1 //===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the classes used to represent and build scalar expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
14 #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
15 
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Value.h"
24 #include "llvm/IR/ValueHandle.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include <cassert>
28 #include <cstddef>
29 
30 namespace llvm {
31 
32 class APInt;
33 class Constant;
34 class ConstantRange;
35 class Loop;
36 class Type;
37 
38   enum SCEVTypes {
39     // These should be ordered in terms of increasing complexity to make the
40     // folders simpler.
41     scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr,
42     scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr, scUMinExpr, scSMinExpr,
43     scUnknown, scCouldNotCompute
44   };
45 
46   /// This class represents a constant integer value.
47   class SCEVConstant : public SCEV {
48     friend class ScalarEvolution;
49 
50     ConstantInt *V;
51 
SCEVConstant(const FoldingSetNodeIDRef ID,ConstantInt * v)52     SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) :
53       SCEV(ID, scConstant, 1), V(v) {}
54 
55   public:
getValue()56     ConstantInt *getValue() const { return V; }
getAPInt()57     const APInt &getAPInt() const { return getValue()->getValue(); }
58 
getType()59     Type *getType() const { return V->getType(); }
60 
61     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)62     static bool classof(const SCEV *S) {
63       return S->getSCEVType() == scConstant;
64     }
65   };
66 
computeExpressionSize(ArrayRef<const SCEV * > Args)67   static unsigned short computeExpressionSize(ArrayRef<const SCEV *> Args) {
68     APInt Size(16, 1);
69     for (auto *Arg : Args)
70       Size = Size.uadd_sat(APInt(16, Arg->getExpressionSize()));
71     return (unsigned short)Size.getZExtValue();
72   }
73 
74   /// This is the base class for unary cast operator classes.
75   class SCEVCastExpr : public SCEV {
76   protected:
77     const SCEV *Op;
78     Type *Ty;
79 
80     SCEVCastExpr(const FoldingSetNodeIDRef ID,
81                  unsigned SCEVTy, const SCEV *op, Type *ty);
82 
83   public:
getOperand()84     const SCEV *getOperand() const { return Op; }
getType()85     Type *getType() const { return Ty; }
86 
87     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)88     static bool classof(const SCEV *S) {
89       return S->getSCEVType() == scTruncate ||
90              S->getSCEVType() == scZeroExtend ||
91              S->getSCEVType() == scSignExtend;
92     }
93   };
94 
95   /// This class represents a truncation of an integer value to a
96   /// smaller integer value.
97   class SCEVTruncateExpr : public SCEVCastExpr {
98     friend class ScalarEvolution;
99 
100     SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
101                      const SCEV *op, Type *ty);
102 
103   public:
104     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)105     static bool classof(const SCEV *S) {
106       return S->getSCEVType() == scTruncate;
107     }
108   };
109 
110   /// This class represents a zero extension of a small integer value
111   /// to a larger integer value.
112   class SCEVZeroExtendExpr : public SCEVCastExpr {
113     friend class ScalarEvolution;
114 
115     SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
116                        const SCEV *op, Type *ty);
117 
118   public:
119     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)120     static bool classof(const SCEV *S) {
121       return S->getSCEVType() == scZeroExtend;
122     }
123   };
124 
125   /// This class represents a sign extension of a small integer value
126   /// to a larger integer value.
127   class SCEVSignExtendExpr : public SCEVCastExpr {
128     friend class ScalarEvolution;
129 
130     SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
131                        const SCEV *op, Type *ty);
132 
133   public:
134     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)135     static bool classof(const SCEV *S) {
136       return S->getSCEVType() == scSignExtend;
137     }
138   };
139 
140   /// This node is a base class providing common functionality for
141   /// n'ary operators.
142   class SCEVNAryExpr : public SCEV {
143   protected:
144     // Since SCEVs are immutable, ScalarEvolution allocates operand
145     // arrays with its SCEVAllocator, so this class just needs a simple
146     // pointer rather than a more elaborate vector-like data structure.
147     // This also avoids the need for a non-trivial destructor.
148     const SCEV *const *Operands;
149     size_t NumOperands;
150 
SCEVNAryExpr(const FoldingSetNodeIDRef ID,enum SCEVTypes T,const SCEV * const * O,size_t N)151     SCEVNAryExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T,
152                  const SCEV *const *O, size_t N)
153         : SCEV(ID, T, computeExpressionSize(makeArrayRef(O, N))), Operands(O),
154           NumOperands(N) {}
155 
156   public:
getNumOperands()157     size_t getNumOperands() const { return NumOperands; }
158 
getOperand(unsigned i)159     const SCEV *getOperand(unsigned i) const {
160       assert(i < NumOperands && "Operand index out of range!");
161       return Operands[i];
162     }
163 
164     using op_iterator = const SCEV *const *;
165     using op_range = iterator_range<op_iterator>;
166 
op_begin()167     op_iterator op_begin() const { return Operands; }
op_end()168     op_iterator op_end() const { return Operands + NumOperands; }
operands()169     op_range operands() const {
170       return make_range(op_begin(), op_end());
171     }
172 
getType()173     Type *getType() const { return getOperand(0)->getType(); }
174 
175     NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const {
176       return (NoWrapFlags)(SubclassData & Mask);
177     }
178 
hasNoUnsignedWrap()179     bool hasNoUnsignedWrap() const {
180       return getNoWrapFlags(FlagNUW) != FlagAnyWrap;
181     }
182 
hasNoSignedWrap()183     bool hasNoSignedWrap() const {
184       return getNoWrapFlags(FlagNSW) != FlagAnyWrap;
185     }
186 
hasNoSelfWrap()187     bool hasNoSelfWrap() const {
188       return getNoWrapFlags(FlagNW) != FlagAnyWrap;
189     }
190 
191     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)192     static bool classof(const SCEV *S) {
193       return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr ||
194              S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr ||
195              S->getSCEVType() == scSMinExpr || S->getSCEVType() == scUMinExpr ||
196              S->getSCEVType() == scAddRecExpr;
197     }
198   };
199 
200   /// This node is the base class for n'ary commutative operators.
201   class SCEVCommutativeExpr : public SCEVNAryExpr {
202   protected:
SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,enum SCEVTypes T,const SCEV * const * O,size_t N)203     SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,
204                         enum SCEVTypes T, const SCEV *const *O, size_t N)
205       : SCEVNAryExpr(ID, T, O, N) {}
206 
207   public:
208     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)209     static bool classof(const SCEV *S) {
210       return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr ||
211              S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr ||
212              S->getSCEVType() == scSMinExpr || S->getSCEVType() == scUMinExpr;
213     }
214 
215     /// Set flags for a non-recurrence without clearing previously set flags.
setNoWrapFlags(NoWrapFlags Flags)216     void setNoWrapFlags(NoWrapFlags Flags) {
217       SubclassData |= Flags;
218     }
219   };
220 
221   /// This node represents an addition of some number of SCEVs.
222   class SCEVAddExpr : public SCEVCommutativeExpr {
223     friend class ScalarEvolution;
224 
SCEVAddExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)225     SCEVAddExpr(const FoldingSetNodeIDRef ID,
226                 const SCEV *const *O, size_t N)
227       : SCEVCommutativeExpr(ID, scAddExpr, O, N) {}
228 
229   public:
getType()230     Type *getType() const {
231       // Use the type of the last operand, which is likely to be a pointer
232       // type, if there is one. This doesn't usually matter, but it can help
233       // reduce casts when the expressions are expanded.
234       return getOperand(getNumOperands() - 1)->getType();
235     }
236 
237     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)238     static bool classof(const SCEV *S) {
239       return S->getSCEVType() == scAddExpr;
240     }
241   };
242 
243   /// This node represents multiplication of some number of SCEVs.
244   class SCEVMulExpr : public SCEVCommutativeExpr {
245     friend class ScalarEvolution;
246 
SCEVMulExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)247     SCEVMulExpr(const FoldingSetNodeIDRef ID,
248                 const SCEV *const *O, size_t N)
249       : SCEVCommutativeExpr(ID, scMulExpr, O, N) {}
250 
251   public:
252     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)253     static bool classof(const SCEV *S) {
254       return S->getSCEVType() == scMulExpr;
255     }
256   };
257 
258   /// This class represents a binary unsigned division operation.
259   class SCEVUDivExpr : public SCEV {
260     friend class ScalarEvolution;
261 
262     const SCEV *LHS;
263     const SCEV *RHS;
264 
SCEVUDivExpr(const FoldingSetNodeIDRef ID,const SCEV * lhs,const SCEV * rhs)265     SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs)
266         : SCEV(ID, scUDivExpr, computeExpressionSize({lhs, rhs})), LHS(lhs),
267           RHS(rhs) {}
268 
269   public:
getLHS()270     const SCEV *getLHS() const { return LHS; }
getRHS()271     const SCEV *getRHS() const { return RHS; }
272 
getType()273     Type *getType() const {
274       // In most cases the types of LHS and RHS will be the same, but in some
275       // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
276       // depend on the type for correctness, but handling types carefully can
277       // avoid extra casts in the SCEVExpander. The LHS is more likely to be
278       // a pointer type than the RHS, so use the RHS' type here.
279       return getRHS()->getType();
280     }
281 
282     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)283     static bool classof(const SCEV *S) {
284       return S->getSCEVType() == scUDivExpr;
285     }
286   };
287 
288   /// This node represents a polynomial recurrence on the trip count
289   /// of the specified loop.  This is the primary focus of the
290   /// ScalarEvolution framework; all the other SCEV subclasses are
291   /// mostly just supporting infrastructure to allow SCEVAddRecExpr
292   /// expressions to be created and analyzed.
293   ///
294   /// All operands of an AddRec are required to be loop invariant.
295   ///
296   class SCEVAddRecExpr : public SCEVNAryExpr {
297     friend class ScalarEvolution;
298 
299     const Loop *L;
300 
SCEVAddRecExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N,const Loop * l)301     SCEVAddRecExpr(const FoldingSetNodeIDRef ID,
302                    const SCEV *const *O, size_t N, const Loop *l)
303       : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}
304 
305   public:
getStart()306     const SCEV *getStart() const { return Operands[0]; }
getLoop()307     const Loop *getLoop() const { return L; }
308 
309     /// Constructs and returns the recurrence indicating how much this
310     /// expression steps by.  If this is a polynomial of degree N, it
311     /// returns a chrec of degree N-1.  We cannot determine whether
312     /// the step recurrence has self-wraparound.
getStepRecurrence(ScalarEvolution & SE)313     const SCEV *getStepRecurrence(ScalarEvolution &SE) const {
314       if (isAffine()) return getOperand(1);
315       return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1,
316                                                            op_end()),
317                               getLoop(), FlagAnyWrap);
318     }
319 
320     /// Return true if this represents an expression A + B*x where A
321     /// and B are loop invariant values.
isAffine()322     bool isAffine() const {
323       // We know that the start value is invariant.  This expression is thus
324       // affine iff the step is also invariant.
325       return getNumOperands() == 2;
326     }
327 
328     /// Return true if this represents an expression A + B*x + C*x^2
329     /// where A, B and C are loop invariant values.  This corresponds
330     /// to an addrec of the form {L,+,M,+,N}
isQuadratic()331     bool isQuadratic() const {
332       return getNumOperands() == 3;
333     }
334 
335     /// Set flags for a recurrence without clearing any previously set flags.
336     /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
337     /// to make it easier to propagate flags.
setNoWrapFlags(NoWrapFlags Flags)338     void setNoWrapFlags(NoWrapFlags Flags) {
339       if (Flags & (FlagNUW | FlagNSW))
340         Flags = ScalarEvolution::setFlags(Flags, FlagNW);
341       SubclassData |= Flags;
342     }
343 
344     /// Return the value of this chain of recurrences at the specified
345     /// iteration number.
346     const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;
347 
348     /// Return the number of iterations of this loop that produce
349     /// values in the specified constant range.  Another way of
350     /// looking at this is that it returns the first iteration number
351     /// where the value is not in the condition, thus computing the
352     /// exit count.  If the iteration count can't be computed, an
353     /// instance of SCEVCouldNotCompute is returned.
354     const SCEV *getNumIterationsInRange(const ConstantRange &Range,
355                                         ScalarEvolution &SE) const;
356 
357     /// Return an expression representing the value of this expression
358     /// one iteration of the loop ahead.
359     const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const;
360 
361     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)362     static bool classof(const SCEV *S) {
363       return S->getSCEVType() == scAddRecExpr;
364     }
365   };
366 
367   /// This node is the base class min/max selections.
368   class SCEVMinMaxExpr : public SCEVCommutativeExpr {
369     friend class ScalarEvolution;
370 
isMinMaxType(enum SCEVTypes T)371     static bool isMinMaxType(enum SCEVTypes T) {
372       return T == scSMaxExpr || T == scUMaxExpr || T == scSMinExpr ||
373              T == scUMinExpr;
374     }
375 
376   protected:
377     /// Note: Constructing subclasses via this constructor is allowed
SCEVMinMaxExpr(const FoldingSetNodeIDRef ID,enum SCEVTypes T,const SCEV * const * O,size_t N)378     SCEVMinMaxExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T,
379                    const SCEV *const *O, size_t N)
380         : SCEVCommutativeExpr(ID, T, O, N) {
381       assert(isMinMaxType(T));
382       // Min and max never overflow
383       setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
384     }
385 
386   public:
classof(const SCEV * S)387     static bool classof(const SCEV *S) {
388       return isMinMaxType(static_cast<SCEVTypes>(S->getSCEVType()));
389     }
390 
negate(enum SCEVTypes T)391     static enum SCEVTypes negate(enum SCEVTypes T) {
392       switch (T) {
393       case scSMaxExpr:
394         return scSMinExpr;
395       case scSMinExpr:
396         return scSMaxExpr;
397       case scUMaxExpr:
398         return scUMinExpr;
399       case scUMinExpr:
400         return scUMaxExpr;
401       default:
402         llvm_unreachable("Not a min or max SCEV type!");
403       }
404     }
405   };
406 
407   /// This class represents a signed maximum selection.
408   class SCEVSMaxExpr : public SCEVMinMaxExpr {
409     friend class ScalarEvolution;
410 
SCEVSMaxExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)411     SCEVSMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
412         : SCEVMinMaxExpr(ID, scSMaxExpr, O, N) {}
413 
414   public:
415     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)416     static bool classof(const SCEV *S) {
417       return S->getSCEVType() == scSMaxExpr;
418     }
419   };
420 
421   /// This class represents an unsigned maximum selection.
422   class SCEVUMaxExpr : public SCEVMinMaxExpr {
423     friend class ScalarEvolution;
424 
SCEVUMaxExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)425     SCEVUMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
426         : SCEVMinMaxExpr(ID, scUMaxExpr, O, N) {}
427 
428   public:
429     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)430     static bool classof(const SCEV *S) {
431       return S->getSCEVType() == scUMaxExpr;
432     }
433   };
434 
435   /// This class represents a signed minimum selection.
436   class SCEVSMinExpr : public SCEVMinMaxExpr {
437     friend class ScalarEvolution;
438 
SCEVSMinExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)439     SCEVSMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
440         : SCEVMinMaxExpr(ID, scSMinExpr, O, N) {}
441 
442   public:
443     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)444     static bool classof(const SCEV *S) {
445       return S->getSCEVType() == scSMinExpr;
446     }
447   };
448 
449   /// This class represents an unsigned minimum selection.
450   class SCEVUMinExpr : public SCEVMinMaxExpr {
451     friend class ScalarEvolution;
452 
SCEVUMinExpr(const FoldingSetNodeIDRef ID,const SCEV * const * O,size_t N)453     SCEVUMinExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N)
454         : SCEVMinMaxExpr(ID, scUMinExpr, O, N) {}
455 
456   public:
457     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)458     static bool classof(const SCEV *S) {
459       return S->getSCEVType() == scUMinExpr;
460     }
461   };
462 
463   /// This means that we are dealing with an entirely unknown SCEV
464   /// value, and only represent it as its LLVM Value.  This is the
465   /// "bottom" value for the analysis.
466   class SCEVUnknown final : public SCEV, private CallbackVH {
467     friend class ScalarEvolution;
468 
469     /// The parent ScalarEvolution value. This is used to update the
470     /// parent's maps when the value associated with a SCEVUnknown is
471     /// deleted or RAUW'd.
472     ScalarEvolution *SE;
473 
474     /// The next pointer in the linked list of all SCEVUnknown
475     /// instances owned by a ScalarEvolution.
476     SCEVUnknown *Next;
477 
SCEVUnknown(const FoldingSetNodeIDRef ID,Value * V,ScalarEvolution * se,SCEVUnknown * next)478     SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V,
479                 ScalarEvolution *se, SCEVUnknown *next) :
480       SCEV(ID, scUnknown, 1), CallbackVH(V), SE(se), Next(next) {}
481 
482     // Implement CallbackVH.
483     void deleted() override;
484     void allUsesReplacedWith(Value *New) override;
485 
486   public:
getValue()487     Value *getValue() const { return getValPtr(); }
488 
489     /// @{
490     /// Test whether this is a special constant representing a type
491     /// size, alignment, or field offset in a target-independent
492     /// manner, and hasn't happened to have been folded with other
493     /// operations into something unrecognizable. This is mainly only
494     /// useful for pretty-printing and other situations where it isn't
495     /// absolutely required for these to succeed.
496     bool isSizeOf(Type *&AllocTy) const;
497     bool isAlignOf(Type *&AllocTy) const;
498     bool isOffsetOf(Type *&STy, Constant *&FieldNo) const;
499     /// @}
500 
getType()501     Type *getType() const { return getValPtr()->getType(); }
502 
503     /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const SCEV * S)504     static bool classof(const SCEV *S) {
505       return S->getSCEVType() == scUnknown;
506     }
507   };
508 
509   /// This class defines a simple visitor class that may be used for
510   /// various SCEV analysis purposes.
511   template<typename SC, typename RetVal=void>
512   struct SCEVVisitor {
visitSCEVVisitor513     RetVal visit(const SCEV *S) {
514       switch (S->getSCEVType()) {
515       case scConstant:
516         return ((SC*)this)->visitConstant((const SCEVConstant*)S);
517       case scTruncate:
518         return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S);
519       case scZeroExtend:
520         return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S);
521       case scSignExtend:
522         return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S);
523       case scAddExpr:
524         return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S);
525       case scMulExpr:
526         return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S);
527       case scUDivExpr:
528         return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S);
529       case scAddRecExpr:
530         return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S);
531       case scSMaxExpr:
532         return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S);
533       case scUMaxExpr:
534         return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S);
535       case scSMinExpr:
536         return ((SC *)this)->visitSMinExpr((const SCEVSMinExpr *)S);
537       case scUMinExpr:
538         return ((SC *)this)->visitUMinExpr((const SCEVUMinExpr *)S);
539       case scUnknown:
540         return ((SC*)this)->visitUnknown((const SCEVUnknown*)S);
541       case scCouldNotCompute:
542         return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S);
543       default:
544         llvm_unreachable("Unknown SCEV type!");
545       }
546     }
547 
visitCouldNotComputeSCEVVisitor548     RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) {
549       llvm_unreachable("Invalid use of SCEVCouldNotCompute!");
550     }
551   };
552 
553   /// Visit all nodes in the expression tree using worklist traversal.
554   ///
555   /// Visitor implements:
556   ///   // return true to follow this node.
557   ///   bool follow(const SCEV *S);
558   ///   // return true to terminate the search.
559   ///   bool isDone();
560   template<typename SV>
561   class SCEVTraversal {
562     SV &Visitor;
563     SmallVector<const SCEV *, 8> Worklist;
564     SmallPtrSet<const SCEV *, 8> Visited;
565 
push(const SCEV * S)566     void push(const SCEV *S) {
567       if (Visited.insert(S).second && Visitor.follow(S))
568         Worklist.push_back(S);
569     }
570 
571   public:
SCEVTraversal(SV & V)572     SCEVTraversal(SV& V): Visitor(V) {}
573 
visitAll(const SCEV * Root)574     void visitAll(const SCEV *Root) {
575       push(Root);
576       while (!Worklist.empty() && !Visitor.isDone()) {
577         const SCEV *S = Worklist.pop_back_val();
578 
579         switch (S->getSCEVType()) {
580         case scConstant:
581         case scUnknown:
582           break;
583         case scTruncate:
584         case scZeroExtend:
585         case scSignExtend:
586           push(cast<SCEVCastExpr>(S)->getOperand());
587           break;
588         case scAddExpr:
589         case scMulExpr:
590         case scSMaxExpr:
591         case scUMaxExpr:
592         case scSMinExpr:
593         case scUMinExpr:
594         case scAddRecExpr:
595           for (const auto *Op : cast<SCEVNAryExpr>(S)->operands())
596             push(Op);
597           break;
598         case scUDivExpr: {
599           const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
600           push(UDiv->getLHS());
601           push(UDiv->getRHS());
602           break;
603         }
604         case scCouldNotCompute:
605           llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
606         default:
607           llvm_unreachable("Unknown SCEV kind!");
608         }
609       }
610     }
611   };
612 
613   /// Use SCEVTraversal to visit all nodes in the given expression tree.
614   template<typename SV>
visitAll(const SCEV * Root,SV & Visitor)615   void visitAll(const SCEV *Root, SV& Visitor) {
616     SCEVTraversal<SV> T(Visitor);
617     T.visitAll(Root);
618   }
619 
620   /// Return true if any node in \p Root satisfies the predicate \p Pred.
621   template <typename PredTy>
SCEVExprContains(const SCEV * Root,PredTy Pred)622   bool SCEVExprContains(const SCEV *Root, PredTy Pred) {
623     struct FindClosure {
624       bool Found = false;
625       PredTy Pred;
626 
627       FindClosure(PredTy Pred) : Pred(Pred) {}
628 
629       bool follow(const SCEV *S) {
630         if (!Pred(S))
631           return true;
632 
633         Found = true;
634         return false;
635       }
636 
637       bool isDone() const { return Found; }
638     };
639 
640     FindClosure FC(Pred);
641     visitAll(Root, FC);
642     return FC.Found;
643   }
644 
645   /// This visitor recursively visits a SCEV expression and re-writes it.
646   /// The result from each visit is cached, so it will return the same
647   /// SCEV for the same input.
648   template<typename SC>
649   class SCEVRewriteVisitor : public SCEVVisitor<SC, const SCEV *> {
650   protected:
651     ScalarEvolution &SE;
652     // Memoize the result of each visit so that we only compute once for
653     // the same input SCEV. This is to avoid redundant computations when
654     // a SCEV is referenced by multiple SCEVs. Without memoization, this
655     // visit algorithm would have exponential time complexity in the worst
656     // case, causing the compiler to hang on certain tests.
657     DenseMap<const SCEV *, const SCEV *> RewriteResults;
658 
659   public:
SCEVRewriteVisitor(ScalarEvolution & SE)660     SCEVRewriteVisitor(ScalarEvolution &SE) : SE(SE) {}
661 
visit(const SCEV * S)662     const SCEV *visit(const SCEV *S) {
663       auto It = RewriteResults.find(S);
664       if (It != RewriteResults.end())
665         return It->second;
666       auto* Visited = SCEVVisitor<SC, const SCEV *>::visit(S);
667       auto Result = RewriteResults.try_emplace(S, Visited);
668       assert(Result.second && "Should insert a new entry");
669       return Result.first->second;
670     }
671 
visitConstant(const SCEVConstant * Constant)672     const SCEV *visitConstant(const SCEVConstant *Constant) {
673       return Constant;
674     }
675 
visitTruncateExpr(const SCEVTruncateExpr * Expr)676     const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
677       const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
678       return Operand == Expr->getOperand()
679                  ? Expr
680                  : SE.getTruncateExpr(Operand, Expr->getType());
681     }
682 
visitZeroExtendExpr(const SCEVZeroExtendExpr * Expr)683     const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
684       const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
685       return Operand == Expr->getOperand()
686                  ? Expr
687                  : SE.getZeroExtendExpr(Operand, Expr->getType());
688     }
689 
visitSignExtendExpr(const SCEVSignExtendExpr * Expr)690     const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
691       const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
692       return Operand == Expr->getOperand()
693                  ? Expr
694                  : SE.getSignExtendExpr(Operand, Expr->getType());
695     }
696 
visitAddExpr(const SCEVAddExpr * Expr)697     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
698       SmallVector<const SCEV *, 2> Operands;
699       bool Changed = false;
700       for (auto *Op : Expr->operands()) {
701         Operands.push_back(((SC*)this)->visit(Op));
702         Changed |= Op != Operands.back();
703       }
704       return !Changed ? Expr : SE.getAddExpr(Operands);
705     }
706 
visitMulExpr(const SCEVMulExpr * Expr)707     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
708       SmallVector<const SCEV *, 2> Operands;
709       bool Changed = false;
710       for (auto *Op : Expr->operands()) {
711         Operands.push_back(((SC*)this)->visit(Op));
712         Changed |= Op != Operands.back();
713       }
714       return !Changed ? Expr : SE.getMulExpr(Operands);
715     }
716 
visitUDivExpr(const SCEVUDivExpr * Expr)717     const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
718       auto *LHS = ((SC *)this)->visit(Expr->getLHS());
719       auto *RHS = ((SC *)this)->visit(Expr->getRHS());
720       bool Changed = LHS != Expr->getLHS() || RHS != Expr->getRHS();
721       return !Changed ? Expr : SE.getUDivExpr(LHS, RHS);
722     }
723 
visitAddRecExpr(const SCEVAddRecExpr * Expr)724     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
725       SmallVector<const SCEV *, 2> Operands;
726       bool Changed = false;
727       for (auto *Op : Expr->operands()) {
728         Operands.push_back(((SC*)this)->visit(Op));
729         Changed |= Op != Operands.back();
730       }
731       return !Changed ? Expr
732                       : SE.getAddRecExpr(Operands, Expr->getLoop(),
733                                          Expr->getNoWrapFlags());
734     }
735 
visitSMaxExpr(const SCEVSMaxExpr * Expr)736     const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
737       SmallVector<const SCEV *, 2> Operands;
738       bool Changed = false;
739       for (auto *Op : Expr->operands()) {
740         Operands.push_back(((SC *)this)->visit(Op));
741         Changed |= Op != Operands.back();
742       }
743       return !Changed ? Expr : SE.getSMaxExpr(Operands);
744     }
745 
visitUMaxExpr(const SCEVUMaxExpr * Expr)746     const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
747       SmallVector<const SCEV *, 2> Operands;
748       bool Changed = false;
749       for (auto *Op : Expr->operands()) {
750         Operands.push_back(((SC*)this)->visit(Op));
751         Changed |= Op != Operands.back();
752       }
753       return !Changed ? Expr : SE.getUMaxExpr(Operands);
754     }
755 
visitSMinExpr(const SCEVSMinExpr * Expr)756     const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) {
757       SmallVector<const SCEV *, 2> Operands;
758       bool Changed = false;
759       for (auto *Op : Expr->operands()) {
760         Operands.push_back(((SC *)this)->visit(Op));
761         Changed |= Op != Operands.back();
762       }
763       return !Changed ? Expr : SE.getSMinExpr(Operands);
764     }
765 
visitUMinExpr(const SCEVUMinExpr * Expr)766     const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) {
767       SmallVector<const SCEV *, 2> Operands;
768       bool Changed = false;
769       for (auto *Op : Expr->operands()) {
770         Operands.push_back(((SC *)this)->visit(Op));
771         Changed |= Op != Operands.back();
772       }
773       return !Changed ? Expr : SE.getUMinExpr(Operands);
774     }
775 
visitUnknown(const SCEVUnknown * Expr)776     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
777       return Expr;
778     }
779 
visitCouldNotCompute(const SCEVCouldNotCompute * Expr)780     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
781       return Expr;
782     }
783   };
784 
785   using ValueToValueMap = DenseMap<const Value *, Value *>;
786 
787   /// The SCEVParameterRewriter takes a scalar evolution expression and updates
788   /// the SCEVUnknown components following the Map (Value -> Value).
789   class SCEVParameterRewriter : public SCEVRewriteVisitor<SCEVParameterRewriter> {
790   public:
791     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
792                                ValueToValueMap &Map,
793                                bool InterpretConsts = false) {
794       SCEVParameterRewriter Rewriter(SE, Map, InterpretConsts);
795       return Rewriter.visit(Scev);
796     }
797 
SCEVParameterRewriter(ScalarEvolution & SE,ValueToValueMap & M,bool C)798     SCEVParameterRewriter(ScalarEvolution &SE, ValueToValueMap &M, bool C)
799       : SCEVRewriteVisitor(SE), Map(M), InterpretConsts(C) {}
800 
visitUnknown(const SCEVUnknown * Expr)801     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
802       Value *V = Expr->getValue();
803       if (Map.count(V)) {
804         Value *NV = Map[V];
805         if (InterpretConsts && isa<ConstantInt>(NV))
806           return SE.getConstant(cast<ConstantInt>(NV));
807         return SE.getUnknown(NV);
808       }
809       return Expr;
810     }
811 
812   private:
813     ValueToValueMap &Map;
814     bool InterpretConsts;
815   };
816 
817   using LoopToScevMapT = DenseMap<const Loop *, const SCEV *>;
818 
819   /// The SCEVLoopAddRecRewriter takes a scalar evolution expression and applies
820   /// the Map (Loop -> SCEV) to all AddRecExprs.
821   class SCEVLoopAddRecRewriter
822       : public SCEVRewriteVisitor<SCEVLoopAddRecRewriter> {
823   public:
SCEVLoopAddRecRewriter(ScalarEvolution & SE,LoopToScevMapT & M)824     SCEVLoopAddRecRewriter(ScalarEvolution &SE, LoopToScevMapT &M)
825         : SCEVRewriteVisitor(SE), Map(M) {}
826 
rewrite(const SCEV * Scev,LoopToScevMapT & Map,ScalarEvolution & SE)827     static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map,
828                                ScalarEvolution &SE) {
829       SCEVLoopAddRecRewriter Rewriter(SE, Map);
830       return Rewriter.visit(Scev);
831     }
832 
visitAddRecExpr(const SCEVAddRecExpr * Expr)833     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
834       SmallVector<const SCEV *, 2> Operands;
835       for (const SCEV *Op : Expr->operands())
836         Operands.push_back(visit(Op));
837 
838       const Loop *L = Expr->getLoop();
839       const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags());
840 
841       if (0 == Map.count(L))
842         return Res;
843 
844       const SCEVAddRecExpr *Rec = cast<SCEVAddRecExpr>(Res);
845       return Rec->evaluateAtIteration(Map[L], SE);
846     }
847 
848   private:
849     LoopToScevMapT &Map;
850   };
851 
852 } // end namespace llvm
853 
854 #endif // LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
855