1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a class to represent arbitrary precision
11 /// integral constant values and operations on them.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ADT_APINT_H
16 #define LLVM_ADT_APINT_H
17 
18 #include "llvm/Support/Compiler.h"
19 #include "llvm/Support/MathExtras.h"
20 #include <cassert>
21 #include <climits>
22 #include <cstring>
23 #include <string>
24 
25 namespace llvm {
26 class FoldingSetNodeID;
27 class StringRef;
28 class hash_code;
29 class raw_ostream;
30 
31 template <typename T> class SmallVectorImpl;
32 template <typename T> class ArrayRef;
33 template <typename T> class Optional;
34 template <typename T> struct DenseMapInfo;
35 
36 class APInt;
37 
38 inline APInt operator-(APInt);
39 
40 //===----------------------------------------------------------------------===//
41 //                              APInt Class
42 //===----------------------------------------------------------------------===//
43 
44 /// Class for arbitrary precision integers.
45 ///
46 /// APInt is a functional replacement for common case unsigned integer type like
47 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
48 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
49 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
50 /// and methods to manipulate integer values of any bit-width. It supports both
51 /// the typical integer arithmetic and comparison operations as well as bitwise
52 /// manipulation.
53 ///
54 /// The class has several invariants worth noting:
55 ///   * All bit, byte, and word positions are zero-based.
56 ///   * Once the bit width is set, it doesn't change except by the Truncate,
57 ///     SignExtend, or ZeroExtend operations.
58 ///   * All binary operators must be on APInt instances of the same bit width.
59 ///     Attempting to use these operators on instances with different bit
60 ///     widths will yield an assertion.
61 ///   * The value is stored canonically as an unsigned value. For operations
62 ///     where it makes a difference, there are both signed and unsigned variants
63 ///     of the operation. For example, sdiv and udiv. However, because the bit
64 ///     widths must be the same, operations such as Mul and Add produce the same
65 ///     results regardless of whether the values are interpreted as signed or
66 ///     not.
67 ///   * In general, the class tries to follow the style of computation that LLVM
68 ///     uses in its IR. This simplifies its use for LLVM.
69 ///
70 class LLVM_NODISCARD APInt {
71 public:
72   typedef uint64_t WordType;
73 
74   /// This enum is used to hold the constants we needed for APInt.
75   enum : unsigned {
76     /// Byte size of a word.
77     APINT_WORD_SIZE = sizeof(WordType),
78     /// Bits in a word.
79     APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
80   };
81 
82   enum class Rounding {
83     DOWN,
84     TOWARD_ZERO,
85     UP,
86   };
87 
88   static constexpr WordType WORDTYPE_MAX = ~WordType(0);
89 
90 private:
91   /// This union is used to store the integer value. When the
92   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
93   union {
94     uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
95     uint64_t *pVal; ///< Used to store the >64 bits integer value.
96   } U;
97 
98   unsigned BitWidth; ///< The number of bits in this APInt.
99 
100   friend struct DenseMapInfo<APInt>;
101 
102   friend class APSInt;
103 
104   /// Fast internal constructor
105   ///
106   /// This constructor is used only internally for speed of construction of
107   /// temporaries. It is unsafe for general use so it is not public.
108   APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
109     U.pVal = val;
110   }
111 
112   /// Determine if this APInt just has one word to store value.
113   ///
114   /// \returns true if the number of bits <= 64, false otherwise.
115   bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
116 
117   /// Determine which word a bit is in.
118   ///
119   /// \returns the word position for the specified bit position.
120   static unsigned whichWord(unsigned bitPosition) {
121     return bitPosition / APINT_BITS_PER_WORD;
122   }
123 
124   /// Determine which bit in a word a bit is in.
125   ///
126   /// \returns the bit position in a word for the specified bit position
127   /// in the APInt.
128   static unsigned whichBit(unsigned bitPosition) {
129     return bitPosition % APINT_BITS_PER_WORD;
130   }
131 
132   /// Get a single bit mask.
133   ///
134   /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
135   /// This method generates and returns a uint64_t (word) mask for a single
136   /// bit at a specific bit position. This is used to mask the bit in the
137   /// corresponding word.
138   static uint64_t maskBit(unsigned bitPosition) {
139     return 1ULL << whichBit(bitPosition);
140   }
141 
142   /// Clear unused high order bits
143   ///
144   /// This method is used internally to clear the top "N" bits in the high order
145   /// word that are not used by the APInt. This is needed after the most
146   /// significant word is assigned a value to ensure that those bits are
147   /// zero'd out.
148   APInt &clearUnusedBits() {
149     // Compute how many bits are used in the final word
150     unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
151 
152     // Mask out the high bits.
153     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
154     if (isSingleWord())
155       U.VAL &= mask;
156     else
157       U.pVal[getNumWords() - 1] &= mask;
158     return *this;
159   }
160 
161   /// Get the word corresponding to a bit position
162   /// \returns the corresponding word for the specified bit position.
163   uint64_t getWord(unsigned bitPosition) const {
164     return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
165   }
166 
167   /// Utility method to change the bit width of this APInt to new bit width,
168   /// allocating and/or deallocating as necessary. There is no guarantee on the
169   /// value of any bits upon return. Caller should populate the bits after.
170   void reallocate(unsigned NewBitWidth);
171 
172   /// Convert a char array into an APInt
173   ///
174   /// \param radix 2, 8, 10, 16, or 36
175   /// Converts a string into a number.  The string must be non-empty
176   /// and well-formed as a number of the given base. The bit-width
177   /// must be sufficient to hold the result.
178   ///
179   /// This is used by the constructors that take string arguments.
180   ///
181   /// StringRef::getAsInteger is superficially similar but (1) does
182   /// not assume that the string is well-formed and (2) grows the
183   /// result to hold the input.
184   void fromString(unsigned numBits, StringRef str, uint8_t radix);
185 
186   /// An internal division function for dividing APInts.
187   ///
188   /// This is used by the toString method to divide by the radix. It simply
189   /// provides a more convenient form of divide for internal use since KnuthDiv
190   /// has specific constraints on its inputs. If those constraints are not met
191   /// then it provides a simpler form of divide.
192   static void divide(const WordType *LHS, unsigned lhsWords,
193                      const WordType *RHS, unsigned rhsWords, WordType *Quotient,
194                      WordType *Remainder);
195 
196   /// out-of-line slow case for inline constructor
197   void initSlowCase(uint64_t val, bool isSigned);
198 
199   /// shared code between two array constructors
200   void initFromArray(ArrayRef<uint64_t> array);
201 
202   /// out-of-line slow case for inline copy constructor
203   void initSlowCase(const APInt &that);
204 
205   /// out-of-line slow case for shl
206   void shlSlowCase(unsigned ShiftAmt);
207 
208   /// out-of-line slow case for lshr.
209   void lshrSlowCase(unsigned ShiftAmt);
210 
211   /// out-of-line slow case for ashr.
212   void ashrSlowCase(unsigned ShiftAmt);
213 
214   /// out-of-line slow case for operator=
215   void AssignSlowCase(const APInt &RHS);
216 
217   /// out-of-line slow case for operator==
218   bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
219 
220   /// out-of-line slow case for countLeadingZeros
221   unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
222 
223   /// out-of-line slow case for countLeadingOnes.
224   unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
225 
226   /// out-of-line slow case for countTrailingZeros.
227   unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
228 
229   /// out-of-line slow case for countTrailingOnes
230   unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
231 
232   /// out-of-line slow case for countPopulation
233   unsigned countPopulationSlowCase() const LLVM_READONLY;
234 
235   /// out-of-line slow case for intersects.
236   bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
237 
238   /// out-of-line slow case for isSubsetOf.
239   bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
240 
241   /// out-of-line slow case for setBits.
242   void setBitsSlowCase(unsigned loBit, unsigned hiBit);
243 
244   /// out-of-line slow case for flipAllBits.
245   void flipAllBitsSlowCase();
246 
247   /// out-of-line slow case for operator&=.
248   void AndAssignSlowCase(const APInt& RHS);
249 
250   /// out-of-line slow case for operator|=.
251   void OrAssignSlowCase(const APInt& RHS);
252 
253   /// out-of-line slow case for operator^=.
254   void XorAssignSlowCase(const APInt& RHS);
255 
256   /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
257   /// to, or greater than RHS.
258   int compare(const APInt &RHS) const LLVM_READONLY;
259 
260   /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
261   /// to, or greater than RHS.
262   int compareSigned(const APInt &RHS) const LLVM_READONLY;
263 
264 public:
265   /// \name Constructors
266   /// @{
267 
268   /// Create a new APInt of numBits width, initialized as val.
269   ///
270   /// If isSigned is true then val is treated as if it were a signed value
271   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
272   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
273   /// the range of val are zero filled).
274   ///
275   /// \param numBits the bit width of the constructed APInt
276   /// \param val the initial value of the APInt
277   /// \param isSigned how to treat signedness of val
278   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
279       : BitWidth(numBits) {
280     assert(BitWidth && "bitwidth too small");
281     if (isSingleWord()) {
282       U.VAL = val;
283       clearUnusedBits();
284     } else {
285       initSlowCase(val, isSigned);
286     }
287   }
288 
289   /// Construct an APInt of numBits width, initialized as bigVal[].
290   ///
291   /// Note that bigVal.size() can be smaller or larger than the corresponding
292   /// bit width but any extraneous bits will be dropped.
293   ///
294   /// \param numBits the bit width of the constructed APInt
295   /// \param bigVal a sequence of words to form the initial value of the APInt
296   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
297 
298   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
299   /// deprecated because this constructor is prone to ambiguity with the
300   /// APInt(unsigned, uint64_t, bool) constructor.
301   ///
302   /// If this overload is ever deleted, care should be taken to prevent calls
303   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
304   /// constructor.
305   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
306 
307   /// Construct an APInt from a string representation.
308   ///
309   /// This constructor interprets the string \p str in the given radix. The
310   /// interpretation stops when the first character that is not suitable for the
311   /// radix is encountered, or the end of the string. Acceptable radix values
312   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
313   /// string to require more bits than numBits.
314   ///
315   /// \param numBits the bit width of the constructed APInt
316   /// \param str the string to be interpreted
317   /// \param radix the radix to use for the conversion
318   APInt(unsigned numBits, StringRef str, uint8_t radix);
319 
320   /// Simply makes *this a copy of that.
321   /// Copy Constructor.
322   APInt(const APInt &that) : BitWidth(that.BitWidth) {
323     if (isSingleWord())
324       U.VAL = that.U.VAL;
325     else
326       initSlowCase(that);
327   }
328 
329   /// Move Constructor.
330   APInt(APInt &&that) : BitWidth(that.BitWidth) {
331     memcpy(&U, &that.U, sizeof(U));
332     that.BitWidth = 0;
333   }
334 
335   /// Destructor.
336   ~APInt() {
337     if (needsCleanup())
338       delete[] U.pVal;
339   }
340 
341   /// Default constructor that creates an uninteresting APInt
342   /// representing a 1-bit zero value.
343   ///
344   /// This is useful for object deserialization (pair this with the static
345   ///  method Read).
346   explicit APInt() : BitWidth(1) { U.VAL = 0; }
347 
348   /// Returns whether this instance allocated memory.
349   bool needsCleanup() const { return !isSingleWord(); }
350 
351   /// Used to insert APInt objects, or objects that contain APInt objects, into
352   ///  FoldingSets.
353   void Profile(FoldingSetNodeID &id) const;
354 
355   /// @}
356   /// \name Value Tests
357   /// @{
358 
359   /// Determine sign of this APInt.
360   ///
361   /// This tests the high bit of this APInt to determine if it is set.
362   ///
363   /// \returns true if this APInt is negative, false otherwise
364   bool isNegative() const { return (*this)[BitWidth - 1]; }
365 
366   /// Determine if this APInt Value is non-negative (>= 0)
367   ///
368   /// This tests the high bit of the APInt to determine if it is unset.
369   bool isNonNegative() const { return !isNegative(); }
370 
371   /// Determine if sign bit of this APInt is set.
372   ///
373   /// This tests the high bit of this APInt to determine if it is set.
374   ///
375   /// \returns true if this APInt has its sign bit set, false otherwise.
376   bool isSignBitSet() const { return (*this)[BitWidth-1]; }
377 
378   /// Determine if sign bit of this APInt is clear.
379   ///
380   /// This tests the high bit of this APInt to determine if it is clear.
381   ///
382   /// \returns true if this APInt has its sign bit clear, false otherwise.
383   bool isSignBitClear() const { return !isSignBitSet(); }
384 
385   /// Determine if this APInt Value is positive.
386   ///
387   /// This tests if the value of this APInt is positive (> 0). Note
388   /// that 0 is not a positive value.
389   ///
390   /// \returns true if this APInt is positive.
391   bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
392 
393   /// Determine if this APInt Value is non-positive (<= 0).
394   ///
395   /// \returns true if this APInt is non-positive.
396   bool isNonPositive() const { return !isStrictlyPositive(); }
397 
398   /// Determine if all bits are set
399   ///
400   /// This checks to see if the value has all bits of the APInt are set or not.
401   bool isAllOnesValue() const {
402     if (isSingleWord())
403       return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
404     return countTrailingOnesSlowCase() == BitWidth;
405   }
406 
407   /// Determine if all bits are clear
408   ///
409   /// This checks to see if the value has all bits of the APInt are clear or
410   /// not.
411   bool isNullValue() const { return !*this; }
412 
413   /// Determine if this is a value of 1.
414   ///
415   /// This checks to see if the value of this APInt is one.
416   bool isOneValue() const {
417     if (isSingleWord())
418       return U.VAL == 1;
419     return countLeadingZerosSlowCase() == BitWidth - 1;
420   }
421 
422   /// Determine if this is the largest unsigned value.
423   ///
424   /// This checks to see if the value of this APInt is the maximum unsigned
425   /// value for the APInt's bit width.
426   bool isMaxValue() const { return isAllOnesValue(); }
427 
428   /// Determine if this is the largest signed value.
429   ///
430   /// This checks to see if the value of this APInt is the maximum signed
431   /// value for the APInt's bit width.
432   bool isMaxSignedValue() const {
433     if (isSingleWord())
434       return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
435     return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
436   }
437 
438   /// Determine if this is the smallest unsigned value.
439   ///
440   /// This checks to see if the value of this APInt is the minimum unsigned
441   /// value for the APInt's bit width.
442   bool isMinValue() const { return isNullValue(); }
443 
444   /// Determine if this is the smallest signed value.
445   ///
446   /// This checks to see if the value of this APInt is the minimum signed
447   /// value for the APInt's bit width.
448   bool isMinSignedValue() const {
449     if (isSingleWord())
450       return U.VAL == (WordType(1) << (BitWidth - 1));
451     return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
452   }
453 
454   /// Check if this APInt has an N-bits unsigned integer value.
455   bool isIntN(unsigned N) const {
456     assert(N && "N == 0 ???");
457     return getActiveBits() <= N;
458   }
459 
460   /// Check if this APInt has an N-bits signed integer value.
461   bool isSignedIntN(unsigned N) const {
462     assert(N && "N == 0 ???");
463     return getMinSignedBits() <= N;
464   }
465 
466   /// Check if this APInt's value is a power of two greater than zero.
467   ///
468   /// \returns true if the argument APInt value is a power of two > 0.
469   bool isPowerOf2() const {
470     if (isSingleWord())
471       return isPowerOf2_64(U.VAL);
472     return countPopulationSlowCase() == 1;
473   }
474 
475   /// Check if the APInt's value is returned by getSignMask.
476   ///
477   /// \returns true if this is the value returned by getSignMask.
478   bool isSignMask() const { return isMinSignedValue(); }
479 
480   /// Convert APInt to a boolean value.
481   ///
482   /// This converts the APInt to a boolean value as a test against zero.
483   bool getBoolValue() const { return !!*this; }
484 
485   /// If this value is smaller than the specified limit, return it, otherwise
486   /// return the limit value.  This causes the value to saturate to the limit.
487   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
488     return ugt(Limit) ? Limit : getZExtValue();
489   }
490 
491   /// Check if the APInt consists of a repeated bit pattern.
492   ///
493   /// e.g. 0x01010101 satisfies isSplat(8).
494   /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
495   /// width without remainder.
496   bool isSplat(unsigned SplatSizeInBits) const;
497 
498   /// \returns true if this APInt value is a sequence of \param numBits ones
499   /// starting at the least significant bit with the remainder zero.
500   bool isMask(unsigned numBits) const {
501     assert(numBits != 0 && "numBits must be non-zero");
502     assert(numBits <= BitWidth && "numBits out of range");
503     if (isSingleWord())
504       return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
505     unsigned Ones = countTrailingOnesSlowCase();
506     return (numBits == Ones) &&
507            ((Ones + countLeadingZerosSlowCase()) == BitWidth);
508   }
509 
510   /// \returns true if this APInt is a non-empty sequence of ones starting at
511   /// the least significant bit with the remainder zero.
512   /// Ex. isMask(0x0000FFFFU) == true.
513   bool isMask() const {
514     if (isSingleWord())
515       return isMask_64(U.VAL);
516     unsigned Ones = countTrailingOnesSlowCase();
517     return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
518   }
519 
520   /// Return true if this APInt value contains a sequence of ones with
521   /// the remainder zero.
522   bool isShiftedMask() const {
523     if (isSingleWord())
524       return isShiftedMask_64(U.VAL);
525     unsigned Ones = countPopulationSlowCase();
526     unsigned LeadZ = countLeadingZerosSlowCase();
527     return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
528   }
529 
530   /// @}
531   /// \name Value Generators
532   /// @{
533 
534   /// Gets maximum unsigned value of APInt for specific bit width.
535   static APInt getMaxValue(unsigned numBits) {
536     return getAllOnesValue(numBits);
537   }
538 
539   /// Gets maximum signed value of APInt for a specific bit width.
540   static APInt getSignedMaxValue(unsigned numBits) {
541     APInt API = getAllOnesValue(numBits);
542     API.clearBit(numBits - 1);
543     return API;
544   }
545 
546   /// Gets minimum unsigned value of APInt for a specific bit width.
547   static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
548 
549   /// Gets minimum signed value of APInt for a specific bit width.
550   static APInt getSignedMinValue(unsigned numBits) {
551     APInt API(numBits, 0);
552     API.setBit(numBits - 1);
553     return API;
554   }
555 
556   /// Get the SignMask for a specific bit width.
557   ///
558   /// This is just a wrapper function of getSignedMinValue(), and it helps code
559   /// readability when we want to get a SignMask.
560   static APInt getSignMask(unsigned BitWidth) {
561     return getSignedMinValue(BitWidth);
562   }
563 
564   /// Get the all-ones value.
565   ///
566   /// \returns the all-ones value for an APInt of the specified bit-width.
567   static APInt getAllOnesValue(unsigned numBits) {
568     return APInt(numBits, WORDTYPE_MAX, true);
569   }
570 
571   /// Get the '0' value.
572   ///
573   /// \returns the '0' value for an APInt of the specified bit-width.
574   static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
575 
576   /// Compute an APInt containing numBits highbits from this APInt.
577   ///
578   /// Get an APInt with the same BitWidth as this APInt, just zero mask
579   /// the low bits and right shift to the least significant bit.
580   ///
581   /// \returns the high "numBits" bits of this APInt.
582   APInt getHiBits(unsigned numBits) const;
583 
584   /// Compute an APInt containing numBits lowbits from this APInt.
585   ///
586   /// Get an APInt with the same BitWidth as this APInt, just zero mask
587   /// the high bits.
588   ///
589   /// \returns the low "numBits" bits of this APInt.
590   APInt getLoBits(unsigned numBits) const;
591 
592   /// Return an APInt with exactly one bit set in the result.
593   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
594     APInt Res(numBits, 0);
595     Res.setBit(BitNo);
596     return Res;
597   }
598 
599   /// Get a value with a block of bits set.
600   ///
601   /// Constructs an APInt value that has a contiguous range of bits set. The
602   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
603   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
604   /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
605   /// \p hiBit.
606   ///
607   /// \param numBits the intended bit width of the result
608   /// \param loBit the index of the lowest bit set.
609   /// \param hiBit the index of the highest bit set.
610   ///
611   /// \returns An APInt value with the requested bits set.
612   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
613     assert(loBit <= hiBit && "loBit greater than hiBit");
614     APInt Res(numBits, 0);
615     Res.setBits(loBit, hiBit);
616     return Res;
617   }
618 
619   /// Wrap version of getBitsSet.
620   /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
621   /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
622   /// with parameters (32, 28, 4), you would get 0xF000000F.
623   /// If \p hiBit is equal to \p loBit, you would get a result with all bits
624   /// set.
625   static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
626                                   unsigned hiBit) {
627     APInt Res(numBits, 0);
628     Res.setBitsWithWrap(loBit, hiBit);
629     return Res;
630   }
631 
632   /// Get a value with upper bits starting at loBit set.
633   ///
634   /// Constructs an APInt value that has a contiguous range of bits set. The
635   /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
636   /// bits will be zero. For example, with parameters(32, 12) you would get
637   /// 0xFFFFF000.
638   ///
639   /// \param numBits the intended bit width of the result
640   /// \param loBit the index of the lowest bit to set.
641   ///
642   /// \returns An APInt value with the requested bits set.
643   static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
644     APInt Res(numBits, 0);
645     Res.setBitsFrom(loBit);
646     return Res;
647   }
648 
649   /// Get a value with high bits set
650   ///
651   /// Constructs an APInt value that has the top hiBitsSet bits set.
652   ///
653   /// \param numBits the bitwidth of the result
654   /// \param hiBitsSet the number of high-order bits set in the result.
655   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
656     APInt Res(numBits, 0);
657     Res.setHighBits(hiBitsSet);
658     return Res;
659   }
660 
661   /// Get a value with low bits set
662   ///
663   /// Constructs an APInt value that has the bottom loBitsSet bits set.
664   ///
665   /// \param numBits the bitwidth of the result
666   /// \param loBitsSet the number of low-order bits set in the result.
667   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
668     APInt Res(numBits, 0);
669     Res.setLowBits(loBitsSet);
670     return Res;
671   }
672 
673   /// Return a value containing V broadcasted over NewLen bits.
674   static APInt getSplat(unsigned NewLen, const APInt &V);
675 
676   /// Determine if two APInts have the same value, after zero-extending
677   /// one of them (if needed!) to ensure that the bit-widths match.
678   static bool isSameValue(const APInt &I1, const APInt &I2) {
679     if (I1.getBitWidth() == I2.getBitWidth())
680       return I1 == I2;
681 
682     if (I1.getBitWidth() > I2.getBitWidth())
683       return I1 == I2.zext(I1.getBitWidth());
684 
685     return I1.zext(I2.getBitWidth()) == I2;
686   }
687 
688   /// Overload to compute a hash_code for an APInt value.
689   friend hash_code hash_value(const APInt &Arg);
690 
691   /// This function returns a pointer to the internal storage of the APInt.
692   /// This is useful for writing out the APInt in binary form without any
693   /// conversions.
694   const uint64_t *getRawData() const {
695     if (isSingleWord())
696       return &U.VAL;
697     return &U.pVal[0];
698   }
699 
700   /// @}
701   /// \name Unary Operators
702   /// @{
703 
704   /// Postfix increment operator.
705   ///
706   /// Increments *this by 1.
707   ///
708   /// \returns a new APInt value representing the original value of *this.
709   const APInt operator++(int) {
710     APInt API(*this);
711     ++(*this);
712     return API;
713   }
714 
715   /// Prefix increment operator.
716   ///
717   /// \returns *this incremented by one
718   APInt &operator++();
719 
720   /// Postfix decrement operator.
721   ///
722   /// Decrements *this by 1.
723   ///
724   /// \returns a new APInt value representing the original value of *this.
725   const APInt operator--(int) {
726     APInt API(*this);
727     --(*this);
728     return API;
729   }
730 
731   /// Prefix decrement operator.
732   ///
733   /// \returns *this decremented by one.
734   APInt &operator--();
735 
736   /// Logical negation operator.
737   ///
738   /// Performs logical negation operation on this APInt.
739   ///
740   /// \returns true if *this is zero, false otherwise.
741   bool operator!() const {
742     if (isSingleWord())
743       return U.VAL == 0;
744     return countLeadingZerosSlowCase() == BitWidth;
745   }
746 
747   /// @}
748   /// \name Assignment Operators
749   /// @{
750 
751   /// Copy assignment operator.
752   ///
753   /// \returns *this after assignment of RHS.
754   APInt &operator=(const APInt &RHS) {
755     // If the bitwidths are the same, we can avoid mucking with memory
756     if (isSingleWord() && RHS.isSingleWord()) {
757       U.VAL = RHS.U.VAL;
758       BitWidth = RHS.BitWidth;
759       return clearUnusedBits();
760     }
761 
762     AssignSlowCase(RHS);
763     return *this;
764   }
765 
766   /// Move assignment operator.
767   APInt &operator=(APInt &&that) {
768 #ifdef EXPENSIVE_CHECKS
769     // Some std::shuffle implementations still do self-assignment.
770     if (this == &that)
771       return *this;
772 #endif
773     assert(this != &that && "Self-move not supported");
774     if (!isSingleWord())
775       delete[] U.pVal;
776 
777     // Use memcpy so that type based alias analysis sees both VAL and pVal
778     // as modified.
779     memcpy(&U, &that.U, sizeof(U));
780 
781     BitWidth = that.BitWidth;
782     that.BitWidth = 0;
783 
784     return *this;
785   }
786 
787   /// Assignment operator.
788   ///
789   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
790   /// the bit width, the excess bits are truncated. If the bit width is larger
791   /// than 64, the value is zero filled in the unspecified high order bits.
792   ///
793   /// \returns *this after assignment of RHS value.
794   APInt &operator=(uint64_t RHS) {
795     if (isSingleWord()) {
796       U.VAL = RHS;
797       return clearUnusedBits();
798     }
799     U.pVal[0] = RHS;
800     memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
801     return *this;
802   }
803 
804   /// Bitwise AND assignment operator.
805   ///
806   /// Performs a bitwise AND operation on this APInt and RHS. The result is
807   /// assigned to *this.
808   ///
809   /// \returns *this after ANDing with RHS.
810   APInt &operator&=(const APInt &RHS) {
811     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
812     if (isSingleWord())
813       U.VAL &= RHS.U.VAL;
814     else
815       AndAssignSlowCase(RHS);
816     return *this;
817   }
818 
819   /// Bitwise AND assignment operator.
820   ///
821   /// Performs a bitwise AND operation on this APInt and RHS. RHS is
822   /// logically zero-extended or truncated to match the bit-width of
823   /// the LHS.
824   APInt &operator&=(uint64_t RHS) {
825     if (isSingleWord()) {
826       U.VAL &= RHS;
827       return *this;
828     }
829     U.pVal[0] &= RHS;
830     memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
831     return *this;
832   }
833 
834   /// Bitwise OR assignment operator.
835   ///
836   /// Performs a bitwise OR operation on this APInt and RHS. The result is
837   /// assigned *this;
838   ///
839   /// \returns *this after ORing with RHS.
840   APInt &operator|=(const APInt &RHS) {
841     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
842     if (isSingleWord())
843       U.VAL |= RHS.U.VAL;
844     else
845       OrAssignSlowCase(RHS);
846     return *this;
847   }
848 
849   /// Bitwise OR assignment operator.
850   ///
851   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
852   /// logically zero-extended or truncated to match the bit-width of
853   /// the LHS.
854   APInt &operator|=(uint64_t RHS) {
855     if (isSingleWord()) {
856       U.VAL |= RHS;
857       return clearUnusedBits();
858     }
859     U.pVal[0] |= RHS;
860     return *this;
861   }
862 
863   /// Bitwise XOR assignment operator.
864   ///
865   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
866   /// assigned to *this.
867   ///
868   /// \returns *this after XORing with RHS.
869   APInt &operator^=(const APInt &RHS) {
870     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
871     if (isSingleWord())
872       U.VAL ^= RHS.U.VAL;
873     else
874       XorAssignSlowCase(RHS);
875     return *this;
876   }
877 
878   /// Bitwise XOR assignment operator.
879   ///
880   /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
881   /// logically zero-extended or truncated to match the bit-width of
882   /// the LHS.
883   APInt &operator^=(uint64_t RHS) {
884     if (isSingleWord()) {
885       U.VAL ^= RHS;
886       return clearUnusedBits();
887     }
888     U.pVal[0] ^= RHS;
889     return *this;
890   }
891 
892   /// Multiplication assignment operator.
893   ///
894   /// Multiplies this APInt by RHS and assigns the result to *this.
895   ///
896   /// \returns *this
897   APInt &operator*=(const APInt &RHS);
898   APInt &operator*=(uint64_t RHS);
899 
900   /// Addition assignment operator.
901   ///
902   /// Adds RHS to *this and assigns the result to *this.
903   ///
904   /// \returns *this
905   APInt &operator+=(const APInt &RHS);
906   APInt &operator+=(uint64_t RHS);
907 
908   /// Subtraction assignment operator.
909   ///
910   /// Subtracts RHS from *this and assigns the result to *this.
911   ///
912   /// \returns *this
913   APInt &operator-=(const APInt &RHS);
914   APInt &operator-=(uint64_t RHS);
915 
916   /// Left-shift assignment function.
917   ///
918   /// Shifts *this left by shiftAmt and assigns the result to *this.
919   ///
920   /// \returns *this after shifting left by ShiftAmt
921   APInt &operator<<=(unsigned ShiftAmt) {
922     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
923     if (isSingleWord()) {
924       if (ShiftAmt == BitWidth)
925         U.VAL = 0;
926       else
927         U.VAL <<= ShiftAmt;
928       return clearUnusedBits();
929     }
930     shlSlowCase(ShiftAmt);
931     return *this;
932   }
933 
934   /// Left-shift assignment function.
935   ///
936   /// Shifts *this left by shiftAmt and assigns the result to *this.
937   ///
938   /// \returns *this after shifting left by ShiftAmt
939   APInt &operator<<=(const APInt &ShiftAmt);
940 
941   /// @}
942   /// \name Binary Operators
943   /// @{
944 
945   /// Multiplication operator.
946   ///
947   /// Multiplies this APInt by RHS and returns the result.
948   APInt operator*(const APInt &RHS) const;
949 
950   /// Left logical shift operator.
951   ///
952   /// Shifts this APInt left by \p Bits and returns the result.
953   APInt operator<<(unsigned Bits) const { return shl(Bits); }
954 
955   /// Left logical shift operator.
956   ///
957   /// Shifts this APInt left by \p Bits and returns the result.
958   APInt operator<<(const APInt &Bits) const { return shl(Bits); }
959 
960   /// Arithmetic right-shift function.
961   ///
962   /// Arithmetic right-shift this APInt by shiftAmt.
963   APInt ashr(unsigned ShiftAmt) const {
964     APInt R(*this);
965     R.ashrInPlace(ShiftAmt);
966     return R;
967   }
968 
969   /// Arithmetic right-shift this APInt by ShiftAmt in place.
970   void ashrInPlace(unsigned ShiftAmt) {
971     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
972     if (isSingleWord()) {
973       int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
974       if (ShiftAmt == BitWidth)
975         U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
976       else
977         U.VAL = SExtVAL >> ShiftAmt;
978       clearUnusedBits();
979       return;
980     }
981     ashrSlowCase(ShiftAmt);
982   }
983 
984   /// Logical right-shift function.
985   ///
986   /// Logical right-shift this APInt by shiftAmt.
987   APInt lshr(unsigned shiftAmt) const {
988     APInt R(*this);
989     R.lshrInPlace(shiftAmt);
990     return R;
991   }
992 
993   /// Logical right-shift this APInt by ShiftAmt in place.
994   void lshrInPlace(unsigned ShiftAmt) {
995     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
996     if (isSingleWord()) {
997       if (ShiftAmt == BitWidth)
998         U.VAL = 0;
999       else
1000         U.VAL >>= ShiftAmt;
1001       return;
1002     }
1003     lshrSlowCase(ShiftAmt);
1004   }
1005 
1006   /// Left-shift function.
1007   ///
1008   /// Left-shift this APInt by shiftAmt.
1009   APInt shl(unsigned shiftAmt) const {
1010     APInt R(*this);
1011     R <<= shiftAmt;
1012     return R;
1013   }
1014 
1015   /// Rotate left by rotateAmt.
1016   APInt rotl(unsigned rotateAmt) const;
1017 
1018   /// Rotate right by rotateAmt.
1019   APInt rotr(unsigned rotateAmt) const;
1020 
1021   /// Arithmetic right-shift function.
1022   ///
1023   /// Arithmetic right-shift this APInt by shiftAmt.
1024   APInt ashr(const APInt &ShiftAmt) const {
1025     APInt R(*this);
1026     R.ashrInPlace(ShiftAmt);
1027     return R;
1028   }
1029 
1030   /// Arithmetic right-shift this APInt by shiftAmt in place.
1031   void ashrInPlace(const APInt &shiftAmt);
1032 
1033   /// Logical right-shift function.
1034   ///
1035   /// Logical right-shift this APInt by shiftAmt.
1036   APInt lshr(const APInt &ShiftAmt) const {
1037     APInt R(*this);
1038     R.lshrInPlace(ShiftAmt);
1039     return R;
1040   }
1041 
1042   /// Logical right-shift this APInt by ShiftAmt in place.
1043   void lshrInPlace(const APInt &ShiftAmt);
1044 
1045   /// Left-shift function.
1046   ///
1047   /// Left-shift this APInt by shiftAmt.
1048   APInt shl(const APInt &ShiftAmt) const {
1049     APInt R(*this);
1050     R <<= ShiftAmt;
1051     return R;
1052   }
1053 
1054   /// Rotate left by rotateAmt.
1055   APInt rotl(const APInt &rotateAmt) const;
1056 
1057   /// Rotate right by rotateAmt.
1058   APInt rotr(const APInt &rotateAmt) const;
1059 
1060   /// Unsigned division operation.
1061   ///
1062   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1063   /// RHS are treated as unsigned quantities for purposes of this division.
1064   ///
1065   /// \returns a new APInt value containing the division result, rounded towards
1066   /// zero.
1067   APInt udiv(const APInt &RHS) const;
1068   APInt udiv(uint64_t RHS) const;
1069 
1070   /// Signed division function for APInt.
1071   ///
1072   /// Signed divide this APInt by APInt RHS.
1073   ///
1074   /// The result is rounded towards zero.
1075   APInt sdiv(const APInt &RHS) const;
1076   APInt sdiv(int64_t RHS) const;
1077 
1078   /// Unsigned remainder operation.
1079   ///
1080   /// Perform an unsigned remainder operation on this APInt with RHS being the
1081   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1082   /// of this operation. Note that this is a true remainder operation and not a
1083   /// modulo operation because the sign follows the sign of the dividend which
1084   /// is *this.
1085   ///
1086   /// \returns a new APInt value containing the remainder result
1087   APInt urem(const APInt &RHS) const;
1088   uint64_t urem(uint64_t RHS) const;
1089 
1090   /// Function for signed remainder operation.
1091   ///
1092   /// Signed remainder operation on APInt.
1093   APInt srem(const APInt &RHS) const;
1094   int64_t srem(int64_t RHS) const;
1095 
1096   /// Dual division/remainder interface.
1097   ///
1098   /// Sometimes it is convenient to divide two APInt values and obtain both the
1099   /// quotient and remainder. This function does both operations in the same
1100   /// computation making it a little more efficient. The pair of input arguments
1101   /// may overlap with the pair of output arguments. It is safe to call
1102   /// udivrem(X, Y, X, Y), for example.
1103   static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1104                       APInt &Remainder);
1105   static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1106                       uint64_t &Remainder);
1107 
1108   static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1109                       APInt &Remainder);
1110   static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1111                       int64_t &Remainder);
1112 
1113   // Operations that return overflow indicators.
1114   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1115   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1116   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1117   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1118   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1119   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1120   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1121   APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1122   APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1123 
1124   // Operations that saturate
1125   APInt sadd_sat(const APInt &RHS) const;
1126   APInt uadd_sat(const APInt &RHS) const;
1127   APInt ssub_sat(const APInt &RHS) const;
1128   APInt usub_sat(const APInt &RHS) const;
1129   APInt smul_sat(const APInt &RHS) const;
1130   APInt umul_sat(const APInt &RHS) const;
1131   APInt sshl_sat(const APInt &RHS) const;
1132   APInt ushl_sat(const APInt &RHS) const;
1133 
1134   /// Array-indexing support.
1135   ///
1136   /// \returns the bit value at bitPosition
1137   bool operator[](unsigned bitPosition) const {
1138     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
1139     return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1140   }
1141 
1142   /// @}
1143   /// \name Comparison Operators
1144   /// @{
1145 
1146   /// Equality operator.
1147   ///
1148   /// Compares this APInt with RHS for the validity of the equality
1149   /// relationship.
1150   bool operator==(const APInt &RHS) const {
1151     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1152     if (isSingleWord())
1153       return U.VAL == RHS.U.VAL;
1154     return EqualSlowCase(RHS);
1155   }
1156 
1157   /// Equality operator.
1158   ///
1159   /// Compares this APInt with a uint64_t for the validity of the equality
1160   /// relationship.
1161   ///
1162   /// \returns true if *this == Val
1163   bool operator==(uint64_t Val) const {
1164     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1165   }
1166 
1167   /// Equality comparison.
1168   ///
1169   /// Compares this APInt with RHS for the validity of the equality
1170   /// relationship.
1171   ///
1172   /// \returns true if *this == Val
1173   bool eq(const APInt &RHS) const { return (*this) == RHS; }
1174 
1175   /// Inequality operator.
1176   ///
1177   /// Compares this APInt with RHS for the validity of the inequality
1178   /// relationship.
1179   ///
1180   /// \returns true if *this != Val
1181   bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1182 
1183   /// Inequality operator.
1184   ///
1185   /// Compares this APInt with a uint64_t for the validity of the inequality
1186   /// relationship.
1187   ///
1188   /// \returns true if *this != Val
1189   bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1190 
1191   /// Inequality comparison
1192   ///
1193   /// Compares this APInt with RHS for the validity of the inequality
1194   /// relationship.
1195   ///
1196   /// \returns true if *this != Val
1197   bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1198 
1199   /// Unsigned less than comparison
1200   ///
1201   /// Regards both *this and RHS as unsigned quantities and compares them for
1202   /// the validity of the less-than relationship.
1203   ///
1204   /// \returns true if *this < RHS when both are considered unsigned.
1205   bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1206 
1207   /// Unsigned less than comparison
1208   ///
1209   /// Regards both *this as an unsigned quantity and compares it with RHS for
1210   /// the validity of the less-than relationship.
1211   ///
1212   /// \returns true if *this < RHS when considered unsigned.
1213   bool ult(uint64_t RHS) const {
1214     // Only need to check active bits if not a single word.
1215     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1216   }
1217 
1218   /// Signed less than comparison
1219   ///
1220   /// Regards both *this and RHS as signed quantities and compares them for
1221   /// validity of the less-than relationship.
1222   ///
1223   /// \returns true if *this < RHS when both are considered signed.
1224   bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1225 
1226   /// Signed less than comparison
1227   ///
1228   /// Regards both *this as a signed quantity and compares it with RHS for
1229   /// the validity of the less-than relationship.
1230   ///
1231   /// \returns true if *this < RHS when considered signed.
1232   bool slt(int64_t RHS) const {
1233     return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1234                                                         : getSExtValue() < RHS;
1235   }
1236 
1237   /// Unsigned less or equal comparison
1238   ///
1239   /// Regards both *this and RHS as unsigned quantities and compares them for
1240   /// validity of the less-or-equal relationship.
1241   ///
1242   /// \returns true if *this <= RHS when both are considered unsigned.
1243   bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1244 
1245   /// Unsigned less or equal comparison
1246   ///
1247   /// Regards both *this as an unsigned quantity and compares it with RHS for
1248   /// the validity of the less-or-equal relationship.
1249   ///
1250   /// \returns true if *this <= RHS when considered unsigned.
1251   bool ule(uint64_t RHS) const { return !ugt(RHS); }
1252 
1253   /// Signed less or equal comparison
1254   ///
1255   /// Regards both *this and RHS as signed quantities and compares them for
1256   /// validity of the less-or-equal relationship.
1257   ///
1258   /// \returns true if *this <= RHS when both are considered signed.
1259   bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1260 
1261   /// Signed less or equal comparison
1262   ///
1263   /// Regards both *this as a signed quantity and compares it with RHS for the
1264   /// validity of the less-or-equal relationship.
1265   ///
1266   /// \returns true if *this <= RHS when considered signed.
1267   bool sle(uint64_t RHS) const { return !sgt(RHS); }
1268 
1269   /// Unsigned greater than comparison
1270   ///
1271   /// Regards both *this and RHS as unsigned quantities and compares them for
1272   /// the validity of the greater-than relationship.
1273   ///
1274   /// \returns true if *this > RHS when both are considered unsigned.
1275   bool ugt(const APInt &RHS) const { return !ule(RHS); }
1276 
1277   /// Unsigned greater than comparison
1278   ///
1279   /// Regards both *this as an unsigned quantity and compares it with RHS for
1280   /// the validity of the greater-than relationship.
1281   ///
1282   /// \returns true if *this > RHS when considered unsigned.
1283   bool ugt(uint64_t RHS) const {
1284     // Only need to check active bits if not a single word.
1285     return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1286   }
1287 
1288   /// Signed greater than comparison
1289   ///
1290   /// Regards both *this and RHS as signed quantities and compares them for the
1291   /// validity of the greater-than relationship.
1292   ///
1293   /// \returns true if *this > RHS when both are considered signed.
1294   bool sgt(const APInt &RHS) const { return !sle(RHS); }
1295 
1296   /// Signed greater than comparison
1297   ///
1298   /// Regards both *this as a signed quantity and compares it with RHS for
1299   /// the validity of the greater-than relationship.
1300   ///
1301   /// \returns true if *this > RHS when considered signed.
1302   bool sgt(int64_t RHS) const {
1303     return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1304                                                         : getSExtValue() > RHS;
1305   }
1306 
1307   /// Unsigned greater or equal comparison
1308   ///
1309   /// Regards both *this and RHS as unsigned quantities and compares them for
1310   /// validity of the greater-or-equal relationship.
1311   ///
1312   /// \returns true if *this >= RHS when both are considered unsigned.
1313   bool uge(const APInt &RHS) const { return !ult(RHS); }
1314 
1315   /// Unsigned greater or equal comparison
1316   ///
1317   /// Regards both *this as an unsigned quantity and compares it with RHS for
1318   /// the validity of the greater-or-equal relationship.
1319   ///
1320   /// \returns true if *this >= RHS when considered unsigned.
1321   bool uge(uint64_t RHS) const { return !ult(RHS); }
1322 
1323   /// Signed greater or equal comparison
1324   ///
1325   /// Regards both *this and RHS as signed quantities and compares them for
1326   /// validity of the greater-or-equal relationship.
1327   ///
1328   /// \returns true if *this >= RHS when both are considered signed.
1329   bool sge(const APInt &RHS) const { return !slt(RHS); }
1330 
1331   /// Signed greater or equal comparison
1332   ///
1333   /// Regards both *this as a signed quantity and compares it with RHS for
1334   /// the validity of the greater-or-equal relationship.
1335   ///
1336   /// \returns true if *this >= RHS when considered signed.
1337   bool sge(int64_t RHS) const { return !slt(RHS); }
1338 
1339   /// This operation tests if there are any pairs of corresponding bits
1340   /// between this APInt and RHS that are both set.
1341   bool intersects(const APInt &RHS) const {
1342     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1343     if (isSingleWord())
1344       return (U.VAL & RHS.U.VAL) != 0;
1345     return intersectsSlowCase(RHS);
1346   }
1347 
1348   /// This operation checks that all bits set in this APInt are also set in RHS.
1349   bool isSubsetOf(const APInt &RHS) const {
1350     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1351     if (isSingleWord())
1352       return (U.VAL & ~RHS.U.VAL) == 0;
1353     return isSubsetOfSlowCase(RHS);
1354   }
1355 
1356   /// @}
1357   /// \name Resizing Operators
1358   /// @{
1359 
1360   /// Truncate to new width.
1361   ///
1362   /// Truncate the APInt to a specified width. It is an error to specify a width
1363   /// that is greater than or equal to the current width.
1364   APInt trunc(unsigned width) const;
1365 
1366   /// Truncate to new width with unsigned saturation.
1367   ///
1368   /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1369   /// the new bitwidth, then return truncated APInt. Else, return max value.
1370   APInt truncUSat(unsigned width) const;
1371 
1372   /// Truncate to new width with signed saturation.
1373   ///
1374   /// If this APInt, treated as signed integer, can be losslessly truncated to
1375   /// the new bitwidth, then return truncated APInt. Else, return either
1376   /// signed min value if the APInt was negative, or signed max value.
1377   APInt truncSSat(unsigned width) const;
1378 
1379   /// Sign extend to a new width.
1380   ///
1381   /// This operation sign extends the APInt to a new width. If the high order
1382   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1383   /// It is an error to specify a width that is less than or equal to the
1384   /// current width.
1385   APInt sext(unsigned width) const;
1386 
1387   /// Zero extend to a new width.
1388   ///
1389   /// This operation zero extends the APInt to a new width. The high order bits
1390   /// are filled with 0 bits.  It is an error to specify a width that is less
1391   /// than or equal to the current width.
1392   APInt zext(unsigned width) const;
1393 
1394   /// Sign extend or truncate to width
1395   ///
1396   /// Make this APInt have the bit width given by \p width. The value is sign
1397   /// extended, truncated, or left alone to make it that width.
1398   APInt sextOrTrunc(unsigned width) const;
1399 
1400   /// Zero extend or truncate to width
1401   ///
1402   /// Make this APInt have the bit width given by \p width. The value is zero
1403   /// extended, truncated, or left alone to make it that width.
1404   APInt zextOrTrunc(unsigned width) const;
1405 
1406   /// Truncate to width
1407   ///
1408   /// Make this APInt have the bit width given by \p width. The value is
1409   /// truncated or left alone to make it that width.
1410   APInt truncOrSelf(unsigned width) const;
1411 
1412   /// Sign extend or truncate to width
1413   ///
1414   /// Make this APInt have the bit width given by \p width. The value is sign
1415   /// extended, or left alone to make it that width.
1416   APInt sextOrSelf(unsigned width) const;
1417 
1418   /// Zero extend or truncate to width
1419   ///
1420   /// Make this APInt have the bit width given by \p width. The value is zero
1421   /// extended, or left alone to make it that width.
1422   APInt zextOrSelf(unsigned width) const;
1423 
1424   /// @}
1425   /// \name Bit Manipulation Operators
1426   /// @{
1427 
1428   /// Set every bit to 1.
1429   void setAllBits() {
1430     if (isSingleWord())
1431       U.VAL = WORDTYPE_MAX;
1432     else
1433       // Set all the bits in all the words.
1434       memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1435     // Clear the unused ones
1436     clearUnusedBits();
1437   }
1438 
1439   /// Set a given bit to 1.
1440   ///
1441   /// Set the given bit to 1 whose position is given as "bitPosition".
1442   void setBit(unsigned BitPosition) {
1443     assert(BitPosition < BitWidth && "BitPosition out of range");
1444     WordType Mask = maskBit(BitPosition);
1445     if (isSingleWord())
1446       U.VAL |= Mask;
1447     else
1448       U.pVal[whichWord(BitPosition)] |= Mask;
1449   }
1450 
1451   /// Set the sign bit to 1.
1452   void setSignBit() {
1453     setBit(BitWidth - 1);
1454   }
1455 
1456   /// Set a given bit to a given value.
1457   void setBitVal(unsigned BitPosition, bool BitValue) {
1458     if (BitValue)
1459       setBit(BitPosition);
1460     else
1461       clearBit(BitPosition);
1462   }
1463 
1464   /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1465   /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1466   /// setBits when \p loBit < \p hiBit.
1467   /// For \p loBit == \p hiBit wrap case, set every bit to 1.
1468   void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1469     assert(hiBit <= BitWidth && "hiBit out of range");
1470     assert(loBit <= BitWidth && "loBit out of range");
1471     if (loBit < hiBit) {
1472       setBits(loBit, hiBit);
1473       return;
1474     }
1475     setLowBits(hiBit);
1476     setHighBits(BitWidth - loBit);
1477   }
1478 
1479   /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1480   /// This function handles case when \p loBit <= \p hiBit.
1481   void setBits(unsigned loBit, unsigned hiBit) {
1482     assert(hiBit <= BitWidth && "hiBit out of range");
1483     assert(loBit <= BitWidth && "loBit out of range");
1484     assert(loBit <= hiBit && "loBit greater than hiBit");
1485     if (loBit == hiBit)
1486       return;
1487     if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1488       uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1489       mask <<= loBit;
1490       if (isSingleWord())
1491         U.VAL |= mask;
1492       else
1493         U.pVal[0] |= mask;
1494     } else {
1495       setBitsSlowCase(loBit, hiBit);
1496     }
1497   }
1498 
1499   /// Set the top bits starting from loBit.
1500   void setBitsFrom(unsigned loBit) {
1501     return setBits(loBit, BitWidth);
1502   }
1503 
1504   /// Set the bottom loBits bits.
1505   void setLowBits(unsigned loBits) {
1506     return setBits(0, loBits);
1507   }
1508 
1509   /// Set the top hiBits bits.
1510   void setHighBits(unsigned hiBits) {
1511     return setBits(BitWidth - hiBits, BitWidth);
1512   }
1513 
1514   /// Set every bit to 0.
1515   void clearAllBits() {
1516     if (isSingleWord())
1517       U.VAL = 0;
1518     else
1519       memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1520   }
1521 
1522   /// Set a given bit to 0.
1523   ///
1524   /// Set the given bit to 0 whose position is given as "bitPosition".
1525   void clearBit(unsigned BitPosition) {
1526     assert(BitPosition < BitWidth && "BitPosition out of range");
1527     WordType Mask = ~maskBit(BitPosition);
1528     if (isSingleWord())
1529       U.VAL &= Mask;
1530     else
1531       U.pVal[whichWord(BitPosition)] &= Mask;
1532   }
1533 
1534   /// Set bottom loBits bits to 0.
1535   void clearLowBits(unsigned loBits) {
1536     assert(loBits <= BitWidth && "More bits than bitwidth");
1537     APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1538     *this &= Keep;
1539   }
1540 
1541   /// Set the sign bit to 0.
1542   void clearSignBit() {
1543     clearBit(BitWidth - 1);
1544   }
1545 
1546   /// Toggle every bit to its opposite value.
1547   void flipAllBits() {
1548     if (isSingleWord()) {
1549       U.VAL ^= WORDTYPE_MAX;
1550       clearUnusedBits();
1551     } else {
1552       flipAllBitsSlowCase();
1553     }
1554   }
1555 
1556   /// Toggles a given bit to its opposite value.
1557   ///
1558   /// Toggle a given bit to its opposite value whose position is given
1559   /// as "bitPosition".
1560   void flipBit(unsigned bitPosition);
1561 
1562   /// Negate this APInt in place.
1563   void negate() {
1564     flipAllBits();
1565     ++(*this);
1566   }
1567 
1568   /// Insert the bits from a smaller APInt starting at bitPosition.
1569   void insertBits(const APInt &SubBits, unsigned bitPosition);
1570   void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1571 
1572   /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1573   APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1574   uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1575 
1576   /// @}
1577   /// \name Value Characterization Functions
1578   /// @{
1579 
1580   /// Return the number of bits in the APInt.
1581   unsigned getBitWidth() const { return BitWidth; }
1582 
1583   /// Get the number of words.
1584   ///
1585   /// Here one word's bitwidth equals to that of uint64_t.
1586   ///
1587   /// \returns the number of words to hold the integer value of this APInt.
1588   unsigned getNumWords() const { return getNumWords(BitWidth); }
1589 
1590   /// Get the number of words.
1591   ///
1592   /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1593   ///
1594   /// \returns the number of words to hold the integer value with a given bit
1595   /// width.
1596   static unsigned getNumWords(unsigned BitWidth) {
1597     return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1598   }
1599 
1600   /// Compute the number of active bits in the value
1601   ///
1602   /// This function returns the number of active bits which is defined as the
1603   /// bit width minus the number of leading zeros. This is used in several
1604   /// computations to see how "wide" the value is.
1605   unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1606 
1607   /// Compute the number of active words in the value of this APInt.
1608   ///
1609   /// This is used in conjunction with getActiveData to extract the raw value of
1610   /// the APInt.
1611   unsigned getActiveWords() const {
1612     unsigned numActiveBits = getActiveBits();
1613     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1614   }
1615 
1616   /// Get the minimum bit size for this signed APInt
1617   ///
1618   /// Computes the minimum bit width for this APInt while considering it to be a
1619   /// signed (and probably negative) value. If the value is not negative, this
1620   /// function returns the same value as getActiveBits()+1. Otherwise, it
1621   /// returns the smallest bit width that will retain the negative value. For
1622   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1623   /// for -1, this function will always return 1.
1624   unsigned getMinSignedBits() const { return BitWidth - getNumSignBits() + 1; }
1625 
1626   /// Get zero extended value
1627   ///
1628   /// This method attempts to return the value of this APInt as a zero extended
1629   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1630   /// uint64_t. Otherwise an assertion will result.
1631   uint64_t getZExtValue() const {
1632     if (isSingleWord())
1633       return U.VAL;
1634     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1635     return U.pVal[0];
1636   }
1637 
1638   /// Get sign extended value
1639   ///
1640   /// This method attempts to return the value of this APInt as a sign extended
1641   /// int64_t. The bit width must be <= 64 or the value must fit within an
1642   /// int64_t. Otherwise an assertion will result.
1643   int64_t getSExtValue() const {
1644     if (isSingleWord())
1645       return SignExtend64(U.VAL, BitWidth);
1646     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1647     return int64_t(U.pVal[0]);
1648   }
1649 
1650   /// Get bits required for string value.
1651   ///
1652   /// This method determines how many bits are required to hold the APInt
1653   /// equivalent of the string given by \p str.
1654   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1655 
1656   /// The APInt version of the countLeadingZeros functions in
1657   ///   MathExtras.h.
1658   ///
1659   /// It counts the number of zeros from the most significant bit to the first
1660   /// one bit.
1661   ///
1662   /// \returns BitWidth if the value is zero, otherwise returns the number of
1663   ///   zeros from the most significant bit to the first one bits.
1664   unsigned countLeadingZeros() const {
1665     if (isSingleWord()) {
1666       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1667       return llvm::countLeadingZeros(U.VAL) - unusedBits;
1668     }
1669     return countLeadingZerosSlowCase();
1670   }
1671 
1672   /// Count the number of leading one bits.
1673   ///
1674   /// This function is an APInt version of the countLeadingOnes
1675   /// functions in MathExtras.h. It counts the number of ones from the most
1676   /// significant bit to the first zero bit.
1677   ///
1678   /// \returns 0 if the high order bit is not set, otherwise returns the number
1679   /// of 1 bits from the most significant to the least
1680   unsigned countLeadingOnes() const {
1681     if (isSingleWord())
1682       return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1683     return countLeadingOnesSlowCase();
1684   }
1685 
1686   /// Computes the number of leading bits of this APInt that are equal to its
1687   /// sign bit.
1688   unsigned getNumSignBits() const {
1689     return isNegative() ? countLeadingOnes() : countLeadingZeros();
1690   }
1691 
1692   /// Count the number of trailing zero bits.
1693   ///
1694   /// This function is an APInt version of the countTrailingZeros
1695   /// functions in MathExtras.h. It counts the number of zeros from the least
1696   /// significant bit to the first set bit.
1697   ///
1698   /// \returns BitWidth if the value is zero, otherwise returns the number of
1699   /// zeros from the least significant bit to the first one bit.
1700   unsigned countTrailingZeros() const {
1701     if (isSingleWord())
1702       return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
1703     return countTrailingZerosSlowCase();
1704   }
1705 
1706   /// Count the number of trailing one bits.
1707   ///
1708   /// This function is an APInt version of the countTrailingOnes
1709   /// functions in MathExtras.h. It counts the number of ones from the least
1710   /// significant bit to the first zero bit.
1711   ///
1712   /// \returns BitWidth if the value is all ones, otherwise returns the number
1713   /// of ones from the least significant bit to the first zero bit.
1714   unsigned countTrailingOnes() const {
1715     if (isSingleWord())
1716       return llvm::countTrailingOnes(U.VAL);
1717     return countTrailingOnesSlowCase();
1718   }
1719 
1720   /// Count the number of bits set.
1721   ///
1722   /// This function is an APInt version of the countPopulation functions
1723   /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1724   ///
1725   /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1726   unsigned countPopulation() const {
1727     if (isSingleWord())
1728       return llvm::countPopulation(U.VAL);
1729     return countPopulationSlowCase();
1730   }
1731 
1732   /// @}
1733   /// \name Conversion Functions
1734   /// @{
1735   void print(raw_ostream &OS, bool isSigned) const;
1736 
1737   /// Converts an APInt to a string and append it to Str.  Str is commonly a
1738   /// SmallString.
1739   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1740                 bool formatAsCLiteral = false) const;
1741 
1742   /// Considers the APInt to be unsigned and converts it into a string in the
1743   /// radix given. The radix can be 2, 8, 10 16, or 36.
1744   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1745     toString(Str, Radix, false, false);
1746   }
1747 
1748   /// Considers the APInt to be signed and converts it into a string in the
1749   /// radix given. The radix can be 2, 8, 10, 16, or 36.
1750   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1751     toString(Str, Radix, true, false);
1752   }
1753 
1754   /// Return the APInt as a std::string.
1755   ///
1756   /// Note that this is an inefficient method.  It is better to pass in a
1757   /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1758   /// for the string.
1759   std::string toString(unsigned Radix, bool Signed) const;
1760 
1761   /// \returns a byte-swapped representation of this APInt Value.
1762   APInt byteSwap() const;
1763 
1764   /// \returns the value with the bit representation reversed of this APInt
1765   /// Value.
1766   APInt reverseBits() const;
1767 
1768   /// Converts this APInt to a double value.
1769   double roundToDouble(bool isSigned) const;
1770 
1771   /// Converts this unsigned APInt to a double value.
1772   double roundToDouble() const { return roundToDouble(false); }
1773 
1774   /// Converts this signed APInt to a double value.
1775   double signedRoundToDouble() const { return roundToDouble(true); }
1776 
1777   /// Converts APInt bits to a double
1778   ///
1779   /// The conversion does not do a translation from integer to double, it just
1780   /// re-interprets the bits as a double. Note that it is valid to do this on
1781   /// any bit width. Exactly 64 bits will be translated.
1782   double bitsToDouble() const {
1783     return BitsToDouble(getWord(0));
1784   }
1785 
1786   /// Converts APInt bits to a float
1787   ///
1788   /// The conversion does not do a translation from integer to float, it just
1789   /// re-interprets the bits as a float. Note that it is valid to do this on
1790   /// any bit width. Exactly 32 bits will be translated.
1791   float bitsToFloat() const {
1792     return BitsToFloat(static_cast<uint32_t>(getWord(0)));
1793   }
1794 
1795   /// Converts a double to APInt bits.
1796   ///
1797   /// The conversion does not do a translation from double to integer, it just
1798   /// re-interprets the bits of the double.
1799   static APInt doubleToBits(double V) {
1800     return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
1801   }
1802 
1803   /// Converts a float to APInt bits.
1804   ///
1805   /// The conversion does not do a translation from float to integer, it just
1806   /// re-interprets the bits of the float.
1807   static APInt floatToBits(float V) {
1808     return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
1809   }
1810 
1811   /// @}
1812   /// \name Mathematics Operations
1813   /// @{
1814 
1815   /// \returns the floor log base 2 of this APInt.
1816   unsigned logBase2() const { return getActiveBits() -  1; }
1817 
1818   /// \returns the ceil log base 2 of this APInt.
1819   unsigned ceilLogBase2() const {
1820     APInt temp(*this);
1821     --temp;
1822     return temp.getActiveBits();
1823   }
1824 
1825   /// \returns the nearest log base 2 of this APInt. Ties round up.
1826   ///
1827   /// NOTE: When we have a BitWidth of 1, we define:
1828   ///
1829   ///   log2(0) = UINT32_MAX
1830   ///   log2(1) = 0
1831   ///
1832   /// to get around any mathematical concerns resulting from
1833   /// referencing 2 in a space where 2 does no exist.
1834   unsigned nearestLogBase2() const {
1835     // Special case when we have a bitwidth of 1. If VAL is 1, then we
1836     // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1837     // UINT32_MAX.
1838     if (BitWidth == 1)
1839       return U.VAL - 1;
1840 
1841     // Handle the zero case.
1842     if (isNullValue())
1843       return UINT32_MAX;
1844 
1845     // The non-zero case is handled by computing:
1846     //
1847     //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1848     //
1849     // where x[i] is referring to the value of the ith bit of x.
1850     unsigned lg = logBase2();
1851     return lg + unsigned((*this)[lg - 1]);
1852   }
1853 
1854   /// \returns the log base 2 of this APInt if its an exact power of two, -1
1855   /// otherwise
1856   int32_t exactLogBase2() const {
1857     if (!isPowerOf2())
1858       return -1;
1859     return logBase2();
1860   }
1861 
1862   /// Compute the square root
1863   APInt sqrt() const;
1864 
1865   /// Get the absolute value;
1866   ///
1867   /// If *this is < 0 then return -(*this), otherwise *this;
1868   APInt abs() const {
1869     if (isNegative())
1870       return -(*this);
1871     return *this;
1872   }
1873 
1874   /// \returns the multiplicative inverse for a given modulo.
1875   APInt multiplicativeInverse(const APInt &modulo) const;
1876 
1877   /// @}
1878   /// \name Support for division by constant
1879   /// @{
1880 
1881   /// Calculate the magic number for signed division by a constant.
1882   struct ms;
1883   ms magic() const;
1884 
1885   /// Calculate the magic number for unsigned division by a constant.
1886   struct mu;
1887   mu magicu(unsigned LeadingZeros = 0) const;
1888 
1889   /// @}
1890   /// \name Building-block Operations for APInt and APFloat
1891   /// @{
1892 
1893   // These building block operations operate on a representation of arbitrary
1894   // precision, two's-complement, bignum integer values. They should be
1895   // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1896   // generally a pointer to the base of an array of integer parts, representing
1897   // an unsigned bignum, and a count of how many parts there are.
1898 
1899   /// Sets the least significant part of a bignum to the input value, and zeroes
1900   /// out higher parts.
1901   static void tcSet(WordType *, WordType, unsigned);
1902 
1903   /// Assign one bignum to another.
1904   static void tcAssign(WordType *, const WordType *, unsigned);
1905 
1906   /// Returns true if a bignum is zero, false otherwise.
1907   static bool tcIsZero(const WordType *, unsigned);
1908 
1909   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1910   static int tcExtractBit(const WordType *, unsigned bit);
1911 
1912   /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1913   /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1914   /// significant bit of DST.  All high bits above srcBITS in DST are
1915   /// zero-filled.
1916   static void tcExtract(WordType *, unsigned dstCount,
1917                         const WordType *, unsigned srcBits,
1918                         unsigned srcLSB);
1919 
1920   /// Set the given bit of a bignum.  Zero-based.
1921   static void tcSetBit(WordType *, unsigned bit);
1922 
1923   /// Clear the given bit of a bignum.  Zero-based.
1924   static void tcClearBit(WordType *, unsigned bit);
1925 
1926   /// Returns the bit number of the least or most significant set bit of a
1927   /// number.  If the input number has no bits set -1U is returned.
1928   static unsigned tcLSB(const WordType *, unsigned n);
1929   static unsigned tcMSB(const WordType *parts, unsigned n);
1930 
1931   /// Negate a bignum in-place.
1932   static void tcNegate(WordType *, unsigned);
1933 
1934   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
1935   static WordType tcAdd(WordType *, const WordType *,
1936                         WordType carry, unsigned);
1937   /// DST += RHS.  Returns the carry flag.
1938   static WordType tcAddPart(WordType *, WordType, unsigned);
1939 
1940   /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1941   static WordType tcSubtract(WordType *, const WordType *,
1942                              WordType carry, unsigned);
1943   /// DST -= RHS.  Returns the carry flag.
1944   static WordType tcSubtractPart(WordType *, WordType, unsigned);
1945 
1946   /// DST += SRC * MULTIPLIER + PART   if add is true
1947   /// DST  = SRC * MULTIPLIER + PART   if add is false
1948   ///
1949   /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
1950   /// start at the same point, i.e. DST == SRC.
1951   ///
1952   /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1953   /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1954   /// result, and if all of the omitted higher parts were zero return zero,
1955   /// otherwise overflow occurred and return one.
1956   static int tcMultiplyPart(WordType *dst, const WordType *src,
1957                             WordType multiplier, WordType carry,
1958                             unsigned srcParts, unsigned dstParts,
1959                             bool add);
1960 
1961   /// DST = LHS * RHS, where DST has the same width as the operands and is
1962   /// filled with the least significant parts of the result.  Returns one if
1963   /// overflow occurred, otherwise zero.  DST must be disjoint from both
1964   /// operands.
1965   static int tcMultiply(WordType *, const WordType *, const WordType *,
1966                         unsigned);
1967 
1968   /// DST = LHS * RHS, where DST has width the sum of the widths of the
1969   /// operands. No overflow occurs. DST must be disjoint from both operands.
1970   static void tcFullMultiply(WordType *, const WordType *,
1971                              const WordType *, unsigned, unsigned);
1972 
1973   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1974   /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1975   /// REMAINDER to the remainder, return zero.  i.e.
1976   ///
1977   ///  OLD_LHS = RHS * LHS + REMAINDER
1978   ///
1979   /// SCRATCH is a bignum of the same size as the operands and result for use by
1980   /// the routine; its contents need not be initialized and are destroyed.  LHS,
1981   /// REMAINDER and SCRATCH must be distinct.
1982   static int tcDivide(WordType *lhs, const WordType *rhs,
1983                       WordType *remainder, WordType *scratch,
1984                       unsigned parts);
1985 
1986   /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1987   /// restrictions on Count.
1988   static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1989 
1990   /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no
1991   /// restrictions on Count.
1992   static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1993 
1994   /// The obvious AND, OR and XOR and complement operations.
1995   static void tcAnd(WordType *, const WordType *, unsigned);
1996   static void tcOr(WordType *, const WordType *, unsigned);
1997   static void tcXor(WordType *, const WordType *, unsigned);
1998   static void tcComplement(WordType *, unsigned);
1999 
2000   /// Comparison (unsigned) of two bignums.
2001   static int tcCompare(const WordType *, const WordType *, unsigned);
2002 
2003   /// Increment a bignum in-place.  Return the carry flag.
2004   static WordType tcIncrement(WordType *dst, unsigned parts) {
2005     return tcAddPart(dst, 1, parts);
2006   }
2007 
2008   /// Decrement a bignum in-place.  Return the borrow flag.
2009   static WordType tcDecrement(WordType *dst, unsigned parts) {
2010     return tcSubtractPart(dst, 1, parts);
2011   }
2012 
2013   /// Set the least significant BITS and clear the rest.
2014   static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
2015 
2016   /// debug method
2017   void dump() const;
2018 
2019   /// @}
2020 };
2021 
2022 /// Magic data for optimising signed division by a constant.
2023 struct APInt::ms {
2024   APInt m;    ///< magic number
2025   unsigned s; ///< shift amount
2026 };
2027 
2028 /// Magic data for optimising unsigned division by a constant.
2029 struct APInt::mu {
2030   APInt m;    ///< magic number
2031   bool a;     ///< add indicator
2032   unsigned s; ///< shift amount
2033 };
2034 
2035 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
2036 
2037 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
2038 
2039 /// Unary bitwise complement operator.
2040 ///
2041 /// \returns an APInt that is the bitwise complement of \p v.
2042 inline APInt operator~(APInt v) {
2043   v.flipAllBits();
2044   return v;
2045 }
2046 
2047 inline APInt operator&(APInt a, const APInt &b) {
2048   a &= b;
2049   return a;
2050 }
2051 
2052 inline APInt operator&(const APInt &a, APInt &&b) {
2053   b &= a;
2054   return std::move(b);
2055 }
2056 
2057 inline APInt operator&(APInt a, uint64_t RHS) {
2058   a &= RHS;
2059   return a;
2060 }
2061 
2062 inline APInt operator&(uint64_t LHS, APInt b) {
2063   b &= LHS;
2064   return b;
2065 }
2066 
2067 inline APInt operator|(APInt a, const APInt &b) {
2068   a |= b;
2069   return a;
2070 }
2071 
2072 inline APInt operator|(const APInt &a, APInt &&b) {
2073   b |= a;
2074   return std::move(b);
2075 }
2076 
2077 inline APInt operator|(APInt a, uint64_t RHS) {
2078   a |= RHS;
2079   return a;
2080 }
2081 
2082 inline APInt operator|(uint64_t LHS, APInt b) {
2083   b |= LHS;
2084   return b;
2085 }
2086 
2087 inline APInt operator^(APInt a, const APInt &b) {
2088   a ^= b;
2089   return a;
2090 }
2091 
2092 inline APInt operator^(const APInt &a, APInt &&b) {
2093   b ^= a;
2094   return std::move(b);
2095 }
2096 
2097 inline APInt operator^(APInt a, uint64_t RHS) {
2098   a ^= RHS;
2099   return a;
2100 }
2101 
2102 inline APInt operator^(uint64_t LHS, APInt b) {
2103   b ^= LHS;
2104   return b;
2105 }
2106 
2107 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2108   I.print(OS, true);
2109   return OS;
2110 }
2111 
2112 inline APInt operator-(APInt v) {
2113   v.negate();
2114   return v;
2115 }
2116 
2117 inline APInt operator+(APInt a, const APInt &b) {
2118   a += b;
2119   return a;
2120 }
2121 
2122 inline APInt operator+(const APInt &a, APInt &&b) {
2123   b += a;
2124   return std::move(b);
2125 }
2126 
2127 inline APInt operator+(APInt a, uint64_t RHS) {
2128   a += RHS;
2129   return a;
2130 }
2131 
2132 inline APInt operator+(uint64_t LHS, APInt b) {
2133   b += LHS;
2134   return b;
2135 }
2136 
2137 inline APInt operator-(APInt a, const APInt &b) {
2138   a -= b;
2139   return a;
2140 }
2141 
2142 inline APInt operator-(const APInt &a, APInt &&b) {
2143   b.negate();
2144   b += a;
2145   return std::move(b);
2146 }
2147 
2148 inline APInt operator-(APInt a, uint64_t RHS) {
2149   a -= RHS;
2150   return a;
2151 }
2152 
2153 inline APInt operator-(uint64_t LHS, APInt b) {
2154   b.negate();
2155   b += LHS;
2156   return b;
2157 }
2158 
2159 inline APInt operator*(APInt a, uint64_t RHS) {
2160   a *= RHS;
2161   return a;
2162 }
2163 
2164 inline APInt operator*(uint64_t LHS, APInt b) {
2165   b *= LHS;
2166   return b;
2167 }
2168 
2169 
2170 namespace APIntOps {
2171 
2172 /// Determine the smaller of two APInts considered to be signed.
2173 inline const APInt &smin(const APInt &A, const APInt &B) {
2174   return A.slt(B) ? A : B;
2175 }
2176 
2177 /// Determine the larger of two APInts considered to be signed.
2178 inline const APInt &smax(const APInt &A, const APInt &B) {
2179   return A.sgt(B) ? A : B;
2180 }
2181 
2182 /// Determine the smaller of two APInts considered to be signed.
2183 inline const APInt &umin(const APInt &A, const APInt &B) {
2184   return A.ult(B) ? A : B;
2185 }
2186 
2187 /// Determine the larger of two APInts considered to be unsigned.
2188 inline const APInt &umax(const APInt &A, const APInt &B) {
2189   return A.ugt(B) ? A : B;
2190 }
2191 
2192 /// Compute GCD of two unsigned APInt values.
2193 ///
2194 /// This function returns the greatest common divisor of the two APInt values
2195 /// using Stein's algorithm.
2196 ///
2197 /// \returns the greatest common divisor of A and B.
2198 APInt GreatestCommonDivisor(APInt A, APInt B);
2199 
2200 /// Converts the given APInt to a double value.
2201 ///
2202 /// Treats the APInt as an unsigned value for conversion purposes.
2203 inline double RoundAPIntToDouble(const APInt &APIVal) {
2204   return APIVal.roundToDouble();
2205 }
2206 
2207 /// Converts the given APInt to a double value.
2208 ///
2209 /// Treats the APInt as a signed value for conversion purposes.
2210 inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2211   return APIVal.signedRoundToDouble();
2212 }
2213 
2214 /// Converts the given APInt to a float vlalue.
2215 inline float RoundAPIntToFloat(const APInt &APIVal) {
2216   return float(RoundAPIntToDouble(APIVal));
2217 }
2218 
2219 /// Converts the given APInt to a float value.
2220 ///
2221 /// Treats the APInt as a signed value for conversion purposes.
2222 inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2223   return float(APIVal.signedRoundToDouble());
2224 }
2225 
2226 /// Converts the given double value into a APInt.
2227 ///
2228 /// This function convert a double value to an APInt value.
2229 APInt RoundDoubleToAPInt(double Double, unsigned width);
2230 
2231 /// Converts a float value into a APInt.
2232 ///
2233 /// Converts a float value into an APInt value.
2234 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2235   return RoundDoubleToAPInt(double(Float), width);
2236 }
2237 
2238 /// Return A unsign-divided by B, rounded by the given rounding mode.
2239 APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2240 
2241 /// Return A sign-divided by B, rounded by the given rounding mode.
2242 APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2243 
2244 /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2245 /// (e.g. 32 for i32).
2246 /// This function finds the smallest number n, such that
2247 /// (a) n >= 0 and q(n) = 0, or
2248 /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2249 ///     integers, belong to two different intervals [Rk, Rk+R),
2250 ///     where R = 2^BW, and k is an integer.
2251 /// The idea here is to find when q(n) "overflows" 2^BW, while at the
2252 /// same time "allowing" subtraction. In unsigned modulo arithmetic a
2253 /// subtraction (treated as addition of negated numbers) would always
2254 /// count as an overflow, but here we want to allow values to decrease
2255 /// and increase as long as they are within the same interval.
2256 /// Specifically, adding of two negative numbers should not cause an
2257 /// overflow (as long as the magnitude does not exceed the bit width).
2258 /// On the other hand, given a positive number, adding a negative
2259 /// number to it can give a negative result, which would cause the
2260 /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2261 /// treated as a special case of an overflow.
2262 ///
2263 /// This function returns None if after finding k that minimizes the
2264 /// positive solution to q(n) = kR, both solutions are contained between
2265 /// two consecutive integers.
2266 ///
2267 /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2268 /// in arithmetic modulo 2^BW, and treating the values as signed) by the
2269 /// virtue of *signed* overflow. This function will *not* find such an n,
2270 /// however it may find a value of n satisfying the inequalities due to
2271 /// an *unsigned* overflow (if the values are treated as unsigned).
2272 /// To find a solution for a signed overflow, treat it as a problem of
2273 /// finding an unsigned overflow with a range with of BW-1.
2274 ///
2275 /// The returned value may have a different bit width from the input
2276 /// coefficients.
2277 Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2278                                            unsigned RangeWidth);
2279 
2280 /// Compare two values, and if they are different, return the position of the
2281 /// most significant bit that is different in the values.
2282 Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2283                                                   const APInt &B);
2284 
2285 } // End of APIntOps namespace
2286 
2287 // See friend declaration above. This additional declaration is required in
2288 // order to compile LLVM with IBM xlC compiler.
2289 hash_code hash_value(const APInt &Arg);
2290 
2291 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2292 /// with the integer held in IntVal.
2293 void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2294 
2295 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2296 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2297 void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
2298 
2299 } // namespace llvm
2300 
2301 #endif
2302