1 /* Build expressions with type checking for C compiler.
2    Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA.  */
21 
22 
23 /* This file is part of the C front end.
24    It contains routines to build C expressions given their operands,
25    including computing the types of the result, C-specific error checks,
26    and some optimization.  */
27 
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "langhooks.h"
35 #include "c-tree.h"
36 #include "tm_p.h"
37 #include "flags.h"
38 #include "output.h"
39 #include "expr.h"
40 #include "toplev.h"
41 #include "intl.h"
42 #include "ggc.h"
43 #include "target.h"
44 #include "tree-iterator.h"
45 #include "tree-gimple.h"
46 #include "tree-flow.h"
47 
48 /* Possible cases of implicit bad conversions.  Used to select
49    diagnostic messages in convert_for_assignment.  */
50 enum impl_conv {
51   ic_argpass,
52   ic_argpass_nonproto,
53   ic_assign,
54   ic_init,
55   ic_return
56 };
57 
58 /* The level of nesting inside "__alignof__".  */
59 int in_alignof;
60 
61 /* The level of nesting inside "sizeof".  */
62 int in_sizeof;
63 
64 /* The level of nesting inside "typeof".  */
65 int in_typeof;
66 
67 struct c_label_context_se *label_context_stack_se;
68 struct c_label_context_vm *label_context_stack_vm;
69 
70 /* Nonzero if we've already printed a "missing braces around initializer"
71    message within this initializer.  */
72 static int missing_braces_mentioned;
73 
74 static int require_constant_value;
75 static int require_constant_elements;
76 
77 static tree qualify_type (tree, tree);
78 static int tagged_types_tu_compatible_p (tree, tree);
79 static int comp_target_types (tree, tree);
80 static int function_types_compatible_p (tree, tree);
81 static int type_lists_compatible_p (tree, tree);
82 static tree decl_constant_value_for_broken_optimization (tree);
83 static tree lookup_field (tree, tree);
84 static tree convert_arguments (tree, tree, tree, tree);
85 static tree pointer_diff (tree, tree);
86 static tree unary_complex_lvalue (enum tree_code, tree, int);
87 static void pedantic_lvalue_warning (enum tree_code);
88 static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
89 				    int);
90 static tree valid_compound_expr_initializer (tree, tree);
91 static void push_string (const char *);
92 static void push_member_name (tree);
93 static int spelling_length (void);
94 static char *print_spelling (char *);
95 static void warning_init (const char *);
96 static tree digest_init (tree, tree, bool, int);
97 static void output_init_element (tree, bool, tree, tree, int);
98 static void output_pending_init_elements (int);
99 static int set_designator (int);
100 static void push_range_stack (tree);
101 static void add_pending_init (tree, tree);
102 static void set_nonincremental_init (void);
103 static void set_nonincremental_init_from_string (tree);
104 static tree find_init_member (tree);
105 static void readonly_error (tree, enum lvalue_use);
106 static int lvalue_or_else (tree, enum lvalue_use);
107 static int lvalue_p (tree);
108 static void record_maybe_used_decl (tree);
109 static int comptypes_internal (tree, tree);
110 /* This is a cache to hold if two types are compatible or not.  */
111 
112 struct tagged_tu_seen_cache {
113   const struct tagged_tu_seen_cache * next;
114   tree t1;
115   tree t2;
116   /* The return value of tagged_types_tu_compatible_p if we had seen
117      these two types already.  */
118   int val;
119 };
120 
121 static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
122 static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
123 
124 /* Do `exp = require_complete_type (exp);' to make sure exp
125    does not have an incomplete type.  (That includes void types.)  */
126 
127 tree
require_complete_type(tree value)128 require_complete_type (tree value)
129 {
130   tree type = TREE_TYPE (value);
131 
132   if (value == error_mark_node || type == error_mark_node)
133     return error_mark_node;
134 
135   /* First, detect a valid value with a complete type.  */
136   if (COMPLETE_TYPE_P (type))
137     return value;
138 
139   c_incomplete_type_error (value, type);
140   return error_mark_node;
141 }
142 
143 /* Print an error message for invalid use of an incomplete type.
144    VALUE is the expression that was used (or 0 if that isn't known)
145    and TYPE is the type that was invalid.  */
146 
147 void
c_incomplete_type_error(tree value,tree type)148 c_incomplete_type_error (tree value, tree type)
149 {
150   const char *type_code_string;
151 
152   /* Avoid duplicate error message.  */
153   if (TREE_CODE (type) == ERROR_MARK)
154     return;
155 
156   if (value != 0 && (TREE_CODE (value) == VAR_DECL
157 		     || TREE_CODE (value) == PARM_DECL))
158     error ("%qD has an incomplete type", value);
159   else
160     {
161     retry:
162       /* We must print an error message.  Be clever about what it says.  */
163 
164       switch (TREE_CODE (type))
165 	{
166 	case RECORD_TYPE:
167 	  type_code_string = "struct";
168 	  break;
169 
170 	case UNION_TYPE:
171 	  type_code_string = "union";
172 	  break;
173 
174 	case ENUMERAL_TYPE:
175 	  type_code_string = "enum";
176 	  break;
177 
178 	case VOID_TYPE:
179 	  error ("invalid use of void expression");
180 	  return;
181 
182 	case ARRAY_TYPE:
183 	  if (TYPE_DOMAIN (type))
184 	    {
185 	      if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
186 		{
187 		  error ("invalid use of flexible array member");
188 		  return;
189 		}
190 	      type = TREE_TYPE (type);
191 	      goto retry;
192 	    }
193 	  error ("invalid use of array with unspecified bounds");
194 	  return;
195 
196 	default:
197 	  gcc_unreachable ();
198 	}
199 
200       if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
201 	error ("invalid use of undefined type %<%s %E%>",
202 	       type_code_string, TYPE_NAME (type));
203       else
204 	/* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL.  */
205 	error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
206     }
207 }
208 
209 /* Given a type, apply default promotions wrt unnamed function
210    arguments and return the new type.  */
211 
212 tree
c_type_promotes_to(tree type)213 c_type_promotes_to (tree type)
214 {
215   if (TYPE_MAIN_VARIANT (type) == float_type_node)
216     return double_type_node;
217 
218   if (c_promoting_integer_type_p (type))
219     {
220       /* Preserve unsignedness if not really getting any wider.  */
221       if (TYPE_UNSIGNED (type)
222           && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
223         return unsigned_type_node;
224       return integer_type_node;
225     }
226 
227   return type;
228 }
229 
230 /* Return a variant of TYPE which has all the type qualifiers of LIKE
231    as well as those of TYPE.  */
232 
233 static tree
qualify_type(tree type,tree like)234 qualify_type (tree type, tree like)
235 {
236   return c_build_qualified_type (type,
237 				 TYPE_QUALS (type) | TYPE_QUALS (like));
238 }
239 
240 /* Return the composite type of two compatible types.
241 
242    We assume that comptypes has already been done and returned
243    nonzero; if that isn't so, this may crash.  In particular, we
244    assume that qualifiers match.  */
245 
246 tree
composite_type(tree t1,tree t2)247 composite_type (tree t1, tree t2)
248 {
249   enum tree_code code1;
250   enum tree_code code2;
251   tree attributes;
252 
253   /* Save time if the two types are the same.  */
254 
255   if (t1 == t2) return t1;
256 
257   /* If one type is nonsense, use the other.  */
258   if (t1 == error_mark_node)
259     return t2;
260   if (t2 == error_mark_node)
261     return t1;
262 
263   code1 = TREE_CODE (t1);
264   code2 = TREE_CODE (t2);
265 
266   /* Merge the attributes.  */
267   attributes = targetm.merge_type_attributes (t1, t2);
268 
269   /* If one is an enumerated type and the other is the compatible
270      integer type, the composite type might be either of the two
271      (DR#013 question 3).  For consistency, use the enumerated type as
272      the composite type.  */
273 
274   if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
275     return t1;
276   if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
277     return t2;
278 
279   gcc_assert (code1 == code2);
280 
281   switch (code1)
282     {
283     case POINTER_TYPE:
284       /* For two pointers, do this recursively on the target type.  */
285       {
286 	tree pointed_to_1 = TREE_TYPE (t1);
287 	tree pointed_to_2 = TREE_TYPE (t2);
288 	tree target = composite_type (pointed_to_1, pointed_to_2);
289 	t1 = build_pointer_type (target);
290 	t1 = build_type_attribute_variant (t1, attributes);
291 	return qualify_type (t1, t2);
292       }
293 
294     case ARRAY_TYPE:
295       {
296 	tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
297 	int quals;
298 	tree unqual_elt;
299 	tree d1 = TYPE_DOMAIN (t1);
300 	tree d2 = TYPE_DOMAIN (t2);
301 	bool d1_variable, d2_variable;
302 	bool d1_zero, d2_zero;
303 
304 	/* We should not have any type quals on arrays at all.  */
305 	gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
306 
307 	d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
308 	d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
309 
310 	d1_variable = (!d1_zero
311 		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
312 			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
313 	d2_variable = (!d2_zero
314 		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
315 			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
316 
317 	/* Save space: see if the result is identical to one of the args.  */
318 	if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
319 	    && (d2_variable || d2_zero || !d1_variable))
320 	  return build_type_attribute_variant (t1, attributes);
321 	if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
322 	    && (d1_variable || d1_zero || !d2_variable))
323 	  return build_type_attribute_variant (t2, attributes);
324 
325 	if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
326 	  return build_type_attribute_variant (t1, attributes);
327 	if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
328 	  return build_type_attribute_variant (t2, attributes);
329 
330 	/* Merge the element types, and have a size if either arg has
331 	   one.  We may have qualifiers on the element types.  To set
332 	   up TYPE_MAIN_VARIANT correctly, we need to form the
333 	   composite of the unqualified types and add the qualifiers
334 	   back at the end.  */
335 	quals = TYPE_QUALS (strip_array_types (elt));
336 	unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
337 	t1 = build_array_type (unqual_elt,
338 			       TYPE_DOMAIN ((TYPE_DOMAIN (t1)
339 					     && (d2_variable
340 						 || d2_zero
341 						 || !d1_variable))
342 					    ? t1
343 					    : t2));
344 	t1 = c_build_qualified_type (t1, quals);
345 	return build_type_attribute_variant (t1, attributes);
346       }
347 
348     case FUNCTION_TYPE:
349       /* Function types: prefer the one that specified arg types.
350 	 If both do, merge the arg types.  Also merge the return types.  */
351       {
352 	tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
353 	tree p1 = TYPE_ARG_TYPES (t1);
354 	tree p2 = TYPE_ARG_TYPES (t2);
355 	int len;
356 	tree newargs, n;
357 	int i;
358 
359 	/* Save space: see if the result is identical to one of the args.  */
360 	if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
361 	  return build_type_attribute_variant (t1, attributes);
362 	if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
363 	  return build_type_attribute_variant (t2, attributes);
364 
365 	/* Simple way if one arg fails to specify argument types.  */
366 	if (TYPE_ARG_TYPES (t1) == 0)
367 	 {
368 	    t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
369 	    t1 = build_type_attribute_variant (t1, attributes);
370 	    return qualify_type (t1, t2);
371 	 }
372 	if (TYPE_ARG_TYPES (t2) == 0)
373 	 {
374 	   t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
375 	   t1 = build_type_attribute_variant (t1, attributes);
376 	   return qualify_type (t1, t2);
377 	 }
378 
379 	/* If both args specify argument types, we must merge the two
380 	   lists, argument by argument.  */
381 	/* Tell global_bindings_p to return false so that variable_size
382 	   doesn't die on VLAs in parameter types.  */
383 	c_override_global_bindings_to_false = true;
384 
385 	len = list_length (p1);
386 	newargs = 0;
387 
388 	for (i = 0; i < len; i++)
389 	  newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
390 
391 	n = newargs;
392 
393 	for (; p1;
394 	     p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
395 	  {
396 	    /* A null type means arg type is not specified.
397 	       Take whatever the other function type has.  */
398 	    if (TREE_VALUE (p1) == 0)
399 	      {
400 		TREE_VALUE (n) = TREE_VALUE (p2);
401 		goto parm_done;
402 	      }
403 	    if (TREE_VALUE (p2) == 0)
404 	      {
405 		TREE_VALUE (n) = TREE_VALUE (p1);
406 		goto parm_done;
407 	      }
408 
409 	    /* Given  wait (union {union wait *u; int *i} *)
410 	       and  wait (union wait *),
411 	       prefer  union wait *  as type of parm.  */
412 	    if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
413 		&& TREE_VALUE (p1) != TREE_VALUE (p2))
414 	      {
415 		tree memb;
416 		tree mv2 = TREE_VALUE (p2);
417 		if (mv2 && mv2 != error_mark_node
418 		    && TREE_CODE (mv2) != ARRAY_TYPE)
419 		  mv2 = TYPE_MAIN_VARIANT (mv2);
420 		for (memb = TYPE_FIELDS (TREE_VALUE (p1));
421 		     memb; memb = TREE_CHAIN (memb))
422 		  {
423 		    tree mv3 = TREE_TYPE (memb);
424 		    if (mv3 && mv3 != error_mark_node
425 			&& TREE_CODE (mv3) != ARRAY_TYPE)
426 		      mv3 = TYPE_MAIN_VARIANT (mv3);
427 		    if (comptypes (mv3, mv2))
428 		      {
429 			TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
430 							 TREE_VALUE (p2));
431 			if (pedantic)
432 			  pedwarn ("function types not truly compatible in ISO C");
433 			goto parm_done;
434 		      }
435 		  }
436 	      }
437 	    if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
438 		&& TREE_VALUE (p2) != TREE_VALUE (p1))
439 	      {
440 		tree memb;
441 		tree mv1 = TREE_VALUE (p1);
442 		if (mv1 && mv1 != error_mark_node
443 		    && TREE_CODE (mv1) != ARRAY_TYPE)
444 		  mv1 = TYPE_MAIN_VARIANT (mv1);
445 		for (memb = TYPE_FIELDS (TREE_VALUE (p2));
446 		     memb; memb = TREE_CHAIN (memb))
447 		  {
448 		    tree mv3 = TREE_TYPE (memb);
449 		    if (mv3 && mv3 != error_mark_node
450 			&& TREE_CODE (mv3) != ARRAY_TYPE)
451 		      mv3 = TYPE_MAIN_VARIANT (mv3);
452 		    if (comptypes (mv3, mv1))
453 		      {
454 			TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
455 							 TREE_VALUE (p1));
456 			if (pedantic)
457 			  pedwarn ("function types not truly compatible in ISO C");
458 			goto parm_done;
459 		      }
460 		  }
461 	      }
462 	    TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
463 	  parm_done: ;
464 	  }
465 
466 	c_override_global_bindings_to_false = false;
467 	t1 = build_function_type (valtype, newargs);
468 	t1 = qualify_type (t1, t2);
469 	/* ... falls through ...  */
470       }
471 
472     default:
473       return build_type_attribute_variant (t1, attributes);
474     }
475 
476 }
477 
478 /* Return the type of a conditional expression between pointers to
479    possibly differently qualified versions of compatible types.
480 
481    We assume that comp_target_types has already been done and returned
482    nonzero; if that isn't so, this may crash.  */
483 
484 static tree
common_pointer_type(tree t1,tree t2)485 common_pointer_type (tree t1, tree t2)
486 {
487   tree attributes;
488   tree pointed_to_1, mv1;
489   tree pointed_to_2, mv2;
490   tree target;
491 
492   /* Save time if the two types are the same.  */
493 
494   if (t1 == t2) return t1;
495 
496   /* If one type is nonsense, use the other.  */
497   if (t1 == error_mark_node)
498     return t2;
499   if (t2 == error_mark_node)
500     return t1;
501 
502   gcc_assert (TREE_CODE (t1) == POINTER_TYPE
503  	      && TREE_CODE (t2) == POINTER_TYPE);
504 
505   /* Merge the attributes.  */
506   attributes = targetm.merge_type_attributes (t1, t2);
507 
508   /* Find the composite type of the target types, and combine the
509      qualifiers of the two types' targets.  Do not lose qualifiers on
510      array element types by taking the TYPE_MAIN_VARIANT.  */
511   mv1 = pointed_to_1 = TREE_TYPE (t1);
512   mv2 = pointed_to_2 = TREE_TYPE (t2);
513   if (TREE_CODE (mv1) != ARRAY_TYPE)
514     mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
515   if (TREE_CODE (mv2) != ARRAY_TYPE)
516     mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
517   target = composite_type (mv1, mv2);
518   t1 = build_pointer_type (c_build_qualified_type
519 			   (target,
520 			    TYPE_QUALS (pointed_to_1) |
521 			    TYPE_QUALS (pointed_to_2)));
522   return build_type_attribute_variant (t1, attributes);
523 }
524 
525 /* Return the common type for two arithmetic types under the usual
526    arithmetic conversions.  The default conversions have already been
527    applied, and enumerated types converted to their compatible integer
528    types.  The resulting type is unqualified and has no attributes.
529 
530    This is the type for the result of most arithmetic operations
531    if the operands have the given two types.  */
532 
533 static tree
c_common_type(tree t1,tree t2)534 c_common_type (tree t1, tree t2)
535 {
536   enum tree_code code1;
537   enum tree_code code2;
538 
539   /* If one type is nonsense, use the other.  */
540   if (t1 == error_mark_node)
541     return t2;
542   if (t2 == error_mark_node)
543     return t1;
544 
545   if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
546     t1 = TYPE_MAIN_VARIANT (t1);
547 
548   if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
549     t2 = TYPE_MAIN_VARIANT (t2);
550 
551   if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
552     t1 = build_type_attribute_variant (t1, NULL_TREE);
553 
554   if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
555     t2 = build_type_attribute_variant (t2, NULL_TREE);
556 
557   /* Save time if the two types are the same.  */
558 
559   if (t1 == t2) return t1;
560 
561   code1 = TREE_CODE (t1);
562   code2 = TREE_CODE (t2);
563 
564   gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
565 	      || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
566   gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
567 	      || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
568 
569   /* If one type is a vector type, return that type.  (How the usual
570      arithmetic conversions apply to the vector types extension is not
571      precisely specified.)  */
572   if (code1 == VECTOR_TYPE)
573     return t1;
574 
575   if (code2 == VECTOR_TYPE)
576     return t2;
577 
578   /* If one type is complex, form the common type of the non-complex
579      components, then make that complex.  Use T1 or T2 if it is the
580      required type.  */
581   if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
582     {
583       tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
584       tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
585       tree subtype = c_common_type (subtype1, subtype2);
586 
587       if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
588 	return t1;
589       else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
590 	return t2;
591       else
592 	return build_complex_type (subtype);
593     }
594 
595   /* If only one is real, use it as the result.  */
596 
597   if (code1 == REAL_TYPE && code2 != REAL_TYPE)
598     return t1;
599 
600   if (code2 == REAL_TYPE && code1 != REAL_TYPE)
601     return t2;
602 
603   /* Both real or both integers; use the one with greater precision.  */
604 
605   if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
606     return t1;
607   else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
608     return t2;
609 
610   /* Same precision.  Prefer long longs to longs to ints when the
611      same precision, following the C99 rules on integer type rank
612      (which are equivalent to the C90 rules for C90 types).  */
613 
614   if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
615       || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
616     return long_long_unsigned_type_node;
617 
618   if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
619       || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
620     {
621       if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
622 	return long_long_unsigned_type_node;
623       else
624         return long_long_integer_type_node;
625     }
626 
627   if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
628       || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
629     return long_unsigned_type_node;
630 
631   if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
632       || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
633     {
634       /* But preserve unsignedness from the other type,
635 	 since long cannot hold all the values of an unsigned int.  */
636       if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
637 	return long_unsigned_type_node;
638       else
639 	return long_integer_type_node;
640     }
641 
642   /* Likewise, prefer long double to double even if same size.  */
643   if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
644       || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
645     return long_double_type_node;
646 
647   /* Otherwise prefer the unsigned one.  */
648 
649   if (TYPE_UNSIGNED (t1))
650     return t1;
651   else
652     return t2;
653 }
654 
655 /* Wrapper around c_common_type that is used by c-common.c and other
656    front end optimizations that remove promotions.  ENUMERAL_TYPEs
657    are allowed here and are converted to their compatible integer types.
658    BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
659    preferably a non-Boolean type as the common type.  */
660 tree
common_type(tree t1,tree t2)661 common_type (tree t1, tree t2)
662 {
663   if (TREE_CODE (t1) == ENUMERAL_TYPE)
664     t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
665   if (TREE_CODE (t2) == ENUMERAL_TYPE)
666     t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
667 
668   /* If both types are BOOLEAN_TYPE, then return boolean_type_node.  */
669   if (TREE_CODE (t1) == BOOLEAN_TYPE
670       && TREE_CODE (t2) == BOOLEAN_TYPE)
671     return boolean_type_node;
672 
673   /* If either type is BOOLEAN_TYPE, then return the other.  */
674   if (TREE_CODE (t1) == BOOLEAN_TYPE)
675     return t2;
676   if (TREE_CODE (t2) == BOOLEAN_TYPE)
677     return t1;
678 
679   return c_common_type (t1, t2);
680 }
681 
682 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
683    or various other operations.  Return 2 if they are compatible
684    but a warning may be needed if you use them together.  */
685 
686 int
comptypes(tree type1,tree type2)687 comptypes (tree type1, tree type2)
688 {
689   const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
690   int val;
691 
692   val = comptypes_internal (type1, type2);
693   free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
694 
695   return val;
696 }
697 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
698    or various other operations.  Return 2 if they are compatible
699    but a warning may be needed if you use them together.  This
700    differs from comptypes, in that we don't free the seen types.  */
701 
702 static int
comptypes_internal(tree type1,tree type2)703 comptypes_internal (tree type1, tree type2)
704 {
705   tree t1 = type1;
706   tree t2 = type2;
707   int attrval, val;
708 
709   /* Suppress errors caused by previously reported errors.  */
710 
711   if (t1 == t2 || !t1 || !t2
712       || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
713     return 1;
714 
715   /* If either type is the internal version of sizetype, return the
716      language version.  */
717   if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
718       && TYPE_ORIG_SIZE_TYPE (t1))
719     t1 = TYPE_ORIG_SIZE_TYPE (t1);
720 
721   if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
722       && TYPE_ORIG_SIZE_TYPE (t2))
723     t2 = TYPE_ORIG_SIZE_TYPE (t2);
724 
725 
726   /* Enumerated types are compatible with integer types, but this is
727      not transitive: two enumerated types in the same translation unit
728      are compatible with each other only if they are the same type.  */
729 
730   if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
731     t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
732   else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
733     t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
734 
735   if (t1 == t2)
736     return 1;
737 
738   /* Different classes of types can't be compatible.  */
739 
740   if (TREE_CODE (t1) != TREE_CODE (t2))
741     return 0;
742 
743   /* Qualifiers must match. C99 6.7.3p9 */
744 
745   if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
746     return 0;
747 
748   /* Allow for two different type nodes which have essentially the same
749      definition.  Note that we already checked for equality of the type
750      qualifiers (just above).  */
751 
752   if (TREE_CODE (t1) != ARRAY_TYPE
753       && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
754     return 1;
755 
756   /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
757   if (!(attrval = targetm.comp_type_attributes (t1, t2)))
758      return 0;
759 
760   /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
761   val = 0;
762 
763   switch (TREE_CODE (t1))
764     {
765     case POINTER_TYPE:
766       /* Do not remove mode or aliasing information.  */
767       if (TYPE_MODE (t1) != TYPE_MODE (t2)
768 	  || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
769 	break;
770       val = (TREE_TYPE (t1) == TREE_TYPE (t2)
771 	     ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
772       break;
773 
774     case FUNCTION_TYPE:
775       val = function_types_compatible_p (t1, t2);
776       break;
777 
778     case ARRAY_TYPE:
779       {
780 	tree d1 = TYPE_DOMAIN (t1);
781 	tree d2 = TYPE_DOMAIN (t2);
782 	bool d1_variable, d2_variable;
783 	bool d1_zero, d2_zero;
784 	val = 1;
785 
786 	/* Target types must match incl. qualifiers.  */
787 	if (TREE_TYPE (t1) != TREE_TYPE (t2)
788 	    && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
789 	  return 0;
790 
791 	/* Sizes must match unless one is missing or variable.  */
792 	if (d1 == 0 || d2 == 0 || d1 == d2)
793 	  break;
794 
795 	d1_zero = !TYPE_MAX_VALUE (d1);
796 	d2_zero = !TYPE_MAX_VALUE (d2);
797 
798 	d1_variable = (!d1_zero
799 		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
800 			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
801 	d2_variable = (!d2_zero
802 		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
803 			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
804 
805 	if (d1_variable || d2_variable)
806 	  break;
807 	if (d1_zero && d2_zero)
808 	  break;
809 	if (d1_zero || d2_zero
810 	    || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
811 	    || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
812 	  val = 0;
813 
814         break;
815       }
816 
817     case ENUMERAL_TYPE:
818     case RECORD_TYPE:
819     case UNION_TYPE:
820       if (val != 1 && !same_translation_unit_p (t1, t2))
821         {
822 	  if (attrval != 2)
823 	    return tagged_types_tu_compatible_p (t1, t2);
824 	  val = tagged_types_tu_compatible_p (t1, t2);
825 	}
826       break;
827 
828     case VECTOR_TYPE:
829       val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
830 	    && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
831       break;
832 
833     default:
834       break;
835     }
836   return attrval == 2 && val == 1 ? 2 : val;
837 }
838 
839 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
840    ignoring their qualifiers.  */
841 
842 static int
comp_target_types(tree ttl,tree ttr)843 comp_target_types (tree ttl, tree ttr)
844 {
845   int val;
846   tree mvl, mvr;
847 
848   /* Do not lose qualifiers on element types of array types that are
849      pointer targets by taking their TYPE_MAIN_VARIANT.  */
850   mvl = TREE_TYPE (ttl);
851   mvr = TREE_TYPE (ttr);
852   if (TREE_CODE (mvl) != ARRAY_TYPE)
853     mvl = TYPE_MAIN_VARIANT (mvl);
854   if (TREE_CODE (mvr) != ARRAY_TYPE)
855     mvr = TYPE_MAIN_VARIANT (mvr);
856   val = comptypes (mvl, mvr);
857 
858   if (val == 2 && pedantic)
859     pedwarn ("types are not quite compatible");
860   return val;
861 }
862 
863 /* Subroutines of `comptypes'.  */
864 
865 /* Determine whether two trees derive from the same translation unit.
866    If the CONTEXT chain ends in a null, that tree's context is still
867    being parsed, so if two trees have context chains ending in null,
868    they're in the same translation unit.  */
869 int
same_translation_unit_p(tree t1,tree t2)870 same_translation_unit_p (tree t1, tree t2)
871 {
872   while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
873     switch (TREE_CODE_CLASS (TREE_CODE (t1)))
874       {
875       case tcc_declaration:
876 	t1 = DECL_CONTEXT (t1); break;
877       case tcc_type:
878 	t1 = TYPE_CONTEXT (t1); break;
879       case tcc_exceptional:
880 	t1 = BLOCK_SUPERCONTEXT (t1); break;  /* assume block */
881       default: gcc_unreachable ();
882       }
883 
884   while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
885     switch (TREE_CODE_CLASS (TREE_CODE (t2)))
886       {
887       case tcc_declaration:
888 	t2 = DECL_CONTEXT (t2); break;
889       case tcc_type:
890 	t2 = TYPE_CONTEXT (t2); break;
891       case tcc_exceptional:
892 	t2 = BLOCK_SUPERCONTEXT (t2); break;  /* assume block */
893       default: gcc_unreachable ();
894       }
895 
896   return t1 == t2;
897 }
898 
899 /* Allocate the seen two types, assuming that they are compatible. */
900 
901 static struct tagged_tu_seen_cache *
alloc_tagged_tu_seen_cache(tree t1,tree t2)902 alloc_tagged_tu_seen_cache (tree t1, tree t2)
903 {
904   struct tagged_tu_seen_cache *tu = xmalloc (sizeof (struct tagged_tu_seen_cache));
905   tu->next = tagged_tu_seen_base;
906   tu->t1 = t1;
907   tu->t2 = t2;
908 
909   tagged_tu_seen_base = tu;
910 
911   /* The C standard says that two structures in different translation
912      units are compatible with each other only if the types of their
913      fields are compatible (among other things).  We assume that they
914      are compatible until proven otherwise when building the cache.
915      An example where this can occur is:
916      struct a
917      {
918        struct a *next;
919      };
920      If we are comparing this against a similar struct in another TU,
921      and did not assume they were compatible, we end up with an infinite
922      loop.  */
923   tu->val = 1;
924   return tu;
925 }
926 
927 /* Free the seen types until we get to TU_TIL. */
928 
929 static void
free_all_tagged_tu_seen_up_to(const struct tagged_tu_seen_cache * tu_til)930 free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
931 {
932   const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
933   while (tu != tu_til)
934     {
935       struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
936       tu = tu1->next;
937       free (tu1);
938     }
939   tagged_tu_seen_base = tu_til;
940 }
941 
942 /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
943    compatible.  If the two types are not the same (which has been
944    checked earlier), this can only happen when multiple translation
945    units are being compiled.  See C99 6.2.7 paragraph 1 for the exact
946    rules.  */
947 
948 static int
tagged_types_tu_compatible_p(tree t1,tree t2)949 tagged_types_tu_compatible_p (tree t1, tree t2)
950 {
951   tree s1, s2;
952   bool needs_warning = false;
953 
954   /* We have to verify that the tags of the types are the same.  This
955      is harder than it looks because this may be a typedef, so we have
956      to go look at the original type.  It may even be a typedef of a
957      typedef...
958      In the case of compiler-created builtin structs the TYPE_DECL
959      may be a dummy, with no DECL_ORIGINAL_TYPE.  Don't fault.  */
960   while (TYPE_NAME (t1)
961 	 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
962 	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
963     t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
964 
965   while (TYPE_NAME (t2)
966 	 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
967 	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
968     t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
969 
970   /* C90 didn't have the requirement that the two tags be the same.  */
971   if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
972     return 0;
973 
974   /* C90 didn't say what happened if one or both of the types were
975      incomplete; we choose to follow C99 rules here, which is that they
976      are compatible.  */
977   if (TYPE_SIZE (t1) == NULL
978       || TYPE_SIZE (t2) == NULL)
979     return 1;
980 
981   {
982     const struct tagged_tu_seen_cache * tts_i;
983     for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
984       if (tts_i->t1 == t1 && tts_i->t2 == t2)
985 	return tts_i->val;
986   }
987 
988   switch (TREE_CODE (t1))
989     {
990     case ENUMERAL_TYPE:
991       {
992 	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
993         /* Speed up the case where the type values are in the same order.  */
994         tree tv1 = TYPE_VALUES (t1);
995         tree tv2 = TYPE_VALUES (t2);
996 
997         if (tv1 == tv2)
998 	  {
999 	    return 1;
1000 	  }
1001 
1002         for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1003           {
1004             if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1005               break;
1006             if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1007 	      {
1008 	        tu->val = 0;
1009 		return 0;
1010 	      }
1011           }
1012 
1013         if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1014 	  {
1015 	    return 1;
1016 	  }
1017         if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1018 	  {
1019 	    tu->val = 0;
1020 	    return 0;
1021 	  }
1022 
1023 	if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1024 	  {
1025 	    tu->val = 0;
1026 	    return 0;
1027 	  }
1028 
1029 	for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1030 	  {
1031 	    s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1032 	    if (s2 == NULL
1033 		|| simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1034 	      {
1035 		tu->val = 0;
1036 		return 0;
1037 	      }
1038 	  }
1039 	return 1;
1040       }
1041 
1042     case UNION_TYPE:
1043       {
1044 	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1045 	if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1046 	  {
1047 	    tu->val = 0;
1048 	    return 0;
1049 	  }
1050 
1051 	/*  Speed up the common case where the fields are in the same order. */
1052 	for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1053 	     s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1054 	  {
1055 	    int result;
1056 
1057 
1058 	    if (DECL_NAME (s1) == NULL
1059 	        || DECL_NAME (s1) != DECL_NAME (s2))
1060 	      break;
1061 	    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1062 	    if (result == 0)
1063 	      {
1064 		tu->val = 0;
1065 		return 0;
1066 	      }
1067 	    if (result == 2)
1068 	      needs_warning = true;
1069 
1070 	    if (TREE_CODE (s1) == FIELD_DECL
1071 		&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1072 				     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1073 	      {
1074 		tu->val = 0;
1075 		return 0;
1076 	      }
1077 	  }
1078 	if (!s1 && !s2)
1079 	  {
1080 	    tu->val = needs_warning ? 2 : 1;
1081 	    return tu->val;
1082 	  }
1083 
1084 	for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1085 	  {
1086 	    bool ok = false;
1087 
1088 	    if (DECL_NAME (s1) != NULL)
1089 	      for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1090 		if (DECL_NAME (s1) == DECL_NAME (s2))
1091 		  {
1092 		    int result;
1093 		    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1094 		    if (result == 0)
1095 		      {
1096 			tu->val = 0;
1097 			return 0;
1098 		      }
1099 		    if (result == 2)
1100 		      needs_warning = true;
1101 
1102 		    if (TREE_CODE (s1) == FIELD_DECL
1103 			&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1104 					     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1105 		      break;
1106 
1107 		    ok = true;
1108 		    break;
1109 		  }
1110 	    if (!ok)
1111 	      {
1112 		tu->val = 0;
1113 		return 0;
1114 	      }
1115 	  }
1116 	tu->val = needs_warning ? 2 : 10;
1117 	return tu->val;
1118       }
1119 
1120     case RECORD_TYPE:
1121       {
1122         struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1123 
1124 	for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1125 	     s1 && s2;
1126 	     s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1127 	  {
1128 	    int result;
1129 	    if (TREE_CODE (s1) != TREE_CODE (s2)
1130 		|| DECL_NAME (s1) != DECL_NAME (s2))
1131 	      break;
1132 	    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1133 	    if (result == 0)
1134 	      break;
1135 	    if (result == 2)
1136 	      needs_warning = true;
1137 
1138 	    if (TREE_CODE (s1) == FIELD_DECL
1139 		&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1140 				     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1141 	      break;
1142 	  }
1143 	if (s1 && s2)
1144 	  tu->val = 0;
1145 	else
1146 	  tu->val = needs_warning ? 2 : 1;
1147 	return tu->val;
1148       }
1149 
1150     default:
1151       gcc_unreachable ();
1152     }
1153 }
1154 
1155 /* Return 1 if two function types F1 and F2 are compatible.
1156    If either type specifies no argument types,
1157    the other must specify a fixed number of self-promoting arg types.
1158    Otherwise, if one type specifies only the number of arguments,
1159    the other must specify that number of self-promoting arg types.
1160    Otherwise, the argument types must match.  */
1161 
1162 static int
function_types_compatible_p(tree f1,tree f2)1163 function_types_compatible_p (tree f1, tree f2)
1164 {
1165   tree args1, args2;
1166   /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1167   int val = 1;
1168   int val1;
1169   tree ret1, ret2;
1170 
1171   ret1 = TREE_TYPE (f1);
1172   ret2 = TREE_TYPE (f2);
1173 
1174   /* 'volatile' qualifiers on a function's return type used to mean
1175      the function is noreturn.  */
1176   if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1177     pedwarn ("function return types not compatible due to %<volatile%>");
1178   if (TYPE_VOLATILE (ret1))
1179     ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1180 				 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1181   if (TYPE_VOLATILE (ret2))
1182     ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1183 				 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1184   val = comptypes_internal (ret1, ret2);
1185   if (val == 0)
1186     return 0;
1187 
1188   args1 = TYPE_ARG_TYPES (f1);
1189   args2 = TYPE_ARG_TYPES (f2);
1190 
1191   /* An unspecified parmlist matches any specified parmlist
1192      whose argument types don't need default promotions.  */
1193 
1194   if (args1 == 0)
1195     {
1196       if (!self_promoting_args_p (args2))
1197 	return 0;
1198       /* If one of these types comes from a non-prototype fn definition,
1199 	 compare that with the other type's arglist.
1200 	 If they don't match, ask for a warning (but no error).  */
1201       if (TYPE_ACTUAL_ARG_TYPES (f1)
1202 	  && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1203 	val = 2;
1204       return val;
1205     }
1206   if (args2 == 0)
1207     {
1208       if (!self_promoting_args_p (args1))
1209 	return 0;
1210       if (TYPE_ACTUAL_ARG_TYPES (f2)
1211 	  && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1212 	val = 2;
1213       return val;
1214     }
1215 
1216   /* Both types have argument lists: compare them and propagate results.  */
1217   val1 = type_lists_compatible_p (args1, args2);
1218   return val1 != 1 ? val1 : val;
1219 }
1220 
1221 /* Check two lists of types for compatibility,
1222    returning 0 for incompatible, 1 for compatible,
1223    or 2 for compatible with warning.  */
1224 
1225 static int
type_lists_compatible_p(tree args1,tree args2)1226 type_lists_compatible_p (tree args1, tree args2)
1227 {
1228   /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1229   int val = 1;
1230   int newval = 0;
1231 
1232   while (1)
1233     {
1234       tree a1, mv1, a2, mv2;
1235       if (args1 == 0 && args2 == 0)
1236 	return val;
1237       /* If one list is shorter than the other,
1238 	 they fail to match.  */
1239       if (args1 == 0 || args2 == 0)
1240 	return 0;
1241       mv1 = a1 = TREE_VALUE (args1);
1242       mv2 = a2 = TREE_VALUE (args2);
1243       if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1244 	mv1 = TYPE_MAIN_VARIANT (mv1);
1245       if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1246 	mv2 = TYPE_MAIN_VARIANT (mv2);
1247       /* A null pointer instead of a type
1248 	 means there is supposed to be an argument
1249 	 but nothing is specified about what type it has.
1250 	 So match anything that self-promotes.  */
1251       if (a1 == 0)
1252 	{
1253 	  if (c_type_promotes_to (a2) != a2)
1254 	    return 0;
1255 	}
1256       else if (a2 == 0)
1257 	{
1258 	  if (c_type_promotes_to (a1) != a1)
1259 	    return 0;
1260 	}
1261       /* If one of the lists has an error marker, ignore this arg.  */
1262       else if (TREE_CODE (a1) == ERROR_MARK
1263 	       || TREE_CODE (a2) == ERROR_MARK)
1264 	;
1265       else if (!(newval = comptypes_internal (mv1, mv2)))
1266 	{
1267 	  /* Allow  wait (union {union wait *u; int *i} *)
1268 	     and  wait (union wait *)  to be compatible.  */
1269 	  if (TREE_CODE (a1) == UNION_TYPE
1270 	      && (TYPE_NAME (a1) == 0
1271 		  || TYPE_TRANSPARENT_UNION (a1))
1272 	      && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1273 	      && tree_int_cst_equal (TYPE_SIZE (a1),
1274 				     TYPE_SIZE (a2)))
1275 	    {
1276 	      tree memb;
1277 	      for (memb = TYPE_FIELDS (a1);
1278 		   memb; memb = TREE_CHAIN (memb))
1279 		{
1280 		  tree mv3 = TREE_TYPE (memb);
1281 		  if (mv3 && mv3 != error_mark_node
1282 		      && TREE_CODE (mv3) != ARRAY_TYPE)
1283 		    mv3 = TYPE_MAIN_VARIANT (mv3);
1284 		  if (comptypes_internal (mv3, mv2))
1285 		    break;
1286 		}
1287 	      if (memb == 0)
1288 		return 0;
1289 	    }
1290 	  else if (TREE_CODE (a2) == UNION_TYPE
1291 		   && (TYPE_NAME (a2) == 0
1292 		       || TYPE_TRANSPARENT_UNION (a2))
1293 		   && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1294 		   && tree_int_cst_equal (TYPE_SIZE (a2),
1295 					  TYPE_SIZE (a1)))
1296 	    {
1297 	      tree memb;
1298 	      for (memb = TYPE_FIELDS (a2);
1299 		   memb; memb = TREE_CHAIN (memb))
1300 		{
1301 		  tree mv3 = TREE_TYPE (memb);
1302 		  if (mv3 && mv3 != error_mark_node
1303 		      && TREE_CODE (mv3) != ARRAY_TYPE)
1304 		    mv3 = TYPE_MAIN_VARIANT (mv3);
1305 		  if (comptypes_internal (mv3, mv1))
1306 		    break;
1307 		}
1308 	      if (memb == 0)
1309 		return 0;
1310 	    }
1311 	  else
1312 	    return 0;
1313 	}
1314 
1315       /* comptypes said ok, but record if it said to warn.  */
1316       if (newval > val)
1317 	val = newval;
1318 
1319       args1 = TREE_CHAIN (args1);
1320       args2 = TREE_CHAIN (args2);
1321     }
1322 }
1323 
1324 /* Compute the size to increment a pointer by.  */
1325 
1326 static tree
c_size_in_bytes(tree type)1327 c_size_in_bytes (tree type)
1328 {
1329   enum tree_code code = TREE_CODE (type);
1330 
1331   if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1332     return size_one_node;
1333 
1334   if (!COMPLETE_OR_VOID_TYPE_P (type))
1335     {
1336       error ("arithmetic on pointer to an incomplete type");
1337       return size_one_node;
1338     }
1339 
1340   /* Convert in case a char is more than one unit.  */
1341   return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1342 		     size_int (TYPE_PRECISION (char_type_node)
1343 			       / BITS_PER_UNIT));
1344 }
1345 
1346 /* Return either DECL or its known constant value (if it has one).  */
1347 
1348 tree
decl_constant_value(tree decl)1349 decl_constant_value (tree decl)
1350 {
1351   if (/* Don't change a variable array bound or initial value to a constant
1352 	 in a place where a variable is invalid.  Note that DECL_INITIAL
1353 	 isn't valid for a PARM_DECL.  */
1354       current_function_decl != 0
1355       && TREE_CODE (decl) != PARM_DECL
1356       && !TREE_THIS_VOLATILE (decl)
1357       && TREE_READONLY (decl)
1358       && DECL_INITIAL (decl) != 0
1359       && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1360       /* This is invalid if initial value is not constant.
1361 	 If it has either a function call, a memory reference,
1362 	 or a variable, then re-evaluating it could give different results.  */
1363       && TREE_CONSTANT (DECL_INITIAL (decl))
1364       /* Check for cases where this is sub-optimal, even though valid.  */
1365       && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1366     return DECL_INITIAL (decl);
1367   return decl;
1368 }
1369 
1370 /* Return either DECL or its known constant value (if it has one), but
1371    return DECL if pedantic or DECL has mode BLKmode.  This is for
1372    bug-compatibility with the old behavior of decl_constant_value
1373    (before GCC 3.0); every use of this function is a bug and it should
1374    be removed before GCC 3.1.  It is not appropriate to use pedantic
1375    in a way that affects optimization, and BLKmode is probably not the
1376    right test for avoiding misoptimizations either.  */
1377 
1378 static tree
decl_constant_value_for_broken_optimization(tree decl)1379 decl_constant_value_for_broken_optimization (tree decl)
1380 {
1381   tree ret;
1382 
1383   if (pedantic || DECL_MODE (decl) == BLKmode)
1384     return decl;
1385 
1386   ret = decl_constant_value (decl);
1387   /* Avoid unwanted tree sharing between the initializer and current
1388      function's body where the tree can be modified e.g. by the
1389      gimplifier.  */
1390   if (ret != decl && TREE_STATIC (decl))
1391     ret = unshare_expr (ret);
1392   return ret;
1393 }
1394 
1395 /* Convert the array expression EXP to a pointer.  */
1396 static tree
array_to_pointer_conversion(tree exp)1397 array_to_pointer_conversion (tree exp)
1398 {
1399   tree orig_exp = exp;
1400   tree type = TREE_TYPE (exp);
1401   tree adr;
1402   tree restype = TREE_TYPE (type);
1403   tree ptrtype;
1404 
1405   gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1406 
1407   STRIP_TYPE_NOPS (exp);
1408 
1409   if (TREE_NO_WARNING (orig_exp))
1410     TREE_NO_WARNING (exp) = 1;
1411 
1412   ptrtype = build_pointer_type (restype);
1413 
1414   if (TREE_CODE (exp) == INDIRECT_REF)
1415     return convert (ptrtype, TREE_OPERAND (exp, 0));
1416 
1417   if (TREE_CODE (exp) == VAR_DECL)
1418     {
1419       /* We are making an ADDR_EXPR of ptrtype.  This is a valid
1420 	 ADDR_EXPR because it's the best way of representing what
1421 	 happens in C when we take the address of an array and place
1422 	 it in a pointer to the element type.  */
1423       adr = build1 (ADDR_EXPR, ptrtype, exp);
1424       if (!c_mark_addressable (exp))
1425 	return error_mark_node;
1426       TREE_SIDE_EFFECTS (adr) = 0;   /* Default would be, same as EXP.  */
1427       return adr;
1428     }
1429 
1430   /* This way is better for a COMPONENT_REF since it can
1431      simplify the offset for a component.  */
1432   adr = build_unary_op (ADDR_EXPR, exp, 1);
1433   return convert (ptrtype, adr);
1434 }
1435 
1436 /* Convert the function expression EXP to a pointer.  */
1437 static tree
function_to_pointer_conversion(tree exp)1438 function_to_pointer_conversion (tree exp)
1439 {
1440   tree orig_exp = exp;
1441 
1442   gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1443 
1444   STRIP_TYPE_NOPS (exp);
1445 
1446   if (TREE_NO_WARNING (orig_exp))
1447     TREE_NO_WARNING (exp) = 1;
1448 
1449   return build_unary_op (ADDR_EXPR, exp, 0);
1450 }
1451 
1452 /* Perform the default conversion of arrays and functions to pointers.
1453    Return the result of converting EXP.  For any other expression, just
1454    return EXP after removing NOPs.  */
1455 
1456 struct c_expr
default_function_array_conversion(struct c_expr exp)1457 default_function_array_conversion (struct c_expr exp)
1458 {
1459   tree orig_exp = exp.value;
1460   tree type = TREE_TYPE (exp.value);
1461   enum tree_code code = TREE_CODE (type);
1462 
1463   switch (code)
1464     {
1465     case ARRAY_TYPE:
1466       {
1467 	bool not_lvalue = false;
1468 	bool lvalue_array_p;
1469 
1470 	while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1471 		|| TREE_CODE (exp.value) == NOP_EXPR)
1472 	       && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1473 	  {
1474 	    if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1475 	      not_lvalue = true;
1476 	    exp.value = TREE_OPERAND (exp.value, 0);
1477 	  }
1478 
1479 	if (TREE_NO_WARNING (orig_exp))
1480 	  TREE_NO_WARNING (exp.value) = 1;
1481 
1482 	lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1483 	if (!flag_isoc99 && !lvalue_array_p)
1484 	  {
1485 	    /* Before C99, non-lvalue arrays do not decay to pointers.
1486 	       Normally, using such an array would be invalid; but it can
1487 	       be used correctly inside sizeof or as a statement expression.
1488 	       Thus, do not give an error here; an error will result later.  */
1489 	    return exp;
1490 	  }
1491 
1492 	exp.value = array_to_pointer_conversion (exp.value);
1493       }
1494       break;
1495     case FUNCTION_TYPE:
1496       exp.value = function_to_pointer_conversion (exp.value);
1497       break;
1498     default:
1499       STRIP_TYPE_NOPS (exp.value);
1500       if (TREE_NO_WARNING (orig_exp))
1501 	TREE_NO_WARNING (exp.value) = 1;
1502       break;
1503     }
1504 
1505   return exp;
1506 }
1507 
1508 
1509 /* EXP is an expression of integer type.  Apply the integer promotions
1510    to it and return the promoted value.  */
1511 
1512 tree
perform_integral_promotions(tree exp)1513 perform_integral_promotions (tree exp)
1514 {
1515   tree type = TREE_TYPE (exp);
1516   enum tree_code code = TREE_CODE (type);
1517 
1518   gcc_assert (INTEGRAL_TYPE_P (type));
1519 
1520   /* Normally convert enums to int,
1521      but convert wide enums to something wider.  */
1522   if (code == ENUMERAL_TYPE)
1523     {
1524       type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1525 					  TYPE_PRECISION (integer_type_node)),
1526 				     ((TYPE_PRECISION (type)
1527 				       >= TYPE_PRECISION (integer_type_node))
1528 				      && TYPE_UNSIGNED (type)));
1529 
1530       return convert (type, exp);
1531     }
1532 
1533   /* ??? This should no longer be needed now bit-fields have their
1534      proper types.  */
1535   if (TREE_CODE (exp) == COMPONENT_REF
1536       && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1537       /* If it's thinner than an int, promote it like a
1538 	 c_promoting_integer_type_p, otherwise leave it alone.  */
1539       && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1540 			       TYPE_PRECISION (integer_type_node)))
1541     return convert (integer_type_node, exp);
1542 
1543   if (c_promoting_integer_type_p (type))
1544     {
1545       /* Preserve unsignedness if not really getting any wider.  */
1546       if (TYPE_UNSIGNED (type)
1547 	  && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1548 	return convert (unsigned_type_node, exp);
1549 
1550       return convert (integer_type_node, exp);
1551     }
1552 
1553   return exp;
1554 }
1555 
1556 
1557 /* Perform default promotions for C data used in expressions.
1558    Enumeral types or short or char are converted to int.
1559    In addition, manifest constants symbols are replaced by their values.  */
1560 
1561 tree
default_conversion(tree exp)1562 default_conversion (tree exp)
1563 {
1564   tree orig_exp;
1565   tree type = TREE_TYPE (exp);
1566   enum tree_code code = TREE_CODE (type);
1567 
1568   /* Functions and arrays have been converted during parsing.  */
1569   gcc_assert (code != FUNCTION_TYPE);
1570   if (code == ARRAY_TYPE)
1571     return exp;
1572 
1573   /* Constants can be used directly unless they're not loadable.  */
1574   if (TREE_CODE (exp) == CONST_DECL)
1575     exp = DECL_INITIAL (exp);
1576 
1577   /* Replace a nonvolatile const static variable with its value unless
1578      it is an array, in which case we must be sure that taking the
1579      address of the array produces consistent results.  */
1580   else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1581     {
1582       exp = decl_constant_value_for_broken_optimization (exp);
1583       type = TREE_TYPE (exp);
1584     }
1585 
1586   /* Strip no-op conversions.  */
1587   orig_exp = exp;
1588   STRIP_TYPE_NOPS (exp);
1589 
1590   if (TREE_NO_WARNING (orig_exp))
1591     TREE_NO_WARNING (exp) = 1;
1592 
1593   if (INTEGRAL_TYPE_P (type))
1594     return perform_integral_promotions (exp);
1595 
1596   if (code == VOID_TYPE)
1597     {
1598       error ("void value not ignored as it ought to be");
1599       return error_mark_node;
1600     }
1601   return exp;
1602 }
1603 
1604 /* Look up COMPONENT in a structure or union DECL.
1605 
1606    If the component name is not found, returns NULL_TREE.  Otherwise,
1607    the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1608    stepping down the chain to the component, which is in the last
1609    TREE_VALUE of the list.  Normally the list is of length one, but if
1610    the component is embedded within (nested) anonymous structures or
1611    unions, the list steps down the chain to the component.  */
1612 
1613 static tree
lookup_field(tree decl,tree component)1614 lookup_field (tree decl, tree component)
1615 {
1616   tree type = TREE_TYPE (decl);
1617   tree field;
1618 
1619   /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1620      to the field elements.  Use a binary search on this array to quickly
1621      find the element.  Otherwise, do a linear search.  TYPE_LANG_SPECIFIC
1622      will always be set for structures which have many elements.  */
1623 
1624   if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1625     {
1626       int bot, top, half;
1627       tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1628 
1629       field = TYPE_FIELDS (type);
1630       bot = 0;
1631       top = TYPE_LANG_SPECIFIC (type)->s->len;
1632       while (top - bot > 1)
1633 	{
1634 	  half = (top - bot + 1) >> 1;
1635 	  field = field_array[bot+half];
1636 
1637 	  if (DECL_NAME (field) == NULL_TREE)
1638 	    {
1639 	      /* Step through all anon unions in linear fashion.  */
1640 	      while (DECL_NAME (field_array[bot]) == NULL_TREE)
1641 		{
1642 		  field = field_array[bot++];
1643 		  if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1644 		      || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1645 		    {
1646 		      tree anon = lookup_field (field, component);
1647 
1648 		      if (anon)
1649 			return tree_cons (NULL_TREE, field, anon);
1650 		    }
1651 		}
1652 
1653 	      /* Entire record is only anon unions.  */
1654 	      if (bot > top)
1655 		return NULL_TREE;
1656 
1657 	      /* Restart the binary search, with new lower bound.  */
1658 	      continue;
1659 	    }
1660 
1661 	  if (DECL_NAME (field) == component)
1662 	    break;
1663 	  if (DECL_NAME (field) < component)
1664 	    bot += half;
1665 	  else
1666 	    top = bot + half;
1667 	}
1668 
1669       if (DECL_NAME (field_array[bot]) == component)
1670 	field = field_array[bot];
1671       else if (DECL_NAME (field) != component)
1672 	return NULL_TREE;
1673     }
1674   else
1675     {
1676       for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1677 	{
1678 	  if (DECL_NAME (field) == NULL_TREE
1679 	      && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1680 		  || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1681 	    {
1682 	      tree anon = lookup_field (field, component);
1683 
1684 	      if (anon)
1685 		return tree_cons (NULL_TREE, field, anon);
1686 	    }
1687 
1688 	  if (DECL_NAME (field) == component)
1689 	    break;
1690 	}
1691 
1692       if (field == NULL_TREE)
1693 	return NULL_TREE;
1694     }
1695 
1696   return tree_cons (NULL_TREE, field, NULL_TREE);
1697 }
1698 
1699 /* Make an expression to refer to the COMPONENT field of
1700    structure or union value DATUM.  COMPONENT is an IDENTIFIER_NODE.  */
1701 
1702 tree
build_component_ref(tree datum,tree component)1703 build_component_ref (tree datum, tree component)
1704 {
1705   tree type = TREE_TYPE (datum);
1706   enum tree_code code = TREE_CODE (type);
1707   tree field = NULL;
1708   tree ref;
1709 
1710   if (!objc_is_public (datum, component))
1711     return error_mark_node;
1712 
1713   /* See if there is a field or component with name COMPONENT.  */
1714 
1715   if (code == RECORD_TYPE || code == UNION_TYPE)
1716     {
1717       if (!COMPLETE_TYPE_P (type))
1718 	{
1719 	  c_incomplete_type_error (NULL_TREE, type);
1720 	  return error_mark_node;
1721 	}
1722 
1723       field = lookup_field (datum, component);
1724 
1725       if (!field)
1726 	{
1727 	  error ("%qT has no member named %qE", type, component);
1728 	  return error_mark_node;
1729 	}
1730 
1731       /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1732 	 This might be better solved in future the way the C++ front
1733 	 end does it - by giving the anonymous entities each a
1734 	 separate name and type, and then have build_component_ref
1735 	 recursively call itself.  We can't do that here.  */
1736       do
1737 	{
1738 	  tree subdatum = TREE_VALUE (field);
1739 
1740 	  if (TREE_TYPE (subdatum) == error_mark_node)
1741 	    return error_mark_node;
1742 
1743 	  ref = build3 (COMPONENT_REF, TREE_TYPE (subdatum), datum, subdatum,
1744 			NULL_TREE);
1745 	  if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1746 	    TREE_READONLY (ref) = 1;
1747 	  if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1748 	    TREE_THIS_VOLATILE (ref) = 1;
1749 
1750 	  if (TREE_DEPRECATED (subdatum))
1751 	    warn_deprecated_use (subdatum);
1752 
1753 	  datum = ref;
1754 
1755 	  field = TREE_CHAIN (field);
1756 	}
1757       while (field);
1758 
1759       return ref;
1760     }
1761   else if (code != ERROR_MARK)
1762     error ("request for member %qE in something not a structure or union",
1763 	   component);
1764 
1765   return error_mark_node;
1766 }
1767 
1768 /* Given an expression PTR for a pointer, return an expression
1769    for the value pointed to.
1770    ERRORSTRING is the name of the operator to appear in error messages.  */
1771 
1772 tree
build_indirect_ref(tree ptr,const char * errorstring)1773 build_indirect_ref (tree ptr, const char *errorstring)
1774 {
1775   tree pointer = default_conversion (ptr);
1776   tree type = TREE_TYPE (pointer);
1777 
1778   if (TREE_CODE (type) == POINTER_TYPE)
1779     {
1780       if (TREE_CODE (pointer) == ADDR_EXPR
1781 	  && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1782 	      == TREE_TYPE (type)))
1783 	return TREE_OPERAND (pointer, 0);
1784       else
1785 	{
1786 	  tree t = TREE_TYPE (type);
1787 	  tree ref;
1788 
1789 	  ref = build1 (INDIRECT_REF, t, pointer);
1790 
1791 	  if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1792 	    {
1793 	      error ("dereferencing pointer to incomplete type");
1794 	      return error_mark_node;
1795 	    }
1796 	  if (VOID_TYPE_P (t) && skip_evaluation == 0)
1797 	    warning (0, "dereferencing %<void *%> pointer");
1798 
1799 	  /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1800 	     so that we get the proper error message if the result is used
1801 	     to assign to.  Also, &* is supposed to be a no-op.
1802 	     And ANSI C seems to specify that the type of the result
1803 	     should be the const type.  */
1804 	  /* A de-reference of a pointer to const is not a const.  It is valid
1805 	     to change it via some other pointer.  */
1806 	  TREE_READONLY (ref) = TYPE_READONLY (t);
1807 	  TREE_SIDE_EFFECTS (ref)
1808 	    = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1809 	  TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1810 	  return ref;
1811 	}
1812     }
1813   else if (TREE_CODE (pointer) != ERROR_MARK)
1814     error ("invalid type argument of %qs", errorstring);
1815   return error_mark_node;
1816 }
1817 
1818 /* This handles expressions of the form "a[i]", which denotes
1819    an array reference.
1820 
1821    This is logically equivalent in C to *(a+i), but we may do it differently.
1822    If A is a variable or a member, we generate a primitive ARRAY_REF.
1823    This avoids forcing the array out of registers, and can work on
1824    arrays that are not lvalues (for example, members of structures returned
1825    by functions).  */
1826 
1827 tree
build_array_ref(tree array,tree index)1828 build_array_ref (tree array, tree index)
1829 {
1830   bool swapped = false;
1831   if (TREE_TYPE (array) == error_mark_node
1832       || TREE_TYPE (index) == error_mark_node)
1833     return error_mark_node;
1834 
1835   if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
1836       && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
1837     {
1838       tree temp;
1839       if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
1840 	  && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
1841 	{
1842 	  error ("subscripted value is neither array nor pointer");
1843 	  return error_mark_node;
1844 	}
1845       temp = array;
1846       array = index;
1847       index = temp;
1848       swapped = true;
1849     }
1850 
1851   if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
1852     {
1853       error ("array subscript is not an integer");
1854       return error_mark_node;
1855     }
1856 
1857   if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
1858     {
1859       error ("subscripted value is pointer to function");
1860       return error_mark_node;
1861     }
1862 
1863   /* Subscripting with type char is likely to lose on a machine where
1864      chars are signed.  So warn on any machine, but optionally.  Don't
1865      warn for unsigned char since that type is safe.  Don't warn for
1866      signed char because anyone who uses that must have done so
1867      deliberately.  ??? Existing practice has also been to warn only
1868      when the char index is syntactically the index, not for
1869      char[array].  */
1870   if (!swapped
1871       && TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
1872     warning (OPT_Wchar_subscripts, "array subscript has type %<char%>");
1873 
1874   /* Apply default promotions *after* noticing character types.  */
1875   index = default_conversion (index);
1876 
1877   gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
1878 
1879   if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
1880     {
1881       tree rval, type;
1882 
1883       /* An array that is indexed by a non-constant
1884 	 cannot be stored in a register; we must be able to do
1885 	 address arithmetic on its address.
1886 	 Likewise an array of elements of variable size.  */
1887       if (TREE_CODE (index) != INTEGER_CST
1888 	  || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1889 	      && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1890 	{
1891 	  if (!c_mark_addressable (array))
1892 	    return error_mark_node;
1893 	}
1894       /* An array that is indexed by a constant value which is not within
1895 	 the array bounds cannot be stored in a register either; because we
1896 	 would get a crash in store_bit_field/extract_bit_field when trying
1897 	 to access a non-existent part of the register.  */
1898       if (TREE_CODE (index) == INTEGER_CST
1899 	  && TYPE_DOMAIN (TREE_TYPE (array))
1900 	  && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
1901 	{
1902 	  if (!c_mark_addressable (array))
1903 	    return error_mark_node;
1904 	}
1905 
1906       if (pedantic)
1907 	{
1908 	  tree foo = array;
1909 	  while (TREE_CODE (foo) == COMPONENT_REF)
1910 	    foo = TREE_OPERAND (foo, 0);
1911 	  if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
1912 	    pedwarn ("ISO C forbids subscripting %<register%> array");
1913 	  else if (!flag_isoc99 && !lvalue_p (foo))
1914 	    pedwarn ("ISO C90 forbids subscripting non-lvalue array");
1915 	}
1916 
1917       type = TREE_TYPE (TREE_TYPE (array));
1918       if (TREE_CODE (type) != ARRAY_TYPE)
1919 	type = TYPE_MAIN_VARIANT (type);
1920       rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
1921       /* Array ref is const/volatile if the array elements are
1922          or if the array is.  */
1923       TREE_READONLY (rval)
1924 	|= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
1925 	    | TREE_READONLY (array));
1926       TREE_SIDE_EFFECTS (rval)
1927 	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1928 	    | TREE_SIDE_EFFECTS (array));
1929       TREE_THIS_VOLATILE (rval)
1930 	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1931 	    /* This was added by rms on 16 Nov 91.
1932 	       It fixes  vol struct foo *a;  a->elts[1]
1933 	       in an inline function.
1934 	       Hope it doesn't break something else.  */
1935 	    | TREE_THIS_VOLATILE (array));
1936       return require_complete_type (fold (rval));
1937     }
1938   else
1939     {
1940       tree ar = default_conversion (array);
1941 
1942       if (ar == error_mark_node)
1943 	return ar;
1944 
1945       gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
1946       gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
1947 
1948       return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
1949 				 "array indexing");
1950     }
1951 }
1952 
1953 /* Build an external reference to identifier ID.  FUN indicates
1954    whether this will be used for a function call.  LOC is the source
1955    location of the identifier.  */
1956 tree
build_external_ref(tree id,int fun,location_t loc)1957 build_external_ref (tree id, int fun, location_t loc)
1958 {
1959   tree ref;
1960   tree decl = lookup_name (id);
1961 
1962   /* In Objective-C, an instance variable (ivar) may be preferred to
1963      whatever lookup_name() found.  */
1964   decl = objc_lookup_ivar (decl, id);
1965 
1966   if (decl && decl != error_mark_node)
1967     ref = decl;
1968   else if (fun)
1969     /* Implicit function declaration.  */
1970     ref = implicitly_declare (id);
1971   else if (decl == error_mark_node)
1972     /* Don't complain about something that's already been
1973        complained about.  */
1974     return error_mark_node;
1975   else
1976     {
1977       undeclared_variable (id, loc);
1978       return error_mark_node;
1979     }
1980 
1981   if (TREE_TYPE (ref) == error_mark_node)
1982     return error_mark_node;
1983 
1984   if (TREE_DEPRECATED (ref))
1985     warn_deprecated_use (ref);
1986 
1987   if (!skip_evaluation)
1988     assemble_external (ref);
1989   TREE_USED (ref) = 1;
1990 
1991   if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
1992     {
1993       if (!in_sizeof && !in_typeof)
1994 	C_DECL_USED (ref) = 1;
1995       else if (DECL_INITIAL (ref) == 0
1996 	       && DECL_EXTERNAL (ref)
1997 	       && !TREE_PUBLIC (ref))
1998 	record_maybe_used_decl (ref);
1999     }
2000 
2001   if (TREE_CODE (ref) == CONST_DECL)
2002     {
2003       ref = DECL_INITIAL (ref);
2004       TREE_CONSTANT (ref) = 1;
2005       TREE_INVARIANT (ref) = 1;
2006     }
2007   else if (current_function_decl != 0
2008 	   && !DECL_FILE_SCOPE_P (current_function_decl)
2009 	   && (TREE_CODE (ref) == VAR_DECL
2010 	       || TREE_CODE (ref) == PARM_DECL
2011 	       || TREE_CODE (ref) == FUNCTION_DECL))
2012     {
2013       tree context = decl_function_context (ref);
2014 
2015       if (context != 0 && context != current_function_decl)
2016 	DECL_NONLOCAL (ref) = 1;
2017     }
2018 
2019   return ref;
2020 }
2021 
2022 /* Record details of decls possibly used inside sizeof or typeof.  */
2023 struct maybe_used_decl
2024 {
2025   /* The decl.  */
2026   tree decl;
2027   /* The level seen at (in_sizeof + in_typeof).  */
2028   int level;
2029   /* The next one at this level or above, or NULL.  */
2030   struct maybe_used_decl *next;
2031 };
2032 
2033 static struct maybe_used_decl *maybe_used_decls;
2034 
2035 /* Record that DECL, an undefined static function reference seen
2036    inside sizeof or typeof, might be used if the operand of sizeof is
2037    a VLA type or the operand of typeof is a variably modified
2038    type.  */
2039 
2040 static void
record_maybe_used_decl(tree decl)2041 record_maybe_used_decl (tree decl)
2042 {
2043   struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2044   t->decl = decl;
2045   t->level = in_sizeof + in_typeof;
2046   t->next = maybe_used_decls;
2047   maybe_used_decls = t;
2048 }
2049 
2050 /* Pop the stack of decls possibly used inside sizeof or typeof.  If
2051    USED is false, just discard them.  If it is true, mark them used
2052    (if no longer inside sizeof or typeof) or move them to the next
2053    level up (if still inside sizeof or typeof).  */
2054 
2055 void
pop_maybe_used(bool used)2056 pop_maybe_used (bool used)
2057 {
2058   struct maybe_used_decl *p = maybe_used_decls;
2059   int cur_level = in_sizeof + in_typeof;
2060   while (p && p->level > cur_level)
2061     {
2062       if (used)
2063 	{
2064 	  if (cur_level == 0)
2065 	    C_DECL_USED (p->decl) = 1;
2066 	  else
2067 	    p->level = cur_level;
2068 	}
2069       p = p->next;
2070     }
2071   if (!used || cur_level == 0)
2072     maybe_used_decls = p;
2073 }
2074 
2075 /* Return the result of sizeof applied to EXPR.  */
2076 
2077 struct c_expr
c_expr_sizeof_expr(struct c_expr expr)2078 c_expr_sizeof_expr (struct c_expr expr)
2079 {
2080   struct c_expr ret;
2081   if (expr.value == error_mark_node)
2082     {
2083       ret.value = error_mark_node;
2084       ret.original_code = ERROR_MARK;
2085       pop_maybe_used (false);
2086     }
2087   else
2088     {
2089       ret.value = c_sizeof (TREE_TYPE (expr.value));
2090       ret.original_code = ERROR_MARK;
2091       pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2092     }
2093   return ret;
2094 }
2095 
2096 /* Return the result of sizeof applied to T, a structure for the type
2097    name passed to sizeof (rather than the type itself).  */
2098 
2099 struct c_expr
c_expr_sizeof_type(struct c_type_name * t)2100 c_expr_sizeof_type (struct c_type_name *t)
2101 {
2102   tree type;
2103   struct c_expr ret;
2104   type = groktypename (t);
2105   ret.value = c_sizeof (type);
2106   ret.original_code = ERROR_MARK;
2107   pop_maybe_used (type != error_mark_node
2108 		  ? C_TYPE_VARIABLE_SIZE (type) : false);
2109   return ret;
2110 }
2111 
2112 /* Build a function call to function FUNCTION with parameters PARAMS.
2113    PARAMS is a list--a chain of TREE_LIST nodes--in which the
2114    TREE_VALUE of each node is a parameter-expression.
2115    FUNCTION's data type may be a function type or a pointer-to-function.  */
2116 
2117 tree
build_function_call(tree function,tree params)2118 build_function_call (tree function, tree params)
2119 {
2120   tree fntype, fundecl = 0;
2121   tree coerced_params;
2122   tree name = NULL_TREE, result;
2123   tree tem;
2124 
2125   /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
2126   STRIP_TYPE_NOPS (function);
2127 
2128   /* Convert anything with function type to a pointer-to-function.  */
2129   if (TREE_CODE (function) == FUNCTION_DECL)
2130     {
2131       /* Implement type-directed function overloading for builtins.
2132 	 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2133 	 handle all the type checking.  The result is a complete expression
2134 	 that implements this function call.  */
2135       tem = resolve_overloaded_builtin (function, params);
2136       if (tem)
2137 	return tem;
2138 
2139       name = DECL_NAME (function);
2140       fundecl = function;
2141     }
2142   if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2143     function = function_to_pointer_conversion (function);
2144 
2145   /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2146      expressions, like those used for ObjC messenger dispatches.  */
2147   function = objc_rewrite_function_call (function, params);
2148 
2149   fntype = TREE_TYPE (function);
2150 
2151   if (TREE_CODE (fntype) == ERROR_MARK)
2152     return error_mark_node;
2153 
2154   if (!(TREE_CODE (fntype) == POINTER_TYPE
2155 	&& TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2156     {
2157       error ("called object %qE is not a function", function);
2158       return error_mark_node;
2159     }
2160 
2161   if (fundecl && TREE_THIS_VOLATILE (fundecl))
2162     current_function_returns_abnormally = 1;
2163 
2164   /* fntype now gets the type of function pointed to.  */
2165   fntype = TREE_TYPE (fntype);
2166 
2167 #if 0
2168   /* Check that the function is called through a compatible prototype.
2169      If it is not, replace the call by a trap, wrapped up in a compound
2170      expression if necessary.  This has the nice side-effect to prevent
2171      the tree-inliner from generating invalid assignment trees which may
2172      blow up in the RTL expander later.  */
2173   if (TREE_CODE (function) == NOP_EXPR
2174       && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2175       && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2176       && !comptypes (fntype, TREE_TYPE (tem)))
2177     {
2178       tree return_type = TREE_TYPE (fntype);
2179       tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2180 				       NULL_TREE);
2181 
2182       /* This situation leads to run-time undefined behavior.  We can't,
2183 	 therefore, simply error unless we can prove that all possible
2184 	 executions of the program must execute the code.  */
2185       warning (0, "function called through a non-compatible type");
2186 
2187       /* We can, however, treat "undefined" any way we please.
2188 	 Call abort to encourage the user to fix the program.  */
2189       inform ("if this code is reached, the program will abort");
2190 
2191       if (VOID_TYPE_P (return_type))
2192 	return trap;
2193       else
2194 	{
2195 	  tree rhs;
2196 
2197 	  if (AGGREGATE_TYPE_P (return_type))
2198 	    rhs = build_compound_literal (return_type,
2199 					  build_constructor (return_type, 0));
2200 	  else
2201 	    rhs = fold_build1 (NOP_EXPR, return_type, integer_zero_node);
2202 
2203 	  return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2204 	}
2205     }
2206 #endif /* 0 */
2207 
2208   /* Convert the parameters to the types declared in the
2209      function prototype, or apply default promotions.  */
2210 
2211   coerced_params
2212     = convert_arguments (TYPE_ARG_TYPES (fntype), params, function, fundecl);
2213 
2214   if (coerced_params == error_mark_node)
2215     return error_mark_node;
2216 
2217   /* Check that the arguments to the function are valid.  */
2218 
2219   check_function_arguments (TYPE_ATTRIBUTES (fntype), coerced_params,
2220 			    TYPE_ARG_TYPES (fntype));
2221 
2222   if (require_constant_value)
2223     {
2224       result = fold_build3_initializer (CALL_EXPR, TREE_TYPE (fntype),
2225 		      			function, coerced_params, NULL_TREE);
2226 
2227       if (TREE_CONSTANT (result)
2228 	  && (name == NULL_TREE
2229 	      || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2230 	pedwarn_init ("initializer element is not constant");
2231     }
2232   else
2233     result = fold_build3 (CALL_EXPR, TREE_TYPE (fntype),
2234 		      	  function, coerced_params, NULL_TREE);
2235 
2236   if (VOID_TYPE_P (TREE_TYPE (result)))
2237     return result;
2238   return require_complete_type (result);
2239 }
2240 
2241 /* Convert the argument expressions in the list VALUES
2242    to the types in the list TYPELIST.  The result is a list of converted
2243    argument expressions, unless there are too few arguments in which
2244    case it is error_mark_node.
2245 
2246    If TYPELIST is exhausted, or when an element has NULL as its type,
2247    perform the default conversions.
2248 
2249    PARMLIST is the chain of parm decls for the function being called.
2250    It may be 0, if that info is not available.
2251    It is used only for generating error messages.
2252 
2253    FUNCTION is a tree for the called function.  It is used only for
2254    error messages, where it is formatted with %qE.
2255 
2256    This is also where warnings about wrong number of args are generated.
2257 
2258    Both VALUES and the returned value are chains of TREE_LIST nodes
2259    with the elements of the list in the TREE_VALUE slots of those nodes.  */
2260 
2261 static tree
convert_arguments(tree typelist,tree values,tree function,tree fundecl)2262 convert_arguments (tree typelist, tree values, tree function, tree fundecl)
2263 {
2264   tree typetail, valtail;
2265   tree result = NULL;
2266   int parmnum;
2267   tree selector;
2268 
2269   /* Change pointer to function to the function itself for
2270      diagnostics.  */
2271   if (TREE_CODE (function) == ADDR_EXPR
2272       && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2273     function = TREE_OPERAND (function, 0);
2274 
2275   /* Handle an ObjC selector specially for diagnostics.  */
2276   selector = objc_message_selector ();
2277 
2278   /* Scan the given expressions and types, producing individual
2279      converted arguments and pushing them on RESULT in reverse order.  */
2280 
2281   for (valtail = values, typetail = typelist, parmnum = 0;
2282        valtail;
2283        valtail = TREE_CHAIN (valtail), parmnum++)
2284     {
2285       tree type = typetail ? TREE_VALUE (typetail) : 0;
2286       tree val = TREE_VALUE (valtail);
2287       tree rname = function;
2288       int argnum = parmnum + 1;
2289       const char *invalid_func_diag;
2290 
2291       if (type == void_type_node)
2292 	{
2293 	  error ("too many arguments to function %qE", function);
2294 	  break;
2295 	}
2296 
2297       if (selector && argnum > 2)
2298 	{
2299 	  rname = selector;
2300 	  argnum -= 2;
2301 	}
2302 
2303       STRIP_TYPE_NOPS (val);
2304 
2305       val = require_complete_type (val);
2306 
2307       if (type != 0)
2308 	{
2309 	  /* Formal parm type is specified by a function prototype.  */
2310 	  tree parmval;
2311 
2312 	  if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2313 	    {
2314 	      error ("type of formal parameter %d is incomplete", parmnum + 1);
2315 	      parmval = val;
2316 	    }
2317 	  else
2318 	    {
2319 	      /* Optionally warn about conversions that
2320 		 differ from the default conversions.  */
2321 	      if (warn_conversion || warn_traditional)
2322 		{
2323 		  unsigned int formal_prec = TYPE_PRECISION (type);
2324 
2325 		  if (INTEGRAL_TYPE_P (type)
2326 		      && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2327 		    warning (0, "passing argument %d of %qE as integer "
2328 			     "rather than floating due to prototype",
2329 			     argnum, rname);
2330 		  if (INTEGRAL_TYPE_P (type)
2331 		      && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2332 		    warning (0, "passing argument %d of %qE as integer "
2333 			     "rather than complex due to prototype",
2334 			     argnum, rname);
2335 		  else if (TREE_CODE (type) == COMPLEX_TYPE
2336 			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2337 		    warning (0, "passing argument %d of %qE as complex "
2338 			     "rather than floating due to prototype",
2339 			     argnum, rname);
2340 		  else if (TREE_CODE (type) == REAL_TYPE
2341 			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2342 		    warning (0, "passing argument %d of %qE as floating "
2343 			     "rather than integer due to prototype",
2344 			     argnum, rname);
2345 		  else if (TREE_CODE (type) == COMPLEX_TYPE
2346 			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2347 		    warning (0, "passing argument %d of %qE as complex "
2348 			     "rather than integer due to prototype",
2349 			     argnum, rname);
2350 		  else if (TREE_CODE (type) == REAL_TYPE
2351 			   && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2352 		    warning (0, "passing argument %d of %qE as floating "
2353 			     "rather than complex due to prototype",
2354 			     argnum, rname);
2355 		  /* ??? At some point, messages should be written about
2356 		     conversions between complex types, but that's too messy
2357 		     to do now.  */
2358 		  else if (TREE_CODE (type) == REAL_TYPE
2359 			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2360 		    {
2361 		      /* Warn if any argument is passed as `float',
2362 			 since without a prototype it would be `double'.  */
2363 		      if (formal_prec == TYPE_PRECISION (float_type_node))
2364 			warning (0, "passing argument %d of %qE as %<float%> "
2365 				 "rather than %<double%> due to prototype",
2366 				 argnum, rname);
2367 		    }
2368 		  /* Detect integer changing in width or signedness.
2369 		     These warnings are only activated with
2370 		     -Wconversion, not with -Wtraditional.  */
2371 		  else if (warn_conversion && INTEGRAL_TYPE_P (type)
2372 			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2373 		    {
2374 		      tree would_have_been = default_conversion (val);
2375 		      tree type1 = TREE_TYPE (would_have_been);
2376 
2377 		      if (TREE_CODE (type) == ENUMERAL_TYPE
2378 			  && (TYPE_MAIN_VARIANT (type)
2379 			      == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2380 			/* No warning if function asks for enum
2381 			   and the actual arg is that enum type.  */
2382 			;
2383 		      else if (formal_prec != TYPE_PRECISION (type1))
2384 			warning (OPT_Wconversion, "passing argument %d of %qE "
2385 				 "with different width due to prototype",
2386 				 argnum, rname);
2387 		      else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2388 			;
2389 		      /* Don't complain if the formal parameter type
2390 			 is an enum, because we can't tell now whether
2391 			 the value was an enum--even the same enum.  */
2392 		      else if (TREE_CODE (type) == ENUMERAL_TYPE)
2393 			;
2394 		      else if (TREE_CODE (val) == INTEGER_CST
2395 			       && int_fits_type_p (val, type))
2396 			/* Change in signedness doesn't matter
2397 			   if a constant value is unaffected.  */
2398 			;
2399 		      /* If the value is extended from a narrower
2400 			 unsigned type, it doesn't matter whether we
2401 			 pass it as signed or unsigned; the value
2402 			 certainly is the same either way.  */
2403 		      else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2404 			       && TYPE_UNSIGNED (TREE_TYPE (val)))
2405 			;
2406 		      else if (TYPE_UNSIGNED (type))
2407 			warning (OPT_Wconversion, "passing argument %d of %qE "
2408 				 "as unsigned due to prototype",
2409 				 argnum, rname);
2410 		      else
2411 			warning (OPT_Wconversion, "passing argument %d of %qE "
2412 				 "as signed due to prototype", argnum, rname);
2413 		    }
2414 		}
2415 
2416 	      parmval = convert_for_assignment (type, val, ic_argpass,
2417 						fundecl, function,
2418 						parmnum + 1);
2419 
2420 	      if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2421 		  && INTEGRAL_TYPE_P (type)
2422 		  && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2423 		parmval = default_conversion (parmval);
2424 	    }
2425 	  result = tree_cons (NULL_TREE, parmval, result);
2426 	}
2427       else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2428                && (TYPE_PRECISION (TREE_TYPE (val))
2429 	           < TYPE_PRECISION (double_type_node)))
2430 	/* Convert `float' to `double'.  */
2431 	result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
2432       else if ((invalid_func_diag =
2433 	        targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2434 	{
2435 	  error (invalid_func_diag);
2436 	  return error_mark_node;
2437 	}
2438       else
2439 	/* Convert `short' and `char' to full-size `int'.  */
2440 	result = tree_cons (NULL_TREE, default_conversion (val), result);
2441 
2442       if (typetail)
2443 	typetail = TREE_CHAIN (typetail);
2444     }
2445 
2446   if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2447     {
2448       error ("too few arguments to function %qE", function);
2449       return error_mark_node;
2450     }
2451 
2452   return nreverse (result);
2453 }
2454 
2455 /* This is the entry point used by the parser to build unary operators
2456    in the input.  CODE, a tree_code, specifies the unary operator, and
2457    ARG is the operand.  For unary plus, the C parser currently uses
2458    CONVERT_EXPR for code.  */
2459 
2460 struct c_expr
parser_build_unary_op(enum tree_code code,struct c_expr arg)2461 parser_build_unary_op (enum tree_code code, struct c_expr arg)
2462 {
2463   struct c_expr result;
2464 
2465   result.original_code = ERROR_MARK;
2466   result.value = build_unary_op (code, arg.value, 0);
2467   overflow_warning (result.value);
2468   return result;
2469 }
2470 
2471 /* This is the entry point used by the parser to build binary operators
2472    in the input.  CODE, a tree_code, specifies the binary operator, and
2473    ARG1 and ARG2 are the operands.  In addition to constructing the
2474    expression, we check for operands that were written with other binary
2475    operators in a way that is likely to confuse the user.  */
2476 
2477 struct c_expr
parser_build_binary_op(enum tree_code code,struct c_expr arg1,struct c_expr arg2)2478 parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2479 			struct c_expr arg2)
2480 {
2481   struct c_expr result;
2482 
2483   enum tree_code code1 = arg1.original_code;
2484   enum tree_code code2 = arg2.original_code;
2485 
2486   result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2487   result.original_code = code;
2488 
2489   if (TREE_CODE (result.value) == ERROR_MARK)
2490     return result;
2491 
2492   /* Check for cases such as x+y<<z which users are likely
2493      to misinterpret.  */
2494   if (warn_parentheses)
2495     {
2496       if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
2497 	{
2498 	  if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2499 	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2500 	    warning (OPT_Wparentheses,
2501 		     "suggest parentheses around + or - inside shift");
2502 	}
2503 
2504       if (code == TRUTH_ORIF_EXPR)
2505 	{
2506 	  if (code1 == TRUTH_ANDIF_EXPR
2507 	      || code2 == TRUTH_ANDIF_EXPR)
2508 	    warning (OPT_Wparentheses,
2509 		     "suggest parentheses around && within ||");
2510 	}
2511 
2512       if (code == BIT_IOR_EXPR)
2513 	{
2514 	  if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
2515 	      || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2516 	      || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
2517 	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2518 	    warning (OPT_Wparentheses,
2519 		     "suggest parentheses around arithmetic in operand of |");
2520 	  /* Check cases like x|y==z */
2521 	  if (TREE_CODE_CLASS (code1) == tcc_comparison
2522 	      || TREE_CODE_CLASS (code2) == tcc_comparison)
2523 	    warning (OPT_Wparentheses,
2524 		     "suggest parentheses around comparison in operand of |");
2525 	}
2526 
2527       if (code == BIT_XOR_EXPR)
2528 	{
2529 	  if (code1 == BIT_AND_EXPR
2530 	      || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2531 	      || code2 == BIT_AND_EXPR
2532 	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2533 	    warning (OPT_Wparentheses,
2534 		     "suggest parentheses around arithmetic in operand of ^");
2535 	  /* Check cases like x^y==z */
2536 	  if (TREE_CODE_CLASS (code1) == tcc_comparison
2537 	      || TREE_CODE_CLASS (code2) == tcc_comparison)
2538 	    warning (OPT_Wparentheses,
2539 		     "suggest parentheses around comparison in operand of ^");
2540 	}
2541 
2542       if (code == BIT_AND_EXPR)
2543 	{
2544 	  if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2545 	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2546 	    warning (OPT_Wparentheses,
2547 		     "suggest parentheses around + or - in operand of &");
2548 	  /* Check cases like x&y==z */
2549 	  if (TREE_CODE_CLASS (code1) == tcc_comparison
2550 	      || TREE_CODE_CLASS (code2) == tcc_comparison)
2551 	    warning (OPT_Wparentheses,
2552 		     "suggest parentheses around comparison in operand of &");
2553 	}
2554       /* Similarly, check for cases like 1<=i<=10 that are probably errors.  */
2555       if (TREE_CODE_CLASS (code) == tcc_comparison
2556 	  && (TREE_CODE_CLASS (code1) == tcc_comparison
2557 	      || TREE_CODE_CLASS (code2) == tcc_comparison))
2558 	warning (OPT_Wparentheses, "comparisons like X<=Y<=Z do not "
2559 		 "have their mathematical meaning");
2560 
2561     }
2562 
2563   unsigned_conversion_warning (result.value, arg1.value);
2564   unsigned_conversion_warning (result.value, arg2.value);
2565   overflow_warning (result.value);
2566 
2567   return result;
2568 }
2569 
2570 /* Return a tree for the difference of pointers OP0 and OP1.
2571    The resulting tree has type int.  */
2572 
2573 static tree
pointer_diff(tree op0,tree op1)2574 pointer_diff (tree op0, tree op1)
2575 {
2576   tree restype = ptrdiff_type_node;
2577 
2578   tree target_type = TREE_TYPE (TREE_TYPE (op0));
2579   tree con0, con1, lit0, lit1;
2580   tree orig_op1 = op1;
2581 
2582   if (pedantic || warn_pointer_arith)
2583     {
2584       if (TREE_CODE (target_type) == VOID_TYPE)
2585 	pedwarn ("pointer of type %<void *%> used in subtraction");
2586       if (TREE_CODE (target_type) == FUNCTION_TYPE)
2587 	pedwarn ("pointer to a function used in subtraction");
2588     }
2589 
2590   /* If the conversion to ptrdiff_type does anything like widening or
2591      converting a partial to an integral mode, we get a convert_expression
2592      that is in the way to do any simplifications.
2593      (fold-const.c doesn't know that the extra bits won't be needed.
2594      split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2595      different mode in place.)
2596      So first try to find a common term here 'by hand'; we want to cover
2597      at least the cases that occur in legal static initializers.  */
2598   con0 = TREE_CODE (op0) == NOP_EXPR ? TREE_OPERAND (op0, 0) : op0;
2599   con1 = TREE_CODE (op1) == NOP_EXPR ? TREE_OPERAND (op1, 0) : op1;
2600 
2601   if (TREE_CODE (con0) == PLUS_EXPR)
2602     {
2603       lit0 = TREE_OPERAND (con0, 1);
2604       con0 = TREE_OPERAND (con0, 0);
2605     }
2606   else
2607     lit0 = integer_zero_node;
2608 
2609   if (TREE_CODE (con1) == PLUS_EXPR)
2610     {
2611       lit1 = TREE_OPERAND (con1, 1);
2612       con1 = TREE_OPERAND (con1, 0);
2613     }
2614   else
2615     lit1 = integer_zero_node;
2616 
2617   if (operand_equal_p (con0, con1, 0))
2618     {
2619       op0 = lit0;
2620       op1 = lit1;
2621     }
2622 
2623 
2624   /* First do the subtraction as integers;
2625      then drop through to build the divide operator.
2626      Do not do default conversions on the minus operator
2627      in case restype is a short type.  */
2628 
2629   op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2630 			 convert (restype, op1), 0);
2631   /* This generates an error if op1 is pointer to incomplete type.  */
2632   if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2633     error ("arithmetic on pointer to an incomplete type");
2634 
2635   /* This generates an error if op0 is pointer to incomplete type.  */
2636   op1 = c_size_in_bytes (target_type);
2637 
2638   /* Divide by the size, in easiest possible way.  */
2639   return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2640 }
2641 
2642 /* Construct and perhaps optimize a tree representation
2643    for a unary operation.  CODE, a tree_code, specifies the operation
2644    and XARG is the operand.
2645    For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2646    the default promotions (such as from short to int).
2647    For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2648    allows non-lvalues; this is only used to handle conversion of non-lvalue
2649    arrays to pointers in C99.  */
2650 
2651 tree
build_unary_op(enum tree_code code,tree xarg,int flag)2652 build_unary_op (enum tree_code code, tree xarg, int flag)
2653 {
2654   /* No default_conversion here.  It causes trouble for ADDR_EXPR.  */
2655   tree arg = xarg;
2656   tree argtype = 0;
2657   enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2658   tree val;
2659   int noconvert = flag;
2660   const char *invalid_op_diag;
2661 
2662   if (typecode == ERROR_MARK)
2663     return error_mark_node;
2664   if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2665     typecode = INTEGER_TYPE;
2666 
2667   if ((invalid_op_diag
2668        = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2669     {
2670       error (invalid_op_diag);
2671       return error_mark_node;
2672     }
2673 
2674   switch (code)
2675     {
2676     case CONVERT_EXPR:
2677       /* This is used for unary plus, because a CONVERT_EXPR
2678 	 is enough to prevent anybody from looking inside for
2679 	 associativity, but won't generate any code.  */
2680       if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2681 	    || typecode == COMPLEX_TYPE
2682 	    || typecode == VECTOR_TYPE))
2683 	{
2684 	  error ("wrong type argument to unary plus");
2685 	  return error_mark_node;
2686 	}
2687       else if (!noconvert)
2688 	arg = default_conversion (arg);
2689       arg = non_lvalue (arg);
2690       break;
2691 
2692     case NEGATE_EXPR:
2693       if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2694 	    || typecode == COMPLEX_TYPE
2695 	    || typecode == VECTOR_TYPE))
2696 	{
2697 	  error ("wrong type argument to unary minus");
2698 	  return error_mark_node;
2699 	}
2700       else if (!noconvert)
2701 	arg = default_conversion (arg);
2702       break;
2703 
2704     case BIT_NOT_EXPR:
2705       if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2706 	{
2707 	  if (!noconvert)
2708 	    arg = default_conversion (arg);
2709 	}
2710       else if (typecode == COMPLEX_TYPE)
2711 	{
2712 	  code = CONJ_EXPR;
2713 	  if (pedantic)
2714 	    pedwarn ("ISO C does not support %<~%> for complex conjugation");
2715 	  if (!noconvert)
2716 	    arg = default_conversion (arg);
2717 	}
2718       else
2719 	{
2720 	  error ("wrong type argument to bit-complement");
2721 	  return error_mark_node;
2722 	}
2723       break;
2724 
2725     case ABS_EXPR:
2726       if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2727 	{
2728 	  error ("wrong type argument to abs");
2729 	  return error_mark_node;
2730 	}
2731       else if (!noconvert)
2732 	arg = default_conversion (arg);
2733       break;
2734 
2735     case CONJ_EXPR:
2736       /* Conjugating a real value is a no-op, but allow it anyway.  */
2737       if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2738 	    || typecode == COMPLEX_TYPE))
2739 	{
2740 	  error ("wrong type argument to conjugation");
2741 	  return error_mark_node;
2742 	}
2743       else if (!noconvert)
2744 	arg = default_conversion (arg);
2745       break;
2746 
2747     case TRUTH_NOT_EXPR:
2748       if (typecode != INTEGER_TYPE
2749 	  && typecode != REAL_TYPE && typecode != POINTER_TYPE
2750 	  && typecode != COMPLEX_TYPE)
2751 	{
2752 	  error ("wrong type argument to unary exclamation mark");
2753 	  return error_mark_node;
2754 	}
2755       arg = c_objc_common_truthvalue_conversion (arg);
2756       return invert_truthvalue (arg);
2757 
2758     case NOP_EXPR:
2759       break;
2760 
2761     case REALPART_EXPR:
2762       if (TREE_CODE (arg) == COMPLEX_CST)
2763 	return TREE_REALPART (arg);
2764       else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2765 	return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2766       else
2767 	return arg;
2768 
2769     case IMAGPART_EXPR:
2770       if (TREE_CODE (arg) == COMPLEX_CST)
2771 	return TREE_IMAGPART (arg);
2772       else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2773 	return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2774       else
2775 	return convert (TREE_TYPE (arg), integer_zero_node);
2776 
2777     case PREINCREMENT_EXPR:
2778     case POSTINCREMENT_EXPR:
2779     case PREDECREMENT_EXPR:
2780     case POSTDECREMENT_EXPR:
2781       /* Handle complex lvalues (when permitted)
2782 	 by reduction to simpler cases.  */
2783 
2784       val = unary_complex_lvalue (code, arg, 0);
2785       if (val != 0)
2786 	return val;
2787 
2788       /* Increment or decrement the real part of the value,
2789 	 and don't change the imaginary part.  */
2790       if (typecode == COMPLEX_TYPE)
2791 	{
2792 	  tree real, imag;
2793 
2794 	  if (pedantic)
2795 	    pedwarn ("ISO C does not support %<++%> and %<--%>"
2796 		     " on complex types");
2797 
2798 	  arg = stabilize_reference (arg);
2799 	  real = build_unary_op (REALPART_EXPR, arg, 1);
2800 	  imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2801 	  return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
2802 			 build_unary_op (code, real, 1), imag);
2803 	}
2804 
2805       /* Report invalid types.  */
2806 
2807       if (typecode != POINTER_TYPE
2808 	  && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2809 	{
2810 	  if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2811             error ("wrong type argument to increment");
2812           else
2813             error ("wrong type argument to decrement");
2814 
2815 	  return error_mark_node;
2816 	}
2817 
2818       {
2819 	tree inc;
2820 	tree result_type = TREE_TYPE (arg);
2821 
2822 	arg = get_unwidened (arg, 0);
2823 	argtype = TREE_TYPE (arg);
2824 
2825 	/* Compute the increment.  */
2826 
2827 	if (typecode == POINTER_TYPE)
2828 	  {
2829 	    /* If pointer target is an undefined struct,
2830 	       we just cannot know how to do the arithmetic.  */
2831 	    if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2832 	      {
2833 		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2834 		  error ("increment of pointer to unknown structure");
2835 		else
2836 		  error ("decrement of pointer to unknown structure");
2837 	      }
2838 	    else if ((pedantic || warn_pointer_arith)
2839 		     && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2840 			 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2841               {
2842 		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2843 		  pedwarn ("wrong type argument to increment");
2844 		else
2845 		  pedwarn ("wrong type argument to decrement");
2846 	      }
2847 
2848 	    inc = c_size_in_bytes (TREE_TYPE (result_type));
2849 	  }
2850 	else
2851 	  inc = integer_one_node;
2852 
2853 	inc = convert (argtype, inc);
2854 
2855 	/* Handle incrementing a cast-expression.  */
2856 
2857 	while (1)
2858 	  switch (TREE_CODE (arg))
2859 	    {
2860 	    case NOP_EXPR:
2861 	    case CONVERT_EXPR:
2862 	    case FLOAT_EXPR:
2863 	    case FIX_TRUNC_EXPR:
2864 	    case FIX_FLOOR_EXPR:
2865 	    case FIX_ROUND_EXPR:
2866 	    case FIX_CEIL_EXPR:
2867 	      pedantic_lvalue_warning (CONVERT_EXPR);
2868 	      /* If the real type has the same machine representation
2869 		 as the type it is cast to, we can make better output
2870 		 by adding directly to the inside of the cast.  */
2871 	      if ((TREE_CODE (TREE_TYPE (arg))
2872 		   == TREE_CODE (TREE_TYPE (TREE_OPERAND (arg, 0))))
2873 		  && (TYPE_MODE (TREE_TYPE (arg))
2874 		      == TYPE_MODE (TREE_TYPE (TREE_OPERAND (arg, 0)))))
2875 		arg = TREE_OPERAND (arg, 0);
2876 	      else
2877 		{
2878 		  tree incremented, modify, value;
2879 		  if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2880 		    value = boolean_increment (code, arg);
2881 		  else
2882 		    {
2883 		      arg = stabilize_reference (arg);
2884 		      if (code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR)
2885 			value = arg;
2886 		      else
2887 			value = save_expr (arg);
2888 		      incremented = build (((code == PREINCREMENT_EXPR
2889 					     || code == POSTINCREMENT_EXPR)
2890 					    ? PLUS_EXPR : MINUS_EXPR),
2891 					   argtype, value, inc);
2892 		      TREE_SIDE_EFFECTS (incremented) = 1;
2893 		      modify = build_modify_expr (arg, NOP_EXPR, incremented);
2894 		      value = build (COMPOUND_EXPR, TREE_TYPE (arg), modify, value);
2895 		    }
2896 		  TREE_USED (value) = 1;
2897 		  return value;
2898 		}
2899 	      break;
2900 
2901 	    default:
2902 	      goto give_up;
2903 	    }
2904       give_up:
2905 
2906 	/* Complain about anything else that is not a true lvalue.  */
2907 	if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2908 				    || code == POSTINCREMENT_EXPR)
2909 				   ? lv_increment
2910 				   : lv_decrement)))
2911 	  return error_mark_node;
2912 
2913 	/* Report a read-only lvalue.  */
2914 	if (TREE_READONLY (arg))
2915 	  readonly_error (arg,
2916 			  ((code == PREINCREMENT_EXPR
2917 			    || code == POSTINCREMENT_EXPR)
2918 			   ? lv_increment : lv_decrement));
2919 
2920 	if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2921 	  val = boolean_increment (code, arg);
2922 	else
2923 	  val = build2 (code, TREE_TYPE (arg), arg, inc);
2924 	TREE_SIDE_EFFECTS (val) = 1;
2925 	val = convert (result_type, val);
2926 	if (TREE_CODE (val) != code)
2927 	  TREE_NO_WARNING (val) = 1;
2928 	return val;
2929       }
2930 
2931     case ADDR_EXPR:
2932       /* Note that this operation never does default_conversion.  */
2933 
2934       /* Let &* cancel out to simplify resulting code.  */
2935       if (TREE_CODE (arg) == INDIRECT_REF)
2936 	{
2937 	  /* Don't let this be an lvalue.  */
2938 	  if (lvalue_p (TREE_OPERAND (arg, 0)))
2939 	    return non_lvalue (TREE_OPERAND (arg, 0));
2940 	  return TREE_OPERAND (arg, 0);
2941 	}
2942 
2943       /* For &x[y], return x+y */
2944       if (TREE_CODE (arg) == ARRAY_REF)
2945 	{
2946 	  tree op0 = TREE_OPERAND (arg, 0);
2947 	  if (!c_mark_addressable (op0))
2948 	    return error_mark_node;
2949 	  return build_binary_op (PLUS_EXPR,
2950 				  (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
2951 				   ? array_to_pointer_conversion (op0)
2952 				   : op0),
2953 				  TREE_OPERAND (arg, 1), 1);
2954 	}
2955 
2956       /* Handle complex lvalues (when permitted)
2957 	 by reduction to simpler cases.  */
2958       val = unary_complex_lvalue (code, arg, flag);
2959       if (val != 0)
2960 	return val;
2961 
2962       /* Anything not already handled and not a true memory reference
2963 	 or a non-lvalue array is an error.  */
2964       else if (typecode != FUNCTION_TYPE && !flag
2965 	       && !lvalue_or_else (arg, lv_addressof))
2966 	return error_mark_node;
2967 
2968       /* Ordinary case; arg is a COMPONENT_REF or a decl.  */
2969       argtype = TREE_TYPE (arg);
2970 
2971       /* If the lvalue is const or volatile, merge that into the type
2972          to which the address will point.  Note that you can't get a
2973 	 restricted pointer by taking the address of something, so we
2974 	 only have to deal with `const' and `volatile' here.  */
2975       if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
2976 	  && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
2977 	  argtype = c_build_type_variant (argtype,
2978 					  TREE_READONLY (arg),
2979 					  TREE_THIS_VOLATILE (arg));
2980 
2981       if (!c_mark_addressable (arg))
2982 	return error_mark_node;
2983 
2984       gcc_assert (TREE_CODE (arg) != COMPONENT_REF
2985 		  || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
2986 
2987       argtype = build_pointer_type (argtype);
2988 
2989       /* ??? Cope with user tricks that amount to offsetof.  Delete this
2990 	 when we have proper support for integer constant expressions.  */
2991       val = get_base_address (arg);
2992       if (val && TREE_CODE (val) == INDIRECT_REF
2993           && TREE_CONSTANT (TREE_OPERAND (val, 0)))
2994 	{
2995 	  tree op0 = fold_convert (argtype, fold_offsetof (arg)), op1;
2996 
2997 	  op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
2998 	  return fold_build2 (PLUS_EXPR, argtype, op0, op1);
2999 	}
3000 
3001       val = build1 (ADDR_EXPR, argtype, arg);
3002 
3003       return val;
3004 
3005     default:
3006       break;
3007     }
3008 
3009   if (argtype == 0)
3010     argtype = TREE_TYPE (arg);
3011   return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3012 	  			: fold_build1 (code, argtype, arg);
3013 }
3014 
3015 /* Return nonzero if REF is an lvalue valid for this language.
3016    Lvalues can be assigned, unless their type has TYPE_READONLY.
3017    Lvalues can have their address taken, unless they have C_DECL_REGISTER.  */
3018 
3019 static int
lvalue_p(tree ref)3020 lvalue_p (tree ref)
3021 {
3022   enum tree_code code = TREE_CODE (ref);
3023 
3024   switch (code)
3025     {
3026     case REALPART_EXPR:
3027     case IMAGPART_EXPR:
3028     case COMPONENT_REF:
3029       return lvalue_p (TREE_OPERAND (ref, 0));
3030 
3031     case COMPOUND_LITERAL_EXPR:
3032     case STRING_CST:
3033       return 1;
3034 
3035     case INDIRECT_REF:
3036     case ARRAY_REF:
3037     case VAR_DECL:
3038     case PARM_DECL:
3039     case RESULT_DECL:
3040     case ERROR_MARK:
3041       return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3042 	      && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3043 
3044     case BIND_EXPR:
3045       return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3046 
3047     default:
3048       return 0;
3049     }
3050 }
3051 
3052 /* Apply unary lvalue-demanding operator CODE to the expression ARG
3053    for certain kinds of expressions which are not really lvalues
3054    but which we can accept as lvalues.  If FLAG is nonzero, then
3055    non-lvalues are OK since we may be converting a non-lvalue array to
3056    a pointer in C99.
3057 
3058    If ARG is not a kind of expression we can handle, return zero.  */
3059 
3060 static tree
unary_complex_lvalue(enum tree_code code,tree arg,int flag)3061 unary_complex_lvalue (enum tree_code code, tree arg, int flag)
3062 {
3063   /* Handle (a, b) used as an "lvalue".  */
3064   if (TREE_CODE (arg) == COMPOUND_EXPR)
3065     {
3066       tree real_result = build_unary_op (code, TREE_OPERAND (arg, 1), 0);
3067 
3068       /* If this returns a function type, it isn't really being used as
3069 	 an lvalue, so don't issue a warning about it.  */
3070       if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE && !flag)
3071 	pedantic_lvalue_warning (COMPOUND_EXPR);
3072 
3073       return build (COMPOUND_EXPR, TREE_TYPE (real_result),
3074 		    TREE_OPERAND (arg, 0), real_result);
3075     }
3076 
3077   /* Handle (a ? b : c) used as an "lvalue".  */
3078   if (TREE_CODE (arg) == COND_EXPR)
3079     {
3080       if (!flag)
3081 	pedantic_lvalue_warning (COND_EXPR);
3082       if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE && !flag)
3083 	pedantic_lvalue_warning (COMPOUND_EXPR);
3084 
3085       return (build_conditional_expr
3086 	      (TREE_OPERAND (arg, 0),
3087 	       build_unary_op (code, TREE_OPERAND (arg, 1), flag),
3088 	       build_unary_op (code, TREE_OPERAND (arg, 2), flag)));
3089     }
3090 
3091   return 0;
3092 }
3093 
3094 /* If pedantic, warn about improper lvalue.   CODE is either COND_EXPR
3095    COMPOUND_EXPR, or CONVERT_EXPR (for casts).  */
3096 
3097 static void
pedantic_lvalue_warning(enum tree_code code)3098 pedantic_lvalue_warning (enum tree_code code)
3099 {
3100   if (pedantic)
3101     switch (code)
3102       {
3103       case COND_EXPR:
3104 	pedwarn ("ISO C forbids use of conditional expressions as lvalues");
3105 	break;
3106       case COMPOUND_EXPR:
3107 	pedwarn ("ISO C forbids use of compound expressions as lvalues");
3108 	break;
3109       default:
3110 	pedwarn ("ISO C forbids use of cast expressions as lvalues");
3111 	break;
3112       }
3113 }
3114 
3115 /* Give an error for storing in something that is 'const'.  */
3116 
3117 static void
readonly_error(tree arg,enum lvalue_use use)3118 readonly_error (tree arg, enum lvalue_use use)
3119 {
3120   gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3121 	      || use == lv_asm);
3122   /* Using this macro rather than (for example) arrays of messages
3123      ensures that all the format strings are checked at compile
3124      time.  */
3125 #define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A)		\
3126 			           : (use == lv_increment ? (I)		\
3127 				   : (use == lv_decrement ? (D) : (AS))))
3128   if (TREE_CODE (arg) == COMPONENT_REF)
3129     {
3130       if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3131 	readonly_error (TREE_OPERAND (arg, 0), use);
3132       else
3133 	error (READONLY_MSG (G_("assignment of read-only member %qD"),
3134 			     G_("increment of read-only member %qD"),
3135 			     G_("decrement of read-only member %qD"),
3136 			     G_("read-only member %qD used as %<asm%> output")),
3137 	       TREE_OPERAND (arg, 1));
3138     }
3139   else if (TREE_CODE (arg) == VAR_DECL)
3140     error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3141 			 G_("increment of read-only variable %qD"),
3142 			 G_("decrement of read-only variable %qD"),
3143 			 G_("read-only variable %qD used as %<asm%> output")),
3144 	   arg);
3145   else
3146     error (READONLY_MSG (G_("assignment of read-only location"),
3147 			 G_("increment of read-only location"),
3148 			 G_("decrement of read-only location"),
3149 			 G_("read-only location used as %<asm%> output")));
3150 }
3151 
3152 
3153 /* Return nonzero if REF is an lvalue valid for this language;
3154    otherwise, print an error message and return zero.  USE says
3155    how the lvalue is being used and so selects the error message.  */
3156 
3157 static int
lvalue_or_else(tree ref,enum lvalue_use use)3158 lvalue_or_else (tree ref, enum lvalue_use use)
3159 {
3160   int win = lvalue_p (ref);
3161 
3162   if (!win)
3163     lvalue_error (use);
3164 
3165   return win;
3166 }
3167 
3168 /* Mark EXP saying that we need to be able to take the
3169    address of it; it should not be allocated in a register.
3170    Returns true if successful.  */
3171 
3172 bool
c_mark_addressable(tree exp)3173 c_mark_addressable (tree exp)
3174 {
3175   tree x = exp;
3176 
3177   while (1)
3178     switch (TREE_CODE (x))
3179       {
3180       case COMPONENT_REF:
3181 	if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3182 	  {
3183 	    error
3184 	      ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3185 	    return false;
3186 	  }
3187 
3188 	/* ... fall through ...  */
3189 
3190       case ADDR_EXPR:
3191       case ARRAY_REF:
3192       case REALPART_EXPR:
3193       case IMAGPART_EXPR:
3194 	x = TREE_OPERAND (x, 0);
3195 	break;
3196 
3197       case COMPOUND_LITERAL_EXPR:
3198       case CONSTRUCTOR:
3199 	TREE_ADDRESSABLE (x) = 1;
3200 	return true;
3201 
3202       case VAR_DECL:
3203       case CONST_DECL:
3204       case PARM_DECL:
3205       case RESULT_DECL:
3206 	if (C_DECL_REGISTER (x)
3207 	    && DECL_NONLOCAL (x))
3208 	  {
3209 	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3210 	      {
3211 		error
3212 		  ("global register variable %qD used in nested function", x);
3213 		return false;
3214 	      }
3215 	    pedwarn ("register variable %qD used in nested function", x);
3216 	  }
3217 	else if (C_DECL_REGISTER (x))
3218 	  {
3219 	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3220 	      error ("address of global register variable %qD requested", x);
3221 	    else
3222 	      error ("address of register variable %qD requested", x);
3223 	    return false;
3224 	  }
3225 
3226 	/* drops in */
3227       case FUNCTION_DECL:
3228 	TREE_ADDRESSABLE (x) = 1;
3229 	/* drops out */
3230       default:
3231 	return true;
3232     }
3233 }
3234 
3235 /* Build and return a conditional expression IFEXP ? OP1 : OP2.  */
3236 
3237 tree
build_conditional_expr(tree ifexp,tree op1,tree op2)3238 build_conditional_expr (tree ifexp, tree op1, tree op2)
3239 {
3240   tree type1;
3241   tree type2;
3242   enum tree_code code1;
3243   enum tree_code code2;
3244   tree result_type = NULL;
3245   tree orig_op1 = op1, orig_op2 = op2;
3246 
3247   /* Promote both alternatives.  */
3248 
3249   if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3250     op1 = default_conversion (op1);
3251   if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3252     op2 = default_conversion (op2);
3253 
3254   if (TREE_CODE (ifexp) == ERROR_MARK
3255       || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3256       || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3257     return error_mark_node;
3258 
3259   type1 = TREE_TYPE (op1);
3260   code1 = TREE_CODE (type1);
3261   type2 = TREE_TYPE (op2);
3262   code2 = TREE_CODE (type2);
3263 
3264   /* C90 does not permit non-lvalue arrays in conditional expressions.
3265      In C99 they will be pointers by now.  */
3266   if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3267     {
3268       error ("non-lvalue array in conditional expression");
3269       return error_mark_node;
3270     }
3271 
3272   /* Quickly detect the usual case where op1 and op2 have the same type
3273      after promotion.  */
3274   if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3275     {
3276       if (type1 == type2)
3277 	result_type = type1;
3278       else
3279 	result_type = TYPE_MAIN_VARIANT (type1);
3280     }
3281   else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3282             || code1 == COMPLEX_TYPE)
3283            && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3284                || code2 == COMPLEX_TYPE))
3285     {
3286       result_type = c_common_type (type1, type2);
3287 
3288       /* If -Wsign-compare, warn here if type1 and type2 have
3289 	 different signedness.  We'll promote the signed to unsigned
3290 	 and later code won't know it used to be different.
3291 	 Do this check on the original types, so that explicit casts
3292 	 will be considered, but default promotions won't.  */
3293       if (warn_sign_compare && !skip_evaluation)
3294 	{
3295 	  int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3296 	  int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3297 
3298 	  if (unsigned_op1 ^ unsigned_op2)
3299 	    {
3300 	      /* Do not warn if the result type is signed, since the
3301 		 signed type will only be chosen if it can represent
3302 		 all the values of the unsigned type.  */
3303 	      if (!TYPE_UNSIGNED (result_type))
3304 		/* OK */;
3305 	      /* Do not warn if the signed quantity is an unsuffixed
3306 		 integer literal (or some static constant expression
3307 		 involving such literals) and it is non-negative.  */
3308 	      else if ((unsigned_op2 && tree_expr_nonnegative_p (op1))
3309 		       || (unsigned_op1 && tree_expr_nonnegative_p (op2)))
3310 		/* OK */;
3311 	      else
3312 		warning (0, "signed and unsigned type in conditional expression");
3313 	    }
3314 	}
3315     }
3316   else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3317     {
3318       if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3319 	pedwarn ("ISO C forbids conditional expr with only one void side");
3320       result_type = void_type_node;
3321     }
3322   else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3323     {
3324       if (comp_target_types (type1, type2))
3325 	result_type = common_pointer_type (type1, type2);
3326       else if (integer_zerop (op1) && TREE_TYPE (type1) == void_type_node
3327 	       && TREE_CODE (orig_op1) != NOP_EXPR)
3328 	result_type = qualify_type (type2, type1);
3329       else if (integer_zerop (op2) && TREE_TYPE (type2) == void_type_node
3330 	       && TREE_CODE (orig_op2) != NOP_EXPR)
3331 	result_type = qualify_type (type1, type2);
3332       else if (VOID_TYPE_P (TREE_TYPE (type1)))
3333 	{
3334 	  if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3335 	    pedwarn ("ISO C forbids conditional expr between "
3336 		     "%<void *%> and function pointer");
3337 	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3338 							  TREE_TYPE (type2)));
3339 	}
3340       else if (VOID_TYPE_P (TREE_TYPE (type2)))
3341 	{
3342 	  if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3343 	    pedwarn ("ISO C forbids conditional expr between "
3344 		     "%<void *%> and function pointer");
3345 	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3346 							  TREE_TYPE (type1)));
3347 	}
3348       else
3349 	{
3350 	  pedwarn ("pointer type mismatch in conditional expression");
3351 	  result_type = build_pointer_type (void_type_node);
3352 	}
3353     }
3354   else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3355     {
3356       if (!integer_zerop (op2))
3357 	pedwarn ("pointer/integer type mismatch in conditional expression");
3358       else
3359 	{
3360 	  op2 = null_pointer_node;
3361 	}
3362       result_type = type1;
3363     }
3364   else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3365     {
3366       if (!integer_zerop (op1))
3367 	pedwarn ("pointer/integer type mismatch in conditional expression");
3368       else
3369 	{
3370 	  op1 = null_pointer_node;
3371 	}
3372       result_type = type2;
3373     }
3374 
3375   if (!result_type)
3376     {
3377       if (flag_cond_mismatch)
3378 	result_type = void_type_node;
3379       else
3380 	{
3381 	  error ("type mismatch in conditional expression");
3382 	  return error_mark_node;
3383 	}
3384     }
3385 
3386   /* Merge const and volatile flags of the incoming types.  */
3387   result_type
3388     = build_type_variant (result_type,
3389 			  TREE_READONLY (op1) || TREE_READONLY (op2),
3390 			  TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3391 
3392   if (result_type != TREE_TYPE (op1))
3393     op1 = convert_and_check (result_type, op1);
3394   if (result_type != TREE_TYPE (op2))
3395     op2 = convert_and_check (result_type, op2);
3396 
3397   return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3398 }
3399 
3400 /* Return a compound expression that performs two expressions and
3401    returns the value of the second of them.  */
3402 
3403 tree
build_compound_expr(tree expr1,tree expr2)3404 build_compound_expr (tree expr1, tree expr2)
3405 {
3406   if (!TREE_SIDE_EFFECTS (expr1))
3407     {
3408       /* The left-hand operand of a comma expression is like an expression
3409          statement: with -Wextra or -Wunused, we should warn if it doesn't have
3410 	 any side-effects, unless it was explicitly cast to (void).  */
3411       if (warn_unused_value)
3412 	{
3413 	  if (VOID_TYPE_P (TREE_TYPE (expr1))
3414 	      && TREE_CODE (expr1) == CONVERT_EXPR)
3415 	    ; /* (void) a, b */
3416 	  else if (VOID_TYPE_P (TREE_TYPE (expr1))
3417 		   && TREE_CODE (expr1) == COMPOUND_EXPR
3418 		   && TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR)
3419 	    ; /* (void) a, (void) b, c */
3420 	  else
3421 	    warning (0, "left-hand operand of comma expression has no effect");
3422 	}
3423     }
3424 
3425   /* With -Wunused, we should also warn if the left-hand operand does have
3426      side-effects, but computes a value which is not used.  For example, in
3427      `foo() + bar(), baz()' the result of the `+' operator is not used,
3428      so we should issue a warning.  */
3429   else if (warn_unused_value)
3430     warn_if_unused_value (expr1, input_location);
3431 
3432   return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3433 }
3434 
3435 /* Build an expression representing a cast to type TYPE of expression EXPR.  */
3436 
3437 tree
build_c_cast(tree type,tree expr)3438 build_c_cast (tree type, tree expr)
3439 {
3440   tree value = expr;
3441 
3442   if (type == error_mark_node || expr == error_mark_node)
3443     return error_mark_node;
3444 
3445   /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3446      only in <protocol> qualifications.  But when constructing cast expressions,
3447      the protocols do matter and must be kept around.  */
3448   if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3449     return build1 (NOP_EXPR, type, expr);
3450 
3451   type = TYPE_MAIN_VARIANT (type);
3452 
3453   if (TREE_CODE (type) == ARRAY_TYPE)
3454     {
3455       error ("cast specifies array type");
3456       return error_mark_node;
3457     }
3458 
3459   if (TREE_CODE (type) == FUNCTION_TYPE)
3460     {
3461       error ("cast specifies function type");
3462       return error_mark_node;
3463     }
3464 
3465   if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3466     {
3467       if (pedantic)
3468 	{
3469 	  if (TREE_CODE (type) == RECORD_TYPE
3470 	      || TREE_CODE (type) == UNION_TYPE)
3471 	    pedwarn ("ISO C forbids casting nonscalar to the same type");
3472 	}
3473     }
3474   else if (TREE_CODE (type) == UNION_TYPE)
3475     {
3476       tree field;
3477 
3478       for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3479 	if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3480 		       TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3481 	  break;
3482 
3483       if (field)
3484 	{
3485 	  tree t;
3486 
3487 	  if (pedantic)
3488 	    pedwarn ("ISO C forbids casts to union type");
3489 	  t = digest_init (type,
3490 			   build_constructor_single (type, field, value),
3491 			   true, 0);
3492 	  TREE_CONSTANT (t) = TREE_CONSTANT (value);
3493 	  TREE_INVARIANT (t) = TREE_INVARIANT (value);
3494 	  return t;
3495 	}
3496       error ("cast to union type from type not present in union");
3497       return error_mark_node;
3498     }
3499   else
3500     {
3501       tree otype, ovalue;
3502 
3503       if (type == void_type_node)
3504 	return build1 (CONVERT_EXPR, type, value);
3505 
3506       otype = TREE_TYPE (value);
3507 
3508       /* Optionally warn about potentially worrisome casts.  */
3509 
3510       if (warn_cast_qual
3511 	  && TREE_CODE (type) == POINTER_TYPE
3512 	  && TREE_CODE (otype) == POINTER_TYPE)
3513 	{
3514 	  tree in_type = type;
3515 	  tree in_otype = otype;
3516 	  int added = 0;
3517 	  int discarded = 0;
3518 
3519 	  /* Check that the qualifiers on IN_TYPE are a superset of
3520 	     the qualifiers of IN_OTYPE.  The outermost level of
3521 	     POINTER_TYPE nodes is uninteresting and we stop as soon
3522 	     as we hit a non-POINTER_TYPE node on either type.  */
3523 	  do
3524 	    {
3525 	      in_otype = TREE_TYPE (in_otype);
3526 	      in_type = TREE_TYPE (in_type);
3527 
3528 	      /* GNU C allows cv-qualified function types.  'const'
3529 		 means the function is very pure, 'volatile' means it
3530 		 can't return.  We need to warn when such qualifiers
3531 		 are added, not when they're taken away.  */
3532 	      if (TREE_CODE (in_otype) == FUNCTION_TYPE
3533 		  && TREE_CODE (in_type) == FUNCTION_TYPE)
3534 		added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3535 	      else
3536 		discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3537 	    }
3538 	  while (TREE_CODE (in_type) == POINTER_TYPE
3539 		 && TREE_CODE (in_otype) == POINTER_TYPE);
3540 
3541 	  if (added)
3542 	    warning (0, "cast adds new qualifiers to function type");
3543 
3544 	  if (discarded)
3545 	    /* There are qualifiers present in IN_OTYPE that are not
3546 	       present in IN_TYPE.  */
3547 	    warning (0, "cast discards qualifiers from pointer target type");
3548 	}
3549 
3550       /* Warn about possible alignment problems.  */
3551       if (STRICT_ALIGNMENT
3552 	  && TREE_CODE (type) == POINTER_TYPE
3553 	  && TREE_CODE (otype) == POINTER_TYPE
3554 	  && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3555 	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3556 	  /* Don't warn about opaque types, where the actual alignment
3557 	     restriction is unknown.  */
3558 	  && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3559 		|| TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3560 	       && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3561 	  && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3562 	warning (OPT_Wcast_align,
3563 		 "cast increases required alignment of target type");
3564 
3565       if (TREE_CODE (type) == INTEGER_TYPE
3566 	  && TREE_CODE (otype) == POINTER_TYPE
3567 	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3568 	  && !TREE_CONSTANT (value))
3569 	warning (OPT_Wpointer_to_int_cast,
3570 		 "cast from pointer to integer of different size");
3571 
3572       if (TREE_CODE (value) == CALL_EXPR
3573 	  && TREE_CODE (type) != TREE_CODE (otype))
3574 	warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3575 		 "to non-matching type %qT", otype, type);
3576 
3577       if (TREE_CODE (type) == POINTER_TYPE
3578 	  && TREE_CODE (otype) == INTEGER_TYPE
3579 	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3580 	  /* Don't warn about converting any constant.  */
3581 	  && !TREE_CONSTANT (value))
3582 	warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3583 		 "of different size");
3584 
3585       strict_aliasing_warning (otype, type, expr);
3586 
3587       /* If pedantic, warn for conversions between function and object
3588 	 pointer types, except for converting a null pointer constant
3589 	 to function pointer type.  */
3590       if (pedantic
3591 	  && TREE_CODE (type) == POINTER_TYPE
3592 	  && TREE_CODE (otype) == POINTER_TYPE
3593 	  && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3594 	  && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3595 	pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3596 
3597       if (pedantic
3598 	  && TREE_CODE (type) == POINTER_TYPE
3599 	  && TREE_CODE (otype) == POINTER_TYPE
3600 	  && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3601 	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3602 	  && !(integer_zerop (value) && TREE_TYPE (otype) == void_type_node
3603 	       && TREE_CODE (expr) != NOP_EXPR))
3604 	pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3605 
3606       ovalue = value;
3607       value = convert (type, value);
3608 
3609       /* Ignore any integer overflow caused by the cast.  */
3610       if (TREE_CODE (value) == INTEGER_CST)
3611 	{
3612 	  if (CONSTANT_CLASS_P (ovalue)
3613 	      && (TREE_OVERFLOW (ovalue) || TREE_CONSTANT_OVERFLOW (ovalue)))
3614 	    {
3615 	      /* Avoid clobbering a shared constant.  */
3616 	      value = copy_node (value);
3617 	      TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3618 	      TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3619 	    }
3620 	  else if (TREE_OVERFLOW (value) || TREE_CONSTANT_OVERFLOW (value))
3621 	    /* Reset VALUE's overflow flags, ensuring constant sharing.  */
3622 	    value = build_int_cst_wide (TREE_TYPE (value),
3623 					TREE_INT_CST_LOW (value),
3624 					TREE_INT_CST_HIGH (value));
3625 	}
3626     }
3627 
3628   /* If pedantic, don't let a cast be an lvalue.  */
3629   if (value == expr && pedantic)
3630     value = non_lvalue (value);
3631 
3632   return value;
3633 }
3634 
3635 /* Interpret a cast of expression EXPR to type TYPE.  */
3636 tree
c_cast_expr(struct c_type_name * type_name,tree expr)3637 c_cast_expr (struct c_type_name *type_name, tree expr)
3638 {
3639   tree type;
3640   int saved_wsp = warn_strict_prototypes;
3641 
3642   /* This avoids warnings about unprototyped casts on
3643      integers.  E.g. "#define SIG_DFL (void(*)())0".  */
3644   if (TREE_CODE (expr) == INTEGER_CST)
3645     warn_strict_prototypes = 0;
3646   type = groktypename (type_name);
3647   warn_strict_prototypes = saved_wsp;
3648 
3649   return build_c_cast (type, expr);
3650 }
3651 
3652 
3653 /* Build an assignment expression of lvalue LHS from value RHS.
3654    MODIFYCODE is the code for a binary operator that we use
3655    to combine the old value of LHS with RHS to get the new value.
3656    Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment.  */
3657 
3658 tree
build_modify_expr(tree lhs,enum tree_code modifycode,tree rhs)3659 build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3660 {
3661   tree result;
3662   tree newrhs;
3663   tree lhstype = TREE_TYPE (lhs);
3664   tree olhstype = lhstype;
3665 
3666   /* Types that aren't fully specified cannot be used in assignments.  */
3667   lhs = require_complete_type (lhs);
3668 
3669   /* Avoid duplicate error messages from operands that had errors.  */
3670   if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3671     return error_mark_node;
3672 
3673   STRIP_TYPE_NOPS (rhs);
3674 
3675   newrhs = rhs;
3676 
3677   /* Handle control structure constructs used as "lvalues".  */
3678 
3679   switch (TREE_CODE (lhs))
3680     {
3681       /* Handle (a, b) used as an "lvalue".  */
3682     case COMPOUND_EXPR:
3683       pedantic_lvalue_warning (COMPOUND_EXPR);
3684       newrhs = build_modify_expr (TREE_OPERAND (lhs, 1), modifycode, rhs);
3685       if (TREE_CODE (newrhs) == ERROR_MARK)
3686 	return error_mark_node;
3687       return build (COMPOUND_EXPR, lhstype,
3688 		    TREE_OPERAND (lhs, 0), newrhs);
3689 
3690       /* Handle (a ? b : c) used as an "lvalue".  */
3691     case COND_EXPR:
3692       pedantic_lvalue_warning (COND_EXPR);
3693       rhs = save_expr (rhs);
3694       {
3695 	/* Produce (a ? (b = rhs) : (c = rhs))
3696 	   except that the RHS goes through a save-expr
3697 	   so the code to compute it is only emitted once.  */
3698 	tree cond
3699 	  = build_conditional_expr (TREE_OPERAND (lhs, 0),
3700 				    build_modify_expr (TREE_OPERAND (lhs, 1),
3701 						       modifycode, rhs),
3702 				    build_modify_expr (TREE_OPERAND (lhs, 2),
3703 						       modifycode, rhs));
3704 	if (TREE_CODE (cond) == ERROR_MARK)
3705 	  return cond;
3706 	/* Make sure the code to compute the rhs comes out
3707 	   before the split.  */
3708 	return build (COMPOUND_EXPR, TREE_TYPE (lhs),
3709 		      /* But cast it to void to avoid an "unused" error.  */
3710 		      convert (void_type_node, rhs), cond);
3711       }
3712     default:
3713       break;
3714     }
3715 
3716   /* If a binary op has been requested, combine the old LHS value with the RHS
3717      producing the value we should actually store into the LHS.  */
3718 
3719   if (modifycode != NOP_EXPR)
3720     {
3721       lhs = stabilize_reference (lhs);
3722       newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3723     }
3724 
3725   /* Handle a cast used as an "lvalue".
3726      We have already performed any binary operator using the value as cast.
3727      Now convert the result to the cast type of the lhs,
3728      and then true type of the lhs and store it there;
3729      then convert result back to the cast type to be the value
3730      of the assignment.  */
3731 
3732   switch (TREE_CODE (lhs))
3733     {
3734     case NOP_EXPR:
3735     case CONVERT_EXPR:
3736     case FLOAT_EXPR:
3737     case FIX_TRUNC_EXPR:
3738     case FIX_FLOOR_EXPR:
3739     case FIX_ROUND_EXPR:
3740     case FIX_CEIL_EXPR:
3741       {
3742 	struct c_expr newrhs_expr;
3743 	tree inner_lhs = TREE_OPERAND (lhs, 0);
3744 	tree result;
3745 	newrhs_expr.value = newrhs;
3746 	newrhs_expr = default_function_array_conversion (newrhs_expr);
3747 	newrhs = newrhs_expr.value;
3748 	result = build_modify_expr (inner_lhs, NOP_EXPR,
3749 				    convert (TREE_TYPE (inner_lhs),
3750 					     convert (lhstype, newrhs)));
3751 	if (TREE_CODE (result) == ERROR_MARK)
3752 	  return result;
3753 	pedantic_lvalue_warning (CONVERT_EXPR);
3754 	return convert (TREE_TYPE (lhs), result);
3755       }
3756 
3757     default:
3758       break;
3759     }
3760 
3761   /* Now we have handled acceptable kinds of LHS that are not truly lvalues.
3762      Reject anything strange now.  */
3763 
3764   if (!lvalue_or_else (lhs, lv_assign))
3765     return error_mark_node;
3766 
3767   /* Give an error for storing in something that is 'const'.  */
3768 
3769   if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3770       || ((TREE_CODE (lhstype) == RECORD_TYPE
3771 	   || TREE_CODE (lhstype) == UNION_TYPE)
3772 	  && C_TYPE_FIELDS_READONLY (lhstype)))
3773     readonly_error (lhs, lv_assign);
3774 
3775   /* If storing into a structure or union member,
3776      it has probably been given type `int'.
3777      Compute the type that would go with
3778      the actual amount of storage the member occupies.  */
3779 
3780   if (TREE_CODE (lhs) == COMPONENT_REF
3781       && (TREE_CODE (lhstype) == INTEGER_TYPE
3782 	  || TREE_CODE (lhstype) == BOOLEAN_TYPE
3783 	  || TREE_CODE (lhstype) == REAL_TYPE
3784 	  || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3785     lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3786 
3787   /* If storing in a field that is in actuality a short or narrower than one,
3788      we must store in the field in its actual type.  */
3789 
3790   if (lhstype != TREE_TYPE (lhs))
3791     {
3792       lhs = copy_node (lhs);
3793       TREE_TYPE (lhs) = lhstype;
3794     }
3795 
3796   /* Convert new value to destination type.  */
3797 
3798   newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3799 				   NULL_TREE, NULL_TREE, 0);
3800   if (TREE_CODE (newrhs) == ERROR_MARK)
3801     return error_mark_node;
3802 
3803   /* Emit ObjC write barrier, if necessary.  */
3804   if (c_dialect_objc () && flag_objc_gc)
3805     {
3806       result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3807       if (result)
3808 	return result;
3809     }
3810 
3811   /* Scan operands.  */
3812 
3813   result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3814   TREE_SIDE_EFFECTS (result) = 1;
3815 
3816   /* If we got the LHS in a different type for storing in,
3817      convert the result back to the nominal type of LHS
3818      so that the value we return always has the same type
3819      as the LHS argument.  */
3820 
3821   if (olhstype == TREE_TYPE (result))
3822     return result;
3823   return convert_for_assignment (olhstype, result, ic_assign,
3824 				 NULL_TREE, NULL_TREE, 0);
3825 }
3826 
3827 /* Convert value RHS to type TYPE as preparation for an assignment
3828    to an lvalue of type TYPE.
3829    The real work of conversion is done by `convert'.
3830    The purpose of this function is to generate error messages
3831    for assignments that are not allowed in C.
3832    ERRTYPE says whether it is argument passing, assignment,
3833    initialization or return.
3834 
3835    FUNCTION is a tree for the function being called.
3836    PARMNUM is the number of the argument, for printing in error messages.  */
3837 
3838 static tree
convert_for_assignment(tree type,tree rhs,enum impl_conv errtype,tree fundecl,tree function,int parmnum)3839 convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3840 			tree fundecl, tree function, int parmnum)
3841 {
3842   enum tree_code codel = TREE_CODE (type);
3843   tree rhstype;
3844   enum tree_code coder;
3845   tree rname = NULL_TREE;
3846   bool objc_ok = false;
3847 
3848   if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3849     {
3850       tree selector;
3851       /* Change pointer to function to the function itself for
3852 	 diagnostics.  */
3853       if (TREE_CODE (function) == ADDR_EXPR
3854 	  && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3855 	function = TREE_OPERAND (function, 0);
3856 
3857       /* Handle an ObjC selector specially for diagnostics.  */
3858       selector = objc_message_selector ();
3859       rname = function;
3860       if (selector && parmnum > 2)
3861 	{
3862 	  rname = selector;
3863 	  parmnum -= 2;
3864 	}
3865     }
3866 
3867   /* This macro is used to emit diagnostics to ensure that all format
3868      strings are complete sentences, visible to gettext and checked at
3869      compile time.  */
3870 #define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE)	\
3871   do {						\
3872     switch (errtype)				\
3873       {						\
3874       case ic_argpass:				\
3875 	pedwarn (AR, parmnum, rname);		\
3876 	break;					\
3877       case ic_argpass_nonproto:			\
3878 	warning (0, AR, parmnum, rname);		\
3879 	break;					\
3880       case ic_assign:				\
3881 	pedwarn (AS);				\
3882 	break;					\
3883       case ic_init:				\
3884 	pedwarn (IN);				\
3885 	break;					\
3886       case ic_return:				\
3887 	pedwarn (RE);				\
3888 	break;					\
3889       default:					\
3890 	gcc_unreachable ();			\
3891       }						\
3892   } while (0)
3893 
3894   STRIP_TYPE_NOPS (rhs);
3895 
3896   if (optimize && TREE_CODE (rhs) == VAR_DECL
3897 	   && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3898     rhs = decl_constant_value_for_broken_optimization (rhs);
3899 
3900   rhstype = TREE_TYPE (rhs);
3901   coder = TREE_CODE (rhstype);
3902 
3903   if (coder == ERROR_MARK)
3904     return error_mark_node;
3905 
3906   if (c_dialect_objc ())
3907     {
3908       int parmno;
3909 
3910       switch (errtype)
3911 	{
3912 	case ic_return:
3913 	  parmno = 0;
3914 	  break;
3915 
3916 	case ic_assign:
3917 	  parmno = -1;
3918 	  break;
3919 
3920 	case ic_init:
3921 	  parmno = -2;
3922 	  break;
3923 
3924 	default:
3925 	  parmno = parmnum;
3926 	  break;
3927 	}
3928 
3929       objc_ok = objc_compare_types (type, rhstype, parmno, rname);
3930     }
3931 
3932   if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3933     {
3934       overflow_warning (rhs);
3935       return rhs;
3936     }
3937 
3938   if (coder == VOID_TYPE)
3939     {
3940       /* Except for passing an argument to an unprototyped function,
3941 	 this is a constraint violation.  When passing an argument to
3942 	 an unprototyped function, it is compile-time undefined;
3943 	 making it a constraint in that case was rejected in
3944 	 DR#252.  */
3945       error ("void value not ignored as it ought to be");
3946       return error_mark_node;
3947     }
3948   /* A type converts to a reference to it.
3949      This code doesn't fully support references, it's just for the
3950      special case of va_start and va_copy.  */
3951   if (codel == REFERENCE_TYPE
3952       && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3953     {
3954       if (!lvalue_p (rhs))
3955 	{
3956 	  error ("cannot pass rvalue to reference parameter");
3957 	  return error_mark_node;
3958 	}
3959       if (!c_mark_addressable (rhs))
3960 	return error_mark_node;
3961       rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3962 
3963       /* We already know that these two types are compatible, but they
3964 	 may not be exactly identical.  In fact, `TREE_TYPE (type)' is
3965 	 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3966 	 likely to be va_list, a typedef to __builtin_va_list, which
3967 	 is different enough that it will cause problems later.  */
3968       if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3969 	rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3970 
3971       rhs = build1 (NOP_EXPR, type, rhs);
3972       return rhs;
3973     }
3974   /* Some types can interconvert without explicit casts.  */
3975   else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
3976            && vector_types_convertible_p (type, TREE_TYPE (rhs)))
3977     return convert (type, rhs);
3978   /* Arithmetic types all interconvert, and enum is treated like int.  */
3979   else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3980 	    || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
3981 	    || codel == BOOLEAN_TYPE)
3982 	   && (coder == INTEGER_TYPE || coder == REAL_TYPE
3983 	       || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
3984 	       || coder == BOOLEAN_TYPE))
3985     return convert_and_check (type, rhs);
3986 
3987   /* Conversion to a transparent union from its member types.
3988      This applies only to function arguments.  */
3989   else if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
3990 	   && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
3991     {
3992       tree memb, marginal_memb = NULL_TREE;
3993 
3994       for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
3995 	{
3996 	  tree memb_type = TREE_TYPE (memb);
3997 
3998 	  if (comptypes (TYPE_MAIN_VARIANT (memb_type),
3999 			 TYPE_MAIN_VARIANT (rhstype)))
4000 	    break;
4001 
4002 	  if (TREE_CODE (memb_type) != POINTER_TYPE)
4003 	    continue;
4004 
4005 	  if (coder == POINTER_TYPE)
4006 	    {
4007 	      tree ttl = TREE_TYPE (memb_type);
4008 	      tree ttr = TREE_TYPE (rhstype);
4009 
4010 	      /* Any non-function converts to a [const][volatile] void *
4011 		 and vice versa; otherwise, targets must be the same.
4012 		 Meanwhile, the lhs target must have all the qualifiers of
4013 		 the rhs.  */
4014 	      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4015 		  || comp_target_types (memb_type, rhstype))
4016 		{
4017 		  /* If this type won't generate any warnings, use it.  */
4018 		  if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
4019 		      || ((TREE_CODE (ttr) == FUNCTION_TYPE
4020 			   && TREE_CODE (ttl) == FUNCTION_TYPE)
4021 			  ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4022 			     == TYPE_QUALS (ttr))
4023 			  : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4024 			     == TYPE_QUALS (ttl))))
4025 		    break;
4026 
4027 		  /* Keep looking for a better type, but remember this one.  */
4028 		  if (!marginal_memb)
4029 		    marginal_memb = memb;
4030 		}
4031 	    }
4032 
4033 	  /* Can convert integer zero to any pointer type.  */
4034 	  if (integer_zerop (rhs)
4035 	      || (TREE_CODE (rhs) == NOP_EXPR
4036 		  && integer_zerop (TREE_OPERAND (rhs, 0))))
4037 	    {
4038 	      rhs = null_pointer_node;
4039 	      break;
4040 	    }
4041 	}
4042 
4043       if (memb || marginal_memb)
4044 	{
4045 	  if (!memb)
4046 	    {
4047 	      /* We have only a marginally acceptable member type;
4048 		 it needs a warning.  */
4049 	      tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
4050 	      tree ttr = TREE_TYPE (rhstype);
4051 
4052 	      /* Const and volatile mean something different for function
4053 		 types, so the usual warnings are not appropriate.  */
4054 	      if (TREE_CODE (ttr) == FUNCTION_TYPE
4055 		  && TREE_CODE (ttl) == FUNCTION_TYPE)
4056 		{
4057 		  /* Because const and volatile on functions are
4058 		     restrictions that say the function will not do
4059 		     certain things, it is okay to use a const or volatile
4060 		     function where an ordinary one is wanted, but not
4061 		     vice-versa.  */
4062 		  if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4063 		    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
4064 					    "makes qualified function "
4065 					    "pointer from unqualified"),
4066 					 G_("assignment makes qualified "
4067 					    "function pointer from "
4068 					    "unqualified"),
4069 					 G_("initialization makes qualified "
4070 					    "function pointer from "
4071 					    "unqualified"),
4072 					 G_("return makes qualified function "
4073 					    "pointer from unqualified"));
4074 		}
4075 	      else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4076 		WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4077 					"qualifiers from pointer target type"),
4078 				     G_("assignment discards qualifiers "
4079 					"from pointer target type"),
4080 				     G_("initialization discards qualifiers "
4081 					"from pointer target type"),
4082 				     G_("return discards qualifiers from "
4083 					"pointer target type"));
4084 
4085 	      memb = marginal_memb;
4086 	    }
4087 
4088 	  if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
4089 	    pedwarn ("ISO C prohibits argument conversion to union type");
4090 
4091 	  return build_constructor_single (type, memb, rhs);
4092 	}
4093     }
4094 
4095   /* Conversions among pointers */
4096   else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4097 	   && (coder == codel))
4098     {
4099       tree ttl = TREE_TYPE (type);
4100       tree ttr = TREE_TYPE (rhstype);
4101       tree mvl = ttl;
4102       tree mvr = ttr;
4103       bool is_opaque_pointer;
4104       int target_cmp = 0;   /* Cache comp_target_types () result.  */
4105 
4106       if (TREE_CODE (mvl) != ARRAY_TYPE)
4107 	mvl = TYPE_MAIN_VARIANT (mvl);
4108       if (TREE_CODE (mvr) != ARRAY_TYPE)
4109 	mvr = TYPE_MAIN_VARIANT (mvr);
4110       /* Opaque pointers are treated like void pointers.  */
4111       is_opaque_pointer = (targetm.vector_opaque_p (type)
4112                            || targetm.vector_opaque_p (rhstype))
4113         && TREE_CODE (ttl) == VECTOR_TYPE
4114         && TREE_CODE (ttr) == VECTOR_TYPE;
4115 
4116       /* C++ does not allow the implicit conversion void* -> T*.  However,
4117          for the purpose of reducing the number of false positives, we
4118          tolerate the special case of
4119 
4120                 int *p = NULL;
4121 
4122          where NULL is typically defined in C to be '(void *) 0'.  */
4123       if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4124         warning (OPT_Wc___compat, "request for implicit conversion from "
4125                  "%qT to %qT not permitted in C++", rhstype, type);
4126 
4127       /* Check if the right-hand side has a format attribute but the
4128 	 left-hand side doesn't.  */
4129       if (warn_missing_format_attribute
4130 	  && check_missing_format_attribute (type, rhstype))
4131         {
4132 	  switch (errtype)
4133 	  {
4134 	  case ic_argpass:
4135 	  case ic_argpass_nonproto:
4136 	    warning (OPT_Wmissing_format_attribute,
4137 		     "argument %d of %qE might be "
4138 		     "a candidate for a format attribute",
4139 		     parmnum, rname);
4140 	    break;
4141 	  case ic_assign:
4142 	    warning (OPT_Wmissing_format_attribute,
4143 		     "assignment left-hand side might be "
4144 		     "a candidate for a format attribute");
4145 	    break;
4146 	  case ic_init:
4147 	    warning (OPT_Wmissing_format_attribute,
4148 		     "initialization left-hand side might be "
4149 		     "a candidate for a format attribute");
4150 	    break;
4151 	  case ic_return:
4152 	    warning (OPT_Wmissing_format_attribute,
4153 		     "return type might be "
4154 		     "a candidate for a format attribute");
4155 	    break;
4156 	  default:
4157 	    gcc_unreachable ();
4158 	  }
4159 	}
4160 
4161       /* Any non-function converts to a [const][volatile] void *
4162 	 and vice versa; otherwise, targets must be the same.
4163 	 Meanwhile, the lhs target must have all the qualifiers of the rhs.  */
4164       if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4165 	  || (target_cmp = comp_target_types (type, rhstype))
4166 	  || is_opaque_pointer
4167 	  || (c_common_unsigned_type (mvl)
4168 	      == c_common_unsigned_type (mvr)))
4169 	{
4170 	  if (pedantic
4171 	      && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4172 		  ||
4173 		  (VOID_TYPE_P (ttr)
4174 		   /* Check TREE_CODE to catch cases like (void *) (char *) 0
4175 		      which are not ANSI null ptr constants.  */
4176 		   && (!integer_zerop (rhs) || TREE_CODE (rhs) == NOP_EXPR)
4177 		   && TREE_CODE (ttl) == FUNCTION_TYPE)))
4178 	    WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4179 				    "%qE between function pointer "
4180 				    "and %<void *%>"),
4181 				 G_("ISO C forbids assignment between "
4182 				    "function pointer and %<void *%>"),
4183 				 G_("ISO C forbids initialization between "
4184 				    "function pointer and %<void *%>"),
4185 				 G_("ISO C forbids return between function "
4186 				    "pointer and %<void *%>"));
4187 	  /* Const and volatile mean something different for function types,
4188 	     so the usual warnings are not appropriate.  */
4189 	  else if (TREE_CODE (ttr) != FUNCTION_TYPE
4190 		   && TREE_CODE (ttl) != FUNCTION_TYPE)
4191 	    {
4192 	      if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4193 		{
4194 		  /* Types differing only by the presence of the 'volatile'
4195 		     qualifier are acceptable if the 'volatile' has been added
4196 		     in by the Objective-C EH machinery.  */
4197 		  if (!objc_type_quals_match (ttl, ttr))
4198 		    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4199 					    "qualifiers from pointer target type"),
4200 					 G_("assignment discards qualifiers "
4201 					    "from pointer target type"),
4202 					 G_("initialization discards qualifiers "
4203 					    "from pointer target type"),
4204 					 G_("return discards qualifiers from "
4205 					    "pointer target type"));
4206 		}
4207 	      /* If this is not a case of ignoring a mismatch in signedness,
4208 		 no warning.  */
4209 	      else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4210 		       || target_cmp)
4211 		;
4212 	      /* If there is a mismatch, do warn.  */
4213 	      else if (warn_pointer_sign)
4214 		WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4215 					"%d of %qE differ in signedness"),
4216 				     G_("pointer targets in assignment "
4217 					"differ in signedness"),
4218 				     G_("pointer targets in initialization "
4219 					"differ in signedness"),
4220 				     G_("pointer targets in return differ "
4221 					"in signedness"));
4222 	    }
4223 	  else if (TREE_CODE (ttl) == FUNCTION_TYPE
4224 		   && TREE_CODE (ttr) == FUNCTION_TYPE)
4225 	    {
4226 	      /* Because const and volatile on functions are restrictions
4227 		 that say the function will not do certain things,
4228 		 it is okay to use a const or volatile function
4229 		 where an ordinary one is wanted, but not vice-versa.  */
4230 	      if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4231 		WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4232 					"qualified function pointer "
4233 					"from unqualified"),
4234 				     G_("assignment makes qualified function "
4235 					"pointer from unqualified"),
4236 				     G_("initialization makes qualified "
4237 					"function pointer from unqualified"),
4238 				     G_("return makes qualified function "
4239 					"pointer from unqualified"));
4240 	    }
4241 	}
4242       else
4243 	/* Avoid warning about the volatile ObjC EH puts on decls.  */
4244 	if (!objc_ok)
4245 	  WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4246 				  "incompatible pointer type"),
4247 			       G_("assignment from incompatible pointer type"),
4248 			       G_("initialization from incompatible "
4249 				  "pointer type"),
4250 			       G_("return from incompatible pointer type"));
4251 
4252       return convert (type, rhs);
4253     }
4254   else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4255     {
4256       /* ??? This should not be an error when inlining calls to
4257 	 unprototyped functions.  */
4258       error ("invalid use of non-lvalue array");
4259       return error_mark_node;
4260     }
4261   else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4262     {
4263       /* An explicit constant 0 can convert to a pointer,
4264 	 or one that results from arithmetic, even including
4265 	 a cast to integer type.  */
4266       if (!(TREE_CODE (rhs) == INTEGER_CST && integer_zerop (rhs))
4267 	  &&
4268 	  !(TREE_CODE (rhs) == NOP_EXPR
4269 	    && TREE_CODE (TREE_TYPE (rhs)) == INTEGER_TYPE
4270 	    && TREE_CODE (TREE_OPERAND (rhs, 0)) == INTEGER_CST
4271 	    && integer_zerop (TREE_OPERAND (rhs, 0))))
4272 	WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4273 				"pointer from integer without a cast"),
4274 			     G_("assignment makes pointer from integer "
4275 				"without a cast"),
4276 			     G_("initialization makes pointer from "
4277 				"integer without a cast"),
4278 			     G_("return makes pointer from integer "
4279 				"without a cast"));
4280 
4281       return convert (type, rhs);
4282     }
4283   else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4284     {
4285       WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4286 			      "from pointer without a cast"),
4287 			   G_("assignment makes integer from pointer "
4288 			      "without a cast"),
4289 			   G_("initialization makes integer from pointer "
4290 			      "without a cast"),
4291 			   G_("return makes integer from pointer "
4292 			      "without a cast"));
4293       return convert (type, rhs);
4294     }
4295   else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4296     return convert (type, rhs);
4297 
4298   switch (errtype)
4299     {
4300     case ic_argpass:
4301     case ic_argpass_nonproto:
4302       /* ??? This should not be an error when inlining calls to
4303 	 unprototyped functions.  */
4304       error ("incompatible type for argument %d of %qE", parmnum, rname);
4305       break;
4306     case ic_assign:
4307       error ("incompatible types in assignment");
4308       break;
4309     case ic_init:
4310       error ("incompatible types in initialization");
4311       break;
4312     case ic_return:
4313       error ("incompatible types in return");
4314       break;
4315     default:
4316       gcc_unreachable ();
4317     }
4318 
4319   return error_mark_node;
4320 }
4321 
4322 /* Convert VALUE for assignment into inlined parameter PARM.  ARGNUM
4323    is used for error and waring reporting and indicates which argument
4324    is being processed.  */
4325 
4326 tree
c_convert_parm_for_inlining(tree parm,tree value,tree fn,int argnum)4327 c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
4328 {
4329   tree ret, type;
4330 
4331   /* If FN was prototyped, the value has been converted already
4332      in convert_arguments.  */
4333   if (!value || TYPE_ARG_TYPES (TREE_TYPE (fn)))
4334     return value;
4335 
4336   type = TREE_TYPE (parm);
4337   ret = convert_for_assignment (type, value,
4338 				ic_argpass_nonproto, fn,
4339 				fn, argnum);
4340   if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
4341       && INTEGRAL_TYPE_P (type)
4342       && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
4343     ret = default_conversion (ret);
4344   return ret;
4345 }
4346 
4347 /* If VALUE is a compound expr all of whose expressions are constant, then
4348    return its value.  Otherwise, return error_mark_node.
4349 
4350    This is for handling COMPOUND_EXPRs as initializer elements
4351    which is allowed with a warning when -pedantic is specified.  */
4352 
4353 static tree
valid_compound_expr_initializer(tree value,tree endtype)4354 valid_compound_expr_initializer (tree value, tree endtype)
4355 {
4356   if (TREE_CODE (value) == COMPOUND_EXPR)
4357     {
4358       if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4359 	  == error_mark_node)
4360 	return error_mark_node;
4361       return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4362 					      endtype);
4363     }
4364   else if (!initializer_constant_valid_p (value, endtype))
4365     return error_mark_node;
4366   else
4367     return value;
4368 }
4369 
4370 /* Perform appropriate conversions on the initial value of a variable,
4371    store it in the declaration DECL,
4372    and print any error messages that are appropriate.
4373    If the init is invalid, store an ERROR_MARK.  */
4374 
4375 void
store_init_value(tree decl,tree init)4376 store_init_value (tree decl, tree init)
4377 {
4378   tree value, type;
4379 
4380   /* If variable's type was invalidly declared, just ignore it.  */
4381 
4382   type = TREE_TYPE (decl);
4383   if (TREE_CODE (type) == ERROR_MARK)
4384     return;
4385 
4386   /* Digest the specified initializer into an expression.  */
4387 
4388   value = digest_init (type, init, true, TREE_STATIC (decl));
4389 
4390   /* Store the expression if valid; else report error.  */
4391 
4392   if (!in_system_header
4393       && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4394     warning (OPT_Wtraditional, "traditional C rejects automatic "
4395 	     "aggregate initialization");
4396 
4397   DECL_INITIAL (decl) = value;
4398 
4399   /* ANSI wants warnings about out-of-range constant initializers.  */
4400   STRIP_TYPE_NOPS (value);
4401   constant_expression_warning (value);
4402 
4403   /* Check if we need to set array size from compound literal size.  */
4404   if (TREE_CODE (type) == ARRAY_TYPE
4405       && TYPE_DOMAIN (type) == 0
4406       && value != error_mark_node)
4407     {
4408       tree inside_init = init;
4409 
4410       STRIP_TYPE_NOPS (inside_init);
4411       inside_init = fold (inside_init);
4412 
4413       if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4414 	{
4415 	  tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4416 
4417 	  if (TYPE_DOMAIN (TREE_TYPE (decl)))
4418 	    {
4419 	      /* For int foo[] = (int [3]){1}; we need to set array size
4420 		 now since later on array initializer will be just the
4421 		 brace enclosed list of the compound literal.  */
4422 	      TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (decl));
4423 	      layout_type (type);
4424 	      layout_decl (decl, 0);
4425 	    }
4426 	}
4427     }
4428 }
4429 
4430 /* Methods for storing and printing names for error messages.  */
4431 
4432 /* Implement a spelling stack that allows components of a name to be pushed
4433    and popped.  Each element on the stack is this structure.  */
4434 
4435 struct spelling
4436 {
4437   int kind;
4438   union
4439     {
4440       unsigned HOST_WIDE_INT i;
4441       const char *s;
4442     } u;
4443 };
4444 
4445 #define SPELLING_STRING 1
4446 #define SPELLING_MEMBER 2
4447 #define SPELLING_BOUNDS 3
4448 
4449 static struct spelling *spelling;	/* Next stack element (unused).  */
4450 static struct spelling *spelling_base;	/* Spelling stack base.  */
4451 static int spelling_size;		/* Size of the spelling stack.  */
4452 
4453 /* Macros to save and restore the spelling stack around push_... functions.
4454    Alternative to SAVE_SPELLING_STACK.  */
4455 
4456 #define SPELLING_DEPTH() (spelling - spelling_base)
4457 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4458 
4459 /* Push an element on the spelling stack with type KIND and assign VALUE
4460    to MEMBER.  */
4461 
4462 #define PUSH_SPELLING(KIND, VALUE, MEMBER)				\
4463 {									\
4464   int depth = SPELLING_DEPTH ();					\
4465 									\
4466   if (depth >= spelling_size)						\
4467     {									\
4468       spelling_size += 10;						\
4469       spelling_base = XRESIZEVEC (struct spelling, spelling_base,	\
4470 				  spelling_size);			\
4471       RESTORE_SPELLING_DEPTH (depth);					\
4472     }									\
4473 									\
4474   spelling->kind = (KIND);						\
4475   spelling->MEMBER = (VALUE);						\
4476   spelling++;								\
4477 }
4478 
4479 /* Push STRING on the stack.  Printed literally.  */
4480 
4481 static void
push_string(const char * string)4482 push_string (const char *string)
4483 {
4484   PUSH_SPELLING (SPELLING_STRING, string, u.s);
4485 }
4486 
4487 /* Push a member name on the stack.  Printed as '.' STRING.  */
4488 
4489 static void
push_member_name(tree decl)4490 push_member_name (tree decl)
4491 {
4492   const char *const string
4493     = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4494   PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4495 }
4496 
4497 /* Push an array bounds on the stack.  Printed as [BOUNDS].  */
4498 
4499 static void
push_array_bounds(unsigned HOST_WIDE_INT bounds)4500 push_array_bounds (unsigned HOST_WIDE_INT bounds)
4501 {
4502   PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4503 }
4504 
4505 /* Compute the maximum size in bytes of the printed spelling.  */
4506 
4507 static int
spelling_length(void)4508 spelling_length (void)
4509 {
4510   int size = 0;
4511   struct spelling *p;
4512 
4513   for (p = spelling_base; p < spelling; p++)
4514     {
4515       if (p->kind == SPELLING_BOUNDS)
4516 	size += 25;
4517       else
4518 	size += strlen (p->u.s) + 1;
4519     }
4520 
4521   return size;
4522 }
4523 
4524 /* Print the spelling to BUFFER and return it.  */
4525 
4526 static char *
print_spelling(char * buffer)4527 print_spelling (char *buffer)
4528 {
4529   char *d = buffer;
4530   struct spelling *p;
4531 
4532   for (p = spelling_base; p < spelling; p++)
4533     if (p->kind == SPELLING_BOUNDS)
4534       {
4535 	sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4536 	d += strlen (d);
4537       }
4538     else
4539       {
4540 	const char *s;
4541 	if (p->kind == SPELLING_MEMBER)
4542 	  *d++ = '.';
4543 	for (s = p->u.s; (*d = *s++); d++)
4544 	  ;
4545       }
4546   *d++ = '\0';
4547   return buffer;
4548 }
4549 
4550 /* Issue an error message for a bad initializer component.
4551    MSGID identifies the message.
4552    The component name is taken from the spelling stack.  */
4553 
4554 void
error_init(const char * msgid)4555 error_init (const char *msgid)
4556 {
4557   char *ofwhat;
4558 
4559   ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4560   if (*ofwhat)
4561     error ("%s (near initialization for %qs)", _(msgid), ofwhat);
4562   else
4563     error ("%s", _(msgid));
4564 }
4565 
4566 /* Issue a pedantic warning for a bad initializer component.
4567    MSGID identifies the message.
4568    The component name is taken from the spelling stack.  */
4569 
4570 void
pedwarn_init(const char * msgid)4571 pedwarn_init (const char *msgid)
4572 {
4573   char *ofwhat;
4574 
4575   ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4576   if (*ofwhat)
4577     pedwarn ("%s (near initialization for %qs)", _(msgid), ofwhat);
4578   else
4579     pedwarn ("%s", _(msgid));
4580 }
4581 
4582 /* Issue a warning for a bad initializer component.
4583    MSGID identifies the message.
4584    The component name is taken from the spelling stack.  */
4585 
4586 static void
warning_init(const char * msgid)4587 warning_init (const char *msgid)
4588 {
4589   char *ofwhat;
4590 
4591   ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4592   if (*ofwhat)
4593     warning (0, "%s (near initialization for %qs)", _(msgid), ofwhat);
4594   else
4595     warning (0, "%s", _(msgid));
4596 }
4597 
4598 /* If TYPE is an array type and EXPR is a parenthesized string
4599    constant, warn if pedantic that EXPR is being used to initialize an
4600    object of type TYPE.  */
4601 
4602 void
maybe_warn_string_init(tree type,struct c_expr expr)4603 maybe_warn_string_init (tree type, struct c_expr expr)
4604 {
4605   if (pedantic
4606       && TREE_CODE (type) == ARRAY_TYPE
4607       && TREE_CODE (expr.value) == STRING_CST
4608       && expr.original_code != STRING_CST)
4609     pedwarn_init ("array initialized from parenthesized string constant");
4610 }
4611 
4612 /* Digest the parser output INIT as an initializer for type TYPE.
4613    Return a C expression of type TYPE to represent the initial value.
4614 
4615    If INIT is a string constant, STRICT_STRING is true if it is
4616    unparenthesized or we should not warn here for it being parenthesized.
4617    For other types of INIT, STRICT_STRING is not used.
4618 
4619    REQUIRE_CONSTANT requests an error if non-constant initializers or
4620    elements are seen.  */
4621 
4622 static tree
digest_init(tree type,tree init,bool strict_string,int require_constant)4623 digest_init (tree type, tree init, bool strict_string, int require_constant)
4624 {
4625   enum tree_code code = TREE_CODE (type);
4626   tree inside_init = init;
4627 
4628   if (type == error_mark_node
4629       || !init
4630       || init == error_mark_node
4631       || TREE_TYPE (init) == error_mark_node)
4632     return error_mark_node;
4633 
4634   STRIP_TYPE_NOPS (inside_init);
4635 
4636   inside_init = fold (inside_init);
4637 
4638   /* Initialization of an array of chars from a string constant
4639      optionally enclosed in braces.  */
4640 
4641   if (code == ARRAY_TYPE && inside_init
4642       && TREE_CODE (inside_init) == STRING_CST)
4643     {
4644       tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4645       /* Note that an array could be both an array of character type
4646 	 and an array of wchar_t if wchar_t is signed char or unsigned
4647 	 char.  */
4648       bool char_array = (typ1 == char_type_node
4649 			 || typ1 == signed_char_type_node
4650 			 || typ1 == unsigned_char_type_node);
4651       bool wchar_array = !!comptypes (typ1, wchar_type_node);
4652       if (char_array || wchar_array)
4653 	{
4654 	  struct c_expr expr;
4655 	  bool char_string;
4656 	  expr.value = inside_init;
4657 	  expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4658 	  maybe_warn_string_init (type, expr);
4659 
4660 	  char_string
4661 	    = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4662 	       == char_type_node);
4663 
4664 	  if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4665 			 TYPE_MAIN_VARIANT (type)))
4666 	    return inside_init;
4667 
4668 	  if (!wchar_array && !char_string)
4669 	    {
4670 	      error_init ("char-array initialized from wide string");
4671 	      return error_mark_node;
4672 	    }
4673 	  if (char_string && !char_array)
4674 	    {
4675 	      error_init ("wchar_t-array initialized from non-wide string");
4676 	      return error_mark_node;
4677 	    }
4678 
4679 	  TREE_TYPE (inside_init) = type;
4680 	  if (TYPE_DOMAIN (type) != 0
4681 	      && TYPE_SIZE (type) != 0
4682 	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4683 	      /* Subtract 1 (or sizeof (wchar_t))
4684 		 because it's ok to ignore the terminating null char
4685 		 that is counted in the length of the constant.  */
4686 	      && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4687 				       TREE_STRING_LENGTH (inside_init)
4688 				       - ((TYPE_PRECISION (typ1)
4689 					   != TYPE_PRECISION (char_type_node))
4690 					  ? (TYPE_PRECISION (wchar_type_node)
4691 					     / BITS_PER_UNIT)
4692 					  : 1)))
4693 	    pedwarn_init ("initializer-string for array of chars is too long");
4694 
4695 	  return inside_init;
4696 	}
4697       else if (INTEGRAL_TYPE_P (typ1))
4698 	{
4699 	  error_init ("array of inappropriate type initialized "
4700 		      "from string constant");
4701 	  return error_mark_node;
4702 	}
4703     }
4704 
4705   /* Build a VECTOR_CST from a *constant* vector constructor.  If the
4706      vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4707      below and handle as a constructor.  */
4708   if (code == VECTOR_TYPE
4709       && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4710       && vector_types_convertible_p (TREE_TYPE (inside_init), type)
4711       && TREE_CONSTANT (inside_init))
4712     {
4713       if (TREE_CODE (inside_init) == VECTOR_CST
4714 	  && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4715 			TYPE_MAIN_VARIANT (type)))
4716 	return inside_init;
4717 
4718       if (TREE_CODE (inside_init) == CONSTRUCTOR)
4719 	{
4720 	  unsigned HOST_WIDE_INT ix;
4721 	  tree value;
4722 	  bool constant_p = true;
4723 
4724 	  /* Iterate through elements and check if all constructor
4725 	     elements are *_CSTs.  */
4726 	  FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4727 	    if (!CONSTANT_CLASS_P (value))
4728 	      {
4729 		constant_p = false;
4730 		break;
4731 	      }
4732 
4733 	  if (constant_p)
4734 	    return build_vector_from_ctor (type,
4735 					   CONSTRUCTOR_ELTS (inside_init));
4736 	}
4737     }
4738 
4739   /* Any type can be initialized
4740      from an expression of the same type, optionally with braces.  */
4741 
4742   if (inside_init && TREE_TYPE (inside_init) != 0
4743       && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4744 		     TYPE_MAIN_VARIANT (type))
4745 	  || (code == ARRAY_TYPE
4746 	      && comptypes (TREE_TYPE (inside_init), type))
4747 	  || (code == VECTOR_TYPE
4748 	      && comptypes (TREE_TYPE (inside_init), type))
4749 	  || (code == POINTER_TYPE
4750 	      && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4751 	      && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4752 			    TREE_TYPE (type)))))
4753     {
4754       if (code == POINTER_TYPE)
4755 	{
4756 	  if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4757 	    {
4758 	      if (TREE_CODE (inside_init) == STRING_CST
4759 		  || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4760 		inside_init = array_to_pointer_conversion (inside_init);
4761 	      else
4762 		{
4763 		  error_init ("invalid use of non-lvalue array");
4764 		  return error_mark_node;
4765 		}
4766 	    }
4767 	}
4768 
4769       if (code == VECTOR_TYPE)
4770 	/* Although the types are compatible, we may require a
4771 	   conversion.  */
4772 	inside_init = convert (type, inside_init);
4773 
4774       if (require_constant && !flag_isoc99
4775 	  && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4776 	{
4777 	  /* As an extension, allow initializing objects with static storage
4778 	     duration with compound literals (which are then treated just as
4779 	     the brace enclosed list they contain).  */
4780 	  tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4781 	  inside_init = DECL_INITIAL (decl);
4782 	}
4783 
4784       if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4785 	  && TREE_CODE (inside_init) != CONSTRUCTOR)
4786 	{
4787 	  error_init ("array initialized from non-constant array expression");
4788 	  return error_mark_node;
4789 	}
4790 
4791       if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4792 	inside_init = decl_constant_value_for_broken_optimization (inside_init);
4793 
4794       /* Compound expressions can only occur here if -pedantic or
4795 	 -pedantic-errors is specified.  In the later case, we always want
4796 	 an error.  In the former case, we simply want a warning.  */
4797       if (require_constant && pedantic
4798 	  && TREE_CODE (inside_init) == COMPOUND_EXPR)
4799 	{
4800 	  inside_init
4801 	    = valid_compound_expr_initializer (inside_init,
4802 					       TREE_TYPE (inside_init));
4803 	  if (inside_init == error_mark_node)
4804 	    error_init ("initializer element is not constant");
4805 	  else
4806 	    pedwarn_init ("initializer element is not constant");
4807 	  if (flag_pedantic_errors)
4808 	    inside_init = error_mark_node;
4809 	}
4810       else if (require_constant
4811 	       && !initializer_constant_valid_p (inside_init,
4812 						 TREE_TYPE (inside_init)))
4813 	{
4814 	  error_init ("initializer element is not constant");
4815 	  inside_init = error_mark_node;
4816 	}
4817 
4818       /* Added to enable additional -Wmissing-format-attribute warnings.  */
4819       if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4820 	inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4821 					      NULL_TREE, 0);
4822       return inside_init;
4823     }
4824 
4825   /* Handle scalar types, including conversions.  */
4826 
4827   if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4828       || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
4829       || code == VECTOR_TYPE)
4830     {
4831       if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4832 	  && (TREE_CODE (init) == STRING_CST
4833 	      || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4834 	init = array_to_pointer_conversion (init);
4835       inside_init
4836 	= convert_for_assignment (type, init, ic_init,
4837 				  NULL_TREE, NULL_TREE, 0);
4838 
4839       /* Check to see if we have already given an error message.  */
4840       if (inside_init == error_mark_node)
4841 	;
4842       else if (require_constant && !TREE_CONSTANT (inside_init))
4843 	{
4844 	  error_init ("initializer element is not constant");
4845 	  inside_init = error_mark_node;
4846 	}
4847       else if (require_constant
4848 	       && !initializer_constant_valid_p (inside_init,
4849 						 TREE_TYPE (inside_init)))
4850 	{
4851 	  error_init ("initializer element is not computable at load time");
4852 	  inside_init = error_mark_node;
4853 	}
4854 
4855       return inside_init;
4856     }
4857 
4858   /* Come here only for records and arrays.  */
4859 
4860   if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4861     {
4862       error_init ("variable-sized object may not be initialized");
4863       return error_mark_node;
4864     }
4865 
4866   error_init ("invalid initializer");
4867   return error_mark_node;
4868 }
4869 
4870 /* Handle initializers that use braces.  */
4871 
4872 /* Type of object we are accumulating a constructor for.
4873    This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE.  */
4874 static tree constructor_type;
4875 
4876 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4877    left to fill.  */
4878 static tree constructor_fields;
4879 
4880 /* For an ARRAY_TYPE, this is the specified index
4881    at which to store the next element we get.  */
4882 static tree constructor_index;
4883 
4884 /* For an ARRAY_TYPE, this is the maximum index.  */
4885 static tree constructor_max_index;
4886 
4887 /* For a RECORD_TYPE, this is the first field not yet written out.  */
4888 static tree constructor_unfilled_fields;
4889 
4890 /* For an ARRAY_TYPE, this is the index of the first element
4891    not yet written out.  */
4892 static tree constructor_unfilled_index;
4893 
4894 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4895    This is so we can generate gaps between fields, when appropriate.  */
4896 static tree constructor_bit_index;
4897 
4898 /* If we are saving up the elements rather than allocating them,
4899    this is the list of elements so far (in reverse order,
4900    most recent first).  */
4901 static VEC(constructor_elt,gc) *constructor_elements;
4902 
4903 /* 1 if constructor should be incrementally stored into a constructor chain,
4904    0 if all the elements should be kept in AVL tree.  */
4905 static int constructor_incremental;
4906 
4907 /* 1 if so far this constructor's elements are all compile-time constants.  */
4908 static int constructor_constant;
4909 
4910 /* 1 if so far this constructor's elements are all valid address constants.  */
4911 static int constructor_simple;
4912 
4913 /* 1 if this constructor is erroneous so far.  */
4914 static int constructor_erroneous;
4915 
4916 /* Structure for managing pending initializer elements, organized as an
4917    AVL tree.  */
4918 
4919 struct init_node
4920 {
4921   struct init_node *left, *right;
4922   struct init_node *parent;
4923   int balance;
4924   tree purpose;
4925   tree value;
4926 };
4927 
4928 /* Tree of pending elements at this constructor level.
4929    These are elements encountered out of order
4930    which belong at places we haven't reached yet in actually
4931    writing the output.
4932    Will never hold tree nodes across GC runs.  */
4933 static struct init_node *constructor_pending_elts;
4934 
4935 /* The SPELLING_DEPTH of this constructor.  */
4936 static int constructor_depth;
4937 
4938 /* DECL node for which an initializer is being read.
4939    0 means we are reading a constructor expression
4940    such as (struct foo) {...}.  */
4941 static tree constructor_decl;
4942 
4943 /* Nonzero if this is an initializer for a top-level decl.  */
4944 static int constructor_top_level;
4945 
4946 /* Nonzero if there were any member designators in this initializer.  */
4947 static int constructor_designated;
4948 
4949 /* Nesting depth of designator list.  */
4950 static int designator_depth;
4951 
4952 /* Nonzero if there were diagnosed errors in this designator list.  */
4953 static int designator_erroneous;
4954 
4955 
4956 /* This stack has a level for each implicit or explicit level of
4957    structuring in the initializer, including the outermost one.  It
4958    saves the values of most of the variables above.  */
4959 
4960 struct constructor_range_stack;
4961 
4962 struct constructor_stack
4963 {
4964   struct constructor_stack *next;
4965   tree type;
4966   tree fields;
4967   tree index;
4968   tree max_index;
4969   tree unfilled_index;
4970   tree unfilled_fields;
4971   tree bit_index;
4972   VEC(constructor_elt,gc) *elements;
4973   struct init_node *pending_elts;
4974   int offset;
4975   int depth;
4976   /* If value nonzero, this value should replace the entire
4977      constructor at this level.  */
4978   struct c_expr replacement_value;
4979   struct constructor_range_stack *range_stack;
4980   char constant;
4981   char simple;
4982   char implicit;
4983   char erroneous;
4984   char outer;
4985   char incremental;
4986   char designated;
4987 };
4988 
4989 static struct constructor_stack *constructor_stack;
4990 
4991 /* This stack represents designators from some range designator up to
4992    the last designator in the list.  */
4993 
4994 struct constructor_range_stack
4995 {
4996   struct constructor_range_stack *next, *prev;
4997   struct constructor_stack *stack;
4998   tree range_start;
4999   tree index;
5000   tree range_end;
5001   tree fields;
5002 };
5003 
5004 static struct constructor_range_stack *constructor_range_stack;
5005 
5006 /* This stack records separate initializers that are nested.
5007    Nested initializers can't happen in ANSI C, but GNU C allows them
5008    in cases like { ... (struct foo) { ... } ... }.  */
5009 
5010 struct initializer_stack
5011 {
5012   struct initializer_stack *next;
5013   tree decl;
5014   struct constructor_stack *constructor_stack;
5015   struct constructor_range_stack *constructor_range_stack;
5016   VEC(constructor_elt,gc) *elements;
5017   struct spelling *spelling;
5018   struct spelling *spelling_base;
5019   int spelling_size;
5020   char top_level;
5021   char require_constant_value;
5022   char require_constant_elements;
5023 };
5024 
5025 static struct initializer_stack *initializer_stack;
5026 
5027 /* Prepare to parse and output the initializer for variable DECL.  */
5028 
5029 void
start_init(tree decl,tree asmspec_tree ATTRIBUTE_UNUSED,int top_level)5030 start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
5031 {
5032   const char *locus;
5033   struct initializer_stack *p = xmalloc (sizeof (struct initializer_stack));
5034 
5035   p->decl = constructor_decl;
5036   p->require_constant_value = require_constant_value;
5037   p->require_constant_elements = require_constant_elements;
5038   p->constructor_stack = constructor_stack;
5039   p->constructor_range_stack = constructor_range_stack;
5040   p->elements = constructor_elements;
5041   p->spelling = spelling;
5042   p->spelling_base = spelling_base;
5043   p->spelling_size = spelling_size;
5044   p->top_level = constructor_top_level;
5045   p->next = initializer_stack;
5046   initializer_stack = p;
5047 
5048   constructor_decl = decl;
5049   constructor_designated = 0;
5050   constructor_top_level = top_level;
5051 
5052   if (decl != 0 && decl != error_mark_node)
5053     {
5054       require_constant_value = TREE_STATIC (decl);
5055       require_constant_elements
5056 	= ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
5057 	   /* For a scalar, you can always use any value to initialize,
5058 	      even within braces.  */
5059 	   && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
5060 	       || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5061 	       || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
5062 	       || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
5063       locus = IDENTIFIER_POINTER (DECL_NAME (decl));
5064     }
5065   else
5066     {
5067       require_constant_value = 0;
5068       require_constant_elements = 0;
5069       locus = "(anonymous)";
5070     }
5071 
5072   constructor_stack = 0;
5073   constructor_range_stack = 0;
5074 
5075   missing_braces_mentioned = 0;
5076 
5077   spelling_base = 0;
5078   spelling_size = 0;
5079   RESTORE_SPELLING_DEPTH (0);
5080 
5081   if (locus)
5082     push_string (locus);
5083 }
5084 
5085 void
finish_init(void)5086 finish_init (void)
5087 {
5088   struct initializer_stack *p = initializer_stack;
5089 
5090   /* Free the whole constructor stack of this initializer.  */
5091   while (constructor_stack)
5092     {
5093       struct constructor_stack *q = constructor_stack;
5094       constructor_stack = q->next;
5095       free (q);
5096     }
5097 
5098   gcc_assert (!constructor_range_stack);
5099 
5100   /* Pop back to the data of the outer initializer (if any).  */
5101   free (spelling_base);
5102 
5103   constructor_decl = p->decl;
5104   require_constant_value = p->require_constant_value;
5105   require_constant_elements = p->require_constant_elements;
5106   constructor_stack = p->constructor_stack;
5107   constructor_range_stack = p->constructor_range_stack;
5108   constructor_elements = p->elements;
5109   spelling = p->spelling;
5110   spelling_base = p->spelling_base;
5111   spelling_size = p->spelling_size;
5112   constructor_top_level = p->top_level;
5113   initializer_stack = p->next;
5114   free (p);
5115 }
5116 
5117 /* Call here when we see the initializer is surrounded by braces.
5118    This is instead of a call to push_init_level;
5119    it is matched by a call to pop_init_level.
5120 
5121    TYPE is the type to initialize, for a constructor expression.
5122    For an initializer for a decl, TYPE is zero.  */
5123 
5124 void
really_start_incremental_init(tree type)5125 really_start_incremental_init (tree type)
5126 {
5127   struct constructor_stack *p = XNEW (struct constructor_stack);
5128 
5129   if (type == 0)
5130     type = TREE_TYPE (constructor_decl);
5131 
5132   if (targetm.vector_opaque_p (type))
5133     error ("opaque vector types cannot be initialized");
5134 
5135   p->type = constructor_type;
5136   p->fields = constructor_fields;
5137   p->index = constructor_index;
5138   p->max_index = constructor_max_index;
5139   p->unfilled_index = constructor_unfilled_index;
5140   p->unfilled_fields = constructor_unfilled_fields;
5141   p->bit_index = constructor_bit_index;
5142   p->elements = constructor_elements;
5143   p->constant = constructor_constant;
5144   p->simple = constructor_simple;
5145   p->erroneous = constructor_erroneous;
5146   p->pending_elts = constructor_pending_elts;
5147   p->depth = constructor_depth;
5148   p->replacement_value.value = 0;
5149   p->replacement_value.original_code = ERROR_MARK;
5150   p->implicit = 0;
5151   p->range_stack = 0;
5152   p->outer = 0;
5153   p->incremental = constructor_incremental;
5154   p->designated = constructor_designated;
5155   p->next = 0;
5156   constructor_stack = p;
5157 
5158   constructor_constant = 1;
5159   constructor_simple = 1;
5160   constructor_depth = SPELLING_DEPTH ();
5161   constructor_elements = 0;
5162   constructor_pending_elts = 0;
5163   constructor_type = type;
5164   constructor_incremental = 1;
5165   constructor_designated = 0;
5166   designator_depth = 0;
5167   designator_erroneous = 0;
5168 
5169   if (TREE_CODE (constructor_type) == RECORD_TYPE
5170       || TREE_CODE (constructor_type) == UNION_TYPE)
5171     {
5172       constructor_fields = TYPE_FIELDS (constructor_type);
5173       /* Skip any nameless bit fields at the beginning.  */
5174       while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5175 	     && DECL_NAME (constructor_fields) == 0)
5176 	constructor_fields = TREE_CHAIN (constructor_fields);
5177 
5178       constructor_unfilled_fields = constructor_fields;
5179       constructor_bit_index = bitsize_zero_node;
5180     }
5181   else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5182     {
5183       if (TYPE_DOMAIN (constructor_type))
5184 	{
5185 	  constructor_max_index
5186 	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5187 
5188 	  /* Detect non-empty initializations of zero-length arrays.  */
5189 	  if (constructor_max_index == NULL_TREE
5190 	      && TYPE_SIZE (constructor_type))
5191 	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5192 
5193 	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5194 	     to initialize VLAs will cause a proper error; avoid tree
5195 	     checking errors as well by setting a safe value.  */
5196 	  if (constructor_max_index
5197 	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5198 	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5199 
5200 	  constructor_index
5201 	    = convert (bitsizetype,
5202 		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5203 	}
5204       else
5205 	{
5206 	  constructor_index = bitsize_zero_node;
5207 	  constructor_max_index = NULL_TREE;
5208 	}
5209 
5210       constructor_unfilled_index = constructor_index;
5211     }
5212   else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5213     {
5214       /* Vectors are like simple fixed-size arrays.  */
5215       constructor_max_index =
5216 	build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5217       constructor_index = bitsize_zero_node;
5218       constructor_unfilled_index = constructor_index;
5219     }
5220   else
5221     {
5222       /* Handle the case of int x = {5}; */
5223       constructor_fields = constructor_type;
5224       constructor_unfilled_fields = constructor_type;
5225     }
5226 }
5227 
5228 /* Push down into a subobject, for initialization.
5229    If this is for an explicit set of braces, IMPLICIT is 0.
5230    If it is because the next element belongs at a lower level,
5231    IMPLICIT is 1 (or 2 if the push is because of designator list).  */
5232 
5233 void
push_init_level(int implicit)5234 push_init_level (int implicit)
5235 {
5236   struct constructor_stack *p;
5237   tree value = NULL_TREE;
5238 
5239   /* If we've exhausted any levels that didn't have braces,
5240      pop them now.  If implicit == 1, this will have been done in
5241      process_init_element; do not repeat it here because in the case
5242      of excess initializers for an empty aggregate this leads to an
5243      infinite cycle of popping a level and immediately recreating
5244      it.  */
5245   if (implicit != 1)
5246     {
5247       while (constructor_stack->implicit)
5248 	{
5249 	  if ((TREE_CODE (constructor_type) == RECORD_TYPE
5250 	       || TREE_CODE (constructor_type) == UNION_TYPE)
5251 	      && constructor_fields == 0)
5252 	    process_init_element (pop_init_level (1));
5253 	  else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5254 		   && constructor_max_index
5255 		   && tree_int_cst_lt (constructor_max_index,
5256 				       constructor_index))
5257 	    process_init_element (pop_init_level (1));
5258 	  else
5259 	    break;
5260 	}
5261     }
5262 
5263   /* Unless this is an explicit brace, we need to preserve previous
5264      content if any.  */
5265   if (implicit)
5266     {
5267       if ((TREE_CODE (constructor_type) == RECORD_TYPE
5268 	   || TREE_CODE (constructor_type) == UNION_TYPE)
5269 	  && constructor_fields)
5270 	value = find_init_member (constructor_fields);
5271       else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5272 	value = find_init_member (constructor_index);
5273     }
5274 
5275   p = XNEW (struct constructor_stack);
5276   p->type = constructor_type;
5277   p->fields = constructor_fields;
5278   p->index = constructor_index;
5279   p->max_index = constructor_max_index;
5280   p->unfilled_index = constructor_unfilled_index;
5281   p->unfilled_fields = constructor_unfilled_fields;
5282   p->bit_index = constructor_bit_index;
5283   p->elements = constructor_elements;
5284   p->constant = constructor_constant;
5285   p->simple = constructor_simple;
5286   p->erroneous = constructor_erroneous;
5287   p->pending_elts = constructor_pending_elts;
5288   p->depth = constructor_depth;
5289   p->replacement_value.value = 0;
5290   p->replacement_value.original_code = ERROR_MARK;
5291   p->implicit = implicit;
5292   p->outer = 0;
5293   p->incremental = constructor_incremental;
5294   p->designated = constructor_designated;
5295   p->next = constructor_stack;
5296   p->range_stack = 0;
5297   constructor_stack = p;
5298 
5299   constructor_constant = 1;
5300   constructor_simple = 1;
5301   constructor_depth = SPELLING_DEPTH ();
5302   constructor_elements = 0;
5303   constructor_incremental = 1;
5304   constructor_designated = 0;
5305   constructor_pending_elts = 0;
5306   if (!implicit)
5307     {
5308       p->range_stack = constructor_range_stack;
5309       constructor_range_stack = 0;
5310       designator_depth = 0;
5311       designator_erroneous = 0;
5312     }
5313 
5314   /* Don't die if an entire brace-pair level is superfluous
5315      in the containing level.  */
5316   if (constructor_type == 0)
5317     ;
5318   else if (TREE_CODE (constructor_type) == RECORD_TYPE
5319 	   || TREE_CODE (constructor_type) == UNION_TYPE)
5320     {
5321       /* Don't die if there are extra init elts at the end.  */
5322       if (constructor_fields == 0)
5323 	constructor_type = 0;
5324       else
5325 	{
5326 	  constructor_type = TREE_TYPE (constructor_fields);
5327 	  push_member_name (constructor_fields);
5328 	  constructor_depth++;
5329 	}
5330     }
5331   else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5332     {
5333       constructor_type = TREE_TYPE (constructor_type);
5334       push_array_bounds (tree_low_cst (constructor_index, 1));
5335       constructor_depth++;
5336     }
5337 
5338   if (constructor_type == 0)
5339     {
5340       error_init ("extra brace group at end of initializer");
5341       constructor_fields = 0;
5342       constructor_unfilled_fields = 0;
5343       return;
5344     }
5345 
5346   if (value && TREE_CODE (value) == CONSTRUCTOR)
5347     {
5348       constructor_constant = TREE_CONSTANT (value);
5349       constructor_simple = TREE_STATIC (value);
5350       constructor_elements = CONSTRUCTOR_ELTS (value);
5351       if (!VEC_empty (constructor_elt, constructor_elements)
5352 	  && (TREE_CODE (constructor_type) == RECORD_TYPE
5353 	      || TREE_CODE (constructor_type) == ARRAY_TYPE))
5354 	set_nonincremental_init ();
5355     }
5356 
5357   if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5358     {
5359       missing_braces_mentioned = 1;
5360       warning_init ("missing braces around initializer");
5361     }
5362 
5363   if (TREE_CODE (constructor_type) == RECORD_TYPE
5364 	   || TREE_CODE (constructor_type) == UNION_TYPE)
5365     {
5366       constructor_fields = TYPE_FIELDS (constructor_type);
5367       /* Skip any nameless bit fields at the beginning.  */
5368       while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5369 	     && DECL_NAME (constructor_fields) == 0)
5370 	constructor_fields = TREE_CHAIN (constructor_fields);
5371 
5372       constructor_unfilled_fields = constructor_fields;
5373       constructor_bit_index = bitsize_zero_node;
5374     }
5375   else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5376     {
5377       /* Vectors are like simple fixed-size arrays.  */
5378       constructor_max_index =
5379 	build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5380       constructor_index = convert (bitsizetype, integer_zero_node);
5381       constructor_unfilled_index = constructor_index;
5382     }
5383   else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5384     {
5385       if (TYPE_DOMAIN (constructor_type))
5386 	{
5387 	  constructor_max_index
5388 	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5389 
5390 	  /* Detect non-empty initializations of zero-length arrays.  */
5391 	  if (constructor_max_index == NULL_TREE
5392 	      && TYPE_SIZE (constructor_type))
5393 	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5394 
5395 	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5396 	     to initialize VLAs will cause a proper error; avoid tree
5397 	     checking errors as well by setting a safe value.  */
5398 	  if (constructor_max_index
5399 	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5400 	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5401 
5402 	  constructor_index
5403 	    = convert (bitsizetype,
5404 		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5405 	}
5406       else
5407 	constructor_index = bitsize_zero_node;
5408 
5409       constructor_unfilled_index = constructor_index;
5410       if (value && TREE_CODE (value) == STRING_CST)
5411 	{
5412 	  /* We need to split the char/wchar array into individual
5413 	     characters, so that we don't have to special case it
5414 	     everywhere.  */
5415 	  set_nonincremental_init_from_string (value);
5416 	}
5417     }
5418   else
5419     {
5420       if (constructor_type != error_mark_node)
5421 	warning_init ("braces around scalar initializer");
5422       constructor_fields = constructor_type;
5423       constructor_unfilled_fields = constructor_type;
5424     }
5425 }
5426 
5427 /* At the end of an implicit or explicit brace level,
5428    finish up that level of constructor.  If a single expression
5429    with redundant braces initialized that level, return the
5430    c_expr structure for that expression.  Otherwise, the original_code
5431    element is set to ERROR_MARK.
5432    If we were outputting the elements as they are read, return 0 as the value
5433    from inner levels (process_init_element ignores that),
5434    but return error_mark_node as the value from the outermost level
5435    (that's what we want to put in DECL_INITIAL).
5436    Otherwise, return a CONSTRUCTOR expression as the value.  */
5437 
5438 struct c_expr
pop_init_level(int implicit)5439 pop_init_level (int implicit)
5440 {
5441   struct constructor_stack *p;
5442   struct c_expr ret;
5443   ret.value = 0;
5444   ret.original_code = ERROR_MARK;
5445 
5446   if (implicit == 0)
5447     {
5448       /* When we come to an explicit close brace,
5449 	 pop any inner levels that didn't have explicit braces.  */
5450       while (constructor_stack->implicit)
5451 	process_init_element (pop_init_level (1));
5452 
5453       gcc_assert (!constructor_range_stack);
5454     }
5455 
5456   /* Now output all pending elements.  */
5457   constructor_incremental = 1;
5458   output_pending_init_elements (1);
5459 
5460   p = constructor_stack;
5461 
5462   /* Error for initializing a flexible array member, or a zero-length
5463      array member in an inappropriate context.  */
5464   if (constructor_type && constructor_fields
5465       && TREE_CODE (constructor_type) == ARRAY_TYPE
5466       && TYPE_DOMAIN (constructor_type)
5467       && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5468     {
5469       /* Silently discard empty initializations.  The parser will
5470 	 already have pedwarned for empty brackets.  */
5471       if (integer_zerop (constructor_unfilled_index))
5472 	constructor_type = NULL_TREE;
5473       else
5474 	{
5475 	  gcc_assert (!TYPE_SIZE (constructor_type));
5476 
5477 	  if (constructor_depth > 2)
5478 	    error_init ("initialization of flexible array member in a nested context");
5479 	  else if (pedantic)
5480 	    pedwarn_init ("initialization of a flexible array member");
5481 
5482 	  /* We have already issued an error message for the existence
5483 	     of a flexible array member not at the end of the structure.
5484 	     Discard the initializer so that we do not die later.  */
5485 	  if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5486 	    constructor_type = NULL_TREE;
5487 	}
5488     }
5489 
5490   /* Warn when some struct elements are implicitly initialized to zero.  */
5491   if (warn_missing_field_initializers
5492       && constructor_type
5493       && TREE_CODE (constructor_type) == RECORD_TYPE
5494       && constructor_unfilled_fields)
5495     {
5496 	/* Do not warn for flexible array members or zero-length arrays.  */
5497 	while (constructor_unfilled_fields
5498 	       && (!DECL_SIZE (constructor_unfilled_fields)
5499 		   || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5500 	  constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5501 
5502 	/* Do not warn if this level of the initializer uses member
5503 	   designators; it is likely to be deliberate.  */
5504 	if (constructor_unfilled_fields && !constructor_designated)
5505 	  {
5506 	    push_member_name (constructor_unfilled_fields);
5507 	    warning_init ("missing initializer");
5508 	    RESTORE_SPELLING_DEPTH (constructor_depth);
5509 	  }
5510     }
5511 
5512   /* Pad out the end of the structure.  */
5513   if (p->replacement_value.value)
5514     /* If this closes a superfluous brace pair,
5515        just pass out the element between them.  */
5516     ret = p->replacement_value;
5517   else if (constructor_type == 0)
5518     ;
5519   else if (TREE_CODE (constructor_type) != RECORD_TYPE
5520 	   && TREE_CODE (constructor_type) != UNION_TYPE
5521 	   && TREE_CODE (constructor_type) != ARRAY_TYPE
5522 	   && TREE_CODE (constructor_type) != VECTOR_TYPE)
5523     {
5524       /* A nonincremental scalar initializer--just return
5525 	 the element, after verifying there is just one.  */
5526       if (VEC_empty (constructor_elt,constructor_elements))
5527 	{
5528 	  if (!constructor_erroneous)
5529 	    error_init ("empty scalar initializer");
5530 	  ret.value = error_mark_node;
5531 	}
5532       else if (VEC_length (constructor_elt,constructor_elements) != 1)
5533 	{
5534 	  error_init ("extra elements in scalar initializer");
5535 	  ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5536 	}
5537       else
5538 	ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5539     }
5540   else
5541     {
5542       if (constructor_erroneous)
5543 	ret.value = error_mark_node;
5544       else
5545 	{
5546 	  ret.value = build_constructor (constructor_type,
5547 					 constructor_elements);
5548 	  if (constructor_constant)
5549 	    TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5550 	  if (constructor_constant && constructor_simple)
5551 	    TREE_STATIC (ret.value) = 1;
5552 	}
5553     }
5554 
5555   constructor_type = p->type;
5556   constructor_fields = p->fields;
5557   constructor_index = p->index;
5558   constructor_max_index = p->max_index;
5559   constructor_unfilled_index = p->unfilled_index;
5560   constructor_unfilled_fields = p->unfilled_fields;
5561   constructor_bit_index = p->bit_index;
5562   constructor_elements = p->elements;
5563   constructor_constant = p->constant;
5564   constructor_simple = p->simple;
5565   constructor_erroneous = p->erroneous;
5566   constructor_incremental = p->incremental;
5567   constructor_designated = p->designated;
5568   constructor_pending_elts = p->pending_elts;
5569   constructor_depth = p->depth;
5570   if (!p->implicit)
5571     constructor_range_stack = p->range_stack;
5572   RESTORE_SPELLING_DEPTH (constructor_depth);
5573 
5574   constructor_stack = p->next;
5575   free (p);
5576 
5577   if (ret.value == 0)
5578     {
5579       if (constructor_stack == 0)
5580 	{
5581 	  ret.value = error_mark_node;
5582 	  return ret;
5583 	}
5584       return ret;
5585     }
5586   return ret;
5587 }
5588 
5589 /* Common handling for both array range and field name designators.
5590    ARRAY argument is nonzero for array ranges.  Returns zero for success.  */
5591 
5592 static int
set_designator(int array)5593 set_designator (int array)
5594 {
5595   tree subtype;
5596   enum tree_code subcode;
5597 
5598   /* Don't die if an entire brace-pair level is superfluous
5599      in the containing level.  */
5600   if (constructor_type == 0)
5601     return 1;
5602 
5603   /* If there were errors in this designator list already, bail out
5604      silently.  */
5605   if (designator_erroneous)
5606     return 1;
5607 
5608   if (!designator_depth)
5609     {
5610       gcc_assert (!constructor_range_stack);
5611 
5612       /* Designator list starts at the level of closest explicit
5613 	 braces.  */
5614       while (constructor_stack->implicit)
5615 	process_init_element (pop_init_level (1));
5616       constructor_designated = 1;
5617       return 0;
5618     }
5619 
5620   switch (TREE_CODE (constructor_type))
5621     {
5622     case  RECORD_TYPE:
5623     case  UNION_TYPE:
5624       subtype = TREE_TYPE (constructor_fields);
5625       if (subtype != error_mark_node)
5626 	subtype = TYPE_MAIN_VARIANT (subtype);
5627       break;
5628     case ARRAY_TYPE:
5629       subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5630       break;
5631     default:
5632       gcc_unreachable ();
5633     }
5634 
5635   subcode = TREE_CODE (subtype);
5636   if (array && subcode != ARRAY_TYPE)
5637     {
5638       error_init ("array index in non-array initializer");
5639       return 1;
5640     }
5641   else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5642     {
5643       error_init ("field name not in record or union initializer");
5644       return 1;
5645     }
5646 
5647   constructor_designated = 1;
5648   push_init_level (2);
5649   return 0;
5650 }
5651 
5652 /* If there are range designators in designator list, push a new designator
5653    to constructor_range_stack.  RANGE_END is end of such stack range or
5654    NULL_TREE if there is no range designator at this level.  */
5655 
5656 static void
push_range_stack(tree range_end)5657 push_range_stack (tree range_end)
5658 {
5659   struct constructor_range_stack *p;
5660 
5661   p = GGC_NEW (struct constructor_range_stack);
5662   p->prev = constructor_range_stack;
5663   p->next = 0;
5664   p->fields = constructor_fields;
5665   p->range_start = constructor_index;
5666   p->index = constructor_index;
5667   p->stack = constructor_stack;
5668   p->range_end = range_end;
5669   if (constructor_range_stack)
5670     constructor_range_stack->next = p;
5671   constructor_range_stack = p;
5672 }
5673 
5674 /* Within an array initializer, specify the next index to be initialized.
5675    FIRST is that index.  If LAST is nonzero, then initialize a range
5676    of indices, running from FIRST through LAST.  */
5677 
5678 void
set_init_index(tree first,tree last)5679 set_init_index (tree first, tree last)
5680 {
5681   if (set_designator (1))
5682     return;
5683 
5684   designator_erroneous = 1;
5685 
5686   if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5687       || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5688     {
5689       error_init ("array index in initializer not of integer type");
5690       return;
5691     }
5692 
5693   if (TREE_CODE (first) != INTEGER_CST)
5694     error_init ("nonconstant array index in initializer");
5695   else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5696     error_init ("nonconstant array index in initializer");
5697   else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5698     error_init ("array index in non-array initializer");
5699   else if (tree_int_cst_sgn (first) == -1)
5700     error_init ("array index in initializer exceeds array bounds");
5701   else if (constructor_max_index
5702 	   && tree_int_cst_lt (constructor_max_index, first))
5703     error_init ("array index in initializer exceeds array bounds");
5704   else
5705     {
5706       constructor_index = convert (bitsizetype, first);
5707 
5708       if (last)
5709 	{
5710 	  if (tree_int_cst_equal (first, last))
5711 	    last = 0;
5712 	  else if (tree_int_cst_lt (last, first))
5713 	    {
5714 	      error_init ("empty index range in initializer");
5715 	      last = 0;
5716 	    }
5717 	  else
5718 	    {
5719 	      last = convert (bitsizetype, last);
5720 	      if (constructor_max_index != 0
5721 		  && tree_int_cst_lt (constructor_max_index, last))
5722 		{
5723 		  error_init ("array index range in initializer exceeds array bounds");
5724 		  last = 0;
5725 		}
5726 	    }
5727 	}
5728 
5729       designator_depth++;
5730       designator_erroneous = 0;
5731       if (constructor_range_stack || last)
5732 	push_range_stack (last);
5733     }
5734 }
5735 
5736 /* Within a struct initializer, specify the next field to be initialized.  */
5737 
5738 void
set_init_label(tree fieldname)5739 set_init_label (tree fieldname)
5740 {
5741   tree tail;
5742 
5743   if (set_designator (0))
5744     return;
5745 
5746   designator_erroneous = 1;
5747 
5748   if (TREE_CODE (constructor_type) != RECORD_TYPE
5749       && TREE_CODE (constructor_type) != UNION_TYPE)
5750     {
5751       error_init ("field name not in record or union initializer");
5752       return;
5753     }
5754 
5755   for (tail = TYPE_FIELDS (constructor_type); tail;
5756        tail = TREE_CHAIN (tail))
5757     {
5758       if (DECL_NAME (tail) == fieldname)
5759 	break;
5760     }
5761 
5762   if (tail == 0)
5763     error ("unknown field %qE specified in initializer", fieldname);
5764   else
5765     {
5766       constructor_fields = tail;
5767       designator_depth++;
5768       designator_erroneous = 0;
5769       if (constructor_range_stack)
5770 	push_range_stack (NULL_TREE);
5771     }
5772 }
5773 
5774 /* Add a new initializer to the tree of pending initializers.  PURPOSE
5775    identifies the initializer, either array index or field in a structure.
5776    VALUE is the value of that index or field.  */
5777 
5778 static void
add_pending_init(tree purpose,tree value)5779 add_pending_init (tree purpose, tree value)
5780 {
5781   struct init_node *p, **q, *r;
5782 
5783   q = &constructor_pending_elts;
5784   p = 0;
5785 
5786   if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5787     {
5788       while (*q != 0)
5789 	{
5790 	  p = *q;
5791 	  if (tree_int_cst_lt (purpose, p->purpose))
5792 	    q = &p->left;
5793 	  else if (tree_int_cst_lt (p->purpose, purpose))
5794 	    q = &p->right;
5795 	  else
5796 	    {
5797 	      if (TREE_SIDE_EFFECTS (p->value))
5798 		warning_init ("initialized field with side-effects overwritten");
5799 	      p->value = value;
5800 	      return;
5801 	    }
5802 	}
5803     }
5804   else
5805     {
5806       tree bitpos;
5807 
5808       bitpos = bit_position (purpose);
5809       while (*q != NULL)
5810 	{
5811 	  p = *q;
5812 	  if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5813 	    q = &p->left;
5814 	  else if (p->purpose != purpose)
5815 	    q = &p->right;
5816 	  else
5817 	    {
5818 	      if (TREE_SIDE_EFFECTS (p->value))
5819 		warning_init ("initialized field with side-effects overwritten");
5820 	      p->value = value;
5821 	      return;
5822 	    }
5823 	}
5824     }
5825 
5826   r = GGC_NEW (struct init_node);
5827   r->purpose = purpose;
5828   r->value = value;
5829 
5830   *q = r;
5831   r->parent = p;
5832   r->left = 0;
5833   r->right = 0;
5834   r->balance = 0;
5835 
5836   while (p)
5837     {
5838       struct init_node *s;
5839 
5840       if (r == p->left)
5841 	{
5842 	  if (p->balance == 0)
5843 	    p->balance = -1;
5844 	  else if (p->balance < 0)
5845 	    {
5846 	      if (r->balance < 0)
5847 		{
5848 		  /* L rotation.  */
5849 		  p->left = r->right;
5850 		  if (p->left)
5851 		    p->left->parent = p;
5852 		  r->right = p;
5853 
5854 		  p->balance = 0;
5855 		  r->balance = 0;
5856 
5857 		  s = p->parent;
5858 		  p->parent = r;
5859 		  r->parent = s;
5860 		  if (s)
5861 		    {
5862 		      if (s->left == p)
5863 			s->left = r;
5864 		      else
5865 			s->right = r;
5866 		    }
5867 		  else
5868 		    constructor_pending_elts = r;
5869 		}
5870 	      else
5871 		{
5872 		  /* LR rotation.  */
5873 		  struct init_node *t = r->right;
5874 
5875 		  r->right = t->left;
5876 		  if (r->right)
5877 		    r->right->parent = r;
5878 		  t->left = r;
5879 
5880 		  p->left = t->right;
5881 		  if (p->left)
5882 		    p->left->parent = p;
5883 		  t->right = p;
5884 
5885 		  p->balance = t->balance < 0;
5886 		  r->balance = -(t->balance > 0);
5887 		  t->balance = 0;
5888 
5889 		  s = p->parent;
5890 		  p->parent = t;
5891 		  r->parent = t;
5892 		  t->parent = s;
5893 		  if (s)
5894 		    {
5895 		      if (s->left == p)
5896 			s->left = t;
5897 		      else
5898 			s->right = t;
5899 		    }
5900 		  else
5901 		    constructor_pending_elts = t;
5902 		}
5903 	      break;
5904 	    }
5905 	  else
5906 	    {
5907 	      /* p->balance == +1; growth of left side balances the node.  */
5908 	      p->balance = 0;
5909 	      break;
5910 	    }
5911 	}
5912       else /* r == p->right */
5913 	{
5914 	  if (p->balance == 0)
5915 	    /* Growth propagation from right side.  */
5916 	    p->balance++;
5917 	  else if (p->balance > 0)
5918 	    {
5919 	      if (r->balance > 0)
5920 		{
5921 		  /* R rotation.  */
5922 		  p->right = r->left;
5923 		  if (p->right)
5924 		    p->right->parent = p;
5925 		  r->left = p;
5926 
5927 		  p->balance = 0;
5928 		  r->balance = 0;
5929 
5930 		  s = p->parent;
5931 		  p->parent = r;
5932 		  r->parent = s;
5933 		  if (s)
5934 		    {
5935 		      if (s->left == p)
5936 			s->left = r;
5937 		      else
5938 			s->right = r;
5939 		    }
5940 		  else
5941 		    constructor_pending_elts = r;
5942 		}
5943 	      else /* r->balance == -1 */
5944 		{
5945 		  /* RL rotation */
5946 		  struct init_node *t = r->left;
5947 
5948 		  r->left = t->right;
5949 		  if (r->left)
5950 		    r->left->parent = r;
5951 		  t->right = r;
5952 
5953 		  p->right = t->left;
5954 		  if (p->right)
5955 		    p->right->parent = p;
5956 		  t->left = p;
5957 
5958 		  r->balance = (t->balance < 0);
5959 		  p->balance = -(t->balance > 0);
5960 		  t->balance = 0;
5961 
5962 		  s = p->parent;
5963 		  p->parent = t;
5964 		  r->parent = t;
5965 		  t->parent = s;
5966 		  if (s)
5967 		    {
5968 		      if (s->left == p)
5969 			s->left = t;
5970 		      else
5971 			s->right = t;
5972 		    }
5973 		  else
5974 		    constructor_pending_elts = t;
5975 		}
5976 	      break;
5977 	    }
5978 	  else
5979 	    {
5980 	      /* p->balance == -1; growth of right side balances the node.  */
5981 	      p->balance = 0;
5982 	      break;
5983 	    }
5984 	}
5985 
5986       r = p;
5987       p = p->parent;
5988     }
5989 }
5990 
5991 /* Build AVL tree from a sorted chain.  */
5992 
5993 static void
set_nonincremental_init(void)5994 set_nonincremental_init (void)
5995 {
5996   unsigned HOST_WIDE_INT ix;
5997   tree index, value;
5998 
5999   if (TREE_CODE (constructor_type) != RECORD_TYPE
6000       && TREE_CODE (constructor_type) != ARRAY_TYPE)
6001     return;
6002 
6003   FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
6004     add_pending_init (index, value);
6005   constructor_elements = 0;
6006   if (TREE_CODE (constructor_type) == RECORD_TYPE)
6007     {
6008       constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
6009       /* Skip any nameless bit fields at the beginning.  */
6010       while (constructor_unfilled_fields != 0
6011 	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6012 	     && DECL_NAME (constructor_unfilled_fields) == 0)
6013 	constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
6014 
6015     }
6016   else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6017     {
6018       if (TYPE_DOMAIN (constructor_type))
6019 	constructor_unfilled_index
6020 	    = convert (bitsizetype,
6021 		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
6022       else
6023 	constructor_unfilled_index = bitsize_zero_node;
6024     }
6025   constructor_incremental = 0;
6026 }
6027 
6028 /* Build AVL tree from a string constant.  */
6029 
6030 static void
set_nonincremental_init_from_string(tree str)6031 set_nonincremental_init_from_string (tree str)
6032 {
6033   tree value, purpose, type;
6034   HOST_WIDE_INT val[2];
6035   const char *p, *end;
6036   int byte, wchar_bytes, charwidth, bitpos;
6037 
6038   gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
6039 
6040   if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6041       == TYPE_PRECISION (char_type_node))
6042     wchar_bytes = 1;
6043   else
6044     {
6045       gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6046 		  == TYPE_PRECISION (wchar_type_node));
6047       wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
6048     }
6049   charwidth = TYPE_PRECISION (char_type_node);
6050   type = TREE_TYPE (constructor_type);
6051   p = TREE_STRING_POINTER (str);
6052   end = p + TREE_STRING_LENGTH (str);
6053 
6054   for (purpose = bitsize_zero_node;
6055        p < end && !tree_int_cst_lt (constructor_max_index, purpose);
6056        purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
6057     {
6058       if (wchar_bytes == 1)
6059 	{
6060 	  val[1] = (unsigned char) *p++;
6061 	  val[0] = 0;
6062 	}
6063       else
6064 	{
6065 	  val[0] = 0;
6066 	  val[1] = 0;
6067 	  for (byte = 0; byte < wchar_bytes; byte++)
6068 	    {
6069 	      if (BYTES_BIG_ENDIAN)
6070 		bitpos = (wchar_bytes - byte - 1) * charwidth;
6071 	      else
6072 		bitpos = byte * charwidth;
6073 	      val[bitpos < HOST_BITS_PER_WIDE_INT]
6074 		|= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
6075 		   << (bitpos % HOST_BITS_PER_WIDE_INT);
6076 	    }
6077 	}
6078 
6079       if (!TYPE_UNSIGNED (type))
6080 	{
6081 	  bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
6082 	  if (bitpos < HOST_BITS_PER_WIDE_INT)
6083 	    {
6084 	      if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6085 		{
6086 		  val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6087 		  val[0] = -1;
6088 		}
6089 	    }
6090 	  else if (bitpos == HOST_BITS_PER_WIDE_INT)
6091 	    {
6092 	      if (val[1] < 0)
6093 	        val[0] = -1;
6094 	    }
6095 	  else if (val[0] & (((HOST_WIDE_INT) 1)
6096 			     << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6097 	    val[0] |= ((HOST_WIDE_INT) -1)
6098 		      << (bitpos - HOST_BITS_PER_WIDE_INT);
6099 	}
6100 
6101       value = build_int_cst_wide (type, val[1], val[0]);
6102       add_pending_init (purpose, value);
6103     }
6104 
6105   constructor_incremental = 0;
6106 }
6107 
6108 /* Return value of FIELD in pending initializer or zero if the field was
6109    not initialized yet.  */
6110 
6111 static tree
find_init_member(tree field)6112 find_init_member (tree field)
6113 {
6114   struct init_node *p;
6115 
6116   if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6117     {
6118       if (constructor_incremental
6119 	  && tree_int_cst_lt (field, constructor_unfilled_index))
6120 	set_nonincremental_init ();
6121 
6122       p = constructor_pending_elts;
6123       while (p)
6124 	{
6125 	  if (tree_int_cst_lt (field, p->purpose))
6126 	    p = p->left;
6127 	  else if (tree_int_cst_lt (p->purpose, field))
6128 	    p = p->right;
6129 	  else
6130 	    return p->value;
6131 	}
6132     }
6133   else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6134     {
6135       tree bitpos = bit_position (field);
6136 
6137       if (constructor_incremental
6138 	  && (!constructor_unfilled_fields
6139 	      || tree_int_cst_lt (bitpos,
6140 				  bit_position (constructor_unfilled_fields))))
6141 	set_nonincremental_init ();
6142 
6143       p = constructor_pending_elts;
6144       while (p)
6145 	{
6146 	  if (field == p->purpose)
6147 	    return p->value;
6148 	  else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6149 	    p = p->left;
6150 	  else
6151 	    p = p->right;
6152 	}
6153     }
6154   else if (TREE_CODE (constructor_type) == UNION_TYPE)
6155     {
6156       if (!VEC_empty (constructor_elt, constructor_elements)
6157 	  && (VEC_last (constructor_elt, constructor_elements)->index
6158 	      == field))
6159 	return VEC_last (constructor_elt, constructor_elements)->value;
6160     }
6161   return 0;
6162 }
6163 
6164 /* "Output" the next constructor element.
6165    At top level, really output it to assembler code now.
6166    Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6167    TYPE is the data type that the containing data type wants here.
6168    FIELD is the field (a FIELD_DECL) or the index that this element fills.
6169    If VALUE is a string constant, STRICT_STRING is true if it is
6170    unparenthesized or we should not warn here for it being parenthesized.
6171    For other types of VALUE, STRICT_STRING is not used.
6172 
6173    PENDING if non-nil means output pending elements that belong
6174    right after this element.  (PENDING is normally 1;
6175    it is 0 while outputting pending elements, to avoid recursion.)  */
6176 
6177 static void
output_init_element(tree value,bool strict_string,tree type,tree field,int pending)6178 output_init_element (tree value, bool strict_string, tree type, tree field,
6179 		     int pending)
6180 {
6181   constructor_elt *celt;
6182 
6183   if (type == error_mark_node || value == error_mark_node)
6184     {
6185       constructor_erroneous = 1;
6186       return;
6187     }
6188   if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6189       && (TREE_CODE (value) == STRING_CST
6190 	  || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6191       && !(TREE_CODE (value) == STRING_CST
6192 	   && TREE_CODE (type) == ARRAY_TYPE
6193 	   && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6194       && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6195 		     TYPE_MAIN_VARIANT (type)))
6196     value = array_to_pointer_conversion (value);
6197 
6198   if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6199       && require_constant_value && !flag_isoc99 && pending)
6200     {
6201       /* As an extension, allow initializing objects with static storage
6202 	 duration with compound literals (which are then treated just as
6203 	 the brace enclosed list they contain).  */
6204       tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6205       value = DECL_INITIAL (decl);
6206     }
6207 
6208   if (value == error_mark_node)
6209     constructor_erroneous = 1;
6210   else if (!TREE_CONSTANT (value))
6211     constructor_constant = 0;
6212   else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6213 	   || ((TREE_CODE (constructor_type) == RECORD_TYPE
6214 		|| TREE_CODE (constructor_type) == UNION_TYPE)
6215 	       && DECL_C_BIT_FIELD (field)
6216 	       && TREE_CODE (value) != INTEGER_CST))
6217     constructor_simple = 0;
6218 
6219   if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6220     {
6221       if (require_constant_value)
6222 	{
6223 	  error_init ("initializer element is not constant");
6224 	  value = error_mark_node;
6225 	}
6226       else if (require_constant_elements)
6227 	pedwarn ("initializer element is not computable at load time");
6228     }
6229 
6230   /* If this field is empty (and not at the end of structure),
6231      don't do anything other than checking the initializer.  */
6232   if (field
6233       && (TREE_TYPE (field) == error_mark_node
6234 	  || (COMPLETE_TYPE_P (TREE_TYPE (field))
6235 	      && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6236 	      && (TREE_CODE (constructor_type) == ARRAY_TYPE
6237 		  || TREE_CHAIN (field)))))
6238     return;
6239 
6240   value = digest_init (type, value, strict_string, require_constant_value);
6241   if (value == error_mark_node)
6242     {
6243       constructor_erroneous = 1;
6244       return;
6245     }
6246 
6247   /* If this element doesn't come next in sequence,
6248      put it on constructor_pending_elts.  */
6249   if (TREE_CODE (constructor_type) == ARRAY_TYPE
6250       && (!constructor_incremental
6251 	  || !tree_int_cst_equal (field, constructor_unfilled_index)))
6252     {
6253       if (constructor_incremental
6254 	  && tree_int_cst_lt (field, constructor_unfilled_index))
6255 	set_nonincremental_init ();
6256 
6257       add_pending_init (field, value);
6258       return;
6259     }
6260   else if (TREE_CODE (constructor_type) == RECORD_TYPE
6261 	   && (!constructor_incremental
6262 	       || field != constructor_unfilled_fields))
6263     {
6264       /* We do this for records but not for unions.  In a union,
6265 	 no matter which field is specified, it can be initialized
6266 	 right away since it starts at the beginning of the union.  */
6267       if (constructor_incremental)
6268 	{
6269 	  if (!constructor_unfilled_fields)
6270 	    set_nonincremental_init ();
6271 	  else
6272 	    {
6273 	      tree bitpos, unfillpos;
6274 
6275 	      bitpos = bit_position (field);
6276 	      unfillpos = bit_position (constructor_unfilled_fields);
6277 
6278 	      if (tree_int_cst_lt (bitpos, unfillpos))
6279 		set_nonincremental_init ();
6280 	    }
6281 	}
6282 
6283       add_pending_init (field, value);
6284       return;
6285     }
6286   else if (TREE_CODE (constructor_type) == UNION_TYPE
6287 	   && !VEC_empty (constructor_elt, constructor_elements))
6288     {
6289       if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6290 				       constructor_elements)->value))
6291 	warning_init ("initialized field with side-effects overwritten");
6292 
6293       /* We can have just one union field set.  */
6294       constructor_elements = 0;
6295     }
6296 
6297   /* Otherwise, output this element either to
6298      constructor_elements or to the assembler file.  */
6299 
6300   celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6301   celt->index = field;
6302   celt->value = value;
6303 
6304   /* Advance the variable that indicates sequential elements output.  */
6305   if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6306     constructor_unfilled_index
6307       = size_binop (PLUS_EXPR, constructor_unfilled_index,
6308 		    bitsize_one_node);
6309   else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6310     {
6311       constructor_unfilled_fields
6312 	= TREE_CHAIN (constructor_unfilled_fields);
6313 
6314       /* Skip any nameless bit fields.  */
6315       while (constructor_unfilled_fields != 0
6316 	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6317 	     && DECL_NAME (constructor_unfilled_fields) == 0)
6318 	constructor_unfilled_fields =
6319 	  TREE_CHAIN (constructor_unfilled_fields);
6320     }
6321   else if (TREE_CODE (constructor_type) == UNION_TYPE)
6322     constructor_unfilled_fields = 0;
6323 
6324   /* Now output any pending elements which have become next.  */
6325   if (pending)
6326     output_pending_init_elements (0);
6327 }
6328 
6329 /* Output any pending elements which have become next.
6330    As we output elements, constructor_unfilled_{fields,index}
6331    advances, which may cause other elements to become next;
6332    if so, they too are output.
6333 
6334    If ALL is 0, we return when there are
6335    no more pending elements to output now.
6336 
6337    If ALL is 1, we output space as necessary so that
6338    we can output all the pending elements.  */
6339 
6340 static void
output_pending_init_elements(int all)6341 output_pending_init_elements (int all)
6342 {
6343   struct init_node *elt = constructor_pending_elts;
6344   tree next;
6345 
6346  retry:
6347 
6348   /* Look through the whole pending tree.
6349      If we find an element that should be output now,
6350      output it.  Otherwise, set NEXT to the element
6351      that comes first among those still pending.  */
6352 
6353   next = 0;
6354   while (elt)
6355     {
6356       if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6357 	{
6358 	  if (tree_int_cst_equal (elt->purpose,
6359 				  constructor_unfilled_index))
6360 	    output_init_element (elt->value, true,
6361 				 TREE_TYPE (constructor_type),
6362 				 constructor_unfilled_index, 0);
6363 	  else if (tree_int_cst_lt (constructor_unfilled_index,
6364 				    elt->purpose))
6365 	    {
6366 	      /* Advance to the next smaller node.  */
6367 	      if (elt->left)
6368 		elt = elt->left;
6369 	      else
6370 		{
6371 		  /* We have reached the smallest node bigger than the
6372 		     current unfilled index.  Fill the space first.  */
6373 		  next = elt->purpose;
6374 		  break;
6375 		}
6376 	    }
6377 	  else
6378 	    {
6379 	      /* Advance to the next bigger node.  */
6380 	      if (elt->right)
6381 		elt = elt->right;
6382 	      else
6383 		{
6384 		  /* We have reached the biggest node in a subtree.  Find
6385 		     the parent of it, which is the next bigger node.  */
6386 		  while (elt->parent && elt->parent->right == elt)
6387 		    elt = elt->parent;
6388 		  elt = elt->parent;
6389 		  if (elt && tree_int_cst_lt (constructor_unfilled_index,
6390 					      elt->purpose))
6391 		    {
6392 		      next = elt->purpose;
6393 		      break;
6394 		    }
6395 		}
6396 	    }
6397 	}
6398       else if (TREE_CODE (constructor_type) == RECORD_TYPE
6399 	       || TREE_CODE (constructor_type) == UNION_TYPE)
6400 	{
6401 	  tree ctor_unfilled_bitpos, elt_bitpos;
6402 
6403 	  /* If the current record is complete we are done.  */
6404 	  if (constructor_unfilled_fields == 0)
6405 	    break;
6406 
6407 	  ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6408 	  elt_bitpos = bit_position (elt->purpose);
6409 	  /* We can't compare fields here because there might be empty
6410 	     fields in between.  */
6411 	  if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6412 	    {
6413 	      constructor_unfilled_fields = elt->purpose;
6414 	      output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6415 				   elt->purpose, 0);
6416 	    }
6417 	  else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6418 	    {
6419 	      /* Advance to the next smaller node.  */
6420 	      if (elt->left)
6421 		elt = elt->left;
6422 	      else
6423 		{
6424 		  /* We have reached the smallest node bigger than the
6425 		     current unfilled field.  Fill the space first.  */
6426 		  next = elt->purpose;
6427 		  break;
6428 		}
6429 	    }
6430 	  else
6431 	    {
6432 	      /* Advance to the next bigger node.  */
6433 	      if (elt->right)
6434 		elt = elt->right;
6435 	      else
6436 		{
6437 		  /* We have reached the biggest node in a subtree.  Find
6438 		     the parent of it, which is the next bigger node.  */
6439 		  while (elt->parent && elt->parent->right == elt)
6440 		    elt = elt->parent;
6441 		  elt = elt->parent;
6442 		  if (elt
6443 		      && (tree_int_cst_lt (ctor_unfilled_bitpos,
6444 					   bit_position (elt->purpose))))
6445 		    {
6446 		      next = elt->purpose;
6447 		      break;
6448 		    }
6449 		}
6450 	    }
6451 	}
6452     }
6453 
6454   /* Ordinarily return, but not if we want to output all
6455      and there are elements left.  */
6456   if (!(all && next != 0))
6457     return;
6458 
6459   /* If it's not incremental, just skip over the gap, so that after
6460      jumping to retry we will output the next successive element.  */
6461   if (TREE_CODE (constructor_type) == RECORD_TYPE
6462       || TREE_CODE (constructor_type) == UNION_TYPE)
6463     constructor_unfilled_fields = next;
6464   else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6465     constructor_unfilled_index = next;
6466 
6467   /* ELT now points to the node in the pending tree with the next
6468      initializer to output.  */
6469   goto retry;
6470 }
6471 
6472 /* Add one non-braced element to the current constructor level.
6473    This adjusts the current position within the constructor's type.
6474    This may also start or terminate implicit levels
6475    to handle a partly-braced initializer.
6476 
6477    Once this has found the correct level for the new element,
6478    it calls output_init_element.  */
6479 
6480 void
process_init_element(struct c_expr value)6481 process_init_element (struct c_expr value)
6482 {
6483   tree orig_value = value.value;
6484   int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6485   bool strict_string = value.original_code == STRING_CST;
6486 
6487   designator_depth = 0;
6488   designator_erroneous = 0;
6489 
6490   /* Handle superfluous braces around string cst as in
6491      char x[] = {"foo"}; */
6492   if (string_flag
6493       && constructor_type
6494       && TREE_CODE (constructor_type) == ARRAY_TYPE
6495       && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6496       && integer_zerop (constructor_unfilled_index))
6497     {
6498       if (constructor_stack->replacement_value.value)
6499         error_init ("excess elements in char array initializer");
6500       constructor_stack->replacement_value = value;
6501       return;
6502     }
6503 
6504   if (constructor_stack->replacement_value.value != 0)
6505     {
6506       error_init ("excess elements in struct initializer");
6507       return;
6508     }
6509 
6510   /* Ignore elements of a brace group if it is entirely superfluous
6511      and has already been diagnosed.  */
6512   if (constructor_type == 0)
6513     return;
6514 
6515   /* If we've exhausted any levels that didn't have braces,
6516      pop them now.  */
6517   while (constructor_stack->implicit)
6518     {
6519       if ((TREE_CODE (constructor_type) == RECORD_TYPE
6520 	   || TREE_CODE (constructor_type) == UNION_TYPE)
6521 	  && constructor_fields == 0)
6522 	process_init_element (pop_init_level (1));
6523       else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6524 	       && (constructor_max_index == 0
6525 		   || tree_int_cst_lt (constructor_max_index,
6526 				       constructor_index)))
6527 	process_init_element (pop_init_level (1));
6528       else
6529 	break;
6530     }
6531 
6532   /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once.  */
6533   if (constructor_range_stack)
6534     {
6535       /* If value is a compound literal and we'll be just using its
6536 	 content, don't put it into a SAVE_EXPR.  */
6537       if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6538 	  || !require_constant_value
6539 	  || flag_isoc99)
6540 	value.value = save_expr (value.value);
6541     }
6542 
6543   while (1)
6544     {
6545       if (TREE_CODE (constructor_type) == RECORD_TYPE)
6546 	{
6547 	  tree fieldtype;
6548 	  enum tree_code fieldcode;
6549 
6550 	  if (constructor_fields == 0)
6551 	    {
6552 	      pedwarn_init ("excess elements in struct initializer");
6553 	      break;
6554 	    }
6555 
6556 	  fieldtype = TREE_TYPE (constructor_fields);
6557 	  if (fieldtype != error_mark_node)
6558 	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6559 	  fieldcode = TREE_CODE (fieldtype);
6560 
6561 	  /* Error for non-static initialization of a flexible array member.  */
6562 	  if (fieldcode == ARRAY_TYPE
6563 	      && !require_constant_value
6564 	      && TYPE_SIZE (fieldtype) == NULL_TREE
6565 	      && TREE_CHAIN (constructor_fields) == NULL_TREE)
6566 	    {
6567 	      error_init ("non-static initialization of a flexible array member");
6568 	      break;
6569 	    }
6570 
6571 	  /* Accept a string constant to initialize a subarray.  */
6572 	  if (value.value != 0
6573 	      && fieldcode == ARRAY_TYPE
6574 	      && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6575 	      && string_flag)
6576 	    value.value = orig_value;
6577 	  /* Otherwise, if we have come to a subaggregate,
6578 	     and we don't have an element of its type, push into it.  */
6579 	  else if (value.value != 0
6580 		   && value.value != error_mark_node
6581 		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6582 		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6583 		       || fieldcode == UNION_TYPE))
6584 	    {
6585 	      push_init_level (1);
6586 	      continue;
6587 	    }
6588 
6589 	  if (value.value)
6590 	    {
6591 	      push_member_name (constructor_fields);
6592 	      output_init_element (value.value, strict_string,
6593 				   fieldtype, constructor_fields, 1);
6594 	      RESTORE_SPELLING_DEPTH (constructor_depth);
6595 	    }
6596 	  else
6597 	    /* Do the bookkeeping for an element that was
6598 	       directly output as a constructor.  */
6599 	    {
6600 	      /* For a record, keep track of end position of last field.  */
6601 	      if (DECL_SIZE (constructor_fields))
6602 	        constructor_bit_index
6603 		  = size_binop (PLUS_EXPR,
6604 			        bit_position (constructor_fields),
6605 			        DECL_SIZE (constructor_fields));
6606 
6607 	      /* If the current field was the first one not yet written out,
6608 		 it isn't now, so update.  */
6609 	      if (constructor_unfilled_fields == constructor_fields)
6610 		{
6611 		  constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6612 		  /* Skip any nameless bit fields.  */
6613 		  while (constructor_unfilled_fields != 0
6614 			 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6615 			 && DECL_NAME (constructor_unfilled_fields) == 0)
6616 		    constructor_unfilled_fields =
6617 		      TREE_CHAIN (constructor_unfilled_fields);
6618 		}
6619 	    }
6620 
6621 	  constructor_fields = TREE_CHAIN (constructor_fields);
6622 	  /* Skip any nameless bit fields at the beginning.  */
6623 	  while (constructor_fields != 0
6624 		 && DECL_C_BIT_FIELD (constructor_fields)
6625 		 && DECL_NAME (constructor_fields) == 0)
6626 	    constructor_fields = TREE_CHAIN (constructor_fields);
6627 	}
6628       else if (TREE_CODE (constructor_type) == UNION_TYPE)
6629 	{
6630 	  tree fieldtype;
6631 	  enum tree_code fieldcode;
6632 
6633 	  if (constructor_fields == 0)
6634 	    {
6635 	      pedwarn_init ("excess elements in union initializer");
6636 	      break;
6637 	    }
6638 
6639 	  fieldtype = TREE_TYPE (constructor_fields);
6640 	  if (fieldtype != error_mark_node)
6641 	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6642 	  fieldcode = TREE_CODE (fieldtype);
6643 
6644 	  /* Warn that traditional C rejects initialization of unions.
6645 	     We skip the warning if the value is zero.  This is done
6646 	     under the assumption that the zero initializer in user
6647 	     code appears conditioned on e.g. __STDC__ to avoid
6648 	     "missing initializer" warnings and relies on default
6649 	     initialization to zero in the traditional C case.
6650 	     We also skip the warning if the initializer is designated,
6651 	     again on the assumption that this must be conditional on
6652 	     __STDC__ anyway (and we've already complained about the
6653 	     member-designator already).  */
6654 	  if (!in_system_header && !constructor_designated
6655 	      && !(value.value && (integer_zerop (value.value)
6656 				   || real_zerop (value.value))))
6657 	    warning (OPT_Wtraditional, "traditional C rejects initialization "
6658 		     "of unions");
6659 
6660 	  /* Accept a string constant to initialize a subarray.  */
6661 	  if (value.value != 0
6662 	      && fieldcode == ARRAY_TYPE
6663 	      && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6664 	      && string_flag)
6665 	    value.value = orig_value;
6666 	  /* Otherwise, if we have come to a subaggregate,
6667 	     and we don't have an element of its type, push into it.  */
6668 	  else if (value.value != 0
6669 		   && value.value != error_mark_node
6670 		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6671 		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6672 		       || fieldcode == UNION_TYPE))
6673 	    {
6674 	      push_init_level (1);
6675 	      continue;
6676 	    }
6677 
6678 	  if (value.value)
6679 	    {
6680 	      push_member_name (constructor_fields);
6681 	      output_init_element (value.value, strict_string,
6682 				   fieldtype, constructor_fields, 1);
6683 	      RESTORE_SPELLING_DEPTH (constructor_depth);
6684 	    }
6685 	  else
6686 	    /* Do the bookkeeping for an element that was
6687 	       directly output as a constructor.  */
6688 	    {
6689 	      constructor_bit_index = DECL_SIZE (constructor_fields);
6690 	      constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6691 	    }
6692 
6693 	  constructor_fields = 0;
6694 	}
6695       else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6696 	{
6697 	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6698 	  enum tree_code eltcode = TREE_CODE (elttype);
6699 
6700 	  /* Accept a string constant to initialize a subarray.  */
6701 	  if (value.value != 0
6702 	      && eltcode == ARRAY_TYPE
6703 	      && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6704 	      && string_flag)
6705 	    value.value = orig_value;
6706 	  /* Otherwise, if we have come to a subaggregate,
6707 	     and we don't have an element of its type, push into it.  */
6708 	  else if (value.value != 0
6709 		   && value.value != error_mark_node
6710 		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6711 		   && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6712 		       || eltcode == UNION_TYPE))
6713 	    {
6714 	      push_init_level (1);
6715 	      continue;
6716 	    }
6717 
6718 	  if (constructor_max_index != 0
6719 	      && (tree_int_cst_lt (constructor_max_index, constructor_index)
6720 		  || integer_all_onesp (constructor_max_index)))
6721 	    {
6722 	      pedwarn_init ("excess elements in array initializer");
6723 	      break;
6724 	    }
6725 
6726 	  /* Now output the actual element.  */
6727 	  if (value.value)
6728 	    {
6729 	      push_array_bounds (tree_low_cst (constructor_index, 1));
6730 	      output_init_element (value.value, strict_string,
6731 				   elttype, constructor_index, 1);
6732 	      RESTORE_SPELLING_DEPTH (constructor_depth);
6733 	    }
6734 
6735 	  constructor_index
6736 	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6737 
6738 	  if (!value.value)
6739 	    /* If we are doing the bookkeeping for an element that was
6740 	       directly output as a constructor, we must update
6741 	       constructor_unfilled_index.  */
6742 	    constructor_unfilled_index = constructor_index;
6743 	}
6744       else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6745 	{
6746 	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6747 
6748          /* Do a basic check of initializer size.  Note that vectors
6749             always have a fixed size derived from their type.  */
6750 	  if (tree_int_cst_lt (constructor_max_index, constructor_index))
6751 	    {
6752 	      pedwarn_init ("excess elements in vector initializer");
6753 	      break;
6754 	    }
6755 
6756 	  /* Now output the actual element.  */
6757 	  if (value.value)
6758 	    output_init_element (value.value, strict_string,
6759 				 elttype, constructor_index, 1);
6760 
6761 	  constructor_index
6762 	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6763 
6764 	  if (!value.value)
6765 	    /* If we are doing the bookkeeping for an element that was
6766 	       directly output as a constructor, we must update
6767 	       constructor_unfilled_index.  */
6768 	    constructor_unfilled_index = constructor_index;
6769 	}
6770 
6771       /* Handle the sole element allowed in a braced initializer
6772 	 for a scalar variable.  */
6773       else if (constructor_type != error_mark_node
6774 	       && constructor_fields == 0)
6775 	{
6776 	  pedwarn_init ("excess elements in scalar initializer");
6777 	  break;
6778 	}
6779       else
6780 	{
6781 	  if (value.value)
6782 	    output_init_element (value.value, strict_string,
6783 				 constructor_type, NULL_TREE, 1);
6784 	  constructor_fields = 0;
6785 	}
6786 
6787       /* Handle range initializers either at this level or anywhere higher
6788 	 in the designator stack.  */
6789       if (constructor_range_stack)
6790 	{
6791 	  struct constructor_range_stack *p, *range_stack;
6792 	  int finish = 0;
6793 
6794 	  range_stack = constructor_range_stack;
6795 	  constructor_range_stack = 0;
6796 	  while (constructor_stack != range_stack->stack)
6797 	    {
6798 	      gcc_assert (constructor_stack->implicit);
6799 	      process_init_element (pop_init_level (1));
6800 	    }
6801 	  for (p = range_stack;
6802 	       !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6803 	       p = p->prev)
6804 	    {
6805 	      gcc_assert (constructor_stack->implicit);
6806 	      process_init_element (pop_init_level (1));
6807 	    }
6808 
6809 	  p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6810 	  if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6811 	    finish = 1;
6812 
6813 	  while (1)
6814 	    {
6815 	      constructor_index = p->index;
6816 	      constructor_fields = p->fields;
6817 	      if (finish && p->range_end && p->index == p->range_start)
6818 		{
6819 		  finish = 0;
6820 		  p->prev = 0;
6821 		}
6822 	      p = p->next;
6823 	      if (!p)
6824 		break;
6825 	      push_init_level (2);
6826 	      p->stack = constructor_stack;
6827 	      if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6828 		p->index = p->range_start;
6829 	    }
6830 
6831 	  if (!finish)
6832 	    constructor_range_stack = range_stack;
6833 	  continue;
6834 	}
6835 
6836       break;
6837     }
6838 
6839   constructor_range_stack = 0;
6840 }
6841 
6842 /* Build a complete asm-statement, whose components are a CV_QUALIFIER
6843    (guaranteed to be 'volatile' or null) and ARGS (represented using
6844    an ASM_EXPR node).  */
6845 tree
build_asm_stmt(tree cv_qualifier,tree args)6846 build_asm_stmt (tree cv_qualifier, tree args)
6847 {
6848   if (!ASM_VOLATILE_P (args) && cv_qualifier)
6849     ASM_VOLATILE_P (args) = 1;
6850   return add_stmt (args);
6851 }
6852 
6853 /* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6854    some INPUTS, and some CLOBBERS.  The latter three may be NULL.
6855    SIMPLE indicates whether there was anything at all after the
6856    string in the asm expression -- asm("blah") and asm("blah" : )
6857    are subtly different.  We use a ASM_EXPR node to represent this.  */
6858 tree
build_asm_expr(tree string,tree outputs,tree inputs,tree clobbers,bool simple)6859 build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6860 		bool simple)
6861 {
6862   tree tail;
6863   tree args;
6864   int i;
6865   const char *constraint;
6866   const char **oconstraints;
6867   bool allows_mem, allows_reg, is_inout;
6868   int ninputs, noutputs;
6869 
6870   ninputs = list_length (inputs);
6871   noutputs = list_length (outputs);
6872   oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6873 
6874   string = resolve_asm_operand_names (string, outputs, inputs);
6875 
6876   /* Remove output conversions that change the type but not the mode.  */
6877   for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6878     {
6879       tree output = TREE_VALUE (tail);
6880 
6881       /* ??? Really, this should not be here.  Users should be using a
6882 	 proper lvalue, dammit.  But there's a long history of using casts
6883 	 in the output operands.  In cases like longlong.h, this becomes a
6884 	 primitive form of typechecking -- if the cast can be removed, then
6885 	 the output operand had a type of the proper width; otherwise we'll
6886 	 get an error.  Gross, but ...  */
6887       STRIP_NOPS (output);
6888 
6889       if (!lvalue_or_else (output, lv_asm))
6890 	output = error_mark_node;
6891 
6892       if (output != error_mark_node
6893 	  && (TREE_READONLY (output)
6894 	      || TYPE_READONLY (TREE_TYPE (output))
6895 	      || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6896 		   || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6897 		  && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6898 	readonly_error (output, lv_asm);
6899 
6900       constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6901       oconstraints[i] = constraint;
6902 
6903       if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6904 				   &allows_mem, &allows_reg, &is_inout))
6905 	{
6906 	  /* If the operand is going to end up in memory,
6907 	     mark it addressable.  */
6908 	  if (!allows_reg && !c_mark_addressable (output))
6909 	    output = error_mark_node;
6910 	}
6911       else
6912         output = error_mark_node;
6913 
6914       TREE_VALUE (tail) = output;
6915     }
6916 
6917   for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6918     {
6919       tree input;
6920 
6921       constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6922       input = TREE_VALUE (tail);
6923 
6924       if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6925 				  oconstraints, &allows_mem, &allows_reg))
6926 	{
6927 	  /* If the operand is going to end up in memory,
6928 	     mark it addressable.  */
6929 	  if (!allows_reg && allows_mem)
6930 	    {
6931 	      /* Strip the nops as we allow this case.  FIXME, this really
6932 		 should be rejected or made deprecated.  */
6933 	      STRIP_NOPS (input);
6934 	      if (!c_mark_addressable (input))
6935 		input = error_mark_node;
6936 	  }
6937 	}
6938       else
6939 	input = error_mark_node;
6940 
6941       TREE_VALUE (tail) = input;
6942     }
6943 
6944   args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
6945 
6946   /* asm statements without outputs, including simple ones, are treated
6947      as volatile.  */
6948   ASM_INPUT_P (args) = simple;
6949   ASM_VOLATILE_P (args) = (noutputs == 0);
6950 
6951   return args;
6952 }
6953 
6954 /* Generate a goto statement to LABEL.  */
6955 
6956 tree
c_finish_goto_label(tree label)6957 c_finish_goto_label (tree label)
6958 {
6959   tree decl = lookup_label (label);
6960   if (!decl)
6961     return NULL_TREE;
6962 
6963   if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
6964     {
6965       error ("jump into statement expression");
6966       return NULL_TREE;
6967     }
6968 
6969   if (C_DECL_UNJUMPABLE_VM (decl))
6970     {
6971       error ("jump into scope of identifier with variably modified type");
6972       return NULL_TREE;
6973     }
6974 
6975   if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
6976     {
6977       /* No jump from outside this statement expression context, so
6978 	 record that there is a jump from within this context.  */
6979       struct c_label_list *nlist;
6980       nlist = XOBNEW (&parser_obstack, struct c_label_list);
6981       nlist->next = label_context_stack_se->labels_used;
6982       nlist->label = decl;
6983       label_context_stack_se->labels_used = nlist;
6984     }
6985 
6986   if (!C_DECL_UNDEFINABLE_VM (decl))
6987     {
6988       /* No jump from outside this context context of identifiers with
6989 	 variably modified type, so record that there is a jump from
6990 	 within this context.  */
6991       struct c_label_list *nlist;
6992       nlist = XOBNEW (&parser_obstack, struct c_label_list);
6993       nlist->next = label_context_stack_vm->labels_used;
6994       nlist->label = decl;
6995       label_context_stack_vm->labels_used = nlist;
6996     }
6997 
6998   TREE_USED (decl) = 1;
6999   return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
7000 }
7001 
7002 /* Generate a computed goto statement to EXPR.  */
7003 
7004 tree
c_finish_goto_ptr(tree expr)7005 c_finish_goto_ptr (tree expr)
7006 {
7007   if (pedantic)
7008     pedwarn ("ISO C forbids %<goto *expr;%>");
7009   expr = convert (ptr_type_node, expr);
7010   return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
7011 }
7012 
7013 /* Generate a C `return' statement.  RETVAL is the expression for what
7014    to return, or a null pointer for `return;' with no value.  */
7015 
7016 tree
c_finish_return(tree retval)7017 c_finish_return (tree retval)
7018 {
7019   tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
7020   bool no_warning = false;
7021 
7022   if (TREE_THIS_VOLATILE (current_function_decl))
7023     warning (0, "function declared %<noreturn%> has a %<return%> statement");
7024 
7025   if (!retval)
7026     {
7027       current_function_returns_null = 1;
7028       if ((warn_return_type || flag_isoc99)
7029 	  && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
7030 	{
7031 	  pedwarn_c99 ("%<return%> with no value, in "
7032 		       "function returning non-void");
7033 	  no_warning = true;
7034 	}
7035     }
7036   else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
7037     {
7038       current_function_returns_null = 1;
7039       if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
7040 	pedwarn ("%<return%> with a value, in function returning void");
7041     }
7042   else
7043     {
7044       tree t = convert_for_assignment (valtype, retval, ic_return,
7045 				       NULL_TREE, NULL_TREE, 0);
7046       tree res = DECL_RESULT (current_function_decl);
7047       tree inner;
7048 
7049       current_function_returns_value = 1;
7050       if (t == error_mark_node)
7051 	return NULL_TREE;
7052 
7053       inner = t = convert (TREE_TYPE (res), t);
7054 
7055       /* Strip any conversions, additions, and subtractions, and see if
7056 	 we are returning the address of a local variable.  Warn if so.  */
7057       while (1)
7058 	{
7059 	  switch (TREE_CODE (inner))
7060 	    {
7061 	    case NOP_EXPR:   case NON_LVALUE_EXPR:  case CONVERT_EXPR:
7062 	    case PLUS_EXPR:
7063 	      inner = TREE_OPERAND (inner, 0);
7064 	      continue;
7065 
7066 	    case MINUS_EXPR:
7067 	      /* If the second operand of the MINUS_EXPR has a pointer
7068 		 type (or is converted from it), this may be valid, so
7069 		 don't give a warning.  */
7070 	      {
7071 		tree op1 = TREE_OPERAND (inner, 1);
7072 
7073 		while (!POINTER_TYPE_P (TREE_TYPE (op1))
7074 		       && (TREE_CODE (op1) == NOP_EXPR
7075 			   || TREE_CODE (op1) == NON_LVALUE_EXPR
7076 			   || TREE_CODE (op1) == CONVERT_EXPR))
7077 		  op1 = TREE_OPERAND (op1, 0);
7078 
7079 		if (POINTER_TYPE_P (TREE_TYPE (op1)))
7080 		  break;
7081 
7082 		inner = TREE_OPERAND (inner, 0);
7083 		continue;
7084 	      }
7085 
7086 	    case ADDR_EXPR:
7087 	      inner = TREE_OPERAND (inner, 0);
7088 
7089 	      while (REFERENCE_CLASS_P (inner)
7090 	             && TREE_CODE (inner) != INDIRECT_REF)
7091 		inner = TREE_OPERAND (inner, 0);
7092 
7093 	      if (DECL_P (inner)
7094 		  && !DECL_EXTERNAL (inner)
7095 		  && !TREE_STATIC (inner)
7096 		  && DECL_CONTEXT (inner) == current_function_decl)
7097 		warning (0, "function returns address of local variable");
7098 	      break;
7099 
7100 	    default:
7101 	      break;
7102 	    }
7103 
7104 	  break;
7105 	}
7106 
7107       retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
7108     }
7109 
7110   ret_stmt = build_stmt (RETURN_EXPR, retval);
7111   TREE_NO_WARNING (ret_stmt) |= no_warning;
7112   return add_stmt (ret_stmt);
7113 }
7114 
7115 struct c_switch {
7116   /* The SWITCH_EXPR being built.  */
7117   tree switch_expr;
7118 
7119   /* The original type of the testing expression, i.e. before the
7120      default conversion is applied.  */
7121   tree orig_type;
7122 
7123   /* A splay-tree mapping the low element of a case range to the high
7124      element, or NULL_TREE if there is no high element.  Used to
7125      determine whether or not a new case label duplicates an old case
7126      label.  We need a tree, rather than simply a hash table, because
7127      of the GNU case range extension.  */
7128   splay_tree cases;
7129 
7130   /* Number of nested statement expressions within this switch
7131      statement; if nonzero, case and default labels may not
7132      appear.  */
7133   unsigned int blocked_stmt_expr;
7134 
7135   /* Scope of outermost declarations of identifiers with variably
7136      modified type within this switch statement; if nonzero, case and
7137      default labels may not appear.  */
7138   unsigned int blocked_vm;
7139 
7140   /* The next node on the stack.  */
7141   struct c_switch *next;
7142 };
7143 
7144 /* A stack of the currently active switch statements.  The innermost
7145    switch statement is on the top of the stack.  There is no need to
7146    mark the stack for garbage collection because it is only active
7147    during the processing of the body of a function, and we never
7148    collect at that point.  */
7149 
7150 struct c_switch *c_switch_stack;
7151 
7152 /* Start a C switch statement, testing expression EXP.  Return the new
7153    SWITCH_EXPR.  */
7154 
7155 tree
c_start_case(tree exp)7156 c_start_case (tree exp)
7157 {
7158   enum tree_code code;
7159   tree type, orig_type = error_mark_node;
7160   struct c_switch *cs;
7161 
7162   if (exp != error_mark_node)
7163     {
7164       code = TREE_CODE (TREE_TYPE (exp));
7165       orig_type = TREE_TYPE (exp);
7166 
7167       if (!INTEGRAL_TYPE_P (orig_type)
7168 	  && code != ERROR_MARK)
7169 	{
7170 	  error ("switch quantity not an integer");
7171 	  exp = integer_zero_node;
7172 	  orig_type = error_mark_node;
7173 	}
7174       else
7175 	{
7176 	  type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
7177 
7178 	  if (!in_system_header
7179 	      && (type == long_integer_type_node
7180 		  || type == long_unsigned_type_node))
7181 	    warning (OPT_Wtraditional, "%<long%> switch expression not "
7182 		     "converted to %<int%> in ISO C");
7183 
7184 	  exp = default_conversion (exp);
7185 	  type = TREE_TYPE (exp);
7186 	}
7187     }
7188 
7189   /* Add this new SWITCH_EXPR to the stack.  */
7190   cs = XNEW (struct c_switch);
7191   cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7192   cs->orig_type = orig_type;
7193   cs->cases = splay_tree_new (case_compare, NULL, NULL);
7194   cs->blocked_stmt_expr = 0;
7195   cs->blocked_vm = 0;
7196   cs->next = c_switch_stack;
7197   c_switch_stack = cs;
7198 
7199   return add_stmt (cs->switch_expr);
7200 }
7201 
7202 /* Process a case label.  */
7203 
7204 tree
do_case(tree low_value,tree high_value)7205 do_case (tree low_value, tree high_value)
7206 {
7207   tree label = NULL_TREE;
7208 
7209   if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7210       && !c_switch_stack->blocked_vm)
7211     {
7212       label = c_add_case_label (c_switch_stack->cases,
7213 				SWITCH_COND (c_switch_stack->switch_expr),
7214 				c_switch_stack->orig_type,
7215 				low_value, high_value);
7216       if (label == error_mark_node)
7217 	label = NULL_TREE;
7218     }
7219   else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7220     {
7221       if (low_value)
7222 	error ("case label in statement expression not containing "
7223 	       "enclosing switch statement");
7224       else
7225 	error ("%<default%> label in statement expression not containing "
7226 	       "enclosing switch statement");
7227     }
7228   else if (c_switch_stack && c_switch_stack->blocked_vm)
7229     {
7230       if (low_value)
7231 	error ("case label in scope of identifier with variably modified "
7232 	       "type not containing enclosing switch statement");
7233       else
7234 	error ("%<default%> label in scope of identifier with variably "
7235 	       "modified type not containing enclosing switch statement");
7236     }
7237   else if (low_value)
7238     error ("case label not within a switch statement");
7239   else
7240     error ("%<default%> label not within a switch statement");
7241 
7242   return label;
7243 }
7244 
7245 /* Finish the switch statement.  */
7246 
7247 void
c_finish_case(tree body)7248 c_finish_case (tree body)
7249 {
7250   struct c_switch *cs = c_switch_stack;
7251   location_t switch_location;
7252 
7253   SWITCH_BODY (cs->switch_expr) = body;
7254 
7255   /* We must not be within a statement expression nested in the switch
7256      at this point; we might, however, be within the scope of an
7257      identifier with variably modified type nested in the switch.  */
7258   gcc_assert (!cs->blocked_stmt_expr);
7259 
7260   /* Emit warnings as needed.  */
7261   if (EXPR_HAS_LOCATION (cs->switch_expr))
7262     switch_location = EXPR_LOCATION (cs->switch_expr);
7263   else
7264     switch_location = input_location;
7265   c_do_switch_warnings (cs->cases, switch_location,
7266 			TREE_TYPE (cs->switch_expr),
7267 			SWITCH_COND (cs->switch_expr));
7268 
7269   /* Pop the stack.  */
7270   c_switch_stack = cs->next;
7271   splay_tree_delete (cs->cases);
7272   XDELETE (cs);
7273 }
7274 
7275 /* Emit an if statement.  IF_LOCUS is the location of the 'if'.  COND,
7276    THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7277    may be null.  NESTED_IF is true if THEN_BLOCK contains another IF
7278    statement, and was not surrounded with parenthesis.  */
7279 
7280 void
c_finish_if_stmt(location_t if_locus,tree cond,tree then_block,tree else_block,bool nested_if)7281 c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7282 		  tree else_block, bool nested_if)
7283 {
7284   tree stmt;
7285 
7286   /* Diagnose an ambiguous else if if-then-else is nested inside if-then.  */
7287   if (warn_parentheses && nested_if && else_block == NULL)
7288     {
7289       tree inner_if = then_block;
7290 
7291       /* We know from the grammar productions that there is an IF nested
7292 	 within THEN_BLOCK.  Due to labels and c99 conditional declarations,
7293 	 it might not be exactly THEN_BLOCK, but should be the last
7294 	 non-container statement within.  */
7295       while (1)
7296 	switch (TREE_CODE (inner_if))
7297 	  {
7298 	  case COND_EXPR:
7299 	    goto found;
7300 	  case BIND_EXPR:
7301 	    inner_if = BIND_EXPR_BODY (inner_if);
7302 	    break;
7303 	  case STATEMENT_LIST:
7304 	    inner_if = expr_last (then_block);
7305 	    break;
7306 	  case TRY_FINALLY_EXPR:
7307 	  case TRY_CATCH_EXPR:
7308 	    inner_if = TREE_OPERAND (inner_if, 0);
7309 	    break;
7310 	  default:
7311 	    gcc_unreachable ();
7312 	  }
7313     found:
7314 
7315       if (COND_EXPR_ELSE (inner_if))
7316 	 warning (OPT_Wparentheses,
7317 		  "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7318 		  &if_locus);
7319     }
7320 
7321   /* Diagnose ";" via the special empty statement node that we create.  */
7322   if (extra_warnings)
7323     {
7324       tree *inner_then = &then_block, *inner_else = &else_block;
7325 
7326       if (TREE_CODE (*inner_then) == STATEMENT_LIST
7327 	  && STATEMENT_LIST_TAIL (*inner_then))
7328 	inner_then = &STATEMENT_LIST_TAIL (*inner_then)->stmt;
7329       if (*inner_else && TREE_CODE (*inner_else) == STATEMENT_LIST
7330 	  && STATEMENT_LIST_TAIL (*inner_else))
7331 	inner_else = &STATEMENT_LIST_TAIL (*inner_else)->stmt;
7332 
7333       if (TREE_CODE (*inner_then) == NOP_EXPR && !TREE_TYPE (*inner_then))
7334 	{
7335 	  if (!*inner_else)
7336 	    warning (0, "%Hempty body in an if-statement",
7337 		     EXPR_LOCUS (*inner_then));
7338 
7339 	  *inner_then = alloc_stmt_list ();
7340 	}
7341       if (*inner_else
7342 	  && TREE_CODE (*inner_else) == NOP_EXPR
7343 	  && !TREE_TYPE (*inner_else))
7344 	{
7345 	  warning (0, "%Hempty body in an else-statement",
7346 		   EXPR_LOCUS (*inner_else));
7347 
7348 	  *inner_else = alloc_stmt_list ();
7349 	}
7350     }
7351 
7352   stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7353   SET_EXPR_LOCATION (stmt, if_locus);
7354   add_stmt (stmt);
7355 }
7356 
7357 /* Emit a general-purpose loop construct.  START_LOCUS is the location of
7358    the beginning of the loop.  COND is the loop condition.  COND_IS_FIRST
7359    is false for DO loops.  INCR is the FOR increment expression.  BODY is
7360    the statement controlled by the loop.  BLAB is the break label.  CLAB is
7361    the continue label.  Everything is allowed to be NULL.  */
7362 
7363 void
c_finish_loop(location_t start_locus,tree cond,tree incr,tree body,tree blab,tree clab,bool cond_is_first)7364 c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7365 	       tree blab, tree clab, bool cond_is_first)
7366 {
7367   tree entry = NULL, exit = NULL, t;
7368 
7369   /* If the condition is zero don't generate a loop construct.  */
7370   if (cond && integer_zerop (cond))
7371     {
7372       if (cond_is_first)
7373 	{
7374 	  t = build_and_jump (&blab);
7375 	  SET_EXPR_LOCATION (t, start_locus);
7376 	  add_stmt (t);
7377 	}
7378     }
7379   else
7380     {
7381       tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7382 
7383       /* If we have an exit condition, then we build an IF with gotos either
7384          out of the loop, or to the top of it.  If there's no exit condition,
7385          then we just build a jump back to the top.  */
7386       exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7387 
7388       if (cond && !integer_nonzerop (cond))
7389         {
7390           /* Canonicalize the loop condition to the end.  This means
7391              generating a branch to the loop condition.  Reuse the
7392              continue label, if possible.  */
7393           if (cond_is_first)
7394             {
7395               if (incr || !clab)
7396                 {
7397                   entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7398                   t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7399                 }
7400               else
7401                 t = build1 (GOTO_EXPR, void_type_node, clab);
7402 	      SET_EXPR_LOCATION (t, start_locus);
7403               add_stmt (t);
7404             }
7405 
7406 	  t = build_and_jump (&blab);
7407           exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7408 	  if (cond_is_first)
7409             SET_EXPR_LOCATION (exit, start_locus);
7410 	  else
7411             SET_EXPR_LOCATION (exit, input_location);
7412         }
7413 
7414       add_stmt (top);
7415     }
7416 
7417   if (body)
7418     add_stmt (body);
7419   if (clab)
7420     add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7421   if (incr)
7422     add_stmt (incr);
7423   if (entry)
7424     add_stmt (entry);
7425   if (exit)
7426     add_stmt (exit);
7427   if (blab)
7428     add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7429 }
7430 
7431 tree
c_finish_bc_stmt(tree * label_p,bool is_break)7432 c_finish_bc_stmt (tree *label_p, bool is_break)
7433 {
7434   bool skip;
7435   tree label = *label_p;
7436 
7437   /* In switch statements break is sometimes stylistically used after
7438      a return statement.  This can lead to spurious warnings about
7439      control reaching the end of a non-void function when it is
7440      inlined.  Note that we are calling block_may_fallthru with
7441      language specific tree nodes; this works because
7442      block_may_fallthru returns true when given something it does not
7443      understand.  */
7444   skip = !block_may_fallthru (cur_stmt_list);
7445 
7446   if (!label)
7447     {
7448       if (!skip)
7449 	*label_p = label = create_artificial_label ();
7450     }
7451   else if (TREE_CODE (label) != LABEL_DECL)
7452     {
7453       if (is_break)
7454 	error ("break statement not within loop or switch");
7455       else
7456         error ("continue statement not within a loop");
7457       return NULL_TREE;
7458     }
7459 
7460   if (skip)
7461     return NULL_TREE;
7462 
7463   return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7464 }
7465 
7466 /* A helper routine for c_process_expr_stmt and c_finish_stmt_expr.  */
7467 
7468 static void
emit_side_effect_warnings(tree expr)7469 emit_side_effect_warnings (tree expr)
7470 {
7471   if (expr == error_mark_node)
7472     ;
7473   else if (!TREE_SIDE_EFFECTS (expr))
7474     {
7475       if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7476 	warning (0, "%Hstatement with no effect",
7477 		 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7478     }
7479   else if (warn_unused_value)
7480     warn_if_unused_value (expr, input_location);
7481 }
7482 
7483 /* Process an expression as if it were a complete statement.  Emit
7484    diagnostics, but do not call ADD_STMT.  */
7485 
7486 tree
c_process_expr_stmt(tree expr)7487 c_process_expr_stmt (tree expr)
7488 {
7489   if (!expr)
7490     return NULL_TREE;
7491 
7492   if (warn_sequence_point)
7493     verify_sequence_points (expr);
7494 
7495   if (TREE_TYPE (expr) != error_mark_node
7496       && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7497       && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7498     error ("expression statement has incomplete type");
7499 
7500   /* If we're not processing a statement expression, warn about unused values.
7501      Warnings for statement expressions will be emitted later, once we figure
7502      out which is the result.  */
7503   if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7504       && (extra_warnings || warn_unused_value))
7505     emit_side_effect_warnings (expr);
7506 
7507   /* If the expression is not of a type to which we cannot assign a line
7508      number, wrap the thing in a no-op NOP_EXPR.  */
7509   if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7510     expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7511 
7512   if (EXPR_P (expr))
7513     SET_EXPR_LOCATION (expr, input_location);
7514 
7515   return expr;
7516 }
7517 
7518 /* Emit an expression as a statement.  */
7519 
7520 tree
c_finish_expr_stmt(tree expr)7521 c_finish_expr_stmt (tree expr)
7522 {
7523   if (expr)
7524     return add_stmt (c_process_expr_stmt (expr));
7525   else
7526     return NULL;
7527 }
7528 
7529 /* Do the opposite and emit a statement as an expression.  To begin,
7530    create a new binding level and return it.  */
7531 
7532 tree
c_begin_stmt_expr(void)7533 c_begin_stmt_expr (void)
7534 {
7535   tree ret;
7536   struct c_label_context_se *nstack;
7537   struct c_label_list *glist;
7538 
7539   /* We must force a BLOCK for this level so that, if it is not expanded
7540      later, there is a way to turn off the entire subtree of blocks that
7541      are contained in it.  */
7542   keep_next_level ();
7543   ret = c_begin_compound_stmt (true);
7544   if (c_switch_stack)
7545     {
7546       c_switch_stack->blocked_stmt_expr++;
7547       gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7548     }
7549   for (glist = label_context_stack_se->labels_used;
7550        glist != NULL;
7551        glist = glist->next)
7552     {
7553       C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7554     }
7555   nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7556   nstack->labels_def = NULL;
7557   nstack->labels_used = NULL;
7558   nstack->next = label_context_stack_se;
7559   label_context_stack_se = nstack;
7560 
7561   /* Mark the current statement list as belonging to a statement list.  */
7562   STATEMENT_LIST_STMT_EXPR (ret) = 1;
7563 
7564   return ret;
7565 }
7566 
7567 tree
c_finish_stmt_expr(tree body)7568 c_finish_stmt_expr (tree body)
7569 {
7570   tree last, type, tmp, val;
7571   tree *last_p;
7572   struct c_label_list *dlist, *glist, *glist_prev = NULL;
7573 
7574   body = c_end_compound_stmt (body, true);
7575   if (c_switch_stack)
7576     {
7577       gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7578       c_switch_stack->blocked_stmt_expr--;
7579     }
7580   /* It is no longer possible to jump to labels defined within this
7581      statement expression.  */
7582   for (dlist = label_context_stack_se->labels_def;
7583        dlist != NULL;
7584        dlist = dlist->next)
7585     {
7586       C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7587     }
7588   /* It is again possible to define labels with a goto just outside
7589      this statement expression.  */
7590   for (glist = label_context_stack_se->next->labels_used;
7591        glist != NULL;
7592        glist = glist->next)
7593     {
7594       C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7595       glist_prev = glist;
7596     }
7597   if (glist_prev != NULL)
7598     glist_prev->next = label_context_stack_se->labels_used;
7599   else
7600     label_context_stack_se->next->labels_used
7601       = label_context_stack_se->labels_used;
7602   label_context_stack_se = label_context_stack_se->next;
7603 
7604   /* Locate the last statement in BODY.  See c_end_compound_stmt
7605      about always returning a BIND_EXPR.  */
7606   last_p = &BIND_EXPR_BODY (body);
7607   last = BIND_EXPR_BODY (body);
7608 
7609  continue_searching:
7610   if (TREE_CODE (last) == STATEMENT_LIST)
7611     {
7612       tree_stmt_iterator i;
7613 
7614       /* This can happen with degenerate cases like ({ }).  No value.  */
7615       if (!TREE_SIDE_EFFECTS (last))
7616 	return body;
7617 
7618       /* If we're supposed to generate side effects warnings, process
7619 	 all of the statements except the last.  */
7620       if (extra_warnings || warn_unused_value)
7621 	{
7622 	  for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7623 	    emit_side_effect_warnings (tsi_stmt (i));
7624 	}
7625       else
7626 	i = tsi_last (last);
7627       last_p = tsi_stmt_ptr (i);
7628       last = *last_p;
7629     }
7630 
7631   /* If the end of the list is exception related, then the list was split
7632      by a call to push_cleanup.  Continue searching.  */
7633   if (TREE_CODE (last) == TRY_FINALLY_EXPR
7634       || TREE_CODE (last) == TRY_CATCH_EXPR)
7635     {
7636       last_p = &TREE_OPERAND (last, 0);
7637       last = *last_p;
7638       goto continue_searching;
7639     }
7640 
7641   /* In the case that the BIND_EXPR is not necessary, return the
7642      expression out from inside it.  */
7643   if (last == error_mark_node
7644       || (last == BIND_EXPR_BODY (body)
7645 	  && BIND_EXPR_VARS (body) == NULL))
7646     {
7647       /* Do not warn if the return value of a statement expression is
7648 	 unused.  */
7649       if (EXPR_P (last))
7650 	TREE_NO_WARNING (last) = 1;
7651       return last;
7652     }
7653 
7654   /* Extract the type of said expression.  */
7655   type = TREE_TYPE (last);
7656 
7657   /* If we're not returning a value at all, then the BIND_EXPR that
7658      we already have is a fine expression to return.  */
7659   if (!type || VOID_TYPE_P (type))
7660     return body;
7661 
7662   /* Now that we've located the expression containing the value, it seems
7663      silly to make voidify_wrapper_expr repeat the process.  Create a
7664      temporary of the appropriate type and stick it in a TARGET_EXPR.  */
7665   tmp = create_tmp_var_raw (type, NULL);
7666 
7667   /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt.  This avoids
7668      tree_expr_nonnegative_p giving up immediately.  */
7669   val = last;
7670   if (TREE_CODE (val) == NOP_EXPR
7671       && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7672     val = TREE_OPERAND (val, 0);
7673 
7674   *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7675   SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7676 
7677   return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7678 }
7679 
7680 /* Begin the scope of an identifier of variably modified type, scope
7681    number SCOPE.  Jumping from outside this scope to inside it is not
7682    permitted.  */
7683 
7684 void
c_begin_vm_scope(unsigned int scope)7685 c_begin_vm_scope (unsigned int scope)
7686 {
7687   struct c_label_context_vm *nstack;
7688   struct c_label_list *glist;
7689 
7690   gcc_assert (scope > 0);
7691   if (c_switch_stack && !c_switch_stack->blocked_vm)
7692     c_switch_stack->blocked_vm = scope;
7693   for (glist = label_context_stack_vm->labels_used;
7694        glist != NULL;
7695        glist = glist->next)
7696     {
7697       C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7698     }
7699   nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7700   nstack->labels_def = NULL;
7701   nstack->labels_used = NULL;
7702   nstack->scope = scope;
7703   nstack->next = label_context_stack_vm;
7704   label_context_stack_vm = nstack;
7705 }
7706 
7707 /* End a scope which may contain identifiers of variably modified
7708    type, scope number SCOPE.  */
7709 
7710 void
c_end_vm_scope(unsigned int scope)7711 c_end_vm_scope (unsigned int scope)
7712 {
7713   if (label_context_stack_vm == NULL)
7714     return;
7715   if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7716     c_switch_stack->blocked_vm = 0;
7717   /* We may have a number of nested scopes of identifiers with
7718      variably modified type, all at this depth.  Pop each in turn.  */
7719   while (label_context_stack_vm->scope == scope)
7720     {
7721       struct c_label_list *dlist, *glist, *glist_prev = NULL;
7722 
7723       /* It is no longer possible to jump to labels defined within this
7724 	 scope.  */
7725       for (dlist = label_context_stack_vm->labels_def;
7726 	   dlist != NULL;
7727 	   dlist = dlist->next)
7728 	{
7729 	  C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7730 	}
7731       /* It is again possible to define labels with a goto just outside
7732 	 this scope.  */
7733       for (glist = label_context_stack_vm->next->labels_used;
7734 	   glist != NULL;
7735 	   glist = glist->next)
7736 	{
7737 	  C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7738 	  glist_prev = glist;
7739 	}
7740       if (glist_prev != NULL)
7741 	glist_prev->next = label_context_stack_vm->labels_used;
7742       else
7743 	label_context_stack_vm->next->labels_used
7744 	  = label_context_stack_vm->labels_used;
7745       label_context_stack_vm = label_context_stack_vm->next;
7746     }
7747 }
7748 
7749 /* Begin and end compound statements.  This is as simple as pushing
7750    and popping new statement lists from the tree.  */
7751 
7752 tree
c_begin_compound_stmt(bool do_scope)7753 c_begin_compound_stmt (bool do_scope)
7754 {
7755   tree stmt = push_stmt_list ();
7756   if (do_scope)
7757     push_scope ();
7758   return stmt;
7759 }
7760 
7761 tree
c_end_compound_stmt(tree stmt,bool do_scope)7762 c_end_compound_stmt (tree stmt, bool do_scope)
7763 {
7764   tree block = NULL;
7765 
7766   if (do_scope)
7767     {
7768       if (c_dialect_objc ())
7769 	objc_clear_super_receiver ();
7770       block = pop_scope ();
7771     }
7772 
7773   stmt = pop_stmt_list (stmt);
7774   stmt = c_build_bind_expr (block, stmt);
7775 
7776   /* If this compound statement is nested immediately inside a statement
7777      expression, then force a BIND_EXPR to be created.  Otherwise we'll
7778      do the wrong thing for ({ { 1; } }) or ({ 1; { } }).  In particular,
7779      STATEMENT_LISTs merge, and thus we can lose track of what statement
7780      was really last.  */
7781   if (cur_stmt_list
7782       && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7783       && TREE_CODE (stmt) != BIND_EXPR)
7784     {
7785       stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7786       TREE_SIDE_EFFECTS (stmt) = 1;
7787     }
7788 
7789   return stmt;
7790 }
7791 
7792 /* Queue a cleanup.  CLEANUP is an expression/statement to be executed
7793    when the current scope is exited.  EH_ONLY is true when this is not
7794    meant to apply to normal control flow transfer.  */
7795 
7796 void
push_cleanup(tree ARG_UNUSED (decl),tree cleanup,bool eh_only)7797 push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7798 {
7799   enum tree_code code;
7800   tree stmt, list;
7801   bool stmt_expr;
7802 
7803   code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7804   stmt = build_stmt (code, NULL, cleanup);
7805   add_stmt (stmt);
7806   stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7807   list = push_stmt_list ();
7808   TREE_OPERAND (stmt, 0) = list;
7809   STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7810 }
7811 
7812 /* Build a binary-operation expression without default conversions.
7813    CODE is the kind of expression to build.
7814    This function differs from `build' in several ways:
7815    the data type of the result is computed and recorded in it,
7816    warnings are generated if arg data types are invalid,
7817    special handling for addition and subtraction of pointers is known,
7818    and some optimization is done (operations on narrow ints
7819    are done in the narrower type when that gives the same result).
7820    Constant folding is also done before the result is returned.
7821 
7822    Note that the operands will never have enumeral types, or function
7823    or array types, because either they will have the default conversions
7824    performed or they have both just been converted to some other type in which
7825    the arithmetic is to be done.  */
7826 
7827 tree
build_binary_op(enum tree_code code,tree orig_op0,tree orig_op1,int convert_p)7828 build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7829 		 int convert_p)
7830 {
7831   tree type0, type1;
7832   enum tree_code code0, code1;
7833   tree op0, op1;
7834   const char *invalid_op_diag;
7835 
7836   /* Expression code to give to the expression when it is built.
7837      Normally this is CODE, which is what the caller asked for,
7838      but in some special cases we change it.  */
7839   enum tree_code resultcode = code;
7840 
7841   /* Data type in which the computation is to be performed.
7842      In the simplest cases this is the common type of the arguments.  */
7843   tree result_type = NULL;
7844 
7845   /* Nonzero means operands have already been type-converted
7846      in whatever way is necessary.
7847      Zero means they need to be converted to RESULT_TYPE.  */
7848   int converted = 0;
7849 
7850   /* Nonzero means create the expression with this type, rather than
7851      RESULT_TYPE.  */
7852   tree build_type = 0;
7853 
7854   /* Nonzero means after finally constructing the expression
7855      convert it to this type.  */
7856   tree final_type = 0;
7857 
7858   /* Nonzero if this is an operation like MIN or MAX which can
7859      safely be computed in short if both args are promoted shorts.
7860      Also implies COMMON.
7861      -1 indicates a bitwise operation; this makes a difference
7862      in the exact conditions for when it is safe to do the operation
7863      in a narrower mode.  */
7864   int shorten = 0;
7865 
7866   /* Nonzero if this is a comparison operation;
7867      if both args are promoted shorts, compare the original shorts.
7868      Also implies COMMON.  */
7869   int short_compare = 0;
7870 
7871   /* Nonzero if this is a right-shift operation, which can be computed on the
7872      original short and then promoted if the operand is a promoted short.  */
7873   int short_shift = 0;
7874 
7875   /* Nonzero means set RESULT_TYPE to the common type of the args.  */
7876   int common = 0;
7877 
7878   /* True means types are compatible as far as ObjC is concerned.  */
7879   bool objc_ok;
7880 
7881   if (convert_p)
7882     {
7883       op0 = default_conversion (orig_op0);
7884       op1 = default_conversion (orig_op1);
7885     }
7886   else
7887     {
7888       op0 = orig_op0;
7889       op1 = orig_op1;
7890     }
7891 
7892   type0 = TREE_TYPE (op0);
7893   type1 = TREE_TYPE (op1);
7894 
7895   /* The expression codes of the data types of the arguments tell us
7896      whether the arguments are integers, floating, pointers, etc.  */
7897   code0 = TREE_CODE (type0);
7898   code1 = TREE_CODE (type1);
7899 
7900   /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
7901   STRIP_TYPE_NOPS (op0);
7902   STRIP_TYPE_NOPS (op1);
7903 
7904   /* If an error was already reported for one of the arguments,
7905      avoid reporting another error.  */
7906 
7907   if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7908     return error_mark_node;
7909 
7910   if ((invalid_op_diag
7911        = targetm.invalid_binary_op (code, type0, type1)))
7912     {
7913       error (invalid_op_diag);
7914       return error_mark_node;
7915     }
7916 
7917   objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7918 
7919   switch (code)
7920     {
7921     case PLUS_EXPR:
7922       /* Handle the pointer + int case.  */
7923       if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7924 	return pointer_int_sum (PLUS_EXPR, op0, op1);
7925       else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7926 	return pointer_int_sum (PLUS_EXPR, op1, op0);
7927       else
7928 	common = 1;
7929       break;
7930 
7931     case MINUS_EXPR:
7932       /* Subtraction of two similar pointers.
7933 	 We must subtract them as integers, then divide by object size.  */
7934       if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7935 	  && comp_target_types (type0, type1))
7936 	return pointer_diff (op0, op1);
7937       /* Handle pointer minus int.  Just like pointer plus int.  */
7938       else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7939 	return pointer_int_sum (MINUS_EXPR, op0, op1);
7940       else
7941 	common = 1;
7942       break;
7943 
7944     case MULT_EXPR:
7945       common = 1;
7946       break;
7947 
7948     case TRUNC_DIV_EXPR:
7949     case CEIL_DIV_EXPR:
7950     case FLOOR_DIV_EXPR:
7951     case ROUND_DIV_EXPR:
7952     case EXACT_DIV_EXPR:
7953       /* Floating point division by zero is a legitimate way to obtain
7954 	 infinities and NaNs.  */
7955       if (skip_evaluation == 0 && integer_zerop (op1))
7956 	warning (OPT_Wdiv_by_zero, "division by zero");
7957 
7958       if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7959 	   || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7960 	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7961 	      || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
7962 	{
7963 	  enum tree_code tcode0 = code0, tcode1 = code1;
7964 
7965 	  if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7966 	    tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
7967 	  if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
7968 	    tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
7969 
7970 	  if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
7971 	    resultcode = RDIV_EXPR;
7972 	  else
7973 	    /* Although it would be tempting to shorten always here, that
7974 	       loses on some targets, since the modulo instruction is
7975 	       undefined if the quotient can't be represented in the
7976 	       computation mode.  We shorten only if unsigned or if
7977 	       dividing by something we know != -1.  */
7978 	    shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7979 		       || (TREE_CODE (op1) == INTEGER_CST
7980 			   && !integer_all_onesp (op1)));
7981 	  common = 1;
7982 	}
7983       break;
7984 
7985     case BIT_AND_EXPR:
7986     case BIT_IOR_EXPR:
7987     case BIT_XOR_EXPR:
7988       if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7989 	shorten = -1;
7990       else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
7991 	common = 1;
7992       break;
7993 
7994     case TRUNC_MOD_EXPR:
7995     case FLOOR_MOD_EXPR:
7996       if (skip_evaluation == 0 && integer_zerop (op1))
7997 	warning (OPT_Wdiv_by_zero, "division by zero");
7998 
7999       if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8000 	{
8001 	  /* Although it would be tempting to shorten always here, that loses
8002 	     on some targets, since the modulo instruction is undefined if the
8003 	     quotient can't be represented in the computation mode.  We shorten
8004 	     only if unsigned or if dividing by something we know != -1.  */
8005 	  shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
8006 		     || (TREE_CODE (op1) == INTEGER_CST
8007 			 && !integer_all_onesp (op1)));
8008 	  common = 1;
8009 	}
8010       break;
8011 
8012     case TRUTH_ANDIF_EXPR:
8013     case TRUTH_ORIF_EXPR:
8014     case TRUTH_AND_EXPR:
8015     case TRUTH_OR_EXPR:
8016     case TRUTH_XOR_EXPR:
8017       if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
8018 	   || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
8019 	  && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
8020 	      || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
8021 	{
8022 	  /* Result of these operations is always an int,
8023 	     but that does not mean the operands should be
8024 	     converted to ints!  */
8025 	  result_type = integer_type_node;
8026 	  op0 = c_common_truthvalue_conversion (op0);
8027 	  op1 = c_common_truthvalue_conversion (op1);
8028 	  converted = 1;
8029 	}
8030       break;
8031 
8032       /* Shift operations: result has same type as first operand;
8033 	 always convert second operand to int.
8034 	 Also set SHORT_SHIFT if shifting rightward.  */
8035 
8036     case RSHIFT_EXPR:
8037       if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8038 	{
8039 	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
8040 	    {
8041 	      if (tree_int_cst_sgn (op1) < 0)
8042 		warning (0, "right shift count is negative");
8043 	      else
8044 		{
8045 		  if (!integer_zerop (op1))
8046 		    short_shift = 1;
8047 
8048 		  if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
8049 		    warning (0, "right shift count >= width of type");
8050 		}
8051 	    }
8052 
8053 	  /* Use the type of the value to be shifted.  */
8054 	  result_type = type0;
8055 	  /* Convert the shift-count to an integer, regardless of size
8056 	     of value being shifted.  */
8057 	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8058 	    op1 = convert (integer_type_node, op1);
8059 	  /* Avoid converting op1 to result_type later.  */
8060 	  converted = 1;
8061 	}
8062       break;
8063 
8064     case LSHIFT_EXPR:
8065       if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8066 	{
8067 	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
8068 	    {
8069 	      if (tree_int_cst_sgn (op1) < 0)
8070 		warning (0, "left shift count is negative");
8071 
8072 	      else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
8073 		warning (0, "left shift count >= width of type");
8074 	    }
8075 
8076 	  /* Use the type of the value to be shifted.  */
8077 	  result_type = type0;
8078 	  /* Convert the shift-count to an integer, regardless of size
8079 	     of value being shifted.  */
8080 	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8081 	    op1 = convert (integer_type_node, op1);
8082 	  /* Avoid converting op1 to result_type later.  */
8083 	  converted = 1;
8084 	}
8085       break;
8086 
8087     case EQ_EXPR:
8088     case NE_EXPR:
8089       if (code0 == REAL_TYPE || code1 == REAL_TYPE)
8090 	warning (OPT_Wfloat_equal,
8091 		 "comparing floating point with == or != is unsafe");
8092       /* Result of comparison is always int,
8093 	 but don't convert the args to int!  */
8094       build_type = integer_type_node;
8095       if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8096 	   || code0 == COMPLEX_TYPE)
8097 	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8098 	      || code1 == COMPLEX_TYPE))
8099 	short_compare = 1;
8100       else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8101 	{
8102 	  tree tt0 = TREE_TYPE (type0);
8103 	  tree tt1 = TREE_TYPE (type1);
8104 	  /* Anything compares with void *.  void * compares with anything.
8105 	     Otherwise, the targets must be compatible
8106 	     and both must be object or both incomplete.  */
8107 	  if (comp_target_types (type0, type1))
8108 	    result_type = common_pointer_type (type0, type1);
8109 	  else if (VOID_TYPE_P (tt0))
8110 	    {
8111 	      /* op0 != orig_op0 detects the case of something
8112 		 whose value is 0 but which isn't a valid null ptr const.  */
8113 	      if (pedantic && (!integer_zerop (op0) || op0 != orig_op0)
8114 		  && TREE_CODE (tt1) == FUNCTION_TYPE)
8115 		pedwarn ("ISO C forbids comparison of %<void *%>"
8116 			 " with function pointer");
8117 	    }
8118 	  else if (VOID_TYPE_P (tt1))
8119 	    {
8120 	      if (pedantic && (!integer_zerop (op1) || op1 != orig_op1)
8121 		  && TREE_CODE (tt0) == FUNCTION_TYPE)
8122 		pedwarn ("ISO C forbids comparison of %<void *%>"
8123 			 " with function pointer");
8124 	    }
8125 	  else
8126 	    /* Avoid warning about the volatile ObjC EH puts on decls.  */
8127 	    if (!objc_ok)
8128 	      pedwarn ("comparison of distinct pointer types lacks a cast");
8129 
8130 	  if (result_type == NULL_TREE)
8131 	    result_type = ptr_type_node;
8132 	}
8133       else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
8134 	       && integer_zerop (op1))
8135 	result_type = type0;
8136       else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
8137 	       && integer_zerop (op0))
8138 	result_type = type1;
8139       else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8140 	{
8141 	  result_type = type0;
8142 	  pedwarn ("comparison between pointer and integer");
8143 	}
8144       else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8145 	{
8146 	  result_type = type1;
8147 	  pedwarn ("comparison between pointer and integer");
8148 	}
8149       break;
8150 
8151     case LE_EXPR:
8152     case GE_EXPR:
8153     case LT_EXPR:
8154     case GT_EXPR:
8155       build_type = integer_type_node;
8156       if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
8157 	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
8158 	short_compare = 1;
8159       else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8160 	{
8161 	  if (comp_target_types (type0, type1))
8162 	    {
8163 	      result_type = common_pointer_type (type0, type1);
8164 	      if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8165 		  != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8166 		pedwarn ("comparison of complete and incomplete pointers");
8167 	      else if (pedantic
8168 		       && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8169 		pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
8170 	    }
8171 	  else
8172 	    {
8173 	      result_type = ptr_type_node;
8174 	      pedwarn ("comparison of distinct pointer types lacks a cast");
8175 	    }
8176 	}
8177       else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
8178 	       && integer_zerop (op1))
8179 	{
8180 	  result_type = type0;
8181 	  if (pedantic || extra_warnings)
8182 	    pedwarn ("ordered comparison of pointer with integer zero");
8183 	}
8184       else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
8185 	       && integer_zerop (op0))
8186 	{
8187 	  result_type = type1;
8188 	  if (pedantic)
8189 	    pedwarn ("ordered comparison of pointer with integer zero");
8190 	}
8191       else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8192 	{
8193 	  result_type = type0;
8194 	  pedwarn ("comparison between pointer and integer");
8195 	}
8196       else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8197 	{
8198 	  result_type = type1;
8199 	  pedwarn ("comparison between pointer and integer");
8200 	}
8201       break;
8202 
8203     default:
8204       gcc_unreachable ();
8205     }
8206 
8207   if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8208     return error_mark_node;
8209 
8210   if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8211       && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8212 	  || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8213 						    TREE_TYPE (type1))))
8214     {
8215       binary_op_error (code);
8216       return error_mark_node;
8217     }
8218 
8219   if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8220        || code0 == VECTOR_TYPE)
8221       &&
8222       (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8223        || code1 == VECTOR_TYPE))
8224     {
8225       int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8226 
8227       if (shorten || common || short_compare)
8228 	result_type = c_common_type (type0, type1);
8229 
8230       /* For certain operations (which identify themselves by shorten != 0)
8231 	 if both args were extended from the same smaller type,
8232 	 do the arithmetic in that type and then extend.
8233 
8234 	 shorten !=0 and !=1 indicates a bitwise operation.
8235 	 For them, this optimization is safe only if
8236 	 both args are zero-extended or both are sign-extended.
8237 	 Otherwise, we might change the result.
8238 	 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8239 	 but calculated in (unsigned short) it would be (unsigned short)-1.  */
8240 
8241       if (shorten && none_complex)
8242 	{
8243 	  int unsigned0, unsigned1;
8244 	  tree arg0 = get_narrower (op0, &unsigned0);
8245 	  tree arg1 = get_narrower (op1, &unsigned1);
8246 	  /* UNS is 1 if the operation to be done is an unsigned one.  */
8247 	  int uns = TYPE_UNSIGNED (result_type);
8248 	  tree type;
8249 
8250 	  final_type = result_type;
8251 
8252 	  /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8253 	     but it *requires* conversion to FINAL_TYPE.  */
8254 
8255 	  if ((TYPE_PRECISION (TREE_TYPE (op0))
8256 	       == TYPE_PRECISION (TREE_TYPE (arg0)))
8257 	      && TREE_TYPE (op0) != final_type)
8258 	    unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8259 	  if ((TYPE_PRECISION (TREE_TYPE (op1))
8260 	       == TYPE_PRECISION (TREE_TYPE (arg1)))
8261 	      && TREE_TYPE (op1) != final_type)
8262 	    unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8263 
8264 	  /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE.  */
8265 
8266 	  /* For bitwise operations, signedness of nominal type
8267 	     does not matter.  Consider only how operands were extended.  */
8268 	  if (shorten == -1)
8269 	    uns = unsigned0;
8270 
8271 	  /* Note that in all three cases below we refrain from optimizing
8272 	     an unsigned operation on sign-extended args.
8273 	     That would not be valid.  */
8274 
8275 	  /* Both args variable: if both extended in same way
8276 	     from same width, do it in that width.
8277 	     Do it unsigned if args were zero-extended.  */
8278 	  if ((TYPE_PRECISION (TREE_TYPE (arg0))
8279 	       < TYPE_PRECISION (result_type))
8280 	      && (TYPE_PRECISION (TREE_TYPE (arg1))
8281 		  == TYPE_PRECISION (TREE_TYPE (arg0)))
8282 	      && unsigned0 == unsigned1
8283 	      && (unsigned0 || !uns))
8284 	    result_type
8285 	      = c_common_signed_or_unsigned_type
8286 	      (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8287 	  else if (TREE_CODE (arg0) == INTEGER_CST
8288 		   && (unsigned1 || !uns)
8289 		   && (TYPE_PRECISION (TREE_TYPE (arg1))
8290 		       < TYPE_PRECISION (result_type))
8291 		   && (type
8292 		       = c_common_signed_or_unsigned_type (unsigned1,
8293 							   TREE_TYPE (arg1)),
8294 		       int_fits_type_p (arg0, type)))
8295 	    result_type = type;
8296 	  else if (TREE_CODE (arg1) == INTEGER_CST
8297 		   && (unsigned0 || !uns)
8298 		   && (TYPE_PRECISION (TREE_TYPE (arg0))
8299 		       < TYPE_PRECISION (result_type))
8300 		   && (type
8301 		       = c_common_signed_or_unsigned_type (unsigned0,
8302 							   TREE_TYPE (arg0)),
8303 		       int_fits_type_p (arg1, type)))
8304 	    result_type = type;
8305 	}
8306 
8307       /* Shifts can be shortened if shifting right.  */
8308 
8309       if (short_shift)
8310 	{
8311 	  int unsigned_arg;
8312 	  tree arg0 = get_narrower (op0, &unsigned_arg);
8313 
8314 	  final_type = result_type;
8315 
8316 	  if (arg0 == op0 && final_type == TREE_TYPE (op0))
8317 	    unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8318 
8319 	  if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8320 	      /* We can shorten only if the shift count is less than the
8321 		 number of bits in the smaller type size.  */
8322 	      && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8323 	      /* We cannot drop an unsigned shift after sign-extension.  */
8324 	      && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8325 	    {
8326 	      /* Do an unsigned shift if the operand was zero-extended.  */
8327 	      result_type
8328 		= c_common_signed_or_unsigned_type (unsigned_arg,
8329 						    TREE_TYPE (arg0));
8330 	      /* Convert value-to-be-shifted to that type.  */
8331 	      if (TREE_TYPE (op0) != result_type)
8332 		op0 = convert (result_type, op0);
8333 	      converted = 1;
8334 	    }
8335 	}
8336 
8337       /* Comparison operations are shortened too but differently.
8338 	 They identify themselves by setting short_compare = 1.  */
8339 
8340       if (short_compare)
8341 	{
8342 	  /* Don't write &op0, etc., because that would prevent op0
8343 	     from being kept in a register.
8344 	     Instead, make copies of the our local variables and
8345 	     pass the copies by reference, then copy them back afterward.  */
8346 	  tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8347 	  enum tree_code xresultcode = resultcode;
8348 	  tree val
8349 	    = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8350 
8351 	  if (val != 0)
8352 	    return val;
8353 
8354 	  op0 = xop0, op1 = xop1;
8355 	  converted = 1;
8356 	  resultcode = xresultcode;
8357 
8358 	  if (warn_sign_compare && skip_evaluation == 0)
8359 	    {
8360 	      int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8361 	      int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8362 	      int unsignedp0, unsignedp1;
8363 	      tree primop0 = get_narrower (op0, &unsignedp0);
8364 	      tree primop1 = get_narrower (op1, &unsignedp1);
8365 
8366 	      xop0 = orig_op0;
8367 	      xop1 = orig_op1;
8368 	      STRIP_TYPE_NOPS (xop0);
8369 	      STRIP_TYPE_NOPS (xop1);
8370 
8371 	      /* Give warnings for comparisons between signed and unsigned
8372 		 quantities that may fail.
8373 
8374 		 Do the checking based on the original operand trees, so that
8375 		 casts will be considered, but default promotions won't be.
8376 
8377 		 Do not warn if the comparison is being done in a signed type,
8378 		 since the signed type will only be chosen if it can represent
8379 		 all the values of the unsigned type.  */
8380 	      if (!TYPE_UNSIGNED (result_type))
8381 		/* OK */;
8382               /* Do not warn if both operands are the same signedness.  */
8383               else if (op0_signed == op1_signed)
8384                 /* OK */;
8385 	      else
8386 		{
8387 		  tree sop, uop;
8388 
8389 		  if (op0_signed)
8390 		    sop = xop0, uop = xop1;
8391 		  else
8392 		    sop = xop1, uop = xop0;
8393 
8394 		  /* Do not warn if the signed quantity is an
8395 		     unsuffixed integer literal (or some static
8396 		     constant expression involving such literals or a
8397 		     conditional expression involving such literals)
8398 		     and it is non-negative.  */
8399 		  if (tree_expr_nonnegative_p (sop))
8400 		    /* OK */;
8401 		  /* Do not warn if the comparison is an equality operation,
8402 		     the unsigned quantity is an integral constant, and it
8403 		     would fit in the result if the result were signed.  */
8404 		  else if (TREE_CODE (uop) == INTEGER_CST
8405 			   && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8406 			   && int_fits_type_p
8407 			   (uop, c_common_signed_type (result_type)))
8408 		    /* OK */;
8409 		  /* Do not warn if the unsigned quantity is an enumeration
8410 		     constant and its maximum value would fit in the result
8411 		     if the result were signed.  */
8412 		  else if (TREE_CODE (uop) == INTEGER_CST
8413 			   && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8414 			   && int_fits_type_p
8415 			   (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8416 			    c_common_signed_type (result_type)))
8417 		    /* OK */;
8418 		  else
8419 		    warning (0, "comparison between signed and unsigned");
8420 		}
8421 
8422 	      /* Warn if two unsigned values are being compared in a size
8423 		 larger than their original size, and one (and only one) is the
8424 		 result of a `~' operator.  This comparison will always fail.
8425 
8426 		 Also warn if one operand is a constant, and the constant
8427 		 does not have all bits set that are set in the ~ operand
8428 		 when it is extended.  */
8429 
8430 	      if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8431 		  != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8432 		{
8433 		  if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8434 		    primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8435 					    &unsignedp0);
8436 		  else
8437 		    primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8438 					    &unsignedp1);
8439 
8440 		  if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8441 		    {
8442 		      tree primop;
8443 		      HOST_WIDE_INT constant, mask;
8444 		      int unsignedp, bits;
8445 
8446 		      if (host_integerp (primop0, 0))
8447 			{
8448 			  primop = primop1;
8449 			  unsignedp = unsignedp1;
8450 			  constant = tree_low_cst (primop0, 0);
8451 			}
8452 		      else
8453 			{
8454 			  primop = primop0;
8455 			  unsignedp = unsignedp0;
8456 			  constant = tree_low_cst (primop1, 0);
8457 			}
8458 
8459 		      bits = TYPE_PRECISION (TREE_TYPE (primop));
8460 		      if (bits < TYPE_PRECISION (result_type)
8461 			  && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8462 			{
8463 			  mask = (~(HOST_WIDE_INT) 0) << bits;
8464 			  if ((mask & constant) != mask)
8465 			    warning (0, "comparison of promoted ~unsigned with constant");
8466 			}
8467 		    }
8468 		  else if (unsignedp0 && unsignedp1
8469 			   && (TYPE_PRECISION (TREE_TYPE (primop0))
8470 			       < TYPE_PRECISION (result_type))
8471 			   && (TYPE_PRECISION (TREE_TYPE (primop1))
8472 			       < TYPE_PRECISION (result_type)))
8473 		    warning (0, "comparison of promoted ~unsigned with unsigned");
8474 		}
8475 	    }
8476 	}
8477     }
8478 
8479   /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8480      If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8481      Then the expression will be built.
8482      It will be given type FINAL_TYPE if that is nonzero;
8483      otherwise, it will be given type RESULT_TYPE.  */
8484 
8485   if (!result_type)
8486     {
8487       binary_op_error (code);
8488       return error_mark_node;
8489     }
8490 
8491   if (!converted)
8492     {
8493       if (TREE_TYPE (op0) != result_type)
8494 	op0 = convert (result_type, op0);
8495       if (TREE_TYPE (op1) != result_type)
8496 	op1 = convert (result_type, op1);
8497 
8498       /* This can happen if one operand has a vector type, and the other
8499 	 has a different type.  */
8500       if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8501 	return error_mark_node;
8502     }
8503 
8504   if (build_type == NULL_TREE)
8505     build_type = result_type;
8506 
8507   {
8508     /* Treat expressions in initializers specially as they can't trap.  */
8509     tree result = require_constant_value ? fold_build2_initializer (resultcode,
8510 								    build_type,
8511 								    op0, op1)
8512 					 : fold_build2 (resultcode, build_type,
8513 							op0, op1);
8514 
8515     if (final_type != 0)
8516       result = convert (final_type, result);
8517     return result;
8518   }
8519 }
8520 
8521 
8522 /* Convert EXPR to be a truth-value, validating its type for this
8523    purpose.  */
8524 
8525 tree
c_objc_common_truthvalue_conversion(tree expr)8526 c_objc_common_truthvalue_conversion (tree expr)
8527 {
8528   switch (TREE_CODE (TREE_TYPE (expr)))
8529     {
8530     case ARRAY_TYPE:
8531       error ("used array that cannot be converted to pointer where scalar is required");
8532       return error_mark_node;
8533 
8534     case RECORD_TYPE:
8535       error ("used struct type value where scalar is required");
8536       return error_mark_node;
8537 
8538     case UNION_TYPE:
8539       error ("used union type value where scalar is required");
8540       return error_mark_node;
8541 
8542     case FUNCTION_TYPE:
8543       gcc_unreachable ();
8544 
8545     default:
8546       break;
8547     }
8548 
8549   /* ??? Should we also give an error for void and vectors rather than
8550      leaving those to give errors later?  */
8551   return c_common_truthvalue_conversion (expr);
8552 }
8553 
8554 
8555 /* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8556    required.  */
8557 
8558 tree
c_expr_to_decl(tree expr,bool * tc ATTRIBUTE_UNUSED,bool * ti ATTRIBUTE_UNUSED,bool * se)8559 c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8560 		bool *ti ATTRIBUTE_UNUSED, bool *se)
8561 {
8562   if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8563     {
8564       tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8565       /* Executing a compound literal inside a function reinitializes
8566 	 it.  */
8567       if (!TREE_STATIC (decl))
8568 	*se = true;
8569       return decl;
8570     }
8571   else
8572     return expr;
8573 }
8574