1 //===- polly/ScopInfo.h -----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Store the polyhedral model representation of a static control flow region,
10 // also called SCoP (Static Control Part).
11 //
12 // This representation is shared among several tools in the polyhedral
13 // community, which are e.g. CLooG, Pluto, Loopo, Graphite.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef POLLY_SCOPINFO_H
18 #define POLLY_SCOPINFO_H
19 
20 #include "polly/ScopDetection.h"
21 #include "polly/Support/SCEVAffinator.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/Analysis/RegionPass.h"
26 #include "llvm/IR/DebugLoc.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/PassManager.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/Pass.h"
32 #include "isl/isl-noexceptions.h"
33 #include <cassert>
34 #include <cstddef>
35 #include <forward_list>
36 
37 using namespace llvm;
38 
39 namespace llvm {
40 void initializeScopInfoRegionPassPass(PassRegistry &);
41 void initializeScopInfoWrapperPassPass(PassRegistry &);
42 } // end namespace llvm
43 
44 namespace polly {
45 
46 class MemoryAccess;
47 
48 //===---------------------------------------------------------------------===//
49 
50 extern bool UseInstructionNames;
51 
52 // The maximal number of basic sets we allow during domain construction to
53 // be created. More complex scops will result in very high compile time and
54 // are also unlikely to result in good code.
55 extern int const MaxDisjunctsInDomain;
56 
57 /// Enumeration of assumptions Polly can take.
58 enum AssumptionKind {
59   ALIASING,
60   INBOUNDS,
61   WRAPPING,
62   UNSIGNED,
63   PROFITABLE,
64   ERRORBLOCK,
65   COMPLEXITY,
66   INFINITELOOP,
67   INVARIANTLOAD,
68   DELINEARIZATION,
69 };
70 
71 /// Enum to distinguish between assumptions and restrictions.
72 enum AssumptionSign { AS_ASSUMPTION, AS_RESTRICTION };
73 
74 /// The different memory kinds used in Polly.
75 ///
76 /// We distinguish between arrays and various scalar memory objects. We use
77 /// the term ``array'' to describe memory objects that consist of a set of
78 /// individual data elements arranged in a multi-dimensional grid. A scalar
79 /// memory object describes an individual data element and is used to model
80 /// the definition and uses of llvm::Values.
81 ///
82 /// The polyhedral model does traditionally not reason about SSA values. To
83 /// reason about llvm::Values we model them "as if" they were zero-dimensional
84 /// memory objects, even though they were not actually allocated in (main)
85 /// memory.  Memory for such objects is only alloca[ed] at CodeGeneration
86 /// time. To relate the memory slots used during code generation with the
87 /// llvm::Values they belong to the new names for these corresponding stack
88 /// slots are derived by appending suffixes (currently ".s2a" and ".phiops")
89 /// to the name of the original llvm::Value. To describe how def/uses are
90 /// modeled exactly we use these suffixes here as well.
91 ///
92 /// There are currently four different kinds of memory objects:
93 enum class MemoryKind {
94   /// MemoryKind::Array: Models a one or multi-dimensional array
95   ///
96   /// A memory object that can be described by a multi-dimensional array.
97   /// Memory objects of this type are used to model actual multi-dimensional
98   /// arrays as they exist in LLVM-IR, but they are also used to describe
99   /// other objects:
100   ///   - A single data element allocated on the stack using 'alloca' is
101   ///     modeled as a one-dimensional, single-element array.
102   ///   - A single data element allocated as a global variable is modeled as
103   ///     one-dimensional, single-element array.
104   ///   - Certain multi-dimensional arrays with variable size, which in
105   ///     LLVM-IR are commonly expressed as a single-dimensional access with a
106   ///     complicated access function, are modeled as multi-dimensional
107   ///     memory objects (grep for "delinearization").
108   Array,
109 
110   /// MemoryKind::Value: Models an llvm::Value
111   ///
112   /// Memory objects of type MemoryKind::Value are used to model the data flow
113   /// induced by llvm::Values. For each llvm::Value that is used across
114   /// BasicBlocks, one ScopArrayInfo object is created. A single memory WRITE
115   /// stores the llvm::Value at its definition into the memory object and at
116   /// each use of the llvm::Value (ignoring trivial intra-block uses) a
117   /// corresponding READ is added. For instance, the use/def chain of a
118   /// llvm::Value %V depicted below
119   ///              ______________________
120   ///              |DefBB:              |
121   ///              |  %V = float op ... |
122   ///              ----------------------
123   ///               |                  |
124   /// _________________               _________________
125   /// |UseBB1:        |               |UseBB2:        |
126   /// |  use float %V |               |  use float %V |
127   /// -----------------               -----------------
128   ///
129   /// is modeled as if the following memory accesses occurred:
130   ///
131   ///                        __________________________
132   ///                        |entry:                  |
133   ///                        |  %V.s2a = alloca float |
134   ///                        --------------------------
135   ///                                     |
136   ///                    ___________________________________
137   ///                    |DefBB:                           |
138   ///                    |  store %float %V, float* %V.s2a |
139   ///                    -----------------------------------
140   ///                           |                   |
141   /// ____________________________________ ___________________________________
142   /// |UseBB1:                           | |UseBB2:                          |
143   /// |  %V.reload1 = load float* %V.s2a | |  %V.reload2 = load float* %V.s2a|
144   /// |  use float %V.reload1            | |  use float %V.reload2           |
145   /// ------------------------------------ -----------------------------------
146   ///
147   Value,
148 
149   /// MemoryKind::PHI: Models PHI nodes within the SCoP
150   ///
151   /// Besides the MemoryKind::Value memory object used to model the normal
152   /// llvm::Value dependences described above, PHI nodes require an additional
153   /// memory object of type MemoryKind::PHI to describe the forwarding of values
154   /// to
155   /// the PHI node.
156   ///
157   /// As an example, a PHIInst instructions
158   ///
159   /// %PHI = phi float [ %Val1, %IncomingBlock1 ], [ %Val2, %IncomingBlock2 ]
160   ///
161   /// is modeled as if the accesses occurred this way:
162   ///
163   ///                    _______________________________
164   ///                    |entry:                       |
165   ///                    |  %PHI.phiops = alloca float |
166   ///                    -------------------------------
167   ///                           |              |
168   /// __________________________________  __________________________________
169   /// |IncomingBlock1:                 |  |IncomingBlock2:                 |
170   /// |  ...                           |  |  ...                           |
171   /// |  store float %Val1 %PHI.phiops |  |  store float %Val2 %PHI.phiops |
172   /// |  br label % JoinBlock          |  |  br label %JoinBlock           |
173   /// ----------------------------------  ----------------------------------
174   ///                             \            /
175   ///                              \          /
176   ///               _________________________________________
177   ///               |JoinBlock:                             |
178   ///               |  %PHI = load float, float* PHI.phiops |
179   ///               -----------------------------------------
180   ///
181   /// Note that there can also be a scalar write access for %PHI if used in a
182   /// different BasicBlock, i.e. there can be a memory object %PHI.phiops as
183   /// well as a memory object %PHI.s2a.
184   PHI,
185 
186   /// MemoryKind::ExitPHI: Models PHI nodes in the SCoP's exit block
187   ///
188   /// For PHI nodes in the Scop's exit block a special memory object kind is
189   /// used. The modeling used is identical to MemoryKind::PHI, with the
190   /// exception
191   /// that there are no READs from these memory objects. The PHINode's
192   /// llvm::Value is treated as a value escaping the SCoP. WRITE accesses
193   /// write directly to the escaping value's ".s2a" alloca.
194   ExitPHI
195 };
196 
197 /// Maps from a loop to the affine function expressing its backedge taken count.
198 /// The backedge taken count already enough to express iteration domain as we
199 /// only allow loops with canonical induction variable.
200 /// A canonical induction variable is:
201 /// an integer recurrence that starts at 0 and increments by one each time
202 /// through the loop.
203 using LoopBoundMapType = std::map<const Loop *, const SCEV *>;
204 
205 using AccFuncVector = std::vector<std::unique_ptr<MemoryAccess>>;
206 
207 /// A class to store information about arrays in the SCoP.
208 ///
209 /// Objects are accessible via the ScoP, MemoryAccess or the id associated with
210 /// the MemoryAccess access function.
211 ///
212 class ScopArrayInfo {
213 public:
214   /// Construct a ScopArrayInfo object.
215   ///
216   /// @param BasePtr        The array base pointer.
217   /// @param ElementType    The type of the elements stored in the array.
218   /// @param IslCtx         The isl context used to create the base pointer id.
219   /// @param DimensionSizes A vector containing the size of each dimension.
220   /// @param Kind           The kind of the array object.
221   /// @param DL             The data layout of the module.
222   /// @param S              The scop this array object belongs to.
223   /// @param BaseName       The optional name of this memory reference.
224   ScopArrayInfo(Value *BasePtr, Type *ElementType, isl::ctx IslCtx,
225                 ArrayRef<const SCEV *> DimensionSizes, MemoryKind Kind,
226                 const DataLayout &DL, Scop *S, const char *BaseName = nullptr);
227 
228   /// Destructor to free the isl id of the base pointer.
229   ~ScopArrayInfo();
230 
231   ///  Update the element type of the ScopArrayInfo object.
232   ///
233   ///  Memory accesses referencing this ScopArrayInfo object may use
234   ///  different element sizes. This function ensures the canonical element type
235   ///  stored is small enough to model accesses to the current element type as
236   ///  well as to @p NewElementType.
237   ///
238   ///  @param NewElementType An element type that is used to access this array.
239   void updateElementType(Type *NewElementType);
240 
241   ///  Update the sizes of the ScopArrayInfo object.
242   ///
243   ///  A ScopArrayInfo object may be created without all outer dimensions being
244   ///  available. This function is called when new memory accesses are added for
245   ///  this ScopArrayInfo object. It verifies that sizes are compatible and adds
246   ///  additional outer array dimensions, if needed.
247   ///
248   ///  @param Sizes       A vector of array sizes where the rightmost array
249   ///                     sizes need to match the innermost array sizes already
250   ///                     defined in SAI.
251   ///  @param CheckConsistency Update sizes, even if new sizes are inconsistent
252   ///                          with old sizes
253   bool updateSizes(ArrayRef<const SCEV *> Sizes, bool CheckConsistency = true);
254 
255   /// Make the ScopArrayInfo model a Fortran array.
256   /// It receives the Fortran array descriptor and stores this.
257   /// It also adds a piecewise expression for the outermost dimension
258   /// since this information is available for Fortran arrays at runtime.
259   void applyAndSetFAD(Value *FAD);
260 
261   /// Get the FortranArrayDescriptor corresponding to this array if it exists,
262   /// nullptr otherwise.
getFortranArrayDescriptor()263   Value *getFortranArrayDescriptor() const { return this->FAD; }
264 
265   /// Set the base pointer to @p BP.
setBasePtr(Value * BP)266   void setBasePtr(Value *BP) { BasePtr = BP; }
267 
268   /// Return the base pointer.
getBasePtr()269   Value *getBasePtr() const { return BasePtr; }
270 
271   // Set IsOnHeap to the value in parameter.
setIsOnHeap(bool value)272   void setIsOnHeap(bool value) { IsOnHeap = value; }
273 
274   /// For indirect accesses return the origin SAI of the BP, else null.
getBasePtrOriginSAI()275   const ScopArrayInfo *getBasePtrOriginSAI() const { return BasePtrOriginSAI; }
276 
277   /// The set of derived indirect SAIs for this origin SAI.
getDerivedSAIs()278   const SmallSetVector<ScopArrayInfo *, 2> &getDerivedSAIs() const {
279     return DerivedSAIs;
280   }
281 
282   /// Return the number of dimensions.
getNumberOfDimensions()283   unsigned getNumberOfDimensions() const {
284     if (Kind == MemoryKind::PHI || Kind == MemoryKind::ExitPHI ||
285         Kind == MemoryKind::Value)
286       return 0;
287     return DimensionSizes.size();
288   }
289 
290   /// Return the size of dimension @p dim as SCEV*.
291   //
292   //  Scalars do not have array dimensions and the first dimension of
293   //  a (possibly multi-dimensional) array also does not carry any size
294   //  information, in case the array is not newly created.
getDimensionSize(unsigned Dim)295   const SCEV *getDimensionSize(unsigned Dim) const {
296     assert(Dim < getNumberOfDimensions() && "Invalid dimension");
297     return DimensionSizes[Dim];
298   }
299 
300   /// Return the size of dimension @p dim as isl::pw_aff.
301   //
302   //  Scalars do not have array dimensions and the first dimension of
303   //  a (possibly multi-dimensional) array also does not carry any size
304   //  information, in case the array is not newly created.
getDimensionSizePw(unsigned Dim)305   isl::pw_aff getDimensionSizePw(unsigned Dim) const {
306     assert(Dim < getNumberOfDimensions() && "Invalid dimension");
307     return DimensionSizesPw[Dim];
308   }
309 
310   /// Get the canonical element type of this array.
311   ///
312   /// @returns The canonical element type of this array.
getElementType()313   Type *getElementType() const { return ElementType; }
314 
315   /// Get element size in bytes.
316   int getElemSizeInBytes() const;
317 
318   /// Get the name of this memory reference.
319   std::string getName() const;
320 
321   /// Return the isl id for the base pointer.
322   isl::id getBasePtrId() const;
323 
324   /// Return what kind of memory this represents.
getKind()325   MemoryKind getKind() const { return Kind; }
326 
327   /// Is this array info modeling an llvm::Value?
isValueKind()328   bool isValueKind() const { return Kind == MemoryKind::Value; }
329 
330   /// Is this array info modeling special PHI node memory?
331   ///
332   /// During code generation of PHI nodes, there is a need for two kinds of
333   /// virtual storage. The normal one as it is used for all scalar dependences,
334   /// where the result of the PHI node is stored and later loaded from as well
335   /// as a second one where the incoming values of the PHI nodes are stored
336   /// into and reloaded when the PHI is executed. As both memories use the
337   /// original PHI node as virtual base pointer, we have this additional
338   /// attribute to distinguish the PHI node specific array modeling from the
339   /// normal scalar array modeling.
isPHIKind()340   bool isPHIKind() const { return Kind == MemoryKind::PHI; }
341 
342   /// Is this array info modeling an MemoryKind::ExitPHI?
isExitPHIKind()343   bool isExitPHIKind() const { return Kind == MemoryKind::ExitPHI; }
344 
345   /// Is this array info modeling an array?
isArrayKind()346   bool isArrayKind() const { return Kind == MemoryKind::Array; }
347 
348   /// Is this array allocated on heap
349   ///
350   /// This property is only relevant if the array is allocated by Polly instead
351   /// of pre-existing. If false, it is allocated using alloca instead malloca.
isOnHeap()352   bool isOnHeap() const { return IsOnHeap; }
353 
354 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
355   /// Dump a readable representation to stderr.
356   void dump() const;
357 #endif
358 
359   /// Print a readable representation to @p OS.
360   ///
361   /// @param SizeAsPwAff Print the size as isl::pw_aff
362   void print(raw_ostream &OS, bool SizeAsPwAff = false) const;
363 
364   /// Access the ScopArrayInfo associated with an access function.
365   static const ScopArrayInfo *getFromAccessFunction(isl::pw_multi_aff PMA);
366 
367   /// Access the ScopArrayInfo associated with an isl Id.
368   static const ScopArrayInfo *getFromId(isl::id Id);
369 
370   /// Get the space of this array access.
371   isl::space getSpace() const;
372 
373   /// If the array is read only
374   bool isReadOnly();
375 
376   /// Verify that @p Array is compatible to this ScopArrayInfo.
377   ///
378   /// Two arrays are compatible if their dimensionality, the sizes of their
379   /// dimensions, and their element sizes match.
380   ///
381   /// @param Array The array to compare against.
382   ///
383   /// @returns True, if the arrays are compatible, False otherwise.
384   bool isCompatibleWith(const ScopArrayInfo *Array) const;
385 
386 private:
addDerivedSAI(ScopArrayInfo * DerivedSAI)387   void addDerivedSAI(ScopArrayInfo *DerivedSAI) {
388     DerivedSAIs.insert(DerivedSAI);
389   }
390 
391   /// For indirect accesses this is the SAI of the BP origin.
392   const ScopArrayInfo *BasePtrOriginSAI;
393 
394   /// For origin SAIs the set of derived indirect SAIs.
395   SmallSetVector<ScopArrayInfo *, 2> DerivedSAIs;
396 
397   /// The base pointer.
398   AssertingVH<Value> BasePtr;
399 
400   /// The canonical element type of this array.
401   ///
402   /// The canonical element type describes the minimal accessible element in
403   /// this array. Not all elements accessed, need to be of the very same type,
404   /// but the allocation size of the type of the elements loaded/stored from/to
405   /// this array needs to be a multiple of the allocation size of the canonical
406   /// type.
407   Type *ElementType;
408 
409   /// The isl id for the base pointer.
410   isl::id Id;
411 
412   /// True if the newly allocated array is on heap.
413   bool IsOnHeap = false;
414 
415   /// The sizes of each dimension as SCEV*.
416   SmallVector<const SCEV *, 4> DimensionSizes;
417 
418   /// The sizes of each dimension as isl::pw_aff.
419   SmallVector<isl::pw_aff, 4> DimensionSizesPw;
420 
421   /// The type of this scop array info object.
422   ///
423   /// We distinguish between SCALAR, PHI and ARRAY objects.
424   MemoryKind Kind;
425 
426   /// The data layout of the module.
427   const DataLayout &DL;
428 
429   /// The scop this SAI object belongs to.
430   Scop &S;
431 
432   /// If this array models a Fortran array, then this points
433   /// to the Fortran array descriptor.
434   Value *FAD = nullptr;
435 };
436 
437 /// Represent memory accesses in statements.
438 class MemoryAccess {
439   friend class Scop;
440   friend class ScopStmt;
441   friend class ScopBuilder;
442 
443 public:
444   /// The access type of a memory access
445   ///
446   /// There are three kind of access types:
447   ///
448   /// * A read access
449   ///
450   /// A certain set of memory locations are read and may be used for internal
451   /// calculations.
452   ///
453   /// * A must-write access
454   ///
455   /// A certain set of memory locations is definitely written. The old value is
456   /// replaced by a newly calculated value. The old value is not read or used at
457   /// all.
458   ///
459   /// * A may-write access
460   ///
461   /// A certain set of memory locations may be written. The memory location may
462   /// contain a new value if there is actually a write or the old value may
463   /// remain, if no write happens.
464   enum AccessType {
465     READ = 0x1,
466     MUST_WRITE = 0x2,
467     MAY_WRITE = 0x3,
468   };
469 
470   /// Reduction access type
471   ///
472   /// Commutative and associative binary operations suitable for reductions
473   enum ReductionType {
474     RT_NONE, ///< Indicate no reduction at all
475     RT_ADD,  ///< Addition
476     RT_MUL,  ///< Multiplication
477     RT_BOR,  ///< Bitwise Or
478     RT_BXOR, ///< Bitwise XOr
479     RT_BAND, ///< Bitwise And
480   };
481 
482 private:
483   /// A unique identifier for this memory access.
484   ///
485   /// The identifier is unique between all memory accesses belonging to the same
486   /// scop statement.
487   isl::id Id;
488 
489   /// What is modeled by this MemoryAccess.
490   /// @see MemoryKind
491   MemoryKind Kind;
492 
493   /// Whether it a reading or writing access, and if writing, whether it
494   /// is conditional (MAY_WRITE).
495   enum AccessType AccType;
496 
497   /// Reduction type for reduction like accesses, RT_NONE otherwise
498   ///
499   /// An access is reduction like if it is part of a load-store chain in which
500   /// both access the same memory location (use the same LLVM-IR value
501   /// as pointer reference). Furthermore, between the load and the store there
502   /// is exactly one binary operator which is known to be associative and
503   /// commutative.
504   ///
505   /// TODO:
506   ///
507   /// We can later lift the constraint that the same LLVM-IR value defines the
508   /// memory location to handle scops such as the following:
509   ///
510   ///    for i
511   ///      for j
512   ///        sum[i+j] = sum[i] + 3;
513   ///
514   /// Here not all iterations access the same memory location, but iterations
515   /// for which j = 0 holds do. After lifting the equality check in ScopBuilder,
516   /// subsequent transformations do not only need check if a statement is
517   /// reduction like, but they also need to verify that that the reduction
518   /// property is only exploited for statement instances that load from and
519   /// store to the same data location. Doing so at dependence analysis time
520   /// could allow us to handle the above example.
521   ReductionType RedType = RT_NONE;
522 
523   /// Parent ScopStmt of this access.
524   ScopStmt *Statement;
525 
526   /// The domain under which this access is not modeled precisely.
527   ///
528   /// The invalid domain for an access describes all parameter combinations
529   /// under which the statement looks to be executed but is in fact not because
530   /// some assumption/restriction makes the access invalid.
531   isl::set InvalidDomain;
532 
533   // Properties describing the accessed array.
534   // TODO: It might be possible to move them to ScopArrayInfo.
535   // @{
536 
537   /// The base address (e.g., A for A[i+j]).
538   ///
539   /// The #BaseAddr of a memory access of kind MemoryKind::Array is the base
540   /// pointer of the memory access.
541   /// The #BaseAddr of a memory access of kind MemoryKind::PHI or
542   /// MemoryKind::ExitPHI is the PHI node itself.
543   /// The #BaseAddr of a memory access of kind MemoryKind::Value is the
544   /// instruction defining the value.
545   AssertingVH<Value> BaseAddr;
546 
547   /// Type a single array element wrt. this access.
548   Type *ElementType;
549 
550   /// Size of each dimension of the accessed array.
551   SmallVector<const SCEV *, 4> Sizes;
552   // @}
553 
554   // Properties describing the accessed element.
555   // @{
556 
557   /// The access instruction of this memory access.
558   ///
559   /// For memory accesses of kind MemoryKind::Array the access instruction is
560   /// the Load or Store instruction performing the access.
561   ///
562   /// For memory accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI the
563   /// access instruction of a load access is the PHI instruction. The access
564   /// instruction of a PHI-store is the incoming's block's terminator
565   /// instruction.
566   ///
567   /// For memory accesses of kind MemoryKind::Value the access instruction of a
568   /// load access is nullptr because generally there can be multiple
569   /// instructions in the statement using the same llvm::Value. The access
570   /// instruction of a write access is the instruction that defines the
571   /// llvm::Value.
572   Instruction *AccessInstruction = nullptr;
573 
574   /// Incoming block and value of a PHINode.
575   SmallVector<std::pair<BasicBlock *, Value *>, 4> Incoming;
576 
577   /// The value associated with this memory access.
578   ///
579   ///  - For array memory accesses (MemoryKind::Array) it is the loaded result
580   ///    or the stored value. If the access instruction is a memory intrinsic it
581   ///    the access value is also the memory intrinsic.
582   ///  - For accesses of kind MemoryKind::Value it is the access instruction
583   ///    itself.
584   ///  - For accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI it is the
585   ///    PHI node itself (for both, READ and WRITE accesses).
586   ///
587   AssertingVH<Value> AccessValue;
588 
589   /// Are all the subscripts affine expression?
590   bool IsAffine = true;
591 
592   /// Subscript expression for each dimension.
593   SmallVector<const SCEV *, 4> Subscripts;
594 
595   /// Relation from statement instances to the accessed array elements.
596   ///
597   /// In the common case this relation is a function that maps a set of loop
598   /// indices to the memory address from which a value is loaded/stored:
599   ///
600   ///      for i
601   ///        for j
602   ///    S:     A[i + 3 j] = ...
603   ///
604   ///    => { S[i,j] -> A[i + 3j] }
605   ///
606   /// In case the exact access function is not known, the access relation may
607   /// also be a one to all mapping { S[i,j] -> A[o] } describing that any
608   /// element accessible through A might be accessed.
609   ///
610   /// In case of an access to a larger element belonging to an array that also
611   /// contains smaller elements, the access relation models the larger access
612   /// with multiple smaller accesses of the size of the minimal array element
613   /// type:
614   ///
615   ///      short *A;
616   ///
617   ///      for i
618   ///    S:     A[i] = *((double*)&A[4 * i]);
619   ///
620   ///    => { S[i] -> A[i]; S[i] -> A[o] : 4i <= o <= 4i + 3 }
621   isl::map AccessRelation;
622 
623   /// Updated access relation read from JSCOP file.
624   isl::map NewAccessRelation;
625 
626   /// Fortran arrays whose sizes are not statically known are stored in terms
627   /// of a descriptor struct. This maintains a raw pointer to the memory,
628   /// along with auxiliary fields with information such as dimensions.
629   /// We hold a reference to the descriptor corresponding to a MemoryAccess
630   /// into a Fortran array. FAD for "Fortran Array Descriptor"
631   AssertingVH<Value> FAD;
632   // @}
633 
634   isl::basic_map createBasicAccessMap(ScopStmt *Statement);
635 
636   void assumeNoOutOfBound();
637 
638   /// Compute bounds on an over approximated  access relation.
639   ///
640   /// @param ElementSize The size of one element accessed.
641   void computeBoundsOnAccessRelation(unsigned ElementSize);
642 
643   /// Get the original access function as read from IR.
644   isl::map getOriginalAccessRelation() const;
645 
646   /// Return the space in which the access relation lives in.
647   isl::space getOriginalAccessRelationSpace() const;
648 
649   /// Get the new access function imported or set by a pass
650   isl::map getNewAccessRelation() const;
651 
652   /// Fold the memory access to consider parametric offsets
653   ///
654   /// To recover memory accesses with array size parameters in the subscript
655   /// expression we post-process the delinearization results.
656   ///
657   /// We would normally recover from an access A[exp0(i) * N + exp1(i)] into an
658   /// array A[][N] the 2D access A[exp0(i)][exp1(i)]. However, another valid
659   /// delinearization is A[exp0(i) - 1][exp1(i) + N] which - depending on the
660   /// range of exp1(i) - may be preferable. Specifically, for cases where we
661   /// know exp1(i) is negative, we want to choose the latter expression.
662   ///
663   /// As we commonly do not have any information about the range of exp1(i),
664   /// we do not choose one of the two options, but instead create a piecewise
665   /// access function that adds the (-1, N) offsets as soon as exp1(i) becomes
666   /// negative. For a 2D array such an access function is created by applying
667   /// the piecewise map:
668   ///
669   /// [i,j] -> [i, j] :      j >= 0
670   /// [i,j] -> [i-1, j+N] :  j <  0
671   ///
672   /// We can generalize this mapping to arbitrary dimensions by applying this
673   /// piecewise mapping pairwise from the rightmost to the leftmost access
674   /// dimension. It would also be possible to cover a wider range by introducing
675   /// more cases and adding multiple of Ns to these cases. However, this has
676   /// not yet been necessary.
677   /// The introduction of different cases necessarily complicates the memory
678   /// access function, but cases that can be statically proven to not happen
679   /// will be eliminated later on.
680   void foldAccessRelation();
681 
682   /// Create the access relation for the underlying memory intrinsic.
683   void buildMemIntrinsicAccessRelation();
684 
685   /// Assemble the access relation from all available information.
686   ///
687   /// In particular, used the information passes in the constructor and the
688   /// parent ScopStmt set by setStatment().
689   ///
690   /// @param SAI Info object for the accessed array.
691   void buildAccessRelation(const ScopArrayInfo *SAI);
692 
693   /// Carry index overflows of dimensions with constant size to the next higher
694   /// dimension.
695   ///
696   /// For dimensions that have constant size, modulo the index by the size and
697   /// add up the carry (floored division) to the next higher dimension. This is
698   /// how overflow is defined in row-major order.
699   /// It happens e.g. when ScalarEvolution computes the offset to the base
700   /// pointer and would algebraically sum up all lower dimensions' indices of
701   /// constant size.
702   ///
703   /// Example:
704   ///   float (*A)[4];
705   ///   A[1][6] -> A[2][2]
706   void wrapConstantDimensions();
707 
708 public:
709   /// Create a new MemoryAccess.
710   ///
711   /// @param Stmt       The parent statement.
712   /// @param AccessInst The instruction doing the access.
713   /// @param BaseAddr   The accessed array's address.
714   /// @param ElemType   The type of the accessed array elements.
715   /// @param AccType    Whether read or write access.
716   /// @param IsAffine   Whether the subscripts are affine expressions.
717   /// @param Kind       The kind of memory accessed.
718   /// @param Subscripts Subscript expressions
719   /// @param Sizes      Dimension lengths of the accessed array.
720   MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst, AccessType AccType,
721                Value *BaseAddress, Type *ElemType, bool Affine,
722                ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes,
723                Value *AccessValue, MemoryKind Kind);
724 
725   /// Create a new MemoryAccess that corresponds to @p AccRel.
726   ///
727   /// Along with @p Stmt and @p AccType it uses information about dimension
728   /// lengths of the accessed array, the type of the accessed array elements,
729   /// the name of the accessed array that is derived from the object accessible
730   /// via @p AccRel.
731   ///
732   /// @param Stmt       The parent statement.
733   /// @param AccType    Whether read or write access.
734   /// @param AccRel     The access relation that describes the memory access.
735   MemoryAccess(ScopStmt *Stmt, AccessType AccType, isl::map AccRel);
736 
737   MemoryAccess(const MemoryAccess &) = delete;
738   MemoryAccess &operator=(const MemoryAccess &) = delete;
739   ~MemoryAccess();
740 
741   /// Add a new incoming block/value pairs for this PHI/ExitPHI access.
742   ///
743   /// @param IncomingBlock The PHI's incoming block.
744   /// @param IncomingValue The value when reaching the PHI from the @p
745   ///                      IncomingBlock.
addIncoming(BasicBlock * IncomingBlock,Value * IncomingValue)746   void addIncoming(BasicBlock *IncomingBlock, Value *IncomingValue) {
747     assert(!isRead());
748     assert(isAnyPHIKind());
749     Incoming.emplace_back(std::make_pair(IncomingBlock, IncomingValue));
750   }
751 
752   /// Return the list of possible PHI/ExitPHI values.
753   ///
754   /// After code generation moves some PHIs around during region simplification,
755   /// we cannot reliably locate the original PHI node and its incoming values
756   /// anymore. For this reason we remember these explicitly for all PHI-kind
757   /// accesses.
getIncoming()758   ArrayRef<std::pair<BasicBlock *, Value *>> getIncoming() const {
759     assert(isAnyPHIKind());
760     return Incoming;
761   }
762 
763   /// Get the type of a memory access.
getType()764   enum AccessType getType() { return AccType; }
765 
766   /// Is this a reduction like access?
isReductionLike()767   bool isReductionLike() const { return RedType != RT_NONE; }
768 
769   /// Is this a read memory access?
isRead()770   bool isRead() const { return AccType == MemoryAccess::READ; }
771 
772   /// Is this a must-write memory access?
isMustWrite()773   bool isMustWrite() const { return AccType == MemoryAccess::MUST_WRITE; }
774 
775   /// Is this a may-write memory access?
isMayWrite()776   bool isMayWrite() const { return AccType == MemoryAccess::MAY_WRITE; }
777 
778   /// Is this a write memory access?
isWrite()779   bool isWrite() const { return isMustWrite() || isMayWrite(); }
780 
781   /// Is this a memory intrinsic access (memcpy, memset, memmove)?
isMemoryIntrinsic()782   bool isMemoryIntrinsic() const {
783     return isa<MemIntrinsic>(getAccessInstruction());
784   }
785 
786   /// Check if a new access relation was imported or set by a pass.
hasNewAccessRelation()787   bool hasNewAccessRelation() const { return !NewAccessRelation.is_null(); }
788 
789   /// Return the newest access relation of this access.
790   ///
791   /// There are two possibilities:
792   ///   1) The original access relation read from the LLVM-IR.
793   ///   2) A new access relation imported from a json file or set by another
794   ///      pass (e.g., for privatization).
795   ///
796   /// As 2) is by construction "newer" than 1) we return the new access
797   /// relation if present.
798   ///
getLatestAccessRelation()799   isl::map getLatestAccessRelation() const {
800     return hasNewAccessRelation() ? getNewAccessRelation()
801                                   : getOriginalAccessRelation();
802   }
803 
804   /// Old name of getLatestAccessRelation().
getAccessRelation()805   isl::map getAccessRelation() const { return getLatestAccessRelation(); }
806 
807   /// Get an isl map describing the memory address accessed.
808   ///
809   /// In most cases the memory address accessed is well described by the access
810   /// relation obtained with getAccessRelation. However, in case of arrays
811   /// accessed with types of different size the access relation maps one access
812   /// to multiple smaller address locations. This method returns an isl map that
813   /// relates each dynamic statement instance to the unique memory location
814   /// that is loaded from / stored to.
815   ///
816   /// For an access relation { S[i] -> A[o] : 4i <= o <= 4i + 3 } this method
817   /// will return the address function { S[i] -> A[4i] }.
818   ///
819   /// @returns The address function for this memory access.
820   isl::map getAddressFunction() const;
821 
822   /// Return the access relation after the schedule was applied.
823   isl::pw_multi_aff
824   applyScheduleToAccessRelation(isl::union_map Schedule) const;
825 
826   /// Get an isl string representing the access function read from IR.
827   std::string getOriginalAccessRelationStr() const;
828 
829   /// Get an isl string representing a new access function, if available.
830   std::string getNewAccessRelationStr() const;
831 
832   /// Get an isl string representing the latest access relation.
833   std::string getAccessRelationStr() const;
834 
835   /// Get the original base address of this access (e.g. A for A[i+j]) when
836   /// detected.
837   ///
838   /// This address may differ from the base address referenced by the original
839   /// ScopArrayInfo to which this array belongs, as this memory access may
840   /// have been canonicalized to a ScopArrayInfo which has a different but
841   /// identically-valued base pointer in case invariant load hoisting is
842   /// enabled.
getOriginalBaseAddr()843   Value *getOriginalBaseAddr() const { return BaseAddr; }
844 
845   /// Get the detection-time base array isl::id for this access.
846   isl::id getOriginalArrayId() const;
847 
848   /// Get the base array isl::id for this access, modifiable through
849   /// setNewAccessRelation().
850   isl::id getLatestArrayId() const;
851 
852   /// Old name of getOriginalArrayId().
getArrayId()853   isl::id getArrayId() const { return getOriginalArrayId(); }
854 
855   /// Get the detection-time ScopArrayInfo object for the base address.
856   const ScopArrayInfo *getOriginalScopArrayInfo() const;
857 
858   /// Get the ScopArrayInfo object for the base address, or the one set
859   /// by setNewAccessRelation().
860   const ScopArrayInfo *getLatestScopArrayInfo() const;
861 
862   /// Legacy name of getOriginalScopArrayInfo().
getScopArrayInfo()863   const ScopArrayInfo *getScopArrayInfo() const {
864     return getOriginalScopArrayInfo();
865   }
866 
867   /// Return a string representation of the access's reduction type.
868   const std::string getReductionOperatorStr() const;
869 
870   /// Return a string representation of the reduction type @p RT.
871   static const std::string getReductionOperatorStr(ReductionType RT);
872 
873   /// Return the element type of the accessed array wrt. this access.
getElementType()874   Type *getElementType() const { return ElementType; }
875 
876   /// Return the access value of this memory access.
getAccessValue()877   Value *getAccessValue() const { return AccessValue; }
878 
879   /// Return llvm::Value that is stored by this access, if available.
880   ///
881   /// PHI nodes may not have a unique value available that is stored, as in
882   /// case of region statements one out of possibly several llvm::Values
883   /// might be stored. In this case nullptr is returned.
tryGetValueStored()884   Value *tryGetValueStored() {
885     assert(isWrite() && "Only write statement store values");
886     if (isAnyPHIKind()) {
887       if (Incoming.size() == 1)
888         return Incoming[0].second;
889       return nullptr;
890     }
891     return AccessValue;
892   }
893 
894   /// Return the access instruction of this memory access.
getAccessInstruction()895   Instruction *getAccessInstruction() const { return AccessInstruction; }
896 
897   /// Return the number of access function subscript.
getNumSubscripts()898   unsigned getNumSubscripts() const { return Subscripts.size(); }
899 
900   /// Return the access function subscript in the dimension @p Dim.
getSubscript(unsigned Dim)901   const SCEV *getSubscript(unsigned Dim) const { return Subscripts[Dim]; }
902 
903   /// Compute the isl representation for the SCEV @p E wrt. this access.
904   ///
905   /// Note that this function will also adjust the invalid context accordingly.
906   isl::pw_aff getPwAff(const SCEV *E);
907 
908   /// Get the invalid domain for this access.
getInvalidDomain()909   isl::set getInvalidDomain() const { return InvalidDomain; }
910 
911   /// Get the invalid context for this access.
getInvalidContext()912   isl::set getInvalidContext() const { return getInvalidDomain().params(); }
913 
914   /// Get the stride of this memory access in the specified Schedule. Schedule
915   /// is a map from the statement to a schedule where the innermost dimension is
916   /// the dimension of the innermost loop containing the statement.
917   isl::set getStride(isl::map Schedule) const;
918 
919   /// Get the FortranArrayDescriptor corresponding to this memory access if
920   /// it exists, and nullptr otherwise.
getFortranArrayDescriptor()921   Value *getFortranArrayDescriptor() const { return this->FAD; }
922 
923   /// Is the stride of the access equal to a certain width? Schedule is a map
924   /// from the statement to a schedule where the innermost dimension is the
925   /// dimension of the innermost loop containing the statement.
926   bool isStrideX(isl::map Schedule, int StrideWidth) const;
927 
928   /// Is consecutive memory accessed for a given statement instance set?
929   /// Schedule is a map from the statement to a schedule where the innermost
930   /// dimension is the dimension of the innermost loop containing the
931   /// statement.
932   bool isStrideOne(isl::map Schedule) const;
933 
934   /// Is always the same memory accessed for a given statement instance set?
935   /// Schedule is a map from the statement to a schedule where the innermost
936   /// dimension is the dimension of the innermost loop containing the
937   /// statement.
938   bool isStrideZero(isl::map Schedule) const;
939 
940   /// Return the kind when this access was first detected.
getOriginalKind()941   MemoryKind getOriginalKind() const {
942     assert(!getOriginalScopArrayInfo() /* not yet initialized */ ||
943            getOriginalScopArrayInfo()->getKind() == Kind);
944     return Kind;
945   }
946 
947   /// Return the kind considering a potential setNewAccessRelation.
getLatestKind()948   MemoryKind getLatestKind() const {
949     return getLatestScopArrayInfo()->getKind();
950   }
951 
952   /// Whether this is an access of an explicit load or store in the IR.
isOriginalArrayKind()953   bool isOriginalArrayKind() const {
954     return getOriginalKind() == MemoryKind::Array;
955   }
956 
957   /// Whether storage memory is either an custom .s2a/.phiops alloca
958   /// (false) or an existing pointer into an array (true).
isLatestArrayKind()959   bool isLatestArrayKind() const {
960     return getLatestKind() == MemoryKind::Array;
961   }
962 
963   /// Old name of isOriginalArrayKind.
isArrayKind()964   bool isArrayKind() const { return isOriginalArrayKind(); }
965 
966   /// Whether this access is an array to a scalar memory object, without
967   /// considering changes by setNewAccessRelation.
968   ///
969   /// Scalar accesses are accesses to MemoryKind::Value, MemoryKind::PHI or
970   /// MemoryKind::ExitPHI.
isOriginalScalarKind()971   bool isOriginalScalarKind() const {
972     return getOriginalKind() != MemoryKind::Array;
973   }
974 
975   /// Whether this access is an array to a scalar memory object, also
976   /// considering changes by setNewAccessRelation.
isLatestScalarKind()977   bool isLatestScalarKind() const {
978     return getLatestKind() != MemoryKind::Array;
979   }
980 
981   /// Old name of isOriginalScalarKind.
isScalarKind()982   bool isScalarKind() const { return isOriginalScalarKind(); }
983 
984   /// Was this MemoryAccess detected as a scalar dependences?
isOriginalValueKind()985   bool isOriginalValueKind() const {
986     return getOriginalKind() == MemoryKind::Value;
987   }
988 
989   /// Is this MemoryAccess currently modeling scalar dependences?
isLatestValueKind()990   bool isLatestValueKind() const {
991     return getLatestKind() == MemoryKind::Value;
992   }
993 
994   /// Old name of isOriginalValueKind().
isValueKind()995   bool isValueKind() const { return isOriginalValueKind(); }
996 
997   /// Was this MemoryAccess detected as a special PHI node access?
isOriginalPHIKind()998   bool isOriginalPHIKind() const {
999     return getOriginalKind() == MemoryKind::PHI;
1000   }
1001 
1002   /// Is this MemoryAccess modeling special PHI node accesses, also
1003   /// considering a potential change by setNewAccessRelation?
isLatestPHIKind()1004   bool isLatestPHIKind() const { return getLatestKind() == MemoryKind::PHI; }
1005 
1006   /// Old name of isOriginalPHIKind.
isPHIKind()1007   bool isPHIKind() const { return isOriginalPHIKind(); }
1008 
1009   /// Was this MemoryAccess detected as the accesses of a PHI node in the
1010   /// SCoP's exit block?
isOriginalExitPHIKind()1011   bool isOriginalExitPHIKind() const {
1012     return getOriginalKind() == MemoryKind::ExitPHI;
1013   }
1014 
1015   /// Is this MemoryAccess modeling the accesses of a PHI node in the
1016   /// SCoP's exit block? Can be changed to an array access using
1017   /// setNewAccessRelation().
isLatestExitPHIKind()1018   bool isLatestExitPHIKind() const {
1019     return getLatestKind() == MemoryKind::ExitPHI;
1020   }
1021 
1022   /// Old name of isOriginalExitPHIKind().
isExitPHIKind()1023   bool isExitPHIKind() const { return isOriginalExitPHIKind(); }
1024 
1025   /// Was this access detected as one of the two PHI types?
isOriginalAnyPHIKind()1026   bool isOriginalAnyPHIKind() const {
1027     return isOriginalPHIKind() || isOriginalExitPHIKind();
1028   }
1029 
1030   /// Does this access originate from one of the two PHI types? Can be
1031   /// changed to an array access using setNewAccessRelation().
isLatestAnyPHIKind()1032   bool isLatestAnyPHIKind() const {
1033     return isLatestPHIKind() || isLatestExitPHIKind();
1034   }
1035 
1036   /// Old name of isOriginalAnyPHIKind().
isAnyPHIKind()1037   bool isAnyPHIKind() const { return isOriginalAnyPHIKind(); }
1038 
1039   /// Get the statement that contains this memory access.
getStatement()1040   ScopStmt *getStatement() const { return Statement; }
1041 
1042   /// Get the reduction type of this access
getReductionType()1043   ReductionType getReductionType() const { return RedType; }
1044 
1045   /// Set the array descriptor corresponding to the Array on which the
1046   /// memory access is performed.
1047   void setFortranArrayDescriptor(Value *FAD);
1048 
1049   /// Update the original access relation.
1050   ///
1051   /// We need to update the original access relation during scop construction,
1052   /// when unifying the memory accesses that access the same scop array info
1053   /// object. After the scop has been constructed, the original access relation
1054   /// should not be changed any more. Instead setNewAccessRelation should
1055   /// be called.
1056   void setAccessRelation(isl::map AccessRelation);
1057 
1058   /// Set the updated access relation read from JSCOP file.
1059   void setNewAccessRelation(isl::map NewAccessRelation);
1060 
1061   /// Return whether the MemoryyAccess is a partial access. That is, the access
1062   /// is not executed in some instances of the parent statement's domain.
1063   bool isLatestPartialAccess() const;
1064 
1065   /// Mark this a reduction like access
markAsReductionLike(ReductionType RT)1066   void markAsReductionLike(ReductionType RT) { RedType = RT; }
1067 
1068   /// Align the parameters in the access relation to the scop context
1069   void realignParams();
1070 
1071   /// Update the dimensionality of the memory access.
1072   ///
1073   /// During scop construction some memory accesses may not be constructed with
1074   /// their full dimensionality, but outer dimensions may have been omitted if
1075   /// they took the value 'zero'. By updating the dimensionality of the
1076   /// statement we add additional zero-valued dimensions to match the
1077   /// dimensionality of the ScopArrayInfo object that belongs to this memory
1078   /// access.
1079   void updateDimensionality();
1080 
1081   /// Get identifier for the memory access.
1082   ///
1083   /// This identifier is unique for all accesses that belong to the same scop
1084   /// statement.
1085   isl::id getId() const;
1086 
1087   /// Print the MemoryAccess.
1088   ///
1089   /// @param OS The output stream the MemoryAccess is printed to.
1090   void print(raw_ostream &OS) const;
1091 
1092 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1093   /// Print the MemoryAccess to stderr.
1094   void dump() const;
1095 #endif
1096 
1097   /// Is the memory access affine?
isAffine()1098   bool isAffine() const { return IsAffine; }
1099 };
1100 
1101 raw_ostream &operator<<(raw_ostream &OS, MemoryAccess::ReductionType RT);
1102 
1103 /// Ordered list type to hold accesses.
1104 using MemoryAccessList = std::forward_list<MemoryAccess *>;
1105 
1106 /// Helper structure for invariant memory accesses.
1107 struct InvariantAccess {
1108   /// The memory access that is (partially) invariant.
1109   MemoryAccess *MA;
1110 
1111   /// The context under which the access is not invariant.
1112   isl::set NonHoistableCtx;
1113 };
1114 
1115 /// Ordered container type to hold invariant accesses.
1116 using InvariantAccessesTy = SmallVector<InvariantAccess, 8>;
1117 
1118 /// Type for equivalent invariant accesses and their domain context.
1119 struct InvariantEquivClassTy {
1120   /// The pointer that identifies this equivalence class
1121   const SCEV *IdentifyingPointer;
1122 
1123   /// Memory accesses now treated invariant
1124   ///
1125   /// These memory accesses access the pointer location that identifies
1126   /// this equivalence class. They are treated as invariant and hoisted during
1127   /// code generation.
1128   MemoryAccessList InvariantAccesses;
1129 
1130   /// The execution context under which the memory location is accessed
1131   ///
1132   /// It is the union of the execution domains of the memory accesses in the
1133   /// InvariantAccesses list.
1134   isl::set ExecutionContext;
1135 
1136   /// The type of the invariant access
1137   ///
1138   /// It is used to differentiate between differently typed invariant loads from
1139   /// the same location.
1140   Type *AccessType;
1141 };
1142 
1143 /// Type for invariant accesses equivalence classes.
1144 using InvariantEquivClassesTy = SmallVector<InvariantEquivClassTy, 8>;
1145 
1146 /// Statement of the Scop
1147 ///
1148 /// A Scop statement represents an instruction in the Scop.
1149 ///
1150 /// It is further described by its iteration domain, its schedule and its data
1151 /// accesses.
1152 /// At the moment every statement represents a single basic block of LLVM-IR.
1153 class ScopStmt {
1154   friend class ScopBuilder;
1155 
1156 public:
1157   /// Create the ScopStmt from a BasicBlock.
1158   ScopStmt(Scop &parent, BasicBlock &bb, StringRef Name, Loop *SurroundingLoop,
1159            std::vector<Instruction *> Instructions);
1160 
1161   /// Create an overapproximating ScopStmt for the region @p R.
1162   ///
1163   /// @param EntryBlockInstructions The list of instructions that belong to the
1164   ///                               entry block of the region statement.
1165   ///                               Instructions are only tracked for entry
1166   ///                               blocks for now. We currently do not allow
1167   ///                               to modify the instructions of blocks later
1168   ///                               in the region statement.
1169   ScopStmt(Scop &parent, Region &R, StringRef Name, Loop *SurroundingLoop,
1170            std::vector<Instruction *> EntryBlockInstructions);
1171 
1172   /// Create a copy statement.
1173   ///
1174   /// @param Stmt       The parent statement.
1175   /// @param SourceRel  The source location.
1176   /// @param TargetRel  The target location.
1177   /// @param Domain     The original domain under which the copy statement would
1178   ///                   be executed.
1179   ScopStmt(Scop &parent, isl::map SourceRel, isl::map TargetRel,
1180            isl::set Domain);
1181 
1182   ScopStmt(const ScopStmt &) = delete;
1183   const ScopStmt &operator=(const ScopStmt &) = delete;
1184   ~ScopStmt();
1185 
1186 private:
1187   /// Polyhedral description
1188   //@{
1189 
1190   /// The Scop containing this ScopStmt.
1191   Scop &Parent;
1192 
1193   /// The domain under which this statement is not modeled precisely.
1194   ///
1195   /// The invalid domain for a statement describes all parameter combinations
1196   /// under which the statement looks to be executed but is in fact not because
1197   /// some assumption/restriction makes the statement/scop invalid.
1198   isl::set InvalidDomain;
1199 
1200   /// The iteration domain describes the set of iterations for which this
1201   /// statement is executed.
1202   ///
1203   /// Example:
1204   ///     for (i = 0; i < 100 + b; ++i)
1205   ///       for (j = 0; j < i; ++j)
1206   ///         S(i,j);
1207   ///
1208   /// 'S' is executed for different values of i and j. A vector of all
1209   /// induction variables around S (i, j) is called iteration vector.
1210   /// The domain describes the set of possible iteration vectors.
1211   ///
1212   /// In this case it is:
1213   ///
1214   ///     Domain: 0 <= i <= 100 + b
1215   ///             0 <= j <= i
1216   ///
1217   /// A pair of statement and iteration vector (S, (5,3)) is called statement
1218   /// instance.
1219   isl::set Domain;
1220 
1221   /// The memory accesses of this statement.
1222   ///
1223   /// The only side effects of a statement are its memory accesses.
1224   using MemoryAccessVec = SmallVector<MemoryAccess *, 8>;
1225   MemoryAccessVec MemAccs;
1226 
1227   /// Mapping from instructions to (scalar) memory accesses.
1228   DenseMap<const Instruction *, MemoryAccessList> InstructionToAccess;
1229 
1230   /// The set of values defined elsewhere required in this ScopStmt and
1231   ///        their MemoryKind::Value READ MemoryAccesses.
1232   DenseMap<Value *, MemoryAccess *> ValueReads;
1233 
1234   /// The set of values defined in this ScopStmt that are required
1235   ///        elsewhere, mapped to their MemoryKind::Value WRITE MemoryAccesses.
1236   DenseMap<Instruction *, MemoryAccess *> ValueWrites;
1237 
1238   /// Map from PHI nodes to its incoming value when coming from this
1239   ///        statement.
1240   ///
1241   /// Non-affine subregions can have multiple exiting blocks that are incoming
1242   /// blocks of the PHI nodes. This map ensures that there is only one write
1243   /// operation for the complete subregion. A PHI selecting the relevant value
1244   /// will be inserted.
1245   DenseMap<PHINode *, MemoryAccess *> PHIWrites;
1246 
1247   /// Map from PHI nodes to its read access in this statement.
1248   DenseMap<PHINode *, MemoryAccess *> PHIReads;
1249 
1250   //@}
1251 
1252   /// A SCoP statement represents either a basic block (affine/precise case) or
1253   /// a whole region (non-affine case).
1254   ///
1255   /// Only one of the following two members will therefore be set and indicate
1256   /// which kind of statement this is.
1257   ///
1258   ///{
1259 
1260   /// The BasicBlock represented by this statement (in the affine case).
1261   BasicBlock *BB = nullptr;
1262 
1263   /// The region represented by this statement (in the non-affine case).
1264   Region *R = nullptr;
1265 
1266   ///}
1267 
1268   /// The isl AST build for the new generated AST.
1269   isl::ast_build Build;
1270 
1271   SmallVector<Loop *, 4> NestLoops;
1272 
1273   std::string BaseName;
1274 
1275   /// The closest loop that contains this statement.
1276   Loop *SurroundingLoop;
1277 
1278   /// Vector for Instructions in this statement.
1279   std::vector<Instruction *> Instructions;
1280 
1281   /// Remove @p MA from dictionaries pointing to them.
1282   void removeAccessData(MemoryAccess *MA);
1283 
1284 public:
1285   /// Get an isl_ctx pointer.
1286   isl::ctx getIslCtx() const;
1287 
1288   /// Get the iteration domain of this ScopStmt.
1289   ///
1290   /// @return The iteration domain of this ScopStmt.
1291   isl::set getDomain() const;
1292 
1293   /// Get the space of the iteration domain
1294   ///
1295   /// @return The space of the iteration domain
1296   isl::space getDomainSpace() const;
1297 
1298   /// Get the id of the iteration domain space
1299   ///
1300   /// @return The id of the iteration domain space
1301   isl::id getDomainId() const;
1302 
1303   /// Get an isl string representing this domain.
1304   std::string getDomainStr() const;
1305 
1306   /// Get the schedule function of this ScopStmt.
1307   ///
1308   /// @return The schedule function of this ScopStmt, if it does not contain
1309   /// extension nodes, and nullptr, otherwise.
1310   isl::map getSchedule() const;
1311 
1312   /// Get an isl string representing this schedule.
1313   ///
1314   /// @return An isl string representing this schedule, if it does not contain
1315   /// extension nodes, and an empty string, otherwise.
1316   std::string getScheduleStr() const;
1317 
1318   /// Get the invalid domain for this statement.
getInvalidDomain()1319   isl::set getInvalidDomain() const { return InvalidDomain; }
1320 
1321   /// Get the invalid context for this statement.
getInvalidContext()1322   isl::set getInvalidContext() const { return getInvalidDomain().params(); }
1323 
1324   /// Set the invalid context for this statement to @p ID.
1325   void setInvalidDomain(isl::set ID);
1326 
1327   /// Get the BasicBlock represented by this ScopStmt (if any).
1328   ///
1329   /// @return The BasicBlock represented by this ScopStmt, or null if the
1330   ///         statement represents a region.
getBasicBlock()1331   BasicBlock *getBasicBlock() const { return BB; }
1332 
1333   /// Return true if this statement represents a single basic block.
isBlockStmt()1334   bool isBlockStmt() const { return BB != nullptr; }
1335 
1336   /// Return true if this is a copy statement.
isCopyStmt()1337   bool isCopyStmt() const { return BB == nullptr && R == nullptr; }
1338 
1339   /// Get the region represented by this ScopStmt (if any).
1340   ///
1341   /// @return The region represented by this ScopStmt, or null if the statement
1342   ///         represents a basic block.
getRegion()1343   Region *getRegion() const { return R; }
1344 
1345   /// Return true if this statement represents a whole region.
isRegionStmt()1346   bool isRegionStmt() const { return R != nullptr; }
1347 
1348   /// Return a BasicBlock from this statement.
1349   ///
1350   /// For block statements, it returns the BasicBlock itself. For subregion
1351   /// statements, return its entry block.
1352   BasicBlock *getEntryBlock() const;
1353 
1354   /// Return whether @p L is boxed within this statement.
contains(const Loop * L)1355   bool contains(const Loop *L) const {
1356     // Block statements never contain loops.
1357     if (isBlockStmt())
1358       return false;
1359 
1360     return getRegion()->contains(L);
1361   }
1362 
1363   /// Return whether this statement represents @p BB.
represents(BasicBlock * BB)1364   bool represents(BasicBlock *BB) const {
1365     if (isCopyStmt())
1366       return false;
1367     if (isBlockStmt())
1368       return BB == getBasicBlock();
1369     return getRegion()->contains(BB);
1370   }
1371 
1372   /// Return whether this statement contains @p Inst.
contains(Instruction * Inst)1373   bool contains(Instruction *Inst) const {
1374     if (!Inst)
1375       return false;
1376     if (isBlockStmt())
1377       return std::find(Instructions.begin(), Instructions.end(), Inst) !=
1378              Instructions.end();
1379     return represents(Inst->getParent());
1380   }
1381 
1382   /// Return the closest innermost loop that contains this statement, but is not
1383   /// contained in it.
1384   ///
1385   /// For block statement, this is just the loop that contains the block. Region
1386   /// statements can contain boxed loops, so getting the loop of one of the
1387   /// region's BBs might return such an inner loop. For instance, the region's
1388   /// entry could be a header of a loop, but the region might extend to BBs
1389   /// after the loop exit. Similarly, the region might only contain parts of the
1390   /// loop body and still include the loop header.
1391   ///
1392   /// Most of the time the surrounding loop is the top element of #NestLoops,
1393   /// except when it is empty. In that case it return the loop that the whole
1394   /// SCoP is contained in. That can be nullptr if there is no such loop.
getSurroundingLoop()1395   Loop *getSurroundingLoop() const {
1396     assert(!isCopyStmt() &&
1397            "No surrounding loop for artificially created statements");
1398     return SurroundingLoop;
1399   }
1400 
1401   /// Return true if this statement does not contain any accesses.
isEmpty()1402   bool isEmpty() const { return MemAccs.empty(); }
1403 
1404   /// Find all array accesses for @p Inst.
1405   ///
1406   /// @param Inst The instruction accessing an array.
1407   ///
1408   /// @return A list of array accesses (MemoryKind::Array) accessed by @p Inst.
1409   ///         If there is no such access, it returns nullptr.
1410   const MemoryAccessList *
lookupArrayAccessesFor(const Instruction * Inst)1411   lookupArrayAccessesFor(const Instruction *Inst) const {
1412     auto It = InstructionToAccess.find(Inst);
1413     if (It == InstructionToAccess.end())
1414       return nullptr;
1415     if (It->second.empty())
1416       return nullptr;
1417     return &It->second;
1418   }
1419 
1420   /// Return the only array access for @p Inst, if existing.
1421   ///
1422   /// @param Inst The instruction for which to look up the access.
1423   /// @returns The unique array memory access related to Inst or nullptr if
1424   ///          no array access exists
getArrayAccessOrNULLFor(const Instruction * Inst)1425   MemoryAccess *getArrayAccessOrNULLFor(const Instruction *Inst) const {
1426     auto It = InstructionToAccess.find(Inst);
1427     if (It == InstructionToAccess.end())
1428       return nullptr;
1429 
1430     MemoryAccess *ArrayAccess = nullptr;
1431 
1432     for (auto Access : It->getSecond()) {
1433       if (!Access->isArrayKind())
1434         continue;
1435 
1436       assert(!ArrayAccess && "More then one array access for instruction");
1437 
1438       ArrayAccess = Access;
1439     }
1440 
1441     return ArrayAccess;
1442   }
1443 
1444   /// Return the only array access for @p Inst.
1445   ///
1446   /// @param Inst The instruction for which to look up the access.
1447   /// @returns The unique array memory access related to Inst.
getArrayAccessFor(const Instruction * Inst)1448   MemoryAccess &getArrayAccessFor(const Instruction *Inst) const {
1449     MemoryAccess *ArrayAccess = getArrayAccessOrNULLFor(Inst);
1450 
1451     assert(ArrayAccess && "No array access found for instruction!");
1452     return *ArrayAccess;
1453   }
1454 
1455   /// Return the MemoryAccess that writes the value of an instruction
1456   ///        defined in this statement, or nullptr if not existing, respectively
1457   ///        not yet added.
lookupValueWriteOf(Instruction * Inst)1458   MemoryAccess *lookupValueWriteOf(Instruction *Inst) const {
1459     assert((isRegionStmt() && R->contains(Inst)) ||
1460            (!isRegionStmt() && Inst->getParent() == BB));
1461     return ValueWrites.lookup(Inst);
1462   }
1463 
1464   /// Return the MemoryAccess that reloads a value, or nullptr if not
1465   ///        existing, respectively not yet added.
lookupValueReadOf(Value * Inst)1466   MemoryAccess *lookupValueReadOf(Value *Inst) const {
1467     return ValueReads.lookup(Inst);
1468   }
1469 
1470   /// Return the MemoryAccess that loads a PHINode value, or nullptr if not
1471   /// existing, respectively not yet added.
lookupPHIReadOf(PHINode * PHI)1472   MemoryAccess *lookupPHIReadOf(PHINode *PHI) const {
1473     return PHIReads.lookup(PHI);
1474   }
1475 
1476   /// Return the PHI write MemoryAccess for the incoming values from any
1477   ///        basic block in this ScopStmt, or nullptr if not existing,
1478   ///        respectively not yet added.
lookupPHIWriteOf(PHINode * PHI)1479   MemoryAccess *lookupPHIWriteOf(PHINode *PHI) const {
1480     assert(isBlockStmt() || R->getExit() == PHI->getParent());
1481     return PHIWrites.lookup(PHI);
1482   }
1483 
1484   /// Return the input access of the value, or null if no such MemoryAccess
1485   /// exists.
1486   ///
1487   /// The input access is the MemoryAccess that makes an inter-statement value
1488   /// available in this statement by reading it at the start of this statement.
1489   /// This can be a MemoryKind::Value if defined in another statement or a
1490   /// MemoryKind::PHI if the value is a PHINode in this statement.
lookupInputAccessOf(Value * Val)1491   MemoryAccess *lookupInputAccessOf(Value *Val) const {
1492     if (isa<PHINode>(Val))
1493       if (auto InputMA = lookupPHIReadOf(cast<PHINode>(Val))) {
1494         assert(!lookupValueReadOf(Val) && "input accesses must be unique; a "
1495                                           "statement cannot read a .s2a and "
1496                                           ".phiops simultaneously");
1497         return InputMA;
1498       }
1499 
1500     if (auto *InputMA = lookupValueReadOf(Val))
1501       return InputMA;
1502 
1503     return nullptr;
1504   }
1505 
1506   /// Add @p Access to this statement's list of accesses.
1507   ///
1508   /// @param Access  The access to add.
1509   /// @param Prepend If true, will add @p Access before all other instructions
1510   ///                (instead of appending it).
1511   void addAccess(MemoryAccess *Access, bool Preprend = false);
1512 
1513   /// Remove a MemoryAccess from this statement.
1514   ///
1515   /// Note that scalar accesses that are caused by MA will
1516   /// be eliminated too.
1517   void removeMemoryAccess(MemoryAccess *MA);
1518 
1519   /// Remove @p MA from this statement.
1520   ///
1521   /// In contrast to removeMemoryAccess(), no other access will be eliminated.
1522   ///
1523   /// @param MA            The MemoryAccess to be removed.
1524   /// @param AfterHoisting If true, also remove from data access lists.
1525   ///                      These lists are filled during
1526   ///                      ScopBuilder::buildAccessRelations. Therefore, if this
1527   ///                      method is called before buildAccessRelations, false
1528   ///                      must be passed.
1529   void removeSingleMemoryAccess(MemoryAccess *MA, bool AfterHoisting = true);
1530 
1531   using iterator = MemoryAccessVec::iterator;
1532   using const_iterator = MemoryAccessVec::const_iterator;
1533 
begin()1534   iterator begin() { return MemAccs.begin(); }
end()1535   iterator end() { return MemAccs.end(); }
begin()1536   const_iterator begin() const { return MemAccs.begin(); }
end()1537   const_iterator end() const { return MemAccs.end(); }
size()1538   size_t size() const { return MemAccs.size(); }
1539 
1540   unsigned getNumIterators() const;
1541 
getParent()1542   Scop *getParent() { return &Parent; }
getParent()1543   const Scop *getParent() const { return &Parent; }
1544 
getInstructions()1545   const std::vector<Instruction *> &getInstructions() const {
1546     return Instructions;
1547   }
1548 
1549   /// Set the list of instructions for this statement. It replaces the current
1550   /// list.
setInstructions(ArrayRef<Instruction * > Range)1551   void setInstructions(ArrayRef<Instruction *> Range) {
1552     Instructions.assign(Range.begin(), Range.end());
1553   }
1554 
insts_begin()1555   std::vector<Instruction *>::const_iterator insts_begin() const {
1556     return Instructions.begin();
1557   }
1558 
insts_end()1559   std::vector<Instruction *>::const_iterator insts_end() const {
1560     return Instructions.end();
1561   }
1562 
1563   /// The range of instructions in this statement.
insts()1564   iterator_range<std::vector<Instruction *>::const_iterator> insts() const {
1565     return {insts_begin(), insts_end()};
1566   }
1567 
1568   /// Insert an instruction before all other instructions in this statement.
prependInstruction(Instruction * Inst)1569   void prependInstruction(Instruction *Inst) {
1570     Instructions.insert(Instructions.begin(), Inst);
1571   }
1572 
1573   const char *getBaseName() const;
1574 
1575   /// Set the isl AST build.
setAstBuild(isl::ast_build B)1576   void setAstBuild(isl::ast_build B) { Build = B; }
1577 
1578   /// Get the isl AST build.
getAstBuild()1579   isl::ast_build getAstBuild() const { return Build; }
1580 
1581   /// Restrict the domain of the statement.
1582   ///
1583   /// @param NewDomain The new statement domain.
1584   void restrictDomain(isl::set NewDomain);
1585 
1586   /// Get the loop for a dimension.
1587   ///
1588   /// @param Dimension The dimension of the induction variable
1589   /// @return The loop at a certain dimension.
1590   Loop *getLoopForDimension(unsigned Dimension) const;
1591 
1592   /// Align the parameters in the statement to the scop context
1593   void realignParams();
1594 
1595   /// Print the ScopStmt.
1596   ///
1597   /// @param OS                The output stream the ScopStmt is printed to.
1598   /// @param PrintInstructions Whether to print the statement's instructions as
1599   ///                          well.
1600   void print(raw_ostream &OS, bool PrintInstructions) const;
1601 
1602   /// Print the instructions in ScopStmt.
1603   ///
1604   void printInstructions(raw_ostream &OS) const;
1605 
1606   /// Check whether there is a value read access for @p V in this statement, and
1607   /// if not, create one.
1608   ///
1609   /// This allows to add MemoryAccesses after the initial creation of the Scop
1610   /// by ScopBuilder.
1611   ///
1612   /// @return The already existing or newly created MemoryKind::Value READ
1613   /// MemoryAccess.
1614   ///
1615   /// @see ScopBuilder::ensureValueRead(Value*,ScopStmt*)
1616   MemoryAccess *ensureValueRead(Value *V);
1617 
1618 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1619   /// Print the ScopStmt to stderr.
1620   void dump() const;
1621 #endif
1622 };
1623 
1624 /// Print ScopStmt S to raw_ostream OS.
1625 raw_ostream &operator<<(raw_ostream &OS, const ScopStmt &S);
1626 
1627 /// Helper struct to remember assumptions.
1628 struct Assumption {
1629   /// The kind of the assumption (e.g., WRAPPING).
1630   AssumptionKind Kind;
1631 
1632   /// Flag to distinguish assumptions and restrictions.
1633   AssumptionSign Sign;
1634 
1635   /// The valid/invalid context if this is an assumption/restriction.
1636   isl::set Set;
1637 
1638   /// The location that caused this assumption.
1639   DebugLoc Loc;
1640 
1641   /// An optional block whose domain can simplify the assumption.
1642   BasicBlock *BB;
1643 };
1644 
1645 /// Build the conditions sets for the branch condition @p Condition in
1646 /// the @p Domain.
1647 ///
1648 /// This will fill @p ConditionSets with the conditions under which control
1649 /// will be moved from @p TI to its successors. Hence, @p ConditionSets will
1650 /// have as many elements as @p TI has successors. If @p TI is nullptr the
1651 /// context under which @p Condition is true/false will be returned as the
1652 /// new elements of @p ConditionSets.
1653 bool buildConditionSets(Scop &S, BasicBlock *BB, Value *Condition,
1654                         Instruction *TI, Loop *L, __isl_keep isl_set *Domain,
1655                         DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
1656                         SmallVectorImpl<__isl_give isl_set *> &ConditionSets);
1657 
1658 /// Build condition sets for unsigned ICmpInst(s).
1659 /// Special handling is required for unsigned operands to ensure that if
1660 /// MSB (aka the Sign bit) is set for an operands in an unsigned ICmpInst
1661 /// it should wrap around.
1662 ///
1663 /// @param IsStrictUpperBound holds information on the predicate relation
1664 /// between TestVal and UpperBound, i.e,
1665 /// TestVal < UpperBound  OR  TestVal <= UpperBound
1666 __isl_give isl_set *
1667 buildUnsignedConditionSets(Scop &S, BasicBlock *BB, Value *Condition,
1668                            __isl_keep isl_set *Domain, const SCEV *SCEV_TestVal,
1669                            const SCEV *SCEV_UpperBound,
1670                            DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
1671                            bool IsStrictUpperBound);
1672 
1673 /// Build the conditions sets for the terminator @p TI in the @p Domain.
1674 ///
1675 /// This will fill @p ConditionSets with the conditions under which control
1676 /// will be moved from @p TI to its successors. Hence, @p ConditionSets will
1677 /// have as many elements as @p TI has successors.
1678 bool buildConditionSets(Scop &S, BasicBlock *BB, Instruction *TI, Loop *L,
1679                         __isl_keep isl_set *Domain,
1680                         DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
1681                         SmallVectorImpl<__isl_give isl_set *> &ConditionSets);
1682 
1683 /// Static Control Part
1684 ///
1685 /// A Scop is the polyhedral representation of a control flow region detected
1686 /// by the Scop detection. It is generated by translating the LLVM-IR and
1687 /// abstracting its effects.
1688 ///
1689 /// A Scop consists of a set of:
1690 ///
1691 ///   * A set of statements executed in the Scop.
1692 ///
1693 ///   * A set of global parameters
1694 ///   Those parameters are scalar integer values, which are constant during
1695 ///   execution.
1696 ///
1697 ///   * A context
1698 ///   This context contains information about the values the parameters
1699 ///   can take and relations between different parameters.
1700 class Scop {
1701 public:
1702   /// Type to represent a pair of minimal/maximal access to an array.
1703   using MinMaxAccessTy = std::pair<isl::pw_multi_aff, isl::pw_multi_aff>;
1704 
1705   /// Vector of minimal/maximal accesses to different arrays.
1706   using MinMaxVectorTy = SmallVector<MinMaxAccessTy, 4>;
1707 
1708   /// Pair of minimal/maximal access vectors representing
1709   /// read write and read only accesses
1710   using MinMaxVectorPairTy = std::pair<MinMaxVectorTy, MinMaxVectorTy>;
1711 
1712   /// Vector of pair of minimal/maximal access vectors representing
1713   /// non read only and read only accesses for each alias group.
1714   using MinMaxVectorPairVectorTy = SmallVector<MinMaxVectorPairTy, 4>;
1715 
1716 private:
1717   friend class ScopBuilder;
1718 
1719   /// Isl context.
1720   ///
1721   /// We need a shared_ptr with reference counter to delete the context when all
1722   /// isl objects are deleted. We will distribute the shared_ptr to all objects
1723   /// that use the context to create isl objects, and increase the reference
1724   /// counter. By doing this, we guarantee that the context is deleted when we
1725   /// delete the last object that creates isl objects with the context. This
1726   /// declaration needs to be the first in class to gracefully destroy all isl
1727   /// objects before the context.
1728   std::shared_ptr<isl_ctx> IslCtx;
1729 
1730   ScalarEvolution *SE;
1731   DominatorTree *DT;
1732 
1733   /// The underlying Region.
1734   Region &R;
1735 
1736   /// The name of the SCoP (identical to the regions name)
1737   Optional<std::string> name;
1738 
1739   /// The ID to be assigned to the next Scop in a function
1740   static int NextScopID;
1741 
1742   /// The name of the function currently under consideration
1743   static std::string CurrentFunc;
1744 
1745   // Access functions of the SCoP.
1746   //
1747   // This owns all the MemoryAccess objects of the Scop created in this pass.
1748   AccFuncVector AccessFunctions;
1749 
1750   /// Flag to indicate that the scheduler actually optimized the SCoP.
1751   bool IsOptimized = false;
1752 
1753   /// True if the underlying region has a single exiting block.
1754   bool HasSingleExitEdge;
1755 
1756   /// Flag to remember if the SCoP contained an error block or not.
1757   bool HasErrorBlock = false;
1758 
1759   /// Max loop depth.
1760   unsigned MaxLoopDepth = 0;
1761 
1762   /// Number of copy statements.
1763   unsigned CopyStmtsNum = 0;
1764 
1765   /// Flag to indicate if the Scop is to be skipped.
1766   bool SkipScop = false;
1767 
1768   using StmtSet = std::list<ScopStmt>;
1769 
1770   /// The statements in this Scop.
1771   StmtSet Stmts;
1772 
1773   /// Parameters of this Scop
1774   ParameterSetTy Parameters;
1775 
1776   /// Mapping from parameters to their ids.
1777   DenseMap<const SCEV *, isl::id> ParameterIds;
1778 
1779   /// The context of the SCoP created during SCoP detection.
1780   ScopDetection::DetectionContext &DC;
1781 
1782   /// OptimizationRemarkEmitter object for displaying diagnostic remarks
1783   OptimizationRemarkEmitter &ORE;
1784 
1785   /// A map from basic blocks to vector of SCoP statements. Currently this
1786   /// vector comprises only of a single statement.
1787   DenseMap<BasicBlock *, std::vector<ScopStmt *>> StmtMap;
1788 
1789   /// A map from instructions to SCoP statements.
1790   DenseMap<Instruction *, ScopStmt *> InstStmtMap;
1791 
1792   /// A map from basic blocks to their domains.
1793   DenseMap<BasicBlock *, isl::set> DomainMap;
1794 
1795   /// Constraints on parameters.
1796   isl::set Context = nullptr;
1797 
1798   /// The affinator used to translate SCEVs to isl expressions.
1799   SCEVAffinator Affinator;
1800 
1801   using ArrayInfoMapTy =
1802       std::map<std::pair<AssertingVH<const Value>, MemoryKind>,
1803                std::unique_ptr<ScopArrayInfo>>;
1804 
1805   using ArrayNameMapTy = StringMap<std::unique_ptr<ScopArrayInfo>>;
1806 
1807   using ArrayInfoSetTy = SetVector<ScopArrayInfo *>;
1808 
1809   /// A map to remember ScopArrayInfo objects for all base pointers.
1810   ///
1811   /// As PHI nodes may have two array info objects associated, we add a flag
1812   /// that distinguishes between the PHI node specific ArrayInfo object
1813   /// and the normal one.
1814   ArrayInfoMapTy ScopArrayInfoMap;
1815 
1816   /// A map to remember ScopArrayInfo objects for all names of memory
1817   ///        references.
1818   ArrayNameMapTy ScopArrayNameMap;
1819 
1820   /// A set to remember ScopArrayInfo objects.
1821   /// @see Scop::ScopArrayInfoMap
1822   ArrayInfoSetTy ScopArrayInfoSet;
1823 
1824   /// The assumptions under which this scop was built.
1825   ///
1826   /// When constructing a scop sometimes the exact representation of a statement
1827   /// or condition would be very complex, but there is a common case which is a
1828   /// lot simpler, but which is only valid under certain assumptions. The
1829   /// assumed context records the assumptions taken during the construction of
1830   /// this scop and that need to be code generated as a run-time test.
1831   isl::set AssumedContext;
1832 
1833   /// The restrictions under which this SCoP was built.
1834   ///
1835   /// The invalid context is similar to the assumed context as it contains
1836   /// constraints over the parameters. However, while we need the constraints
1837   /// in the assumed context to be "true" the constraints in the invalid context
1838   /// need to be "false". Otherwise they behave the same.
1839   isl::set InvalidContext;
1840 
1841   using RecordedAssumptionsTy = SmallVector<Assumption, 8>;
1842   /// Collection to hold taken assumptions.
1843   ///
1844   /// There are two reasons why we want to record assumptions first before we
1845   /// add them to the assumed/invalid context:
1846   ///   1) If the SCoP is not profitable or otherwise invalid without the
1847   ///      assumed/invalid context we do not have to compute it.
1848   ///   2) Information about the context are gathered rather late in the SCoP
1849   ///      construction (basically after we know all parameters), thus the user
1850   ///      might see overly complicated assumptions to be taken while they will
1851   ///      only be simplified later on.
1852   RecordedAssumptionsTy RecordedAssumptions;
1853 
1854   /// The schedule of the SCoP
1855   ///
1856   /// The schedule of the SCoP describes the execution order of the statements
1857   /// in the scop by assigning each statement instance a possibly
1858   /// multi-dimensional execution time. The schedule is stored as a tree of
1859   /// schedule nodes.
1860   ///
1861   /// The most common nodes in a schedule tree are so-called band nodes. Band
1862   /// nodes map statement instances into a multi dimensional schedule space.
1863   /// This space can be seen as a multi-dimensional clock.
1864   ///
1865   /// Example:
1866   ///
1867   /// <S,(5,4)>  may be mapped to (5,4) by this schedule:
1868   ///
1869   /// s0 = i (Year of execution)
1870   /// s1 = j (Day of execution)
1871   ///
1872   /// or to (9, 20) by this schedule:
1873   ///
1874   /// s0 = i + j (Year of execution)
1875   /// s1 = 20 (Day of execution)
1876   ///
1877   /// The order statement instances are executed is defined by the
1878   /// schedule vectors they are mapped to. A statement instance
1879   /// <A, (i, j, ..)> is executed before a statement instance <B, (i', ..)>, if
1880   /// the schedule vector of A is lexicographic smaller than the schedule
1881   /// vector of B.
1882   ///
1883   /// Besides band nodes, schedule trees contain additional nodes that specify
1884   /// a textual ordering between two subtrees or filter nodes that filter the
1885   /// set of statement instances that will be scheduled in a subtree. There
1886   /// are also several other nodes. A full description of the different nodes
1887   /// in a schedule tree is given in the isl manual.
1888   isl::schedule Schedule = nullptr;
1889 
1890   /// Whether the schedule has been modified after derived from the CFG by
1891   /// ScopBuilder.
1892   bool ScheduleModified = false;
1893 
1894   /// The set of minimal/maximal accesses for each alias group.
1895   ///
1896   /// When building runtime alias checks we look at all memory instructions and
1897   /// build so called alias groups. Each group contains a set of accesses to
1898   /// different base arrays which might alias with each other. However, between
1899   /// alias groups there is no aliasing possible.
1900   ///
1901   /// In a program with int and float pointers annotated with tbaa information
1902   /// we would probably generate two alias groups, one for the int pointers and
1903   /// one for the float pointers.
1904   ///
1905   /// During code generation we will create a runtime alias check for each alias
1906   /// group to ensure the SCoP is executed in an alias free environment.
1907   MinMaxVectorPairVectorTy MinMaxAliasGroups;
1908 
1909   /// Mapping from invariant loads to the representing invariant load of
1910   ///        their equivalence class.
1911   ValueToValueMap InvEquivClassVMap;
1912 
1913   /// List of invariant accesses.
1914   InvariantEquivClassesTy InvariantEquivClasses;
1915 
1916   /// The smallest array index not yet assigned.
1917   long ArrayIdx = 0;
1918 
1919   /// The smallest statement index not yet assigned.
1920   long StmtIdx = 0;
1921 
1922   /// A number that uniquely represents a Scop within its function
1923   const int ID;
1924 
1925   /// Map of values to the MemoryAccess that writes its definition.
1926   ///
1927   /// There must be at most one definition per llvm::Instruction in a SCoP.
1928   DenseMap<Value *, MemoryAccess *> ValueDefAccs;
1929 
1930   /// Map of values to the MemoryAccess that reads a PHI.
1931   DenseMap<PHINode *, MemoryAccess *> PHIReadAccs;
1932 
1933   /// List of all uses (i.e. read MemoryAccesses) for a MemoryKind::Value
1934   /// scalar.
1935   DenseMap<const ScopArrayInfo *, SmallVector<MemoryAccess *, 4>> ValueUseAccs;
1936 
1937   /// List of all incoming values (write MemoryAccess) of a MemoryKind::PHI or
1938   /// MemoryKind::ExitPHI scalar.
1939   DenseMap<const ScopArrayInfo *, SmallVector<MemoryAccess *, 4>>
1940       PHIIncomingAccs;
1941 
1942   /// Return the ID for a new Scop within a function
1943   static int getNextID(std::string ParentFunc);
1944 
1945   /// Scop constructor; invoked from ScopBuilder::buildScop.
1946   Scop(Region &R, ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT,
1947        ScopDetection::DetectionContext &DC, OptimizationRemarkEmitter &ORE);
1948 
1949   //@}
1950 
1951   /// Initialize this ScopBuilder.
1952   void init(AliasAnalysis &AA, AssumptionCache &AC, DominatorTree &DT,
1953             LoopInfo &LI);
1954 
1955   /// Add parameter constraints to @p C that imply a non-empty domain.
1956   isl::set addNonEmptyDomainConstraints(isl::set C) const;
1957 
1958   /// Return the access for the base ptr of @p MA if any.
1959   MemoryAccess *lookupBasePtrAccess(MemoryAccess *MA);
1960 
1961   /// Create an id for @p Param and store it in the ParameterIds map.
1962   void createParameterId(const SCEV *Param);
1963 
1964   /// Build the Context of the Scop.
1965   void buildContext();
1966 
1967   /// Add the bounds of the parameters to the context.
1968   void addParameterBounds();
1969 
1970   /// Simplify the assumed and invalid context.
1971   void simplifyContexts();
1972 
1973   /// Create a new SCoP statement for @p BB.
1974   ///
1975   /// A new statement for @p BB will be created and added to the statement
1976   /// vector
1977   /// and map.
1978   ///
1979   /// @param BB              The basic block we build the statement for.
1980   /// @param Name            The name of the new statement.
1981   /// @param SurroundingLoop The loop the created statement is contained in.
1982   /// @param Instructions    The instructions in the statement.
1983   void addScopStmt(BasicBlock *BB, StringRef Name, Loop *SurroundingLoop,
1984                    std::vector<Instruction *> Instructions);
1985 
1986   /// Create a new SCoP statement for @p R.
1987   ///
1988   /// A new statement for @p R will be created and added to the statement vector
1989   /// and map.
1990   ///
1991   /// @param R                      The region we build the statement for.
1992   /// @param Name                   The name of the new statement.
1993   /// @param SurroundingLoop        The loop the created statement is contained
1994   ///                               in.
1995   /// @param EntryBlockInstructions The (interesting) instructions in the
1996   ///                               entry block of the region statement.
1997   void addScopStmt(Region *R, StringRef Name, Loop *SurroundingLoop,
1998                    std::vector<Instruction *> EntryBlockInstructions);
1999 
2000   /// Remove statements from the list of scop statements.
2001   ///
2002   /// @param ShouldDelete  A function that returns true if the statement passed
2003   ///                      to it should be deleted.
2004   /// @param AfterHoisting If true, also remove from data access lists.
2005   ///                      These lists are filled during
2006   ///                      ScopBuilder::buildAccessRelations. Therefore, if this
2007   ///                      method is called before buildAccessRelations, false
2008   ///                      must be passed.
2009   void removeStmts(std::function<bool(ScopStmt &)> ShouldDelete,
2010                    bool AfterHoisting = true);
2011 
2012   /// Removes @p Stmt from the StmtMap.
2013   void removeFromStmtMap(ScopStmt &Stmt);
2014 
2015   /// Removes all statements where the entry block of the statement does not
2016   /// have a corresponding domain in the domain map (or it is empty).
2017   void removeStmtNotInDomainMap();
2018 
2019   /// Collect all memory access relations of a given type.
2020   ///
2021   /// @param Predicate A predicate function that returns true if an access is
2022   ///                  of a given type.
2023   ///
2024   /// @returns The set of memory accesses in the scop that match the predicate.
2025   isl::union_map
2026   getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate);
2027 
2028   /// @name Helper functions for printing the Scop.
2029   ///
2030   //@{
2031   void printContext(raw_ostream &OS) const;
2032   void printArrayInfo(raw_ostream &OS) const;
2033   void printStatements(raw_ostream &OS, bool PrintInstructions) const;
2034   void printAliasAssumptions(raw_ostream &OS) const;
2035   //@}
2036 
2037 public:
2038   Scop(const Scop &) = delete;
2039   Scop &operator=(const Scop &) = delete;
2040   ~Scop();
2041 
2042   /// Increment actual number of aliasing assumptions taken
2043   ///
2044   /// @param Step    Number of new aliasing assumptions which should be added to
2045   /// the number of already taken assumptions.
2046   static void incrementNumberOfAliasingAssumptions(unsigned Step);
2047 
2048   /// Get the count of copy statements added to this Scop.
2049   ///
2050   /// @return The count of copy statements added to this Scop.
getCopyStmtsNum()2051   unsigned getCopyStmtsNum() { return CopyStmtsNum; }
2052 
2053   /// Create a new copy statement.
2054   ///
2055   /// A new statement will be created and added to the statement vector.
2056   ///
2057   /// @param Stmt       The parent statement.
2058   /// @param SourceRel  The source location.
2059   /// @param TargetRel  The target location.
2060   /// @param Domain     The original domain under which the copy statement would
2061   ///                   be executed.
2062   ScopStmt *addScopStmt(isl::map SourceRel, isl::map TargetRel,
2063                         isl::set Domain);
2064 
2065   /// Add the access function to all MemoryAccess objects of the Scop
2066   ///        created in this pass.
addAccessFunction(MemoryAccess * Access)2067   void addAccessFunction(MemoryAccess *Access) {
2068     AccessFunctions.emplace_back(Access);
2069 
2070     // Register value definitions.
2071     if (Access->isWrite() && Access->isOriginalValueKind()) {
2072       assert(!ValueDefAccs.count(Access->getAccessValue()) &&
2073              "there can be just one definition per value");
2074       ValueDefAccs[Access->getAccessValue()] = Access;
2075     } else if (Access->isRead() && Access->isOriginalPHIKind()) {
2076       PHINode *PHI = cast<PHINode>(Access->getAccessInstruction());
2077       assert(!PHIReadAccs.count(PHI) &&
2078              "there can be just one PHI read per PHINode");
2079       PHIReadAccs[PHI] = Access;
2080     }
2081   }
2082 
2083   /// Add metadata for @p Access.
2084   void addAccessData(MemoryAccess *Access);
2085 
2086   /// Add new invariant access equivalence class
2087   void
addInvariantEquivClass(const InvariantEquivClassTy & InvariantEquivClass)2088   addInvariantEquivClass(const InvariantEquivClassTy &InvariantEquivClass) {
2089     InvariantEquivClasses.emplace_back(InvariantEquivClass);
2090   }
2091 
2092   /// Add mapping from invariant loads to the representing invariant load of
2093   ///        their equivalence class.
addInvariantLoadMapping(const Value * LoadInst,Value * ClassRep)2094   void addInvariantLoadMapping(const Value *LoadInst, Value *ClassRep) {
2095     InvEquivClassVMap[LoadInst] = ClassRep;
2096   }
2097 
2098   /// Remove the metadata stored for @p Access.
2099   void removeAccessData(MemoryAccess *Access);
2100 
2101   /// Return the scalar evolution.
2102   ScalarEvolution *getSE() const;
2103 
2104   /// Return the dominator tree.
getDT()2105   DominatorTree *getDT() const { return DT; }
2106 
2107   /// Return the LoopInfo used for this Scop.
getLI()2108   LoopInfo *getLI() const { return Affinator.getLI(); }
2109 
2110   /// Get the count of parameters used in this Scop.
2111   ///
2112   /// @return The count of parameters used in this Scop.
getNumParams()2113   size_t getNumParams() const { return Parameters.size(); }
2114 
2115   /// Return whether given SCEV is used as the parameter in this Scop.
isParam(const SCEV * Param)2116   bool isParam(const SCEV *Param) const { return Parameters.count(Param); }
2117 
2118   /// Take a list of parameters and add the new ones to the scop.
2119   void addParams(const ParameterSetTy &NewParameters);
2120 
2121   /// Return an iterator range containing the scop parameters.
parameters()2122   iterator_range<ParameterSetTy::iterator> parameters() const {
2123     return make_range(Parameters.begin(), Parameters.end());
2124   }
2125 
2126   /// Return an iterator range containing invariant accesses.
invariantEquivClasses()2127   iterator_range<InvariantEquivClassesTy::iterator> invariantEquivClasses() {
2128     return make_range(InvariantEquivClasses.begin(),
2129                       InvariantEquivClasses.end());
2130   }
2131 
2132   /// Return an iterator range containing hold assumptions.
2133   iterator_range<RecordedAssumptionsTy::const_iterator>
recorded_assumptions()2134   recorded_assumptions() const {
2135     return make_range(RecordedAssumptions.begin(), RecordedAssumptions.end());
2136   }
2137 
2138   /// Return an iterator range containing all the MemoryAccess objects of the
2139   /// Scop.
access_functions()2140   iterator_range<AccFuncVector::iterator> access_functions() {
2141     return make_range(AccessFunctions.begin(), AccessFunctions.end());
2142   }
2143 
2144   /// Return whether this scop is empty, i.e. contains no statements that
2145   /// could be executed.
isEmpty()2146   bool isEmpty() const { return Stmts.empty(); }
2147 
getName()2148   StringRef getName() {
2149     if (!name)
2150       name = R.getNameStr();
2151     return *name;
2152   }
2153 
2154   using array_iterator = ArrayInfoSetTy::iterator;
2155   using const_array_iterator = ArrayInfoSetTy::const_iterator;
2156   using array_range = iterator_range<ArrayInfoSetTy::iterator>;
2157   using const_array_range = iterator_range<ArrayInfoSetTy::const_iterator>;
2158 
array_begin()2159   inline array_iterator array_begin() { return ScopArrayInfoSet.begin(); }
2160 
array_end()2161   inline array_iterator array_end() { return ScopArrayInfoSet.end(); }
2162 
array_begin()2163   inline const_array_iterator array_begin() const {
2164     return ScopArrayInfoSet.begin();
2165   }
2166 
array_end()2167   inline const_array_iterator array_end() const {
2168     return ScopArrayInfoSet.end();
2169   }
2170 
arrays()2171   inline array_range arrays() {
2172     return array_range(array_begin(), array_end());
2173   }
2174 
arrays()2175   inline const_array_range arrays() const {
2176     return const_array_range(array_begin(), array_end());
2177   }
2178 
2179   /// Return the isl_id that represents a certain parameter.
2180   ///
2181   /// @param Parameter A SCEV that was recognized as a Parameter.
2182   ///
2183   /// @return The corresponding isl_id or NULL otherwise.
2184   isl::id getIdForParam(const SCEV *Parameter) const;
2185 
2186   /// Get the maximum region of this static control part.
2187   ///
2188   /// @return The maximum region of this static control part.
getRegion()2189   inline const Region &getRegion() const { return R; }
getRegion()2190   inline Region &getRegion() { return R; }
2191 
2192   /// Return the function this SCoP is in.
getFunction()2193   Function &getFunction() const { return *R.getEntry()->getParent(); }
2194 
2195   /// Check if @p L is contained in the SCoP.
contains(const Loop * L)2196   bool contains(const Loop *L) const { return R.contains(L); }
2197 
2198   /// Check if @p BB is contained in the SCoP.
contains(const BasicBlock * BB)2199   bool contains(const BasicBlock *BB) const { return R.contains(BB); }
2200 
2201   /// Check if @p I is contained in the SCoP.
contains(const Instruction * I)2202   bool contains(const Instruction *I) const { return R.contains(I); }
2203 
2204   /// Return the unique exit block of the SCoP.
getExit()2205   BasicBlock *getExit() const { return R.getExit(); }
2206 
2207   /// Return the unique exiting block of the SCoP if any.
getExitingBlock()2208   BasicBlock *getExitingBlock() const { return R.getExitingBlock(); }
2209 
2210   /// Return the unique entry block of the SCoP.
getEntry()2211   BasicBlock *getEntry() const { return R.getEntry(); }
2212 
2213   /// Return the unique entering block of the SCoP if any.
getEnteringBlock()2214   BasicBlock *getEnteringBlock() const { return R.getEnteringBlock(); }
2215 
2216   /// Return true if @p BB is the exit block of the SCoP.
isExit(BasicBlock * BB)2217   bool isExit(BasicBlock *BB) const { return getExit() == BB; }
2218 
2219   /// Return a range of all basic blocks in the SCoP.
blocks()2220   Region::block_range blocks() const { return R.blocks(); }
2221 
2222   /// Return true if and only if @p BB dominates the SCoP.
2223   bool isDominatedBy(const DominatorTree &DT, BasicBlock *BB) const;
2224 
2225   /// Get the maximum depth of the loop.
2226   ///
2227   /// @return The maximum depth of the loop.
getMaxLoopDepth()2228   inline unsigned getMaxLoopDepth() const { return MaxLoopDepth; }
2229 
2230   /// Return the invariant equivalence class for @p Val if any.
2231   InvariantEquivClassTy *lookupInvariantEquivClass(Value *Val);
2232 
2233   /// Return the set of invariant accesses.
getInvariantAccesses()2234   InvariantEquivClassesTy &getInvariantAccesses() {
2235     return InvariantEquivClasses;
2236   }
2237 
2238   /// Check if the scop has any invariant access.
hasInvariantAccesses()2239   bool hasInvariantAccesses() { return !InvariantEquivClasses.empty(); }
2240 
2241   /// Mark the SCoP as optimized by the scheduler.
markAsOptimized()2242   void markAsOptimized() { IsOptimized = true; }
2243 
2244   /// Check if the SCoP has been optimized by the scheduler.
isOptimized()2245   bool isOptimized() const { return IsOptimized; }
2246 
2247   /// Mark the SCoP to be skipped by ScopPass passes.
markAsToBeSkipped()2248   void markAsToBeSkipped() { SkipScop = true; }
2249 
2250   /// Check if the SCoP is to be skipped by ScopPass passes.
isToBeSkipped()2251   bool isToBeSkipped() const { return SkipScop; }
2252 
2253   /// Return the ID of the Scop
getID()2254   int getID() const { return ID; }
2255 
2256   /// Get the name of the entry and exit blocks of this Scop.
2257   ///
2258   /// These along with the function name can uniquely identify a Scop.
2259   ///
2260   /// @return std::pair whose first element is the entry name & second element
2261   ///         is the exit name.
2262   std::pair<std::string, std::string> getEntryExitStr() const;
2263 
2264   /// Get the name of this Scop.
2265   std::string getNameStr() const;
2266 
2267   /// Get the constraint on parameter of this Scop.
2268   ///
2269   /// @return The constraint on parameter of this Scop.
2270   isl::set getContext() const;
2271 
2272   /// Return space of isl context parameters.
2273   ///
2274   /// Returns the set of context parameters that are currently constrained. In
2275   /// case the full set of parameters is needed, see @getFullParamSpace.
2276   isl::space getParamSpace() const;
2277 
2278   /// Return the full space of parameters.
2279   ///
2280   /// getParamSpace will only return the parameters of the context that are
2281   /// actually constrained, whereas getFullParamSpace will return all
2282   //  parameters. This is useful in cases, where we need to ensure all
2283   //  parameters are available, as certain isl functions will abort if this is
2284   //  not the case.
2285   isl::space getFullParamSpace() const;
2286 
2287   /// Get the assumed context for this Scop.
2288   ///
2289   /// @return The assumed context of this Scop.
2290   isl::set getAssumedContext() const;
2291 
2292   /// Return true if the optimized SCoP can be executed.
2293   ///
2294   /// In addition to the runtime check context this will also utilize the domain
2295   /// constraints to decide it the optimized version can actually be executed.
2296   ///
2297   /// @returns True if the optimized SCoP can be executed.
2298   bool hasFeasibleRuntimeContext() const;
2299 
2300   /// Clear assumptions which have been already processed.
clearRecordedAssumptions()2301   void clearRecordedAssumptions() { return RecordedAssumptions.clear(); }
2302 
2303   /// Check if the assumption in @p Set is trivial or not.
2304   ///
2305   /// @param Set  The relations between parameters that are assumed to hold.
2306   /// @param Sign Enum to indicate if the assumptions in @p Set are positive
2307   ///             (needed/assumptions) or negative (invalid/restrictions).
2308   ///
2309   /// @returns True if the assumption @p Set is not trivial.
2310   bool isEffectiveAssumption(isl::set Set, AssumptionSign Sign);
2311 
2312   /// Track and report an assumption.
2313   ///
2314   /// Use 'clang -Rpass-analysis=polly-scops' or 'opt
2315   /// -pass-remarks-analysis=polly-scops' to output the assumptions.
2316   ///
2317   /// @param Kind The assumption kind describing the underlying cause.
2318   /// @param Set  The relations between parameters that are assumed to hold.
2319   /// @param Loc  The location in the source that caused this assumption.
2320   /// @param Sign Enum to indicate if the assumptions in @p Set are positive
2321   ///             (needed/assumptions) or negative (invalid/restrictions).
2322   /// @param BB   The block in which this assumption was taken. Used to
2323   ///             calculate hotness when emitting remark.
2324   ///
2325   /// @returns True if the assumption is not trivial.
2326   bool trackAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
2327                        AssumptionSign Sign, BasicBlock *BB);
2328 
2329   /// Add assumptions to assumed context.
2330   ///
2331   /// The assumptions added will be assumed to hold during the execution of the
2332   /// scop. However, as they are generally not statically provable, at code
2333   /// generation time run-time checks will be generated that ensure the
2334   /// assumptions hold.
2335   ///
2336   /// WARNING: We currently exploit in simplifyAssumedContext the knowledge
2337   ///          that assumptions do not change the set of statement instances
2338   ///          executed.
2339   ///
2340   /// @param Kind The assumption kind describing the underlying cause.
2341   /// @param Set  The relations between parameters that are assumed to hold.
2342   /// @param Loc  The location in the source that caused this assumption.
2343   /// @param Sign Enum to indicate if the assumptions in @p Set are positive
2344   ///             (needed/assumptions) or negative (invalid/restrictions).
2345   /// @param BB   The block in which this assumption was taken. Used to
2346   ///             calculate hotness when emitting remark.
2347   void addAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
2348                      AssumptionSign Sign, BasicBlock *BB);
2349 
2350   /// Record an assumption for later addition to the assumed context.
2351   ///
2352   /// This function will add the assumption to the RecordedAssumptions. This
2353   /// collection will be added (@see addAssumption) to the assumed context once
2354   /// all paramaters are known and the context is fully built.
2355   ///
2356   /// @param Kind The assumption kind describing the underlying cause.
2357   /// @param Set  The relations between parameters that are assumed to hold.
2358   /// @param Loc  The location in the source that caused this assumption.
2359   /// @param Sign Enum to indicate if the assumptions in @p Set are positive
2360   ///             (needed/assumptions) or negative (invalid/restrictions).
2361   /// @param BB   The block in which this assumption was taken. If it is
2362   ///             set, the domain of that block will be used to simplify the
2363   ///             actual assumption in @p Set once it is added. This is useful
2364   ///             if the assumption was created prior to the domain.
2365   void recordAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
2366                         AssumptionSign Sign, BasicBlock *BB = nullptr);
2367 
2368   /// Mark the scop as invalid.
2369   ///
2370   /// This method adds an assumption to the scop that is always invalid. As a
2371   /// result, the scop will not be optimized later on. This function is commonly
2372   /// called when a condition makes it impossible (or too compile time
2373   /// expensive) to process this scop any further.
2374   ///
2375   /// @param Kind The assumption kind describing the underlying cause.
2376   /// @param Loc  The location in the source that triggered .
2377   /// @param BB   The BasicBlock where it was triggered.
2378   void invalidate(AssumptionKind Kind, DebugLoc Loc, BasicBlock *BB = nullptr);
2379 
2380   /// Get the invalid context for this Scop.
2381   ///
2382   /// @return The invalid context of this Scop.
2383   isl::set getInvalidContext() const;
2384 
2385   /// Return true if and only if the InvalidContext is trivial (=empty).
hasTrivialInvalidContext()2386   bool hasTrivialInvalidContext() const { return InvalidContext.is_empty(); }
2387 
2388   /// Return all alias groups for this SCoP.
getAliasGroups()2389   const MinMaxVectorPairVectorTy &getAliasGroups() const {
2390     return MinMaxAliasGroups;
2391   }
2392 
addAliasGroup(MinMaxVectorTy & MinMaxAccessesReadWrite,MinMaxVectorTy & MinMaxAccessesReadOnly)2393   void addAliasGroup(MinMaxVectorTy &MinMaxAccessesReadWrite,
2394                      MinMaxVectorTy &MinMaxAccessesReadOnly) {
2395     MinMaxAliasGroups.emplace_back();
2396     MinMaxAliasGroups.back().first = MinMaxAccessesReadWrite;
2397     MinMaxAliasGroups.back().second = MinMaxAccessesReadOnly;
2398   }
2399   /// Get an isl string representing the context.
2400   std::string getContextStr() const;
2401 
2402   /// Get an isl string representing the assumed context.
2403   std::string getAssumedContextStr() const;
2404 
2405   /// Get an isl string representing the invalid context.
2406   std::string getInvalidContextStr() const;
2407 
2408   /// Return the list of ScopStmts that represent the given @p BB.
2409   ArrayRef<ScopStmt *> getStmtListFor(BasicBlock *BB) const;
2410 
2411   /// Get the statement to put a PHI WRITE into.
2412   ///
2413   /// @param U The operand of a PHINode.
2414   ScopStmt *getIncomingStmtFor(const Use &U) const;
2415 
2416   /// Return the last statement representing @p BB.
2417   ///
2418   /// Of the sequence of statements that represent a @p BB, this is the last one
2419   /// to be executed. It is typically used to determine which instruction to add
2420   /// a MemoryKind::PHI WRITE to. For this purpose, it is not strictly required
2421   /// to be executed last, only that the incoming value is available in it.
2422   ScopStmt *getLastStmtFor(BasicBlock *BB) const;
2423 
2424   /// Return the ScopStmts that represents the Region @p R, or nullptr if
2425   ///        it is not represented by any statement in this Scop.
2426   ArrayRef<ScopStmt *> getStmtListFor(Region *R) const;
2427 
2428   /// Return the ScopStmts that represents @p RN; can return nullptr if
2429   ///        the RegionNode is not within the SCoP or has been removed due to
2430   ///        simplifications.
2431   ArrayRef<ScopStmt *> getStmtListFor(RegionNode *RN) const;
2432 
2433   /// Return the ScopStmt an instruction belongs to, or nullptr if it
2434   ///        does not belong to any statement in this Scop.
getStmtFor(Instruction * Inst)2435   ScopStmt *getStmtFor(Instruction *Inst) const {
2436     return InstStmtMap.lookup(Inst);
2437   }
2438 
2439   /// Return the number of statements in the SCoP.
getSize()2440   size_t getSize() const { return Stmts.size(); }
2441 
2442   /// @name Statements Iterators
2443   ///
2444   /// These iterators iterate over all statements of this Scop.
2445   //@{
2446   using iterator = StmtSet::iterator;
2447   using const_iterator = StmtSet::const_iterator;
2448 
begin()2449   iterator begin() { return Stmts.begin(); }
end()2450   iterator end() { return Stmts.end(); }
begin()2451   const_iterator begin() const { return Stmts.begin(); }
end()2452   const_iterator end() const { return Stmts.end(); }
2453 
2454   using reverse_iterator = StmtSet::reverse_iterator;
2455   using const_reverse_iterator = StmtSet::const_reverse_iterator;
2456 
rbegin()2457   reverse_iterator rbegin() { return Stmts.rbegin(); }
rend()2458   reverse_iterator rend() { return Stmts.rend(); }
rbegin()2459   const_reverse_iterator rbegin() const { return Stmts.rbegin(); }
rend()2460   const_reverse_iterator rend() const { return Stmts.rend(); }
2461   //@}
2462 
2463   /// Return the set of required invariant loads.
getRequiredInvariantLoads()2464   const InvariantLoadsSetTy &getRequiredInvariantLoads() const {
2465     return DC.RequiredILS;
2466   }
2467 
2468   /// Add @p LI to the set of required invariant loads.
addRequiredInvariantLoad(LoadInst * LI)2469   void addRequiredInvariantLoad(LoadInst *LI) { DC.RequiredILS.insert(LI); }
2470 
2471   /// Return the set of boxed (thus overapproximated) loops.
getBoxedLoops()2472   const BoxedLoopsSetTy &getBoxedLoops() const { return DC.BoxedLoopsSet; }
2473 
2474   /// Return true if and only if @p R is a non-affine subregion.
isNonAffineSubRegion(const Region * R)2475   bool isNonAffineSubRegion(const Region *R) {
2476     return DC.NonAffineSubRegionSet.count(R);
2477   }
2478 
getInsnToMemAccMap()2479   const MapInsnToMemAcc &getInsnToMemAccMap() const { return DC.InsnToMemAcc; }
2480 
2481   /// Return the (possibly new) ScopArrayInfo object for @p Access.
2482   ///
2483   /// @param ElementType The type of the elements stored in this array.
2484   /// @param Kind        The kind of the array info object.
2485   /// @param BaseName    The optional name of this memory reference.
2486   ScopArrayInfo *getOrCreateScopArrayInfo(Value *BasePtr, Type *ElementType,
2487                                           ArrayRef<const SCEV *> Sizes,
2488                                           MemoryKind Kind,
2489                                           const char *BaseName = nullptr);
2490 
2491   /// Create an array and return the corresponding ScopArrayInfo object.
2492   ///
2493   /// @param ElementType The type of the elements stored in this array.
2494   /// @param BaseName    The name of this memory reference.
2495   /// @param Sizes       The sizes of dimensions.
2496   ScopArrayInfo *createScopArrayInfo(Type *ElementType,
2497                                      const std::string &BaseName,
2498                                      const std::vector<unsigned> &Sizes);
2499 
2500   /// Return the cached ScopArrayInfo object for @p BasePtr.
2501   ///
2502   /// @param BasePtr   The base pointer the object has been stored for.
2503   /// @param Kind      The kind of array info object.
2504   ///
2505   /// @returns The ScopArrayInfo pointer or NULL if no such pointer is
2506   ///          available.
2507   const ScopArrayInfo *getScopArrayInfoOrNull(Value *BasePtr, MemoryKind Kind);
2508 
2509   /// Return the cached ScopArrayInfo object for @p BasePtr.
2510   ///
2511   /// @param BasePtr   The base pointer the object has been stored for.
2512   /// @param Kind      The kind of array info object.
2513   ///
2514   /// @returns The ScopArrayInfo pointer (may assert if no such pointer is
2515   ///          available).
2516   const ScopArrayInfo *getScopArrayInfo(Value *BasePtr, MemoryKind Kind);
2517 
2518   /// Invalidate ScopArrayInfo object for base address.
2519   ///
2520   /// @param BasePtr The base pointer of the ScopArrayInfo object to invalidate.
2521   /// @param Kind    The Kind of the ScopArrayInfo object.
invalidateScopArrayInfo(Value * BasePtr,MemoryKind Kind)2522   void invalidateScopArrayInfo(Value *BasePtr, MemoryKind Kind) {
2523     auto It = ScopArrayInfoMap.find(std::make_pair(BasePtr, Kind));
2524     if (It == ScopArrayInfoMap.end())
2525       return;
2526     ScopArrayInfoSet.remove(It->second.get());
2527     ScopArrayInfoMap.erase(It);
2528   }
2529 
2530   /// Set new isl context.
2531   void setContext(isl::set NewContext);
2532 
2533   /// Update maximal loop depth. If @p Depth is smaller than current value,
2534   /// then maximal loop depth is not updated.
updateMaxLoopDepth(unsigned Depth)2535   void updateMaxLoopDepth(unsigned Depth) {
2536     MaxLoopDepth = std::max(MaxLoopDepth, Depth);
2537   }
2538 
2539   /// Align the parameters in the statement to the scop context
2540   void realignParams();
2541 
2542   /// Return true if this SCoP can be profitably optimized.
2543   ///
2544   /// @param ScalarsAreUnprofitable Never consider statements with scalar writes
2545   ///                               as profitably optimizable.
2546   ///
2547   /// @return Whether this SCoP can be profitably optimized.
2548   bool isProfitable(bool ScalarsAreUnprofitable) const;
2549 
2550   /// Return true if the SCoP contained at least one error block.
hasErrorBlock()2551   bool hasErrorBlock() const { return HasErrorBlock; }
2552 
2553   /// Notify SCoP that it contains an error block
notifyErrorBlock()2554   void notifyErrorBlock() { HasErrorBlock = true; }
2555 
2556   /// Return true if the underlying region has a single exiting block.
hasSingleExitEdge()2557   bool hasSingleExitEdge() const { return HasSingleExitEdge; }
2558 
2559   /// Print the static control part.
2560   ///
2561   /// @param OS The output stream the static control part is printed to.
2562   /// @param PrintInstructions Whether to print the statement's instructions as
2563   ///                          well.
2564   void print(raw_ostream &OS, bool PrintInstructions) const;
2565 
2566 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2567   /// Print the ScopStmt to stderr.
2568   void dump() const;
2569 #endif
2570 
2571   /// Get the isl context of this static control part.
2572   ///
2573   /// @return The isl context of this static control part.
2574   isl::ctx getIslCtx() const;
2575 
2576   /// Directly return the shared_ptr of the context.
getSharedIslCtx()2577   const std::shared_ptr<isl_ctx> &getSharedIslCtx() const { return IslCtx; }
2578 
2579   /// Compute the isl representation for the SCEV @p E
2580   ///
2581   /// @param E  The SCEV that should be translated.
2582   /// @param BB An (optional) basic block in which the isl_pw_aff is computed.
2583   ///           SCEVs known to not reference any loops in the SCoP can be
2584   ///           passed without a @p BB.
2585   /// @param NonNegative Flag to indicate the @p E has to be non-negative.
2586   ///
2587   /// Note that this function will always return a valid isl_pw_aff. However, if
2588   /// the translation of @p E was deemed to complex the SCoP is invalidated and
2589   /// a dummy value of appropriate dimension is returned. This allows to bail
2590   /// for complex cases without "error handling code" needed on the users side.
2591   PWACtx getPwAff(const SCEV *E, BasicBlock *BB = nullptr,
2592                   bool NonNegative = false);
2593 
2594   /// Compute the isl representation for the SCEV @p E
2595   ///
2596   /// This function is like @see Scop::getPwAff() but strips away the invalid
2597   /// domain part associated with the piecewise affine function.
2598   isl::pw_aff getPwAffOnly(const SCEV *E, BasicBlock *BB = nullptr);
2599 
2600   /// Check if an <nsw> AddRec for the loop L is cached.
hasNSWAddRecForLoop(Loop * L)2601   bool hasNSWAddRecForLoop(Loop *L) { return Affinator.hasNSWAddRecForLoop(L); }
2602 
2603   /// Return the domain of @p Stmt.
2604   ///
2605   /// @param Stmt The statement for which the conditions should be returned.
2606   isl::set getDomainConditions(const ScopStmt *Stmt) const;
2607 
2608   /// Return the domain of @p BB.
2609   ///
2610   /// @param BB The block for which the conditions should be returned.
2611   isl::set getDomainConditions(BasicBlock *BB) const;
2612 
2613   /// Return the domain of @p BB. If it does not exist, create an empty one.
getOrInitEmptyDomain(BasicBlock * BB)2614   isl::set &getOrInitEmptyDomain(BasicBlock *BB) { return DomainMap[BB]; }
2615 
2616   /// Check if domain is determined for @p BB.
isDomainDefined(BasicBlock * BB)2617   bool isDomainDefined(BasicBlock *BB) const { return DomainMap.count(BB) > 0; }
2618 
2619   /// Set domain for @p BB.
setDomain(BasicBlock * BB,isl::set & Domain)2620   void setDomain(BasicBlock *BB, isl::set &Domain) { DomainMap[BB] = Domain; }
2621 
2622   /// Get a union set containing the iteration domains of all statements.
2623   isl::union_set getDomains() const;
2624 
2625   /// Get a union map of all may-writes performed in the SCoP.
2626   isl::union_map getMayWrites();
2627 
2628   /// Get a union map of all must-writes performed in the SCoP.
2629   isl::union_map getMustWrites();
2630 
2631   /// Get a union map of all writes performed in the SCoP.
2632   isl::union_map getWrites();
2633 
2634   /// Get a union map of all reads performed in the SCoP.
2635   isl::union_map getReads();
2636 
2637   /// Get a union map of all memory accesses performed in the SCoP.
2638   isl::union_map getAccesses();
2639 
2640   /// Get a union map of all memory accesses performed in the SCoP.
2641   ///
2642   /// @param Array The array to which the accesses should belong.
2643   isl::union_map getAccesses(ScopArrayInfo *Array);
2644 
2645   /// Get the schedule of all the statements in the SCoP.
2646   ///
2647   /// @return The schedule of all the statements in the SCoP, if the schedule of
2648   /// the Scop does not contain extension nodes, and nullptr, otherwise.
2649   isl::union_map getSchedule() const;
2650 
2651   /// Get a schedule tree describing the schedule of all statements.
2652   isl::schedule getScheduleTree() const;
2653 
2654   /// Update the current schedule
2655   ///
2656   /// NewSchedule The new schedule (given as a flat union-map).
2657   void setSchedule(isl::union_map NewSchedule);
2658 
2659   /// Update the current schedule
2660   ///
2661   /// NewSchedule The new schedule (given as schedule tree).
2662   void setScheduleTree(isl::schedule NewSchedule);
2663 
2664   /// Whether the schedule is the original schedule as derived from the CFG by
2665   /// ScopBuilder.
isOriginalSchedule()2666   bool isOriginalSchedule() const { return !ScheduleModified; }
2667 
2668   /// Intersects the domains of all statements in the SCoP.
2669   ///
2670   /// @return true if a change was made
2671   bool restrictDomains(isl::union_set Domain);
2672 
2673   /// Get the depth of a loop relative to the outermost loop in the Scop.
2674   ///
2675   /// This will return
2676   ///    0 if @p L is an outermost loop in the SCoP
2677   ///   >0 for other loops in the SCoP
2678   ///   -1 if @p L is nullptr or there is no outermost loop in the SCoP
2679   int getRelativeLoopDepth(const Loop *L) const;
2680 
2681   /// Find the ScopArrayInfo associated with an isl Id
2682   ///        that has name @p Name.
2683   ScopArrayInfo *getArrayInfoByName(const std::string BaseName);
2684 
2685   /// Simplify the SCoP representation.
2686   ///
2687   /// @param AfterHoisting Whether it is called after invariant load hoisting.
2688   ///                      When true, also removes statements without
2689   ///                      side-effects.
2690   void simplifySCoP(bool AfterHoisting);
2691 
2692   /// Get the next free array index.
2693   ///
2694   /// This function returns a unique index which can be used to identify an
2695   /// array.
getNextArrayIdx()2696   long getNextArrayIdx() { return ArrayIdx++; }
2697 
2698   /// Get the next free statement index.
2699   ///
2700   /// This function returns a unique index which can be used to identify a
2701   /// statement.
getNextStmtIdx()2702   long getNextStmtIdx() { return StmtIdx++; }
2703 
2704   /// Get the representing SCEV for @p S if applicable, otherwise @p S.
2705   ///
2706   /// Invariant loads of the same location are put in an equivalence class and
2707   /// only one of them is chosen as a representing element that will be
2708   /// modeled as a parameter. The others have to be normalized, i.e.,
2709   /// replaced by the representing element of their equivalence class, in order
2710   /// to get the correct parameter value, e.g., in the SCEVAffinator.
2711   ///
2712   /// @param S The SCEV to normalize.
2713   ///
2714   /// @return The representing SCEV for invariant loads or @p S if none.
2715   const SCEV *getRepresentingInvariantLoadSCEV(const SCEV *S) const;
2716 
2717   /// Return the MemoryAccess that writes an llvm::Value, represented by a
2718   /// ScopArrayInfo.
2719   ///
2720   /// There can be at most one such MemoryAccess per llvm::Value in the SCoP.
2721   /// Zero is possible for read-only values.
2722   MemoryAccess *getValueDef(const ScopArrayInfo *SAI) const;
2723 
2724   /// Return all MemoryAccesses that us an llvm::Value, represented by a
2725   /// ScopArrayInfo.
2726   ArrayRef<MemoryAccess *> getValueUses(const ScopArrayInfo *SAI) const;
2727 
2728   /// Return the MemoryAccess that represents an llvm::PHINode.
2729   ///
2730   /// ExitPHIs's PHINode is not within the SCoPs. This function returns nullptr
2731   /// for them.
2732   MemoryAccess *getPHIRead(const ScopArrayInfo *SAI) const;
2733 
2734   /// Return all MemoryAccesses for all incoming statements of a PHINode,
2735   /// represented by a ScopArrayInfo.
2736   ArrayRef<MemoryAccess *> getPHIIncomings(const ScopArrayInfo *SAI) const;
2737 
2738   /// Return whether @p Inst has a use outside of this SCoP.
2739   bool isEscaping(Instruction *Inst);
2740 
2741   struct ScopStatistics {
2742     int NumAffineLoops = 0;
2743     int NumBoxedLoops = 0;
2744 
2745     int NumValueWrites = 0;
2746     int NumValueWritesInLoops = 0;
2747     int NumPHIWrites = 0;
2748     int NumPHIWritesInLoops = 0;
2749     int NumSingletonWrites = 0;
2750     int NumSingletonWritesInLoops = 0;
2751   };
2752 
2753   /// Collect statistic about this SCoP.
2754   ///
2755   /// These are most commonly used for LLVM's static counters (Statistic.h) in
2756   /// various places. If statistics are disabled, only zeros are returned to
2757   /// avoid the overhead.
2758   ScopStatistics getStatistics() const;
2759 };
2760 
2761 /// Print Scop scop to raw_ostream OS.
2762 raw_ostream &operator<<(raw_ostream &OS, const Scop &scop);
2763 
2764 /// The legacy pass manager's analysis pass to compute scop information
2765 ///        for a region.
2766 class ScopInfoRegionPass : public RegionPass {
2767   /// The Scop pointer which is used to construct a Scop.
2768   std::unique_ptr<Scop> S;
2769 
2770 public:
2771   static char ID; // Pass identification, replacement for typeid
2772 
ScopInfoRegionPass()2773   ScopInfoRegionPass() : RegionPass(ID) {}
2774   ~ScopInfoRegionPass() override = default;
2775 
2776   /// Build Scop object, the Polly IR of static control
2777   ///        part for the current SESE-Region.
2778   ///
2779   /// @return If the current region is a valid for a static control part,
2780   ///         return the Polly IR representing this static control part,
2781   ///         return null otherwise.
getScop()2782   Scop *getScop() { return S.get(); }
getScop()2783   const Scop *getScop() const { return S.get(); }
2784 
2785   /// Calculate the polyhedral scop information for a given Region.
2786   bool runOnRegion(Region *R, RGPassManager &RGM) override;
2787 
releaseMemory()2788   void releaseMemory() override { S.reset(); }
2789 
2790   void print(raw_ostream &O, const Module *M = nullptr) const override;
2791 
2792   void getAnalysisUsage(AnalysisUsage &AU) const override;
2793 };
2794 
2795 class ScopInfo {
2796 public:
2797   using RegionToScopMapTy = MapVector<Region *, std::unique_ptr<Scop>>;
2798   using reverse_iterator = RegionToScopMapTy::reverse_iterator;
2799   using const_reverse_iterator = RegionToScopMapTy::const_reverse_iterator;
2800   using iterator = RegionToScopMapTy::iterator;
2801   using const_iterator = RegionToScopMapTy::const_iterator;
2802 
2803 private:
2804   /// A map of Region to its Scop object containing
2805   ///        Polly IR of static control part.
2806   RegionToScopMapTy RegionToScopMap;
2807   const DataLayout &DL;
2808   ScopDetection &SD;
2809   ScalarEvolution &SE;
2810   LoopInfo &LI;
2811   AliasAnalysis &AA;
2812   DominatorTree &DT;
2813   AssumptionCache &AC;
2814   OptimizationRemarkEmitter &ORE;
2815 
2816 public:
2817   ScopInfo(const DataLayout &DL, ScopDetection &SD, ScalarEvolution &SE,
2818            LoopInfo &LI, AliasAnalysis &AA, DominatorTree &DT,
2819            AssumptionCache &AC, OptimizationRemarkEmitter &ORE);
2820 
2821   /// Get the Scop object for the given Region.
2822   ///
2823   /// @return If the given region is the maximal region within a scop, return
2824   ///         the scop object. If the given region is a subregion, return a
2825   ///         nullptr. Top level region containing the entry block of a function
2826   ///         is not considered in the scop creation.
getScop(Region * R)2827   Scop *getScop(Region *R) const {
2828     auto MapIt = RegionToScopMap.find(R);
2829     if (MapIt != RegionToScopMap.end())
2830       return MapIt->second.get();
2831     return nullptr;
2832   }
2833 
2834   /// Recompute the Scop-Information for a function.
2835   ///
2836   /// This invalidates any iterators.
2837   void recompute();
2838 
2839   /// Handle invalidation explicitly
2840   bool invalidate(Function &F, const PreservedAnalyses &PA,
2841                   FunctionAnalysisManager::Invalidator &Inv);
2842 
begin()2843   iterator begin() { return RegionToScopMap.begin(); }
end()2844   iterator end() { return RegionToScopMap.end(); }
begin()2845   const_iterator begin() const { return RegionToScopMap.begin(); }
end()2846   const_iterator end() const { return RegionToScopMap.end(); }
rbegin()2847   reverse_iterator rbegin() { return RegionToScopMap.rbegin(); }
rend()2848   reverse_iterator rend() { return RegionToScopMap.rend(); }
rbegin()2849   const_reverse_iterator rbegin() const { return RegionToScopMap.rbegin(); }
rend()2850   const_reverse_iterator rend() const { return RegionToScopMap.rend(); }
empty()2851   bool empty() const { return RegionToScopMap.empty(); }
2852 };
2853 
2854 struct ScopInfoAnalysis : public AnalysisInfoMixin<ScopInfoAnalysis> {
2855   static AnalysisKey Key;
2856 
2857   using Result = ScopInfo;
2858 
2859   Result run(Function &, FunctionAnalysisManager &);
2860 };
2861 
2862 struct ScopInfoPrinterPass : public PassInfoMixin<ScopInfoPrinterPass> {
ScopInfoPrinterPassScopInfoPrinterPass2863   ScopInfoPrinterPass(raw_ostream &OS) : Stream(OS) {}
2864 
2865   PreservedAnalyses run(Function &, FunctionAnalysisManager &);
2866 
2867   raw_ostream &Stream;
2868 };
2869 
2870 //===----------------------------------------------------------------------===//
2871 /// The legacy pass manager's analysis pass to compute scop information
2872 ///        for the whole function.
2873 ///
2874 /// This pass will maintain a map of the maximal region within a scop to its
2875 /// scop object for all the feasible scops present in a function.
2876 /// This pass is an alternative to the ScopInfoRegionPass in order to avoid a
2877 /// region pass manager.
2878 class ScopInfoWrapperPass : public FunctionPass {
2879   std::unique_ptr<ScopInfo> Result;
2880 
2881 public:
ScopInfoWrapperPass()2882   ScopInfoWrapperPass() : FunctionPass(ID) {}
2883   ~ScopInfoWrapperPass() override = default;
2884 
2885   static char ID; // Pass identification, replacement for typeid
2886 
getSI()2887   ScopInfo *getSI() { return Result.get(); }
getSI()2888   const ScopInfo *getSI() const { return Result.get(); }
2889 
2890   /// Calculate all the polyhedral scops for a given function.
2891   bool runOnFunction(Function &F) override;
2892 
releaseMemory()2893   void releaseMemory() override { Result.reset(); }
2894 
2895   void print(raw_ostream &O, const Module *M = nullptr) const override;
2896 
2897   void getAnalysisUsage(AnalysisUsage &AU) const override;
2898 };
2899 } // end namespace polly
2900 
2901 #endif // POLLY_SCOPINFO_H
2902