
399 typedef FloatingPoint<float> Float;
400 typedef FloatingPoint<double> Double;
401 
402 // In order to catch the mistake of putting tests that use different
403 // test fixture classes in the same test case, we need to assign
404 // unique IDs to fixture classes and compare them.  The TypeId type is
405 // used to hold such IDs.  The user should treat TypeId as an opaque
406 // type: the only operation allowed on TypeId values is to compare
407 // them for equality using the == operator.
408 typedef const void* TypeId;
409 
410 template <typename T>
411 class TypeIdHelper {
412  public:
413   // dummy_ must not have a const type.  Otherwise an overly eager
414   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
415   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
416   static bool dummy_;
417 };
418 
419 template <typename T>
420 bool TypeIdHelper<T>::dummy_ = false;
421 
422 // GetTypeId<T>() returns the ID of type T.  Different values will be
423 // returned for different types.  Calling the function twice with the
424 // same type argument is guaranteed to return the same ID.
425 template <typename T>
GetTypeId()426 TypeId GetTypeId() {
427   // The compiler is required to allocate a different
428   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
429   // the template.  Therefore, the address of dummy_ is guaranteed to
430   // be unique.
431   return &(TypeIdHelper<T>::dummy_);
432 }
433 
434 // Returns the type ID of ::testing::Test.  Always call this instead
435 // of GetTypeId< ::testing::Test>() to get the type ID of
436 // ::testing::Test, as the latter may give the wrong result due to a
437 // suspected linker bug when compiling Google Test as a Mac OS X
438 // framework.
439 GTEST_API_ TypeId GetTestTypeId();
440 
441 // Defines the abstract factory interface that creates instances
442 // of a Test object.
443 class TestFactoryBase {
444  public:
~TestFactoryBase()445   virtual ~TestFactoryBase() {}
446 
447   // Creates a test instance to run. The instance is both created and destroyed
448   // within TestInfoImpl::Run()
449   virtual Test* CreateTest() = 0;
450 
451  protected:
TestFactoryBase()452   TestFactoryBase() {}
453 
454  private:
455   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
456 };
457 
458 // This class provides implementation of TeastFactoryBase interface.
459 // It is used in TEST and TEST_F macros.
460 template <class TestClass>
461 class TestFactoryImpl : public TestFactoryBase {
462  public:
CreateTest()463   virtual Test* CreateTest() { return new TestClass; }
464 };
465 
466 #if GTEST_OS_WINDOWS
467 
468 // Predicate-formatters for implementing the HRESULT checking macros
469 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
470 // We pass a long instead of HRESULT to avoid causing an
471 // include dependency for the HRESULT type.
472 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
473                                             long hr);  // NOLINT
474 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
475                                             long hr);  // NOLINT
476 
477 #endif  // GTEST_OS_WINDOWS
478 
479 // Types of SetUpTestCase() and TearDownTestCase() functions.
480 typedef void (*SetUpTestCaseFunc)();
481 typedef void (*TearDownTestCaseFunc)();
482 
483 struct CodeLocation {
CodeLocationCodeLocation484   CodeLocation(const std::string& a_file, int a_line)
485       : file(a_file), line(a_line) {}
486 
487   std::string file;
488   int line;
489 };
490 
491 // Creates a new TestInfo object and registers it with Google Test;
492 // returns the created object.
493 //
494 // Arguments:
495 //
496 //   test_case_name:   name of the test case
497 //   name:             name of the test
498 //   type_param        the name of the test's type parameter, or NULL if
499 //                     this is not a typed or a type-parameterized test.
500 //   value_param       text representation of the test's value parameter,
501 //                     or NULL if this is not a type-parameterized test.
502 //   code_location:    code location where the test is defined
503 //   fixture_class_id: ID of the test fixture class
504 //   set_up_tc:        pointer to the function that sets up the test case
505 //   tear_down_tc:     pointer to the function that tears down the test case
506 //   factory:          pointer to the factory that creates a test object.
507 //                     The newly created TestInfo instance will assume
508 //                     ownership of the factory object.
509 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
510     const char* test_case_name,
511     const char* name,
512     const char* type_param,
513     const char* value_param,
514     CodeLocation code_location,
515     TypeId fixture_class_id,
516     SetUpTestCaseFunc set_up_tc,
517     TearDownTestCaseFunc tear_down_tc,
518     TestFactoryBase* factory);
519 
520 // If *pstr starts with the given prefix, modifies *pstr to be right
521 // past the prefix and returns true; otherwise leaves *pstr unchanged
522 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
523 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
524 
525 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
526 
527 // State of the definition of a type-parameterized test case.
528 class GTEST_API_ TypedTestCasePState {
529  public:
TypedTestCasePState()530   TypedTestCasePState() : registered_(false) {}
531 
532   // Adds the given test name to defined_test_names_ and return true
533   // if the test case hasn't been registered; otherwise aborts the
534   // program.
AddTestName(const char * file,int line,const char * case_name,const char * test_name)535   bool AddTestName(const char* file, int line, const char* case_name,
536                    const char* test_name) {
537     if (registered_) {
538       fprintf(stderr, "%s Test %s must be defined before "
539               "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
540               FormatFileLocation(file, line).c_str(), test_name, case_name);
541       fflush(stderr);
542       posix::Abort();
543     }
544     registered_tests_.insert(
545         ::std::make_pair(test_name, CodeLocation(file, line)));
546     return true;
547   }
548 
TestExists(const std::string & test_name)549   bool TestExists(const std::string& test_name) const {
550     return registered_tests_.count(test_name) > 0;
551   }
552 
GetCodeLocation(const std::string & test_name)553   const CodeLocation& GetCodeLocation(const std::string& test_name) const {
554     RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
555     GTEST_CHECK_(it != registered_tests_.end());
556     return it->second;
557   }
558 
559   // Verifies that registered_tests match the test names in
560   // defined_test_names_; returns registered_tests if successful, or
561   // aborts the program otherwise.
562   const char* VerifyRegisteredTestNames(
563       const char* file, int line, const char* registered_tests);
564 
565  private:
566   typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
567 
568   bool registered_;
569   RegisteredTestsMap registered_tests_;
570 };
571 
572 // Skips to the first non-space char after the first comma in 'str';
573 // returns NULL if no comma is found in 'str'.
SkipComma(const char * str)574 inline const char* SkipComma(const char* str) {
575   const char* comma = strchr(str, ',');
576   if (comma == NULL) {
577     return NULL;
578   }
579   while (IsSpace(*(++comma))) {}
580   return comma;
581 }
582 
583 // Returns the prefix of 'str' before the first comma in it; returns
584 // the entire string if it contains no comma.
GetPrefixUntilComma(const char * str)585 inline std::string GetPrefixUntilComma(const char* str) {
586   const char* comma = strchr(str, ',');
587   return comma == NULL ? str : std::string(str, comma);
588 }
589 
590 // Splits a given string on a given delimiter, populating a given
591 // vector with the fields.
592 void SplitString(const ::std::string& str, char delimiter,
593                  ::std::vector< ::std::string>* dest);
594 
595 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
596 // registers a list of type-parameterized tests with Google Test.  The
597 // return value is insignificant - we just need to return something
598 // such that we can call this function in a namespace scope.
599 //
600 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
601 // template parameter.  It's defined in gtest-type-util.h.
602 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
603 class TypeParameterizedTest {
604  public:
605   // 'index' is the index of the test in the type list 'Types'
606   // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
607   // Types).  Valid values for 'index' are [0, N - 1] where N is the
608   // length of Types.
Register(const char * prefix,const CodeLocation & code_location,const char * case_name,const char * test_names,int index)609   static bool Register(const char* prefix,
610                        const CodeLocation& code_location,
611                        const char* case_name, const char* test_names,
612                        int index) {
613     typedef typename Types::Head Type;
614     typedef Fixture<Type> FixtureClass;
615     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
616 
617     // First, registers the first type-parameterized test in the type
618     // list.
619     MakeAndRegisterTestInfo(
620         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/"
621          + StreamableToString(index)).c_str(),
622         StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
623         GetTypeName<Type>().c_str(),
624         NULL,  // No value parameter.
625         code_location,
626         GetTypeId<FixtureClass>(),
627         TestClass::SetUpTestCase,
628         TestClass::TearDownTestCase,
629         new TestFactoryImpl<TestClass>);
630 
631     // Next, recurses (at compile time) with the tail of the type list.
632     return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
633         ::Register(prefix, code_location, case_name, test_names, index + 1);
634   }
635 };
636 
637 // The base case for the compile time recursion.
638 template <GTEST_TEMPLATE_ Fixture, class TestSel>
639 class TypeParameterizedTest<Fixture, TestSel, Types0> {
640  public:
Register(const char *,const CodeLocation &,const char *,const char *,int)641   static bool Register(const char* /*prefix*/, const CodeLocation&,
642                        const char* /*case_name*/, const char* /*test_names*/,
643                        int /*index*/) {
644     return true;
645   }
646 };
647 
648 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
649 // registers *all combinations* of 'Tests' and 'Types' with Google
650 // Test.  The return value is insignificant - we just need to return
651 // something such that we can call this function in a namespace scope.
652 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
653 class TypeParameterizedTestCase {
654  public:
Register(const char * prefix,CodeLocation code_location,const TypedTestCasePState * state,const char * case_name,const char * test_names)655   static bool Register(const char* prefix, CodeLocation code_location,
656                        const TypedTestCasePState* state,
657                        const char* case_name, const char* test_names) {
658     std::string test_name = StripTrailingSpaces(
659         GetPrefixUntilComma(test_names));
660     if (!state->TestExists(test_name)) {
661       fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
662               case_name, test_name.c_str(),
663               FormatFileLocation(code_location.file.c_str(),
664                                  code_location.line).c_str());
665       fflush(stderr);
666       posix::Abort();
667     }
668     const CodeLocation& test_location = state->GetCodeLocation(test_name);
669 
670     typedef typename Tests::Head Head;
671 
672     // First, register the first test in 'Test' for each type in 'Types'.
673     TypeParameterizedTest<Fixture, Head, Types>::Register(
674         prefix, test_location, case_name, test_names, 0);
675 
676     // Next, recurses (at compile time) with the tail of the test list.
677     return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
678         ::Register(prefix, code_location, state,
679                    case_name, SkipComma(test_names));
680   }
681 };
682 
683 // The base case for the compile time recursion.
684 template <GTEST_TEMPLATE_ Fixture, typename Types>
685 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
686  public:
Register(const char *,const CodeLocation &,const TypedTestCasePState *,const char *,const char *)687   static bool Register(const char* /*prefix*/, const CodeLocation&,
688                        const TypedTestCasePState* /*state*/,
689                        const char* /*case_name*/, const char* /*test_names*/) {
690     return true;
691   }
692 };
693 
694 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
695 
696 // Returns the current OS stack trace as an std::string.
697 //
698 // The maximum number of stack frames to be included is specified by
699 // the gtest_stack_trace_depth flag.  The skip_count parameter
700 // specifies the number of top frames to be skipped, which doesn't
701 // count against the number of frames to be included.
702 //
703 // For example, if Foo() calls Bar(), which in turn calls
704 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
705 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
706 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
707     UnitTest* unit_test, int skip_count);
708 
709 // Helpers for suppressing warnings on unreachable code or constant
710 // condition.
711 
712 // Always returns true.
713 GTEST_API_ bool AlwaysTrue();
714 
715 // Always returns false.
AlwaysFalse()716 inline bool AlwaysFalse() { return !AlwaysTrue(); }
717 
718 // Helper for suppressing false warning from Clang on a const char*
719 // variable declared in a conditional expression always being NULL in
720 // the else branch.
721 struct GTEST_API_ ConstCharPtr {
ConstCharPtrConstCharPtr722   ConstCharPtr(const char* str) : value(str) {}
723   operator bool() const { return true; }
724   const char* value;
725 };
726 
727 // A simple Linear Congruential Generator for generating random
728 // numbers with a uniform distribution.  Unlike rand() and srand(), it
729 // doesn't use global state (and therefore can't interfere with user
730 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
731 // but it's good enough for our purposes.
732 class GTEST_API_ Random {
733  public:
734   static const UInt32 kMaxRange = 1u << 31;
735 
Random(UInt32 seed)736   explicit Random(UInt32 seed) : state_(seed) {}
737 
Reseed(UInt32 seed)738   void Reseed(UInt32 seed) { state_ = seed; }
739 
740   // Generates a random number from [0, range).  Crashes if 'range' is
741   // 0 or greater than kMaxRange.
742   UInt32 Generate(UInt32 range);
743 
744  private:
745   UInt32 state_;
746   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
747 };
748 
749 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
750 // compiler error iff T1 and T2 are different types.
751 template <typename T1, typename T2>
752 struct CompileAssertTypesEqual;
753 
754 template <typename T>
755 struct CompileAssertTypesEqual<T, T> {
756 };
757 
758 // Removes the reference from a type if it is a reference type,
759 // otherwise leaves it unchanged.  This is the same as
760 // tr1::remove_reference, which is not widely available yet.
761 template <typename T>
762 struct RemoveReference { typedef T type; };  // NOLINT
763 template <typename T>
764 struct RemoveReference<T&> { typedef T type; };  // NOLINT
765 
766 // A handy wrapper around RemoveReference that works when the argument
767 // T depends on template parameters.
768 #define GTEST_REMOVE_REFERENCE_(T) \
769     typename ::testing::internal::RemoveReference<T>::type
770 
771 // Removes const from a type if it is a const type, otherwise leaves
772 // it unchanged.  This is the same as tr1::remove_const, which is not
773 // widely available yet.
774 template <typename T>
775 struct RemoveConst { typedef T type; };  // NOLINT
776 template <typename T>
777 struct RemoveConst<const T> { typedef T type; };  // NOLINT
778 
779 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
780 // definition to fail to remove the const in 'const int[3]' and 'const
781 // char[3][4]'.  The following specialization works around the bug.
782 template <typename T, size_t N>
783 struct RemoveConst<const T[N]> {
784   typedef typename RemoveConst<T>::type type[N];
785 };
786 
787 #if defined(_MSC_VER) && _MSC_VER < 1400
788 // This is the only specialization that allows VC++ 7.1 to remove const in
789 // 'const int[3] and 'const int[3][4]'.  However, it causes trouble with GCC
790 // and thus needs to be conditionally compiled.
791 template <typename T, size_t N>
792 struct RemoveConst<T[N]> {
793   typedef typename RemoveConst<T>::type type[N];
794 };
795 #endif
796 
797 // A handy wrapper around RemoveConst that works when the argument
798 // T depends on template parameters.
799 #define GTEST_REMOVE_CONST_(T) \
800     typename ::testing::internal::RemoveConst<T>::type
801 
802 // Turns const U&, U&, const U, and U all into U.
803 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
804     GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
805 
806 // Adds reference to a type if it is not a reference type,
807 // otherwise leaves it unchanged.  This is the same as
808 // tr1::add_reference, which is not widely available yet.
809 template <typename T>
810 struct AddReference { typedef T& type; };  // NOLINT
811 template <typename T>
812 struct AddReference<T&> { typedef T& type; };  // NOLINT
813 
814 // A handy wrapper around AddReference that works when the argument T
815 // depends on template parameters.
816 #define GTEST_ADD_REFERENCE_(T) \
817     typename ::testing::internal::AddReference<T>::type
818 
819 // Adds a reference to const on top of T as necessary.  For example,
820 // it transforms
821 //
822 //   char         ==> const char&
823 //   const char   ==> const char&
824 //   char&        ==> const char&
825 //   const char&  ==> const char&
826 //
827 // The argument T must depend on some template parameters.
828 #define GTEST_REFERENCE_TO_CONST_(T) \
829     GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
830 
831 // ImplicitlyConvertible<From, To>::value is a compile-time bool
832 // constant that's true iff type From can be implicitly converted to
833 // type To.
834 template <typename From, typename To>
835 class ImplicitlyConvertible {
836  private:
837   // We need the following helper functions only for their types.
838   // They have no implementations.
839 
840   // MakeFrom() is an expression whose type is From.  We cannot simply
841   // use From(), as the type From may not have a public default
842   // constructor.
843   static typename AddReference<From>::type MakeFrom();
844 
845   // These two functions are overloaded.  Given an expression
846   // Helper(x), the compiler will pick the first version if x can be
847   // implicitly converted to type To; otherwise it will pick the
848   // second version.
849   //
850   // The first version returns a value of size 1, and the second
851   // version returns a value of size 2.  Therefore, by checking the
852   // size of Helper(x), which can be done at compile time, we can tell
853   // which version of Helper() is used, and hence whether x can be
854   // implicitly converted to type To.
855   static char Helper(To);
856   static char (&Helper(...))[2];  // NOLINT
857 
858   // We have to put the 'public' section after the 'private' section,
859   // or MSVC refuses to compile the code.
860  public:
861 #if defined(__BORLANDC__)
862   // C++Builder cannot use member overload resolution during template
863   // instantiation.  The simplest workaround is to use its C++0x type traits
864   // functions (C++Builder 2009 and above only).
865   static const bool value = __is_convertible(From, To);
866 #else
867   // MSVC warns about implicitly converting from double to int for
868   // possible loss of data, so we need to temporarily disable the
869   // warning.
870   GTEST_DISABLE_MSC_WARNINGS_PUSH_(4244)
871   static const bool value =
872       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
873   GTEST_DISABLE_MSC_WARNINGS_POP_()
874 #endif  // __BORLANDC__
875 };
876 template <typename From, typename To>
877 const bool ImplicitlyConvertible<From, To>::value;
878 
879 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
880 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
881 // of those.
882 template <typename T>
883 struct IsAProtocolMessage
884     : public bool_constant<
885   ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
886   ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
887 };
888 
889 // When the compiler sees expression IsContainerTest<C>(0), if C is an
890 // STL-style container class, the first overload of IsContainerTest
891 // will be viable (since both C::iterator* and C::const_iterator* are
892 // valid types and NULL can be implicitly converted to them).  It will
893 // be picked over the second overload as 'int' is a perfect match for
894 // the type of argument 0.  If C::iterator or C::const_iterator is not
895 // a valid type, the first overload is not viable, and the second
896 // overload will be picked.  Therefore, we can determine whether C is
897 // a container class by checking the type of IsContainerTest<C>(0).
898 // The value of the expression is insignificant.
899 //
900 // Note that we look for both C::iterator and C::const_iterator.  The
901 // reason is that C++ injects the name of a class as a member of the
902 // class itself (e.g. you can refer to class iterator as either
903 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
904 // only, for example, we would mistakenly think that a class named
905 // iterator is an STL container.
906 //
907 // Also note that the simpler approach of overloading
908 // IsContainerTest(typename C::const_iterator*) and
909 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
910 typedef int IsContainer;
911 template <class C>
912 IsContainer IsContainerTest(int /* dummy */,
913                             typename C::iterator* /* it */ = NULL,
914                             typename C::const_iterator* /* const_it */ = NULL) {
915   return 0;
916 }
917 
918 typedef char IsNotContainer;
919 template <class C>
920 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
921 
922 template <typename C, bool =
923   sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)
924 >
925 struct IsRecursiveContainerImpl;
926 
927 template <typename C>
928 struct IsRecursiveContainerImpl<C, false> : public false_type {};
929 
930 template <typename C>
931 struct IsRecursiveContainerImpl<C, true> {
932   typedef
933     typename IteratorTraits<typename C::iterator>::value_type
934   value_type;
935   typedef is_same<value_type, C> type;
936 };
937 
938 // IsRecursiveContainer<Type> is a unary compile-time predicate that
939 // evaluates whether C is a recursive container type. A recursive container
940 // type is a container type whose value_type is equal to the container type
941 // itself. An example for a recursive container type is
942 // boost::filesystem::path, whose iterator has a value_type that is equal to
943 // boost::filesystem::path.
944 template<typename C>
945 struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
946 
947 // EnableIf<condition>::type is void when 'Cond' is true, and
948 // undefined when 'Cond' is false.  To use SFINAE to make a function
949 // overload only apply when a particular expression is true, add
950 // "typename EnableIf<expression>::type* = 0" as the last parameter.
951 template<bool> struct EnableIf;
952 template<> struct EnableIf<true> { typedef void type; };  // NOLINT
953 
954 // Utilities for native arrays.
955 
956 // ArrayEq() compares two k-dimensional native arrays using the
957 // elements' operator==, where k can be any integer >= 0.  When k is
958 // 0, ArrayEq() degenerates into comparing a single pair of values.
959 
960 template <typename T, typename U>
961 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
962 
963 // This generic version is used when k is 0.
964 template <typename T, typename U>
965 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
966 
967 // This overload is used when k >= 1.
968 template <typename T, typename U, size_t N>
969 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
970   return internal::ArrayEq(lhs, N, rhs);
971 }
972 
973 // This helper reduces code bloat.  If we instead put its logic inside
974 // the previous ArrayEq() function, arrays with different sizes would
975 // lead to different copies of the template code.
976 template <typename T, typename U>
977 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
978   for (size_t i = 0; i != size; i++) {
979     if (!internal::ArrayEq(lhs[i], rhs[i]))
980       return false;
981   }
982   return true;
983 }
984 
985 // Finds the first element in the iterator range [begin, end) that
986 // equals elem.  Element may be a native array type itself.
987 template <typename Iter, typename Element>
988 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
989   for (Iter it = begin; it != end; ++it) {
990     if (internal::ArrayEq(*it, elem))
991       return it;
992   }
993   return end;
994 }
995 
996 // CopyArray() copies a k-dimensional native array using the elements'
997 // operator=, where k can be any integer >= 0.  When k is 0,
998 // CopyArray() degenerates into copying a single value.
999 
1000 template <typename T, typename U>
1001 void CopyArray(const T* from, size_t size, U* to);
1002 
1003 // This generic version is used when k is 0.
1004 template <typename T, typename U>
1005 inline void CopyArray(const T& from, U* to) { *to = from; }
1006 
1007 // This overload is used when k >= 1.
1008 template <typename T, typename U, size_t N>
1009 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1010   internal::CopyArray(from, N, *to);
1011 }
1012 
1013 // This helper reduces code bloat.  If we instead put its logic inside
1014 // the previous CopyArray() function, arrays with different sizes
1015 // would lead to different copies of the template code.
1016 template <typename T, typename U>
1017 void CopyArray(const T* from, size_t size, U* to) {
1018   for (size_t i = 0; i != size; i++) {
1019     internal::CopyArray(from[i], to + i);
1020   }
1021 }
1022 
1023 // The relation between an NativeArray object (see below) and the
1024 // native array it represents.
1025 // We use 2 different structs to allow non-copyable types to be used, as long
1026 // as RelationToSourceReference() is passed.
1027 struct RelationToSourceReference {};
1028 struct RelationToSourceCopy {};
1029 
1030 // Adapts a native array to a read-only STL-style container.  Instead
1031 // of the complete STL container concept, this adaptor only implements
1032 // members useful for Google Mock's container matchers.  New members
1033 // should be added as needed.  To simplify the implementation, we only
1034 // support Element being a raw type (i.e. having no top-level const or
1035 // reference modifier).  It's the client's responsibility to satisfy
1036 // this requirement.  Element can be an array type itself (hence
1037 // multi-dimensional arrays are supported).
1038 template <typename Element>
1039 class NativeArray {
1040  public:
1041   // STL-style container typedefs.
1042   typedef Element value_type;
1043   typedef Element* iterator;
1044   typedef const Element* const_iterator;
1045 
1046   // Constructs from a native array. References the source.
1047   NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1048     InitRef(array, count);
1049   }
1050 
1051   // Constructs from a native array. Copies the source.
1052   NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1053     InitCopy(array, count);
1054   }
1055 
1056   // Copy constructor.
1057   NativeArray(const NativeArray& rhs) {
1058     (this->*rhs.clone_)(rhs.array_, rhs.size_);
1059   }
1060 
1061   ~NativeArray() {
1062     if (clone_ != &NativeArray::InitRef)
1063       delete[] array_;
1064   }
1065 
1066   // STL-style container methods.
1067   size_t size() const { return size_; }
1068   const_iterator begin() const { return array_; }
1069   const_iterator end() const { return array_ + size_; }
1070   bool operator==(const NativeArray& rhs) const {
1071     return size() == rhs.size() &&
1072         ArrayEq(begin(), size(), rhs.begin());
1073   }
1074 
1075  private:
1076   enum {
1077     kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper<
1078         Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value,
1079   };
1080 
1081   // Initializes this object with a copy of the input.
1082   void InitCopy(const Element* array, size_t a_size) {
1083     Element* const copy = new Element[a_size];
1084     CopyArray(array, a_size, copy);
1085     array_ = copy;
1086     size_ = a_size;
1087     clone_ = &NativeArray::InitCopy;
1088   }
1089 
1090   // Initializes this object with a reference of the input.
1091   void InitRef(const Element* array, size_t a_size) {
1092     array_ = array;
1093     size_ = a_size;
1094     clone_ = &NativeArray::InitRef;
1095   }
1096 
1097   const Element* array_;
1098   size_t size_;
1099   void (NativeArray::*clone_)(const Element*, size_t);
1100 
1101   GTEST_DISALLOW_ASSIGN_(NativeArray);
1102 };
1103 
1104 }  // namespace internal
1105 }  // namespace testing
1106 
1107 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1108   ::testing::internal::AssertHelper(result_type, file, line, message) \
1109     = ::testing::Message()
1110 
1111 #define GTEST_MESSAGE_(message, result_type) \
1112   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1113 
1114 #define GTEST_FATAL_FAILURE_(message) \
1115   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1116 
1117 #define GTEST_NONFATAL_FAILURE_(message) \
1118   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1119 
1120 #define GTEST_SUCCESS_(message) \
1121   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1122 
1123 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
1124 // statement if it returns or throws (or doesn't return or throw in some
1125 // situations).
1126 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1127   if (::testing::internal::AlwaysTrue()) { statement; }
1128 
1129 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1130   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1131   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1132     bool gtest_caught_expected = false; \
1133     try { \
1134       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1135     } \
1136     catch (expected_exception const&) { \
1137       gtest_caught_expected = true; \
1138     } \
1139     catch (...) { \
1140       gtest_msg.value = \
1141           "Expected: " #statement " throws an exception of type " \
1142           #expected_exception ".\n  Actual: it throws a different type."; \
1143       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1144     } \
1145     if (!gtest_caught_expected) { \
1146       gtest_msg.value = \
1147           "Expected: " #statement " throws an exception of type " \
1148           #expected_exception ".\n  Actual: it throws nothing."; \
1149       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1150     } \
1151   } else \
1152     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1153       fail(gtest_msg.value)
1154 
1155 #define GTEST_TEST_NO_THROW_(statement, fail) \
1156   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1157   if (::testing::internal::AlwaysTrue()) { \
1158     try { \
1159       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1160     } \
1161     catch (...) { \
1162       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1163     } \
1164   } else \
1165     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1166       fail("Expected: " #statement " doesn't throw an exception.\n" \
1167            "  Actual: it throws.")
1168 
1169 #define GTEST_TEST_ANY_THROW_(statement, fail) \
1170   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1171   if (::testing::internal::AlwaysTrue()) { \
1172     bool gtest_caught_any = false; \
1173     try { \
1174       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1175     } \
1176     catch (...) { \
1177       gtest_caught_any = true; \
1178     } \
1179     if (!gtest_caught_any) { \
1180       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1181     } \
1182   } else \
1183     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1184       fail("Expected: " #statement " throws an exception.\n" \
1185            "  Actual: it doesn't.")
1186 
1187 
1188 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1189 // either a boolean expression or an AssertionResult. text is a textual
1190 // represenation of expression as it was passed into the EXPECT_TRUE.
1191 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1192   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1193   if (const ::testing::AssertionResult gtest_ar_ = \
1194       ::testing::AssertionResult(expression)) \
1195     ; \
1196   else \
1197     fail(::testing::internal::GetBoolAssertionFailureMessage(\
1198         gtest_ar_, text, #actual, #expected).c_str())
1199 
1200 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1201   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1202   if (::testing::internal::AlwaysTrue()) { \
1203     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1204     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1205     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1206       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1207     } \
1208   } else \
1209     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1210       fail("Expected: " #statement " doesn't generate new fatal " \
1211            "failures in the current thread.\n" \
1212            "  Actual: it does.")
1213 
1214 // Expands to the name of the class that implements the given test.
1215 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
1216   test_case_name##_##test_name##_Test
1217 
1218 // Helper macro for defining tests.
1219 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
1220 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
1221  public:\
1222   GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
1223  private:\
1224   virtual void TestBody();\
1225   static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
1226   GTEST_DISALLOW_COPY_AND_ASSIGN_(\
1227       GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
1228 };\
1229 \
1230 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
1231   ::test_info_ =\
1232     ::testing::internal::MakeAndRegisterTestInfo(\
1233         #test_case_name, #test_name, NULL, NULL, \
1234         ::testing::internal::CodeLocation(__FILE__, __LINE__), \
1235         (parent_id), \
1236         parent_class::SetUpTestCase, \
1237         parent_class::TearDownTestCase, \
1238         new ::testing::internal::TestFactoryImpl<\
1239             GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
1240 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
1241 
1242 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1243 
1244