1 //===-- llvm/CodeGen/GlobalISel/MachineIRBuilder.h - MIBuilder --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file declares the MachineIRBuilder class.
10 /// This is a helper class to build MachineInstr.
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H
14 #define LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H
15 
16 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
17 #include "llvm/CodeGen/LowLevelType.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetOpcodes.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugLoc.h"
24 #include "llvm/IR/Module.h"
25 
26 namespace llvm {
27 
28 // Forward declarations.
29 class MachineFunction;
30 class MachineInstr;
31 class TargetInstrInfo;
32 class GISelChangeObserver;
33 
34 /// Class which stores all the state required in a MachineIRBuilder.
35 /// Since MachineIRBuilders will only store state in this object, it allows
36 /// to transfer BuilderState between different kinds of MachineIRBuilders.
37 struct MachineIRBuilderState {
38   /// MachineFunction under construction.
39   MachineFunction *MF = nullptr;
40   /// Information used to access the description of the opcodes.
41   const TargetInstrInfo *TII = nullptr;
42   /// Information used to verify types are consistent and to create virtual registers.
43   MachineRegisterInfo *MRI = nullptr;
44   /// Debug location to be set to any instruction we create.
45   DebugLoc DL;
46 
47   /// \name Fields describing the insertion point.
48   /// @{
49   MachineBasicBlock *MBB = nullptr;
50   MachineBasicBlock::iterator II;
51   /// @}
52 
53   GISelChangeObserver *Observer = nullptr;
54 
55   GISelCSEInfo *CSEInfo = nullptr;
56 };
57 
58 class DstOp {
59   union {
60     LLT LLTTy;
61     Register Reg;
62     const TargetRegisterClass *RC;
63   };
64 
65 public:
66   enum class DstType { Ty_LLT, Ty_Reg, Ty_RC };
DstOp(unsigned R)67   DstOp(unsigned R) : Reg(R), Ty(DstType::Ty_Reg) {}
DstOp(Register R)68   DstOp(Register R) : Reg(R), Ty(DstType::Ty_Reg) {}
DstOp(const MachineOperand & Op)69   DstOp(const MachineOperand &Op) : Reg(Op.getReg()), Ty(DstType::Ty_Reg) {}
DstOp(const LLT T)70   DstOp(const LLT T) : LLTTy(T), Ty(DstType::Ty_LLT) {}
DstOp(const TargetRegisterClass * TRC)71   DstOp(const TargetRegisterClass *TRC) : RC(TRC), Ty(DstType::Ty_RC) {}
72 
addDefToMIB(MachineRegisterInfo & MRI,MachineInstrBuilder & MIB)73   void addDefToMIB(MachineRegisterInfo &MRI, MachineInstrBuilder &MIB) const {
74     switch (Ty) {
75     case DstType::Ty_Reg:
76       MIB.addDef(Reg);
77       break;
78     case DstType::Ty_LLT:
79       MIB.addDef(MRI.createGenericVirtualRegister(LLTTy));
80       break;
81     case DstType::Ty_RC:
82       MIB.addDef(MRI.createVirtualRegister(RC));
83       break;
84     }
85   }
86 
getLLTTy(const MachineRegisterInfo & MRI)87   LLT getLLTTy(const MachineRegisterInfo &MRI) const {
88     switch (Ty) {
89     case DstType::Ty_RC:
90       return LLT{};
91     case DstType::Ty_LLT:
92       return LLTTy;
93     case DstType::Ty_Reg:
94       return MRI.getType(Reg);
95     }
96     llvm_unreachable("Unrecognised DstOp::DstType enum");
97   }
98 
getReg()99   Register getReg() const {
100     assert(Ty == DstType::Ty_Reg && "Not a register");
101     return Reg;
102   }
103 
getRegClass()104   const TargetRegisterClass *getRegClass() const {
105     switch (Ty) {
106     case DstType::Ty_RC:
107       return RC;
108     default:
109       llvm_unreachable("Not a RC Operand");
110     }
111   }
112 
getDstOpKind()113   DstType getDstOpKind() const { return Ty; }
114 
115 private:
116   DstType Ty;
117 };
118 
119 class SrcOp {
120   union {
121     MachineInstrBuilder SrcMIB;
122     Register Reg;
123     CmpInst::Predicate Pred;
124     int64_t Imm;
125   };
126 
127 public:
128   enum class SrcType { Ty_Reg, Ty_MIB, Ty_Predicate, Ty_Imm };
SrcOp(Register R)129   SrcOp(Register R) : Reg(R), Ty(SrcType::Ty_Reg) {}
SrcOp(const MachineOperand & Op)130   SrcOp(const MachineOperand &Op) : Reg(Op.getReg()), Ty(SrcType::Ty_Reg) {}
SrcOp(const MachineInstrBuilder & MIB)131   SrcOp(const MachineInstrBuilder &MIB) : SrcMIB(MIB), Ty(SrcType::Ty_MIB) {}
SrcOp(const CmpInst::Predicate P)132   SrcOp(const CmpInst::Predicate P) : Pred(P), Ty(SrcType::Ty_Predicate) {}
133   /// Use of registers held in unsigned integer variables (or more rarely signed
134   /// integers) is no longer permitted to avoid ambiguity with upcoming support
135   /// for immediates.
136   SrcOp(unsigned) = delete;
137   SrcOp(int) = delete;
SrcOp(uint64_t V)138   SrcOp(uint64_t V) : Imm(V), Ty(SrcType::Ty_Imm) {}
SrcOp(int64_t V)139   SrcOp(int64_t V) : Imm(V), Ty(SrcType::Ty_Imm) {}
140 
addSrcToMIB(MachineInstrBuilder & MIB)141   void addSrcToMIB(MachineInstrBuilder &MIB) const {
142     switch (Ty) {
143     case SrcType::Ty_Predicate:
144       MIB.addPredicate(Pred);
145       break;
146     case SrcType::Ty_Reg:
147       MIB.addUse(Reg);
148       break;
149     case SrcType::Ty_MIB:
150       MIB.addUse(SrcMIB->getOperand(0).getReg());
151       break;
152     case SrcType::Ty_Imm:
153       MIB.addImm(Imm);
154       break;
155     }
156   }
157 
getLLTTy(const MachineRegisterInfo & MRI)158   LLT getLLTTy(const MachineRegisterInfo &MRI) const {
159     switch (Ty) {
160     case SrcType::Ty_Predicate:
161     case SrcType::Ty_Imm:
162       llvm_unreachable("Not a register operand");
163     case SrcType::Ty_Reg:
164       return MRI.getType(Reg);
165     case SrcType::Ty_MIB:
166       return MRI.getType(SrcMIB->getOperand(0).getReg());
167     }
168     llvm_unreachable("Unrecognised SrcOp::SrcType enum");
169   }
170 
getReg()171   Register getReg() const {
172     switch (Ty) {
173     case SrcType::Ty_Predicate:
174     case SrcType::Ty_Imm:
175       llvm_unreachable("Not a register operand");
176     case SrcType::Ty_Reg:
177       return Reg;
178     case SrcType::Ty_MIB:
179       return SrcMIB->getOperand(0).getReg();
180     }
181     llvm_unreachable("Unrecognised SrcOp::SrcType enum");
182   }
183 
getPredicate()184   CmpInst::Predicate getPredicate() const {
185     switch (Ty) {
186     case SrcType::Ty_Predicate:
187       return Pred;
188     default:
189       llvm_unreachable("Not a register operand");
190     }
191   }
192 
getImm()193   int64_t getImm() const {
194     switch (Ty) {
195     case SrcType::Ty_Imm:
196       return Imm;
197     default:
198       llvm_unreachable("Not an immediate");
199     }
200   }
201 
getSrcOpKind()202   SrcType getSrcOpKind() const { return Ty; }
203 
204 private:
205   SrcType Ty;
206 };
207 
208 class FlagsOp {
209   Optional<unsigned> Flags;
210 
211 public:
FlagsOp(unsigned F)212   explicit FlagsOp(unsigned F) : Flags(F) {}
FlagsOp()213   FlagsOp() : Flags(None) {}
getFlags()214   Optional<unsigned> getFlags() const { return Flags; }
215 };
216 /// Helper class to build MachineInstr.
217 /// It keeps internally the insertion point and debug location for all
218 /// the new instructions we want to create.
219 /// This information can be modify via the related setters.
220 class MachineIRBuilder {
221 
222   MachineIRBuilderState State;
223 
224 protected:
225   void validateTruncExt(const LLT Dst, const LLT Src, bool IsExtend);
226 
227   void validateUnaryOp(const LLT Res, const LLT Op0);
228   void validateBinaryOp(const LLT Res, const LLT Op0, const LLT Op1);
229   void validateShiftOp(const LLT Res, const LLT Op0, const LLT Op1);
230 
231   void validateSelectOp(const LLT ResTy, const LLT TstTy, const LLT Op0Ty,
232                         const LLT Op1Ty);
233 
recordInsertion(MachineInstr * InsertedInstr)234   void recordInsertion(MachineInstr *InsertedInstr) const {
235     if (State.Observer)
236       State.Observer->createdInstr(*InsertedInstr);
237   }
238 
239 public:
240   /// Some constructors for easy use.
241   MachineIRBuilder() = default;
MachineIRBuilder(MachineFunction & MF)242   MachineIRBuilder(MachineFunction &MF) { setMF(MF); }
243 
MachineIRBuilder(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsPt)244   MachineIRBuilder(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt) {
245     setMF(*MBB.getParent());
246     setInsertPt(MBB, InsPt);
247   }
248 
MachineIRBuilder(MachineInstr & MI)249   MachineIRBuilder(MachineInstr &MI) :
250     MachineIRBuilder(*MI.getParent(), MI.getIterator()) {
251     setInstr(MI);
252     setDebugLoc(MI.getDebugLoc());
253   }
254 
MachineIRBuilder(MachineInstr & MI,GISelChangeObserver & Observer)255   MachineIRBuilder(MachineInstr &MI, GISelChangeObserver &Observer) :
256     MachineIRBuilder(MI) {
257     setChangeObserver(Observer);
258   }
259 
260   virtual ~MachineIRBuilder() = default;
261 
MachineIRBuilder(const MachineIRBuilderState & BState)262   MachineIRBuilder(const MachineIRBuilderState &BState) : State(BState) {}
263 
getTII()264   const TargetInstrInfo &getTII() {
265     assert(State.TII && "TargetInstrInfo is not set");
266     return *State.TII;
267   }
268 
269   /// Getter for the function we currently build.
getMF()270   MachineFunction &getMF() {
271     assert(State.MF && "MachineFunction is not set");
272     return *State.MF;
273   }
274 
getMF()275   const MachineFunction &getMF() const {
276     assert(State.MF && "MachineFunction is not set");
277     return *State.MF;
278   }
279 
getDataLayout()280   const DataLayout &getDataLayout() const {
281     return getMF().getFunction().getParent()->getDataLayout();
282   }
283 
284   /// Getter for DebugLoc
getDL()285   const DebugLoc &getDL() { return State.DL; }
286 
287   /// Getter for MRI
getMRI()288   MachineRegisterInfo *getMRI() { return State.MRI; }
getMRI()289   const MachineRegisterInfo *getMRI() const { return State.MRI; }
290 
291   /// Getter for the State
getState()292   MachineIRBuilderState &getState() { return State; }
293 
294   /// Getter for the basic block we currently build.
getMBB()295   const MachineBasicBlock &getMBB() const {
296     assert(State.MBB && "MachineBasicBlock is not set");
297     return *State.MBB;
298   }
299 
getMBB()300   MachineBasicBlock &getMBB() {
301     return const_cast<MachineBasicBlock &>(
302         const_cast<const MachineIRBuilder *>(this)->getMBB());
303   }
304 
getCSEInfo()305   GISelCSEInfo *getCSEInfo() { return State.CSEInfo; }
getCSEInfo()306   const GISelCSEInfo *getCSEInfo() const { return State.CSEInfo; }
307 
308   /// Current insertion point for new instructions.
getInsertPt()309   MachineBasicBlock::iterator getInsertPt() { return State.II; }
310 
311   /// Set the insertion point before the specified position.
312   /// \pre MBB must be in getMF().
313   /// \pre II must be a valid iterator in MBB.
setInsertPt(MachineBasicBlock & MBB,MachineBasicBlock::iterator II)314   void setInsertPt(MachineBasicBlock &MBB, MachineBasicBlock::iterator II) {
315     assert(MBB.getParent() == &getMF() &&
316            "Basic block is in a different function");
317     State.MBB = &MBB;
318     State.II = II;
319   }
320 
321   /// @}
322 
setCSEInfo(GISelCSEInfo * Info)323   void setCSEInfo(GISelCSEInfo *Info) { State.CSEInfo = Info; }
324 
325   /// \name Setters for the insertion point.
326   /// @{
327   /// Set the MachineFunction where to build instructions.
328   void setMF(MachineFunction &MF);
329 
330   /// Set the insertion point to the  end of \p MBB.
331   /// \pre \p MBB must be contained by getMF().
setMBB(MachineBasicBlock & MBB)332   void setMBB(MachineBasicBlock &MBB) {
333     State.MBB = &MBB;
334     State.II = MBB.end();
335     assert(&getMF() == MBB.getParent() &&
336            "Basic block is in a different function");
337   }
338 
339   /// Set the insertion point to before MI.
340   /// \pre MI must be in getMF().
setInstr(MachineInstr & MI)341   void setInstr(MachineInstr &MI) {
342     assert(MI.getParent() && "Instruction is not part of a basic block");
343     setMBB(*MI.getParent());
344     State.II = MI.getIterator();
345   }
346   /// @}
347 
348   /// Set the insertion point to before MI, and set the debug loc to MI's loc.
349   /// \pre MI must be in getMF().
setInstrAndDebugLoc(MachineInstr & MI)350   void setInstrAndDebugLoc(MachineInstr &MI) {
351     setInstr(MI);
352     setDebugLoc(MI.getDebugLoc());
353   }
354 
setChangeObserver(GISelChangeObserver & Observer)355   void setChangeObserver(GISelChangeObserver &Observer) {
356     State.Observer = &Observer;
357   }
358 
stopObservingChanges()359   void stopObservingChanges() { State.Observer = nullptr; }
360   /// @}
361 
362   /// Set the debug location to \p DL for all the next build instructions.
setDebugLoc(const DebugLoc & DL)363   void setDebugLoc(const DebugLoc &DL) { this->State.DL = DL; }
364 
365   /// Get the current instruction's debug location.
getDebugLoc()366   DebugLoc getDebugLoc() { return State.DL; }
367 
368   /// Build and insert <empty> = \p Opcode <empty>.
369   /// The insertion point is the one set by the last call of either
370   /// setBasicBlock or setMI.
371   ///
372   /// \pre setBasicBlock or setMI must have been called.
373   ///
374   /// \return a MachineInstrBuilder for the newly created instruction.
buildInstr(unsigned Opcode)375   MachineInstrBuilder buildInstr(unsigned Opcode) {
376     return insertInstr(buildInstrNoInsert(Opcode));
377   }
378 
379   /// Build but don't insert <empty> = \p Opcode <empty>.
380   ///
381   /// \pre setMF, setBasicBlock or setMI  must have been called.
382   ///
383   /// \return a MachineInstrBuilder for the newly created instruction.
384   MachineInstrBuilder buildInstrNoInsert(unsigned Opcode);
385 
386   /// Insert an existing instruction at the insertion point.
387   MachineInstrBuilder insertInstr(MachineInstrBuilder MIB);
388 
389   /// Build and insert a DBG_VALUE instruction expressing the fact that the
390   /// associated \p Variable lives in \p Reg (suitably modified by \p Expr).
391   MachineInstrBuilder buildDirectDbgValue(Register Reg, const MDNode *Variable,
392                                           const MDNode *Expr);
393 
394   /// Build and insert a DBG_VALUE instruction expressing the fact that the
395   /// associated \p Variable lives in memory at \p Reg (suitably modified by \p
396   /// Expr).
397   MachineInstrBuilder buildIndirectDbgValue(Register Reg,
398                                             const MDNode *Variable,
399                                             const MDNode *Expr);
400 
401   /// Build and insert a DBG_VALUE instruction expressing the fact that the
402   /// associated \p Variable lives in the stack slot specified by \p FI
403   /// (suitably modified by \p Expr).
404   MachineInstrBuilder buildFIDbgValue(int FI, const MDNode *Variable,
405                                       const MDNode *Expr);
406 
407   /// Build and insert a DBG_VALUE instructions specifying that \p Variable is
408   /// given by \p C (suitably modified by \p Expr).
409   MachineInstrBuilder buildConstDbgValue(const Constant &C,
410                                          const MDNode *Variable,
411                                          const MDNode *Expr);
412 
413   /// Build and insert a DBG_LABEL instructions specifying that \p Label is
414   /// given. Convert "llvm.dbg.label Label" to "DBG_LABEL Label".
415   MachineInstrBuilder buildDbgLabel(const MDNode *Label);
416 
417   /// Build and insert \p Res = G_DYN_STACKALLOC \p Size, \p Align
418   ///
419   /// G_DYN_STACKALLOC does a dynamic stack allocation and writes the address of
420   /// the allocated memory into \p Res.
421   /// \pre setBasicBlock or setMI must have been called.
422   /// \pre \p Res must be a generic virtual register with pointer type.
423   ///
424   /// \return a MachineInstrBuilder for the newly created instruction.
425   MachineInstrBuilder buildDynStackAlloc(const DstOp &Res, const SrcOp &Size,
426                                          Align Alignment);
427 
428   /// Build and insert \p Res = G_FRAME_INDEX \p Idx
429   ///
430   /// G_FRAME_INDEX materializes the address of an alloca value or other
431   /// stack-based object.
432   ///
433   /// \pre setBasicBlock or setMI must have been called.
434   /// \pre \p Res must be a generic virtual register with pointer type.
435   ///
436   /// \return a MachineInstrBuilder for the newly created instruction.
437   MachineInstrBuilder buildFrameIndex(const DstOp &Res, int Idx);
438 
439   /// Build and insert \p Res = G_GLOBAL_VALUE \p GV
440   ///
441   /// G_GLOBAL_VALUE materializes the address of the specified global
442   /// into \p Res.
443   ///
444   /// \pre setBasicBlock or setMI must have been called.
445   /// \pre \p Res must be a generic virtual register with pointer type
446   ///      in the same address space as \p GV.
447   ///
448   /// \return a MachineInstrBuilder for the newly created instruction.
449   MachineInstrBuilder buildGlobalValue(const DstOp &Res, const GlobalValue *GV);
450 
451   /// Build and insert \p Res = G_PTR_ADD \p Op0, \p Op1
452   ///
453   /// G_PTR_ADD adds \p Op1 addressible units to the pointer specified by \p Op0,
454   /// storing the resulting pointer in \p Res. Addressible units are typically
455   /// bytes but this can vary between targets.
456   ///
457   /// \pre setBasicBlock or setMI must have been called.
458   /// \pre \p Res and \p Op0 must be generic virtual registers with pointer
459   ///      type.
460   /// \pre \p Op1 must be a generic virtual register with scalar type.
461   ///
462   /// \return a MachineInstrBuilder for the newly created instruction.
463   MachineInstrBuilder buildPtrAdd(const DstOp &Res, const SrcOp &Op0,
464                                   const SrcOp &Op1);
465 
466   /// Materialize and insert \p Res = G_PTR_ADD \p Op0, (G_CONSTANT \p Value)
467   ///
468   /// G_PTR_ADD adds \p Value bytes to the pointer specified by \p Op0,
469   /// storing the resulting pointer in \p Res. If \p Value is zero then no
470   /// G_PTR_ADD or G_CONSTANT will be created and \pre Op0 will be assigned to
471   /// \p Res.
472   ///
473   /// \pre setBasicBlock or setMI must have been called.
474   /// \pre \p Op0 must be a generic virtual register with pointer type.
475   /// \pre \p ValueTy must be a scalar type.
476   /// \pre \p Res must be 0. This is to detect confusion between
477   ///      materializePtrAdd() and buildPtrAdd().
478   /// \post \p Res will either be a new generic virtual register of the same
479   ///       type as \p Op0 or \p Op0 itself.
480   ///
481   /// \return a MachineInstrBuilder for the newly created instruction.
482   Optional<MachineInstrBuilder> materializePtrAdd(Register &Res, Register Op0,
483                                                   const LLT ValueTy,
484                                                   uint64_t Value);
485 
486   /// Build and insert \p Res = G_PTRMASK \p Op0, \p Op1
buildPtrMask(const DstOp & Res,const SrcOp & Op0,const SrcOp & Op1)487   MachineInstrBuilder buildPtrMask(const DstOp &Res, const SrcOp &Op0,
488                                    const SrcOp &Op1) {
489     return buildInstr(TargetOpcode::G_PTRMASK, {Res}, {Op0, Op1});
490   }
491 
492   /// Build and insert \p Res = G_PTRMASK \p Op0, \p G_CONSTANT (1 << NumBits) - 1
493   ///
494   /// This clears the low bits of a pointer operand without destroying its
495   /// pointer properties. This has the effect of rounding the address *down* to
496   /// a specified alignment in bits.
497   ///
498   /// \pre setBasicBlock or setMI must have been called.
499   /// \pre \p Res and \p Op0 must be generic virtual registers with pointer
500   ///      type.
501   /// \pre \p NumBits must be an integer representing the number of low bits to
502   ///      be cleared in \p Op0.
503   ///
504   /// \return a MachineInstrBuilder for the newly created instruction.
505   MachineInstrBuilder buildMaskLowPtrBits(const DstOp &Res, const SrcOp &Op0,
506                                           uint32_t NumBits);
507 
508   /// Build and insert \p Res, \p CarryOut = G_UADDO \p Op0, \p Op1
509   ///
510   /// G_UADDO sets \p Res to \p Op0 + \p Op1 (truncated to the bit width) and
511   /// sets \p CarryOut to 1 if the result overflowed in unsigned arithmetic.
512   ///
513   /// \pre setBasicBlock or setMI must have been called.
514   /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers with the
515   /// same scalar type.
516   ////\pre \p CarryOut must be generic virtual register with scalar type
517   ///(typically s1)
518   ///
519   /// \return The newly created instruction.
buildUAddo(const DstOp & Res,const DstOp & CarryOut,const SrcOp & Op0,const SrcOp & Op1)520   MachineInstrBuilder buildUAddo(const DstOp &Res, const DstOp &CarryOut,
521                                  const SrcOp &Op0, const SrcOp &Op1) {
522     return buildInstr(TargetOpcode::G_UADDO, {Res, CarryOut}, {Op0, Op1});
523   }
524 
525   /// Build and insert \p Res, \p CarryOut = G_USUBO \p Op0, \p Op1
buildUSubo(const DstOp & Res,const DstOp & CarryOut,const SrcOp & Op0,const SrcOp & Op1)526   MachineInstrBuilder buildUSubo(const DstOp &Res, const DstOp &CarryOut,
527                                  const SrcOp &Op0, const SrcOp &Op1) {
528     return buildInstr(TargetOpcode::G_USUBO, {Res, CarryOut}, {Op0, Op1});
529   }
530 
531   /// Build and insert \p Res, \p CarryOut = G_SADDO \p Op0, \p Op1
buildSAddo(const DstOp & Res,const DstOp & CarryOut,const SrcOp & Op0,const SrcOp & Op1)532   MachineInstrBuilder buildSAddo(const DstOp &Res, const DstOp &CarryOut,
533                                  const SrcOp &Op0, const SrcOp &Op1) {
534     return buildInstr(TargetOpcode::G_SADDO, {Res, CarryOut}, {Op0, Op1});
535   }
536 
537   /// Build and insert \p Res, \p CarryOut = G_SUBO \p Op0, \p Op1
buildSSubo(const DstOp & Res,const DstOp & CarryOut,const SrcOp & Op0,const SrcOp & Op1)538   MachineInstrBuilder buildSSubo(const DstOp &Res, const DstOp &CarryOut,
539                                  const SrcOp &Op0, const SrcOp &Op1) {
540     return buildInstr(TargetOpcode::G_SSUBO, {Res, CarryOut}, {Op0, Op1});
541   }
542 
543   /// Build and insert \p Res, \p CarryOut = G_UADDE \p Op0,
544   /// \p Op1, \p CarryIn
545   ///
546   /// G_UADDE sets \p Res to \p Op0 + \p Op1 + \p CarryIn (truncated to the bit
547   /// width) and sets \p CarryOut to 1 if the result overflowed in unsigned
548   /// arithmetic.
549   ///
550   /// \pre setBasicBlock or setMI must have been called.
551   /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
552   ///      with the same scalar type.
553   /// \pre \p CarryOut and \p CarryIn must be generic virtual
554   ///      registers with the same scalar type (typically s1)
555   ///
556   /// \return The newly created instruction.
buildUAdde(const DstOp & Res,const DstOp & CarryOut,const SrcOp & Op0,const SrcOp & Op1,const SrcOp & CarryIn)557   MachineInstrBuilder buildUAdde(const DstOp &Res, const DstOp &CarryOut,
558                                  const SrcOp &Op0, const SrcOp &Op1,
559                                  const SrcOp &CarryIn) {
560     return buildInstr(TargetOpcode::G_UADDE, {Res, CarryOut},
561                                              {Op0, Op1, CarryIn});
562   }
563 
564   /// Build and insert \p Res, \p CarryOut = G_USUBE \p Op0, \p Op1, \p CarryInp
buildUSube(const DstOp & Res,const DstOp & CarryOut,const SrcOp & Op0,const SrcOp & Op1,const SrcOp & CarryIn)565   MachineInstrBuilder buildUSube(const DstOp &Res, const DstOp &CarryOut,
566                                  const SrcOp &Op0, const SrcOp &Op1,
567                                  const SrcOp &CarryIn) {
568     return buildInstr(TargetOpcode::G_USUBE, {Res, CarryOut},
569                                              {Op0, Op1, CarryIn});
570   }
571 
572   /// Build and insert \p Res, \p CarryOut = G_SADDE \p Op0, \p Op1, \p CarryInp
buildSAdde(const DstOp & Res,const DstOp & CarryOut,const SrcOp & Op0,const SrcOp & Op1,const SrcOp & CarryIn)573   MachineInstrBuilder buildSAdde(const DstOp &Res, const DstOp &CarryOut,
574                                  const SrcOp &Op0, const SrcOp &Op1,
575                                  const SrcOp &CarryIn) {
576     return buildInstr(TargetOpcode::G_SADDE, {Res, CarryOut},
577                                              {Op0, Op1, CarryIn});
578   }
579 
580   /// Build and insert \p Res, \p CarryOut = G_SSUBE \p Op0, \p Op1, \p CarryInp
buildSSube(const DstOp & Res,const DstOp & CarryOut,const SrcOp & Op0,const SrcOp & Op1,const SrcOp & CarryIn)581   MachineInstrBuilder buildSSube(const DstOp &Res, const DstOp &CarryOut,
582                                  const SrcOp &Op0, const SrcOp &Op1,
583                                  const SrcOp &CarryIn) {
584     return buildInstr(TargetOpcode::G_SSUBE, {Res, CarryOut},
585                                              {Op0, Op1, CarryIn});
586   }
587 
588   /// Build and insert \p Res = G_ANYEXT \p Op0
589   ///
590   /// G_ANYEXT produces a register of the specified width, with bits 0 to
591   /// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are unspecified
592   /// (i.e. this is neither zero nor sign-extension). For a vector register,
593   /// each element is extended individually.
594   ///
595   /// \pre setBasicBlock or setMI must have been called.
596   /// \pre \p Res must be a generic virtual register with scalar or vector type.
597   /// \pre \p Op must be a generic virtual register with scalar or vector type.
598   /// \pre \p Op must be smaller than \p Res
599   ///
600   /// \return The newly created instruction.
601 
602   MachineInstrBuilder buildAnyExt(const DstOp &Res, const SrcOp &Op);
603 
604   /// Build and insert \p Res = G_SEXT \p Op
605   ///
606   /// G_SEXT produces a register of the specified width, with bits 0 to
607   /// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are duplicated from the
608   /// high bit of \p Op (i.e. 2s-complement sign extended).
609   ///
610   /// \pre setBasicBlock or setMI must have been called.
611   /// \pre \p Res must be a generic virtual register with scalar or vector type.
612   /// \pre \p Op must be a generic virtual register with scalar or vector type.
613   /// \pre \p Op must be smaller than \p Res
614   ///
615   /// \return The newly created instruction.
616   MachineInstrBuilder buildSExt(const DstOp &Res, const SrcOp &Op);
617 
618   /// Build and insert \p Res = G_SEXT_INREG \p Op, ImmOp
buildSExtInReg(const DstOp & Res,const SrcOp & Op,int64_t ImmOp)619   MachineInstrBuilder buildSExtInReg(const DstOp &Res, const SrcOp &Op, int64_t ImmOp) {
620     return buildInstr(TargetOpcode::G_SEXT_INREG, {Res}, {Op, SrcOp(ImmOp)});
621   }
622 
623   /// Build and insert \p Res = G_FPEXT \p Op
624   MachineInstrBuilder buildFPExt(const DstOp &Res, const SrcOp &Op,
625                                  Optional<unsigned> Flags = None) {
626     return buildInstr(TargetOpcode::G_FPEXT, {Res}, {Op}, Flags);
627   }
628 
629 
630   /// Build and insert a G_PTRTOINT instruction.
buildPtrToInt(const DstOp & Dst,const SrcOp & Src)631   MachineInstrBuilder buildPtrToInt(const DstOp &Dst, const SrcOp &Src) {
632     return buildInstr(TargetOpcode::G_PTRTOINT, {Dst}, {Src});
633   }
634 
635   /// Build and insert a G_INTTOPTR instruction.
buildIntToPtr(const DstOp & Dst,const SrcOp & Src)636   MachineInstrBuilder buildIntToPtr(const DstOp &Dst, const SrcOp &Src) {
637     return buildInstr(TargetOpcode::G_INTTOPTR, {Dst}, {Src});
638   }
639 
640   /// Build and insert \p Dst = G_BITCAST \p Src
buildBitcast(const DstOp & Dst,const SrcOp & Src)641   MachineInstrBuilder buildBitcast(const DstOp &Dst, const SrcOp &Src) {
642     return buildInstr(TargetOpcode::G_BITCAST, {Dst}, {Src});
643   }
644 
645     /// Build and insert \p Dst = G_ADDRSPACE_CAST \p Src
buildAddrSpaceCast(const DstOp & Dst,const SrcOp & Src)646   MachineInstrBuilder buildAddrSpaceCast(const DstOp &Dst, const SrcOp &Src) {
647     return buildInstr(TargetOpcode::G_ADDRSPACE_CAST, {Dst}, {Src});
648   }
649 
650   /// \return The opcode of the extension the target wants to use for boolean
651   /// values.
652   unsigned getBoolExtOp(bool IsVec, bool IsFP) const;
653 
654   // Build and insert \p Res = G_ANYEXT \p Op, \p Res = G_SEXT \p Op, or \p Res
655   // = G_ZEXT \p Op depending on how the target wants to extend boolean values.
656   MachineInstrBuilder buildBoolExt(const DstOp &Res, const SrcOp &Op,
657                                    bool IsFP);
658 
659   /// Build and insert \p Res = G_ZEXT \p Op
660   ///
661   /// G_ZEXT produces a register of the specified width, with bits 0 to
662   /// sizeof(\p Ty) * 8 set to \p Op. The remaining bits are 0. For a vector
663   /// register, each element is extended individually.
664   ///
665   /// \pre setBasicBlock or setMI must have been called.
666   /// \pre \p Res must be a generic virtual register with scalar or vector type.
667   /// \pre \p Op must be a generic virtual register with scalar or vector type.
668   /// \pre \p Op must be smaller than \p Res
669   ///
670   /// \return The newly created instruction.
671   MachineInstrBuilder buildZExt(const DstOp &Res, const SrcOp &Op);
672 
673   /// Build and insert \p Res = G_SEXT \p Op, \p Res = G_TRUNC \p Op, or
674   /// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op.
675   ///  ///
676   /// \pre setBasicBlock or setMI must have been called.
677   /// \pre \p Res must be a generic virtual register with scalar or vector type.
678   /// \pre \p Op must be a generic virtual register with scalar or vector type.
679   ///
680   /// \return The newly created instruction.
681   MachineInstrBuilder buildSExtOrTrunc(const DstOp &Res, const SrcOp &Op);
682 
683   /// Build and insert \p Res = G_ZEXT \p Op, \p Res = G_TRUNC \p Op, or
684   /// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op.
685   ///  ///
686   /// \pre setBasicBlock or setMI must have been called.
687   /// \pre \p Res must be a generic virtual register with scalar or vector type.
688   /// \pre \p Op must be a generic virtual register with scalar or vector type.
689   ///
690   /// \return The newly created instruction.
691   MachineInstrBuilder buildZExtOrTrunc(const DstOp &Res, const SrcOp &Op);
692 
693   // Build and insert \p Res = G_ANYEXT \p Op, \p Res = G_TRUNC \p Op, or
694   /// \p Res = COPY \p Op depending on the differing sizes of \p Res and \p Op.
695   ///  ///
696   /// \pre setBasicBlock or setMI must have been called.
697   /// \pre \p Res must be a generic virtual register with scalar or vector type.
698   /// \pre \p Op must be a generic virtual register with scalar or vector type.
699   ///
700   /// \return The newly created instruction.
701   MachineInstrBuilder buildAnyExtOrTrunc(const DstOp &Res, const SrcOp &Op);
702 
703   /// Build and insert \p Res = \p ExtOpc, \p Res = G_TRUNC \p
704   /// Op, or \p Res = COPY \p Op depending on the differing sizes of \p Res and
705   /// \p Op.
706   ///  ///
707   /// \pre setBasicBlock or setMI must have been called.
708   /// \pre \p Res must be a generic virtual register with scalar or vector type.
709   /// \pre \p Op must be a generic virtual register with scalar or vector type.
710   ///
711   /// \return The newly created instruction.
712   MachineInstrBuilder buildExtOrTrunc(unsigned ExtOpc, const DstOp &Res,
713                                       const SrcOp &Op);
714 
715   /// Build and insert an appropriate cast between two registers of equal size.
716   MachineInstrBuilder buildCast(const DstOp &Dst, const SrcOp &Src);
717 
718   /// Build and insert G_BR \p Dest
719   ///
720   /// G_BR is an unconditional branch to \p Dest.
721   ///
722   /// \pre setBasicBlock or setMI must have been called.
723   ///
724   /// \return a MachineInstrBuilder for the newly created instruction.
725   MachineInstrBuilder buildBr(MachineBasicBlock &Dest);
726 
727   /// Build and insert G_BRCOND \p Tst, \p Dest
728   ///
729   /// G_BRCOND is a conditional branch to \p Dest.
730   ///
731   /// \pre setBasicBlock or setMI must have been called.
732   /// \pre \p Tst must be a generic virtual register with scalar
733   ///      type. At the beginning of legalization, this will be a single
734   ///      bit (s1). Targets with interesting flags registers may change
735   ///      this. For a wider type, whether the branch is taken must only
736   ///      depend on bit 0 (for now).
737   ///
738   /// \return The newly created instruction.
739   MachineInstrBuilder buildBrCond(const SrcOp &Tst, MachineBasicBlock &Dest);
740 
741   /// Build and insert G_BRINDIRECT \p Tgt
742   ///
743   /// G_BRINDIRECT is an indirect branch to \p Tgt.
744   ///
745   /// \pre setBasicBlock or setMI must have been called.
746   /// \pre \p Tgt must be a generic virtual register with pointer type.
747   ///
748   /// \return a MachineInstrBuilder for the newly created instruction.
749   MachineInstrBuilder buildBrIndirect(Register Tgt);
750 
751   /// Build and insert G_BRJT \p TablePtr, \p JTI, \p IndexReg
752   ///
753   /// G_BRJT is a jump table branch using a table base pointer \p TablePtr,
754   /// jump table index \p JTI and index \p IndexReg
755   ///
756   /// \pre setBasicBlock or setMI must have been called.
757   /// \pre \p TablePtr must be a generic virtual register with pointer type.
758   /// \pre \p JTI must be be a jump table index.
759   /// \pre \p IndexReg must be a generic virtual register with pointer type.
760   ///
761   /// \return a MachineInstrBuilder for the newly created instruction.
762   MachineInstrBuilder buildBrJT(Register TablePtr, unsigned JTI,
763                                 Register IndexReg);
764 
765   /// Build and insert \p Res = G_CONSTANT \p Val
766   ///
767   /// G_CONSTANT is an integer constant with the specified size and value. \p
768   /// Val will be extended or truncated to the size of \p Reg.
769   ///
770   /// \pre setBasicBlock or setMI must have been called.
771   /// \pre \p Res must be a generic virtual register with scalar or pointer
772   ///      type.
773   ///
774   /// \return The newly created instruction.
775   virtual MachineInstrBuilder buildConstant(const DstOp &Res,
776                                             const ConstantInt &Val);
777 
778   /// Build and insert \p Res = G_CONSTANT \p Val
779   ///
780   /// G_CONSTANT is an integer constant with the specified size and value.
781   ///
782   /// \pre setBasicBlock or setMI must have been called.
783   /// \pre \p Res must be a generic virtual register with scalar type.
784   ///
785   /// \return The newly created instruction.
786   MachineInstrBuilder buildConstant(const DstOp &Res, int64_t Val);
787   MachineInstrBuilder buildConstant(const DstOp &Res, const APInt &Val);
788 
789   /// Build and insert \p Res = G_FCONSTANT \p Val
790   ///
791   /// G_FCONSTANT is a floating-point constant with the specified size and
792   /// value.
793   ///
794   /// \pre setBasicBlock or setMI must have been called.
795   /// \pre \p Res must be a generic virtual register with scalar type.
796   ///
797   /// \return The newly created instruction.
798   virtual MachineInstrBuilder buildFConstant(const DstOp &Res,
799                                              const ConstantFP &Val);
800 
801   MachineInstrBuilder buildFConstant(const DstOp &Res, double Val);
802   MachineInstrBuilder buildFConstant(const DstOp &Res, const APFloat &Val);
803 
804   /// Build and insert \p Res = COPY Op
805   ///
806   /// Register-to-register COPY sets \p Res to \p Op.
807   ///
808   /// \pre setBasicBlock or setMI must have been called.
809   ///
810   /// \return a MachineInstrBuilder for the newly created instruction.
811   MachineInstrBuilder buildCopy(const DstOp &Res, const SrcOp &Op);
812 
813   /// Build and insert `Res = G_LOAD Addr, MMO`.
814   ///
815   /// Loads the value stored at \p Addr. Puts the result in \p Res.
816   ///
817   /// \pre setBasicBlock or setMI must have been called.
818   /// \pre \p Res must be a generic virtual register.
819   /// \pre \p Addr must be a generic virtual register with pointer type.
820   ///
821   /// \return a MachineInstrBuilder for the newly created instruction.
buildLoad(const DstOp & Res,const SrcOp & Addr,MachineMemOperand & MMO)822   MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr,
823                                 MachineMemOperand &MMO) {
824     return buildLoadInstr(TargetOpcode::G_LOAD, Res, Addr, MMO);
825   }
826 
827   /// Build and insert a G_LOAD instruction, while constructing the
828   /// MachineMemOperand.
829   MachineInstrBuilder
830   buildLoad(const DstOp &Res, const SrcOp &Addr, MachinePointerInfo PtrInfo,
831             Align Alignment,
832             MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
833             const AAMDNodes &AAInfo = AAMDNodes());
834 
835   /// Build and insert `Res = <opcode> Addr, MMO`.
836   ///
837   /// Loads the value stored at \p Addr. Puts the result in \p Res.
838   ///
839   /// \pre setBasicBlock or setMI must have been called.
840   /// \pre \p Res must be a generic virtual register.
841   /// \pre \p Addr must be a generic virtual register with pointer type.
842   ///
843   /// \return a MachineInstrBuilder for the newly created instruction.
844   MachineInstrBuilder buildLoadInstr(unsigned Opcode, const DstOp &Res,
845                                      const SrcOp &Addr, MachineMemOperand &MMO);
846 
847   /// Helper to create a load from a constant offset given a base address. Load
848   /// the type of \p Dst from \p Offset from the given base address and memory
849   /// operand.
850   MachineInstrBuilder buildLoadFromOffset(const DstOp &Dst,
851                                           const SrcOp &BasePtr,
852                                           MachineMemOperand &BaseMMO,
853                                           int64_t Offset);
854 
855   /// Build and insert `G_STORE Val, Addr, MMO`.
856   ///
857   /// Stores the value \p Val to \p Addr.
858   ///
859   /// \pre setBasicBlock or setMI must have been called.
860   /// \pre \p Val must be a generic virtual register.
861   /// \pre \p Addr must be a generic virtual register with pointer type.
862   ///
863   /// \return a MachineInstrBuilder for the newly created instruction.
864   MachineInstrBuilder buildStore(const SrcOp &Val, const SrcOp &Addr,
865                                  MachineMemOperand &MMO);
866 
867   /// Build and insert a G_STORE instruction, while constructing the
868   /// MachineMemOperand.
869   MachineInstrBuilder
870   buildStore(const SrcOp &Val, const SrcOp &Addr, MachinePointerInfo PtrInfo,
871              Align Alignment,
872              MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
873              const AAMDNodes &AAInfo = AAMDNodes());
874 
875   /// Build and insert `Res0, ... = G_EXTRACT Src, Idx0`.
876   ///
877   /// \pre setBasicBlock or setMI must have been called.
878   /// \pre \p Res and \p Src must be generic virtual registers.
879   ///
880   /// \return a MachineInstrBuilder for the newly created instruction.
881   MachineInstrBuilder buildExtract(const DstOp &Res, const SrcOp &Src, uint64_t Index);
882 
883   /// Build and insert \p Res = IMPLICIT_DEF.
884   MachineInstrBuilder buildUndef(const DstOp &Res);
885 
886   /// Build and insert instructions to put \p Ops together at the specified p
887   /// Indices to form a larger register.
888   ///
889   /// If the types of the input registers are uniform and cover the entirity of
890   /// \p Res then a G_MERGE_VALUES will be produced. Otherwise an IMPLICIT_DEF
891   /// followed by a sequence of G_INSERT instructions.
892   ///
893   /// \pre setBasicBlock or setMI must have been called.
894   /// \pre The final element of the sequence must not extend past the end of the
895   ///      destination register.
896   /// \pre The bits defined by each Op (derived from index and scalar size) must
897   ///      not overlap.
898   /// \pre \p Indices must be in ascending order of bit position.
899   void buildSequence(Register Res, ArrayRef<Register> Ops,
900                      ArrayRef<uint64_t> Indices);
901 
902   /// Build and insert \p Res = G_MERGE_VALUES \p Op0, ...
903   ///
904   /// G_MERGE_VALUES combines the input elements contiguously into a larger
905   /// register.
906   ///
907   /// \pre setBasicBlock or setMI must have been called.
908   /// \pre The entire register \p Res (and no more) must be covered by the input
909   ///      registers.
910   /// \pre The type of all \p Ops registers must be identical.
911   ///
912   /// \return a MachineInstrBuilder for the newly created instruction.
913   MachineInstrBuilder buildMerge(const DstOp &Res, ArrayRef<Register> Ops);
914   MachineInstrBuilder buildMerge(const DstOp &Res,
915                                  std::initializer_list<SrcOp> Ops);
916 
917   /// Build and insert \p Res0, ... = G_UNMERGE_VALUES \p Op
918   ///
919   /// G_UNMERGE_VALUES splits contiguous bits of the input into multiple
920   ///
921   /// \pre setBasicBlock or setMI must have been called.
922   /// \pre The entire register \p Res (and no more) must be covered by the input
923   ///      registers.
924   /// \pre The type of all \p Res registers must be identical.
925   ///
926   /// \return a MachineInstrBuilder for the newly created instruction.
927   MachineInstrBuilder buildUnmerge(ArrayRef<LLT> Res, const SrcOp &Op);
928   MachineInstrBuilder buildUnmerge(ArrayRef<Register> Res, const SrcOp &Op);
929 
930   /// Build and insert an unmerge of \p Res sized pieces to cover \p Op
931   MachineInstrBuilder buildUnmerge(LLT Res, const SrcOp &Op);
932 
933   /// Build and insert \p Res = G_BUILD_VECTOR \p Op0, ...
934   ///
935   /// G_BUILD_VECTOR creates a vector value from multiple scalar registers.
936   /// \pre setBasicBlock or setMI must have been called.
937   /// \pre The entire register \p Res (and no more) must be covered by the
938   ///      input scalar registers.
939   /// \pre The type of all \p Ops registers must be identical.
940   ///
941   /// \return a MachineInstrBuilder for the newly created instruction.
942   MachineInstrBuilder buildBuildVector(const DstOp &Res,
943                                        ArrayRef<Register> Ops);
944 
945   /// Build and insert \p Res = G_BUILD_VECTOR with \p Src replicated to fill
946   /// the number of elements
947   MachineInstrBuilder buildSplatVector(const DstOp &Res,
948                                        const SrcOp &Src);
949 
950   /// Build and insert \p Res = G_BUILD_VECTOR_TRUNC \p Op0, ...
951   ///
952   /// G_BUILD_VECTOR_TRUNC creates a vector value from multiple scalar registers
953   /// which have types larger than the destination vector element type, and
954   /// truncates the values to fit.
955   ///
956   /// If the operands given are already the same size as the vector elt type,
957   /// then this method will instead create a G_BUILD_VECTOR instruction.
958   ///
959   /// \pre setBasicBlock or setMI must have been called.
960   /// \pre The type of all \p Ops registers must be identical.
961   ///
962   /// \return a MachineInstrBuilder for the newly created instruction.
963   MachineInstrBuilder buildBuildVectorTrunc(const DstOp &Res,
964                                             ArrayRef<Register> Ops);
965 
966   /// Build and insert a vector splat of a scalar \p Src using a
967   /// G_INSERT_VECTOR_ELT and G_SHUFFLE_VECTOR idiom.
968   ///
969   /// \pre setBasicBlock or setMI must have been called.
970   /// \pre \p Src must have the same type as the element type of \p Dst
971   ///
972   /// \return a MachineInstrBuilder for the newly created instruction.
973   MachineInstrBuilder buildShuffleSplat(const DstOp &Res, const SrcOp &Src);
974 
975   /// Build and insert \p Res = G_SHUFFLE_VECTOR \p Src1, \p Src2, \p Mask
976   ///
977   /// \pre setBasicBlock or setMI must have been called.
978   ///
979   /// \return a MachineInstrBuilder for the newly created instruction.
980   MachineInstrBuilder buildShuffleVector(const DstOp &Res, const SrcOp &Src1,
981                                          const SrcOp &Src2, ArrayRef<int> Mask);
982 
983   /// Build and insert \p Res = G_CONCAT_VECTORS \p Op0, ...
984   ///
985   /// G_CONCAT_VECTORS creates a vector from the concatenation of 2 or more
986   /// vectors.
987   ///
988   /// \pre setBasicBlock or setMI must have been called.
989   /// \pre The entire register \p Res (and no more) must be covered by the input
990   ///      registers.
991   /// \pre The type of all source operands must be identical.
992   ///
993   /// \return a MachineInstrBuilder for the newly created instruction.
994   MachineInstrBuilder buildConcatVectors(const DstOp &Res,
995                                          ArrayRef<Register> Ops);
996 
997   MachineInstrBuilder buildInsert(const DstOp &Res, const SrcOp &Src,
998                                   const SrcOp &Op, unsigned Index);
999 
1000   /// Build and insert either a G_INTRINSIC (if \p HasSideEffects is false) or
1001   /// G_INTRINSIC_W_SIDE_EFFECTS instruction. Its first operand will be the
1002   /// result register definition unless \p Reg is NoReg (== 0). The second
1003   /// operand will be the intrinsic's ID.
1004   ///
1005   /// Callers are expected to add the required definitions and uses afterwards.
1006   ///
1007   /// \pre setBasicBlock or setMI must have been called.
1008   ///
1009   /// \return a MachineInstrBuilder for the newly created instruction.
1010   MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef<Register> Res,
1011                                      bool HasSideEffects);
1012   MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef<DstOp> Res,
1013                                      bool HasSideEffects);
1014 
1015   /// Build and insert \p Res = G_FPTRUNC \p Op
1016   ///
1017   /// G_FPTRUNC converts a floating-point value into one with a smaller type.
1018   ///
1019   /// \pre setBasicBlock or setMI must have been called.
1020   /// \pre \p Res must be a generic virtual register with scalar or vector type.
1021   /// \pre \p Op must be a generic virtual register with scalar or vector type.
1022   /// \pre \p Res must be smaller than \p Op
1023   ///
1024   /// \return The newly created instruction.
1025   MachineInstrBuilder buildFPTrunc(const DstOp &Res, const SrcOp &Op,
1026                                    Optional<unsigned> Flags = None);
1027 
1028   /// Build and insert \p Res = G_TRUNC \p Op
1029   ///
1030   /// G_TRUNC extracts the low bits of a type. For a vector type each element is
1031   /// truncated independently before being packed into the destination.
1032   ///
1033   /// \pre setBasicBlock or setMI must have been called.
1034   /// \pre \p Res must be a generic virtual register with scalar or vector type.
1035   /// \pre \p Op must be a generic virtual register with scalar or vector type.
1036   /// \pre \p Res must be smaller than \p Op
1037   ///
1038   /// \return The newly created instruction.
1039   MachineInstrBuilder buildTrunc(const DstOp &Res, const SrcOp &Op);
1040 
1041   /// Build and insert a \p Res = G_ICMP \p Pred, \p Op0, \p Op1
1042   ///
1043   /// \pre setBasicBlock or setMI must have been called.
1044 
1045   /// \pre \p Res must be a generic virtual register with scalar or
1046   ///      vector type. Typically this starts as s1 or <N x s1>.
1047   /// \pre \p Op0 and Op1 must be generic virtual registers with the
1048   ///      same number of elements as \p Res. If \p Res is a scalar,
1049   ///      \p Op0 must be either a scalar or pointer.
1050   /// \pre \p Pred must be an integer predicate.
1051   ///
1052   /// \return a MachineInstrBuilder for the newly created instruction.
1053   MachineInstrBuilder buildICmp(CmpInst::Predicate Pred, const DstOp &Res,
1054                                 const SrcOp &Op0, const SrcOp &Op1);
1055 
1056   /// Build and insert a \p Res = G_FCMP \p Pred\p Op0, \p Op1
1057   ///
1058   /// \pre setBasicBlock or setMI must have been called.
1059 
1060   /// \pre \p Res must be a generic virtual register with scalar or
1061   ///      vector type. Typically this starts as s1 or <N x s1>.
1062   /// \pre \p Op0 and Op1 must be generic virtual registers with the
1063   ///      same number of elements as \p Res (or scalar, if \p Res is
1064   ///      scalar).
1065   /// \pre \p Pred must be a floating-point predicate.
1066   ///
1067   /// \return a MachineInstrBuilder for the newly created instruction.
1068   MachineInstrBuilder buildFCmp(CmpInst::Predicate Pred, const DstOp &Res,
1069                                 const SrcOp &Op0, const SrcOp &Op1,
1070                                 Optional<unsigned> Flags = None);
1071 
1072   /// Build and insert a \p Res = G_SELECT \p Tst, \p Op0, \p Op1
1073   ///
1074   /// \pre setBasicBlock or setMI must have been called.
1075   /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
1076   ///      with the same type.
1077   /// \pre \p Tst must be a generic virtual register with scalar, pointer or
1078   ///      vector type. If vector then it must have the same number of
1079   ///      elements as the other parameters.
1080   ///
1081   /// \return a MachineInstrBuilder for the newly created instruction.
1082   MachineInstrBuilder buildSelect(const DstOp &Res, const SrcOp &Tst,
1083                                   const SrcOp &Op0, const SrcOp &Op1,
1084                                   Optional<unsigned> Flags = None);
1085 
1086   /// Build and insert \p Res = G_INSERT_VECTOR_ELT \p Val,
1087   /// \p Elt, \p Idx
1088   ///
1089   /// \pre setBasicBlock or setMI must have been called.
1090   /// \pre \p Res and \p Val must be a generic virtual register
1091   //       with the same vector type.
1092   /// \pre \p Elt and \p Idx must be a generic virtual register
1093   ///      with scalar type.
1094   ///
1095   /// \return The newly created instruction.
1096   MachineInstrBuilder buildInsertVectorElement(const DstOp &Res,
1097                                                const SrcOp &Val,
1098                                                const SrcOp &Elt,
1099                                                const SrcOp &Idx);
1100 
1101   /// Build and insert \p Res = G_EXTRACT_VECTOR_ELT \p Val, \p Idx
1102   ///
1103   /// \pre setBasicBlock or setMI must have been called.
1104   /// \pre \p Res must be a generic virtual register with scalar type.
1105   /// \pre \p Val must be a generic virtual register with vector type.
1106   /// \pre \p Idx must be a generic virtual register with scalar type.
1107   ///
1108   /// \return The newly created instruction.
1109   MachineInstrBuilder buildExtractVectorElement(const DstOp &Res,
1110                                                 const SrcOp &Val,
1111                                                 const SrcOp &Idx);
1112 
1113   /// Build and insert `OldValRes<def>, SuccessRes<def> =
1114   /// G_ATOMIC_CMPXCHG_WITH_SUCCESS Addr, CmpVal, NewVal, MMO`.
1115   ///
1116   /// Atomically replace the value at \p Addr with \p NewVal if it is currently
1117   /// \p CmpVal otherwise leaves it unchanged. Puts the original value from \p
1118   /// Addr in \p Res, along with an s1 indicating whether it was replaced.
1119   ///
1120   /// \pre setBasicBlock or setMI must have been called.
1121   /// \pre \p OldValRes must be a generic virtual register of scalar type.
1122   /// \pre \p SuccessRes must be a generic virtual register of scalar type. It
1123   ///      will be assigned 0 on failure and 1 on success.
1124   /// \pre \p Addr must be a generic virtual register with pointer type.
1125   /// \pre \p OldValRes, \p CmpVal, and \p NewVal must be generic virtual
1126   ///      registers of the same type.
1127   ///
1128   /// \return a MachineInstrBuilder for the newly created instruction.
1129   MachineInstrBuilder
1130   buildAtomicCmpXchgWithSuccess(Register OldValRes, Register SuccessRes,
1131                                 Register Addr, Register CmpVal, Register NewVal,
1132                                 MachineMemOperand &MMO);
1133 
1134   /// Build and insert `OldValRes<def> = G_ATOMIC_CMPXCHG Addr, CmpVal, NewVal,
1135   /// MMO`.
1136   ///
1137   /// Atomically replace the value at \p Addr with \p NewVal if it is currently
1138   /// \p CmpVal otherwise leaves it unchanged. Puts the original value from \p
1139   /// Addr in \p Res.
1140   ///
1141   /// \pre setBasicBlock or setMI must have been called.
1142   /// \pre \p OldValRes must be a generic virtual register of scalar type.
1143   /// \pre \p Addr must be a generic virtual register with pointer type.
1144   /// \pre \p OldValRes, \p CmpVal, and \p NewVal must be generic virtual
1145   ///      registers of the same type.
1146   ///
1147   /// \return a MachineInstrBuilder for the newly created instruction.
1148   MachineInstrBuilder buildAtomicCmpXchg(Register OldValRes, Register Addr,
1149                                          Register CmpVal, Register NewVal,
1150                                          MachineMemOperand &MMO);
1151 
1152   /// Build and insert `OldValRes<def> = G_ATOMICRMW_<Opcode> Addr, Val, MMO`.
1153   ///
1154   /// Atomically read-modify-update the value at \p Addr with \p Val. Puts the
1155   /// original value from \p Addr in \p OldValRes. The modification is
1156   /// determined by the opcode.
1157   ///
1158   /// \pre setBasicBlock or setMI must have been called.
1159   /// \pre \p OldValRes must be a generic virtual register.
1160   /// \pre \p Addr must be a generic virtual register with pointer type.
1161   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1162   ///      same type.
1163   ///
1164   /// \return a MachineInstrBuilder for the newly created instruction.
1165   MachineInstrBuilder buildAtomicRMW(unsigned Opcode, const DstOp &OldValRes,
1166                                      const SrcOp &Addr, const SrcOp &Val,
1167                                      MachineMemOperand &MMO);
1168 
1169   /// Build and insert `OldValRes<def> = G_ATOMICRMW_XCHG Addr, Val, MMO`.
1170   ///
1171   /// Atomically replace the value at \p Addr with \p Val. Puts the original
1172   /// value from \p Addr in \p OldValRes.
1173   ///
1174   /// \pre setBasicBlock or setMI must have been called.
1175   /// \pre \p OldValRes must be a generic virtual register.
1176   /// \pre \p Addr must be a generic virtual register with pointer type.
1177   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1178   ///      same type.
1179   ///
1180   /// \return a MachineInstrBuilder for the newly created instruction.
1181   MachineInstrBuilder buildAtomicRMWXchg(Register OldValRes, Register Addr,
1182                                          Register Val, MachineMemOperand &MMO);
1183 
1184   /// Build and insert `OldValRes<def> = G_ATOMICRMW_ADD Addr, Val, MMO`.
1185   ///
1186   /// Atomically replace the value at \p Addr with the addition of \p Val and
1187   /// the original value. Puts the original value from \p Addr in \p OldValRes.
1188   ///
1189   /// \pre setBasicBlock or setMI must have been called.
1190   /// \pre \p OldValRes must be a generic virtual register.
1191   /// \pre \p Addr must be a generic virtual register with pointer type.
1192   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1193   ///      same type.
1194   ///
1195   /// \return a MachineInstrBuilder for the newly created instruction.
1196   MachineInstrBuilder buildAtomicRMWAdd(Register OldValRes, Register Addr,
1197                                         Register Val, MachineMemOperand &MMO);
1198 
1199   /// Build and insert `OldValRes<def> = G_ATOMICRMW_SUB Addr, Val, MMO`.
1200   ///
1201   /// Atomically replace the value at \p Addr with the subtraction of \p Val and
1202   /// the original value. Puts the original value from \p Addr in \p OldValRes.
1203   ///
1204   /// \pre setBasicBlock or setMI must have been called.
1205   /// \pre \p OldValRes must be a generic virtual register.
1206   /// \pre \p Addr must be a generic virtual register with pointer type.
1207   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1208   ///      same type.
1209   ///
1210   /// \return a MachineInstrBuilder for the newly created instruction.
1211   MachineInstrBuilder buildAtomicRMWSub(Register OldValRes, Register Addr,
1212                                         Register Val, MachineMemOperand &MMO);
1213 
1214   /// Build and insert `OldValRes<def> = G_ATOMICRMW_AND Addr, Val, MMO`.
1215   ///
1216   /// Atomically replace the value at \p Addr with the bitwise and of \p Val and
1217   /// the original value. Puts the original value from \p Addr in \p OldValRes.
1218   ///
1219   /// \pre setBasicBlock or setMI must have been called.
1220   /// \pre \p OldValRes must be a generic virtual register.
1221   /// \pre \p Addr must be a generic virtual register with pointer type.
1222   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1223   ///      same type.
1224   ///
1225   /// \return a MachineInstrBuilder for the newly created instruction.
1226   MachineInstrBuilder buildAtomicRMWAnd(Register OldValRes, Register Addr,
1227                                         Register Val, MachineMemOperand &MMO);
1228 
1229   /// Build and insert `OldValRes<def> = G_ATOMICRMW_NAND Addr, Val, MMO`.
1230   ///
1231   /// Atomically replace the value at \p Addr with the bitwise nand of \p Val
1232   /// and the original value. Puts the original value from \p Addr in \p
1233   /// OldValRes.
1234   ///
1235   /// \pre setBasicBlock or setMI must have been called.
1236   /// \pre \p OldValRes must be a generic virtual register.
1237   /// \pre \p Addr must be a generic virtual register with pointer type.
1238   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1239   ///      same type.
1240   ///
1241   /// \return a MachineInstrBuilder for the newly created instruction.
1242   MachineInstrBuilder buildAtomicRMWNand(Register OldValRes, Register Addr,
1243                                          Register Val, MachineMemOperand &MMO);
1244 
1245   /// Build and insert `OldValRes<def> = G_ATOMICRMW_OR Addr, Val, MMO`.
1246   ///
1247   /// Atomically replace the value at \p Addr with the bitwise or of \p Val and
1248   /// the original value. Puts the original value from \p Addr in \p OldValRes.
1249   ///
1250   /// \pre setBasicBlock or setMI must have been called.
1251   /// \pre \p OldValRes must be a generic virtual register.
1252   /// \pre \p Addr must be a generic virtual register with pointer type.
1253   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1254   ///      same type.
1255   ///
1256   /// \return a MachineInstrBuilder for the newly created instruction.
1257   MachineInstrBuilder buildAtomicRMWOr(Register OldValRes, Register Addr,
1258                                        Register Val, MachineMemOperand &MMO);
1259 
1260   /// Build and insert `OldValRes<def> = G_ATOMICRMW_XOR Addr, Val, MMO`.
1261   ///
1262   /// Atomically replace the value at \p Addr with the bitwise xor of \p Val and
1263   /// the original value. Puts the original value from \p Addr in \p OldValRes.
1264   ///
1265   /// \pre setBasicBlock or setMI must have been called.
1266   /// \pre \p OldValRes must be a generic virtual register.
1267   /// \pre \p Addr must be a generic virtual register with pointer type.
1268   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1269   ///      same type.
1270   ///
1271   /// \return a MachineInstrBuilder for the newly created instruction.
1272   MachineInstrBuilder buildAtomicRMWXor(Register OldValRes, Register Addr,
1273                                         Register Val, MachineMemOperand &MMO);
1274 
1275   /// Build and insert `OldValRes<def> = G_ATOMICRMW_MAX Addr, Val, MMO`.
1276   ///
1277   /// Atomically replace the value at \p Addr with the signed maximum of \p
1278   /// Val and the original value. Puts the original value from \p Addr in \p
1279   /// OldValRes.
1280   ///
1281   /// \pre setBasicBlock or setMI must have been called.
1282   /// \pre \p OldValRes must be a generic virtual register.
1283   /// \pre \p Addr must be a generic virtual register with pointer type.
1284   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1285   ///      same type.
1286   ///
1287   /// \return a MachineInstrBuilder for the newly created instruction.
1288   MachineInstrBuilder buildAtomicRMWMax(Register OldValRes, Register Addr,
1289                                         Register Val, MachineMemOperand &MMO);
1290 
1291   /// Build and insert `OldValRes<def> = G_ATOMICRMW_MIN Addr, Val, MMO`.
1292   ///
1293   /// Atomically replace the value at \p Addr with the signed minimum of \p
1294   /// Val and the original value. Puts the original value from \p Addr in \p
1295   /// OldValRes.
1296   ///
1297   /// \pre setBasicBlock or setMI must have been called.
1298   /// \pre \p OldValRes must be a generic virtual register.
1299   /// \pre \p Addr must be a generic virtual register with pointer type.
1300   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1301   ///      same type.
1302   ///
1303   /// \return a MachineInstrBuilder for the newly created instruction.
1304   MachineInstrBuilder buildAtomicRMWMin(Register OldValRes, Register Addr,
1305                                         Register Val, MachineMemOperand &MMO);
1306 
1307   /// Build and insert `OldValRes<def> = G_ATOMICRMW_UMAX Addr, Val, MMO`.
1308   ///
1309   /// Atomically replace the value at \p Addr with the unsigned maximum of \p
1310   /// Val and the original value. Puts the original value from \p Addr in \p
1311   /// OldValRes.
1312   ///
1313   /// \pre setBasicBlock or setMI must have been called.
1314   /// \pre \p OldValRes must be a generic virtual register.
1315   /// \pre \p Addr must be a generic virtual register with pointer type.
1316   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1317   ///      same type.
1318   ///
1319   /// \return a MachineInstrBuilder for the newly created instruction.
1320   MachineInstrBuilder buildAtomicRMWUmax(Register OldValRes, Register Addr,
1321                                          Register Val, MachineMemOperand &MMO);
1322 
1323   /// Build and insert `OldValRes<def> = G_ATOMICRMW_UMIN Addr, Val, MMO`.
1324   ///
1325   /// Atomically replace the value at \p Addr with the unsigned minimum of \p
1326   /// Val and the original value. Puts the original value from \p Addr in \p
1327   /// OldValRes.
1328   ///
1329   /// \pre setBasicBlock or setMI must have been called.
1330   /// \pre \p OldValRes must be a generic virtual register.
1331   /// \pre \p Addr must be a generic virtual register with pointer type.
1332   /// \pre \p OldValRes, and \p Val must be generic virtual registers of the
1333   ///      same type.
1334   ///
1335   /// \return a MachineInstrBuilder for the newly created instruction.
1336   MachineInstrBuilder buildAtomicRMWUmin(Register OldValRes, Register Addr,
1337                                          Register Val, MachineMemOperand &MMO);
1338 
1339   /// Build and insert `OldValRes<def> = G_ATOMICRMW_FADD Addr, Val, MMO`.
1340   MachineInstrBuilder buildAtomicRMWFAdd(
1341     const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val,
1342     MachineMemOperand &MMO);
1343 
1344   /// Build and insert `OldValRes<def> = G_ATOMICRMW_FSUB Addr, Val, MMO`.
1345   MachineInstrBuilder buildAtomicRMWFSub(
1346         const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val,
1347         MachineMemOperand &MMO);
1348 
1349   /// Build and insert `G_FENCE Ordering, Scope`.
1350   MachineInstrBuilder buildFence(unsigned Ordering, unsigned Scope);
1351 
1352   /// Build and insert \p Dst = G_FREEZE \p Src
buildFreeze(const DstOp & Dst,const SrcOp & Src)1353   MachineInstrBuilder buildFreeze(const DstOp &Dst, const SrcOp &Src) {
1354     return buildInstr(TargetOpcode::G_FREEZE, {Dst}, {Src});
1355   }
1356 
1357   /// Build and insert \p Res = G_BLOCK_ADDR \p BA
1358   ///
1359   /// G_BLOCK_ADDR computes the address of a basic block.
1360   ///
1361   /// \pre setBasicBlock or setMI must have been called.
1362   /// \pre \p Res must be a generic virtual register of a pointer type.
1363   ///
1364   /// \return The newly created instruction.
1365   MachineInstrBuilder buildBlockAddress(Register Res, const BlockAddress *BA);
1366 
1367   /// Build and insert \p Res = G_ADD \p Op0, \p Op1
1368   ///
1369   /// G_ADD sets \p Res to the sum of integer parameters \p Op0 and \p Op1,
1370   /// truncated to their width.
1371   ///
1372   /// \pre setBasicBlock or setMI must have been called.
1373   /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
1374   ///      with the same (scalar or vector) type).
1375   ///
1376   /// \return a MachineInstrBuilder for the newly created instruction.
1377 
1378   MachineInstrBuilder buildAdd(const DstOp &Dst, const SrcOp &Src0,
1379                                const SrcOp &Src1,
1380                                Optional<unsigned> Flags = None) {
1381     return buildInstr(TargetOpcode::G_ADD, {Dst}, {Src0, Src1}, Flags);
1382   }
1383 
1384   /// Build and insert \p Res = G_SUB \p Op0, \p Op1
1385   ///
1386   /// G_SUB sets \p Res to the sum of integer parameters \p Op0 and \p Op1,
1387   /// truncated to their width.
1388   ///
1389   /// \pre setBasicBlock or setMI must have been called.
1390   /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
1391   ///      with the same (scalar or vector) type).
1392   ///
1393   /// \return a MachineInstrBuilder for the newly created instruction.
1394 
1395   MachineInstrBuilder buildSub(const DstOp &Dst, const SrcOp &Src0,
1396                                const SrcOp &Src1,
1397                                Optional<unsigned> Flags = None) {
1398     return buildInstr(TargetOpcode::G_SUB, {Dst}, {Src0, Src1}, Flags);
1399   }
1400 
1401   /// Build and insert \p Res = G_MUL \p Op0, \p Op1
1402   ///
1403   /// G_MUL sets \p Res to the sum of integer parameters \p Op0 and \p Op1,
1404   /// truncated to their width.
1405   ///
1406   /// \pre setBasicBlock or setMI must have been called.
1407   /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
1408   ///      with the same (scalar or vector) type).
1409   ///
1410   /// \return a MachineInstrBuilder for the newly created instruction.
1411   MachineInstrBuilder buildMul(const DstOp &Dst, const SrcOp &Src0,
1412                                const SrcOp &Src1,
1413                                Optional<unsigned> Flags = None) {
1414     return buildInstr(TargetOpcode::G_MUL, {Dst}, {Src0, Src1}, Flags);
1415   }
1416 
1417   MachineInstrBuilder buildUMulH(const DstOp &Dst, const SrcOp &Src0,
1418                                  const SrcOp &Src1,
1419                                  Optional<unsigned> Flags = None) {
1420     return buildInstr(TargetOpcode::G_UMULH, {Dst}, {Src0, Src1}, Flags);
1421   }
1422 
1423   MachineInstrBuilder buildSMulH(const DstOp &Dst, const SrcOp &Src0,
1424                                  const SrcOp &Src1,
1425                                  Optional<unsigned> Flags = None) {
1426     return buildInstr(TargetOpcode::G_SMULH, {Dst}, {Src0, Src1}, Flags);
1427   }
1428 
1429   MachineInstrBuilder buildFMul(const DstOp &Dst, const SrcOp &Src0,
1430                                 const SrcOp &Src1,
1431                                 Optional<unsigned> Flags = None) {
1432     return buildInstr(TargetOpcode::G_FMUL, {Dst}, {Src0, Src1}, Flags);
1433   }
1434 
1435   MachineInstrBuilder buildFMinNum(const DstOp &Dst, const SrcOp &Src0,
1436                                    const SrcOp &Src1,
1437                                    Optional<unsigned> Flags = None) {
1438     return buildInstr(TargetOpcode::G_FMINNUM, {Dst}, {Src0, Src1}, Flags);
1439   }
1440 
1441   MachineInstrBuilder buildFMaxNum(const DstOp &Dst, const SrcOp &Src0,
1442                                    const SrcOp &Src1,
1443                                    Optional<unsigned> Flags = None) {
1444     return buildInstr(TargetOpcode::G_FMAXNUM, {Dst}, {Src0, Src1}, Flags);
1445   }
1446 
1447   MachineInstrBuilder buildFMinNumIEEE(const DstOp &Dst, const SrcOp &Src0,
1448                                        const SrcOp &Src1,
1449                                        Optional<unsigned> Flags = None) {
1450     return buildInstr(TargetOpcode::G_FMINNUM_IEEE, {Dst}, {Src0, Src1}, Flags);
1451   }
1452 
1453   MachineInstrBuilder buildFMaxNumIEEE(const DstOp &Dst, const SrcOp &Src0,
1454                                        const SrcOp &Src1,
1455                                        Optional<unsigned> Flags = None) {
1456     return buildInstr(TargetOpcode::G_FMAXNUM_IEEE, {Dst}, {Src0, Src1}, Flags);
1457   }
1458 
1459   MachineInstrBuilder buildShl(const DstOp &Dst, const SrcOp &Src0,
1460                                const SrcOp &Src1,
1461                                Optional<unsigned> Flags = None) {
1462     return buildInstr(TargetOpcode::G_SHL, {Dst}, {Src0, Src1}, Flags);
1463   }
1464 
1465   MachineInstrBuilder buildLShr(const DstOp &Dst, const SrcOp &Src0,
1466                                 const SrcOp &Src1,
1467                                 Optional<unsigned> Flags = None) {
1468     return buildInstr(TargetOpcode::G_LSHR, {Dst}, {Src0, Src1}, Flags);
1469   }
1470 
1471   MachineInstrBuilder buildAShr(const DstOp &Dst, const SrcOp &Src0,
1472                                 const SrcOp &Src1,
1473                                 Optional<unsigned> Flags = None) {
1474     return buildInstr(TargetOpcode::G_ASHR, {Dst}, {Src0, Src1}, Flags);
1475   }
1476 
1477   /// Build and insert \p Res = G_AND \p Op0, \p Op1
1478   ///
1479   /// G_AND sets \p Res to the bitwise and of integer parameters \p Op0 and \p
1480   /// Op1.
1481   ///
1482   /// \pre setBasicBlock or setMI must have been called.
1483   /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
1484   ///      with the same (scalar or vector) type).
1485   ///
1486   /// \return a MachineInstrBuilder for the newly created instruction.
1487 
buildAnd(const DstOp & Dst,const SrcOp & Src0,const SrcOp & Src1)1488   MachineInstrBuilder buildAnd(const DstOp &Dst, const SrcOp &Src0,
1489                                const SrcOp &Src1) {
1490     return buildInstr(TargetOpcode::G_AND, {Dst}, {Src0, Src1});
1491   }
1492 
1493   /// Build and insert \p Res = G_OR \p Op0, \p Op1
1494   ///
1495   /// G_OR sets \p Res to the bitwise or of integer parameters \p Op0 and \p
1496   /// Op1.
1497   ///
1498   /// \pre setBasicBlock or setMI must have been called.
1499   /// \pre \p Res, \p Op0 and \p Op1 must be generic virtual registers
1500   ///      with the same (scalar or vector) type).
1501   ///
1502   /// \return a MachineInstrBuilder for the newly created instruction.
buildOr(const DstOp & Dst,const SrcOp & Src0,const SrcOp & Src1)1503   MachineInstrBuilder buildOr(const DstOp &Dst, const SrcOp &Src0,
1504                               const SrcOp &Src1) {
1505     return buildInstr(TargetOpcode::G_OR, {Dst}, {Src0, Src1});
1506   }
1507 
1508   /// Build and insert \p Res = G_XOR \p Op0, \p Op1
buildXor(const DstOp & Dst,const SrcOp & Src0,const SrcOp & Src1)1509   MachineInstrBuilder buildXor(const DstOp &Dst, const SrcOp &Src0,
1510                                const SrcOp &Src1) {
1511     return buildInstr(TargetOpcode::G_XOR, {Dst}, {Src0, Src1});
1512   }
1513 
1514   /// Build and insert a bitwise not,
1515   /// \p NegOne = G_CONSTANT -1
1516   /// \p Res = G_OR \p Op0, NegOne
buildNot(const DstOp & Dst,const SrcOp & Src0)1517   MachineInstrBuilder buildNot(const DstOp &Dst, const SrcOp &Src0) {
1518     auto NegOne = buildConstant(Dst.getLLTTy(*getMRI()), -1);
1519     return buildInstr(TargetOpcode::G_XOR, {Dst}, {Src0, NegOne});
1520   }
1521 
1522   /// Build and insert \p Res = G_CTPOP \p Op0, \p Src0
buildCTPOP(const DstOp & Dst,const SrcOp & Src0)1523   MachineInstrBuilder buildCTPOP(const DstOp &Dst, const SrcOp &Src0) {
1524     return buildInstr(TargetOpcode::G_CTPOP, {Dst}, {Src0});
1525   }
1526 
1527   /// Build and insert \p Res = G_CTLZ \p Op0, \p Src0
buildCTLZ(const DstOp & Dst,const SrcOp & Src0)1528   MachineInstrBuilder buildCTLZ(const DstOp &Dst, const SrcOp &Src0) {
1529     return buildInstr(TargetOpcode::G_CTLZ, {Dst}, {Src0});
1530   }
1531 
1532   /// Build and insert \p Res = G_CTLZ_ZERO_UNDEF \p Op0, \p Src0
buildCTLZ_ZERO_UNDEF(const DstOp & Dst,const SrcOp & Src0)1533   MachineInstrBuilder buildCTLZ_ZERO_UNDEF(const DstOp &Dst, const SrcOp &Src0) {
1534     return buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, {Dst}, {Src0});
1535   }
1536 
1537   /// Build and insert \p Res = G_CTTZ \p Op0, \p Src0
buildCTTZ(const DstOp & Dst,const SrcOp & Src0)1538   MachineInstrBuilder buildCTTZ(const DstOp &Dst, const SrcOp &Src0) {
1539     return buildInstr(TargetOpcode::G_CTTZ, {Dst}, {Src0});
1540   }
1541 
1542   /// Build and insert \p Res = G_CTTZ_ZERO_UNDEF \p Op0, \p Src0
buildCTTZ_ZERO_UNDEF(const DstOp & Dst,const SrcOp & Src0)1543   MachineInstrBuilder buildCTTZ_ZERO_UNDEF(const DstOp &Dst, const SrcOp &Src0) {
1544     return buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, {Dst}, {Src0});
1545   }
1546 
1547   /// Build and insert \p Dst = G_BSWAP \p Src0
buildBSwap(const DstOp & Dst,const SrcOp & Src0)1548   MachineInstrBuilder buildBSwap(const DstOp &Dst, const SrcOp &Src0) {
1549     return buildInstr(TargetOpcode::G_BSWAP, {Dst}, {Src0});
1550   }
1551 
1552   /// Build and insert \p Res = G_FADD \p Op0, \p Op1
1553   MachineInstrBuilder buildFAdd(const DstOp &Dst, const SrcOp &Src0,
1554                                 const SrcOp &Src1,
1555                                 Optional<unsigned> Flags = None) {
1556     return buildInstr(TargetOpcode::G_FADD, {Dst}, {Src0, Src1}, Flags);
1557   }
1558 
1559   /// Build and insert \p Res = G_FSUB \p Op0, \p Op1
1560   MachineInstrBuilder buildFSub(const DstOp &Dst, const SrcOp &Src0,
1561                                 const SrcOp &Src1,
1562                                 Optional<unsigned> Flags = None) {
1563     return buildInstr(TargetOpcode::G_FSUB, {Dst}, {Src0, Src1}, Flags);
1564   }
1565 
1566   /// Build and insert \p Res = G_FDIV \p Op0, \p Op1
1567   MachineInstrBuilder buildFDiv(const DstOp &Dst, const SrcOp &Src0,
1568                                 const SrcOp &Src1,
1569                                 Optional<unsigned> Flags = None) {
1570     return buildInstr(TargetOpcode::G_FDIV, {Dst}, {Src0, Src1}, Flags);
1571   }
1572 
1573   /// Build and insert \p Res = G_FMA \p Op0, \p Op1, \p Op2
1574   MachineInstrBuilder buildFMA(const DstOp &Dst, const SrcOp &Src0,
1575                                const SrcOp &Src1, const SrcOp &Src2,
1576                                Optional<unsigned> Flags = None) {
1577     return buildInstr(TargetOpcode::G_FMA, {Dst}, {Src0, Src1, Src2}, Flags);
1578   }
1579 
1580   /// Build and insert \p Res = G_FMAD \p Op0, \p Op1, \p Op2
1581   MachineInstrBuilder buildFMAD(const DstOp &Dst, const SrcOp &Src0,
1582                                 const SrcOp &Src1, const SrcOp &Src2,
1583                                 Optional<unsigned> Flags = None) {
1584     return buildInstr(TargetOpcode::G_FMAD, {Dst}, {Src0, Src1, Src2}, Flags);
1585   }
1586 
1587   /// Build and insert \p Res = G_FNEG \p Op0
1588   MachineInstrBuilder buildFNeg(const DstOp &Dst, const SrcOp &Src0,
1589                                 Optional<unsigned> Flags = None) {
1590     return buildInstr(TargetOpcode::G_FNEG, {Dst}, {Src0}, Flags);
1591   }
1592 
1593   /// Build and insert \p Res = G_FABS \p Op0
1594   MachineInstrBuilder buildFAbs(const DstOp &Dst, const SrcOp &Src0,
1595                                 Optional<unsigned> Flags = None) {
1596     return buildInstr(TargetOpcode::G_FABS, {Dst}, {Src0}, Flags);
1597   }
1598 
1599   /// Build and insert \p Dst = G_FCANONICALIZE \p Src0
1600   MachineInstrBuilder buildFCanonicalize(const DstOp &Dst, const SrcOp &Src0,
1601                                          Optional<unsigned> Flags = None) {
1602     return buildInstr(TargetOpcode::G_FCANONICALIZE, {Dst}, {Src0}, Flags);
1603   }
1604 
1605   /// Build and insert \p Dst = G_INTRINSIC_TRUNC \p Src0
1606   MachineInstrBuilder buildIntrinsicTrunc(const DstOp &Dst, const SrcOp &Src0,
1607                                          Optional<unsigned> Flags = None) {
1608     return buildInstr(TargetOpcode::G_INTRINSIC_TRUNC, {Dst}, {Src0}, Flags);
1609   }
1610 
1611   /// Build and insert \p Res = GFFLOOR \p Op0, \p Op1
1612   MachineInstrBuilder buildFFloor(const DstOp &Dst, const SrcOp &Src0,
1613                                           Optional<unsigned> Flags = None) {
1614     return buildInstr(TargetOpcode::G_FFLOOR, {Dst}, {Src0}, Flags);
1615   }
1616 
1617   /// Build and insert \p Dst = G_FLOG \p Src
1618   MachineInstrBuilder buildFLog(const DstOp &Dst, const SrcOp &Src,
1619                                 Optional<unsigned> Flags = None) {
1620     return buildInstr(TargetOpcode::G_FLOG, {Dst}, {Src}, Flags);
1621   }
1622 
1623   /// Build and insert \p Dst = G_FLOG2 \p Src
1624   MachineInstrBuilder buildFLog2(const DstOp &Dst, const SrcOp &Src,
1625                                 Optional<unsigned> Flags = None) {
1626     return buildInstr(TargetOpcode::G_FLOG2, {Dst}, {Src}, Flags);
1627   }
1628 
1629   /// Build and insert \p Dst = G_FEXP2 \p Src
1630   MachineInstrBuilder buildFExp2(const DstOp &Dst, const SrcOp &Src,
1631                                 Optional<unsigned> Flags = None) {
1632     return buildInstr(TargetOpcode::G_FEXP2, {Dst}, {Src}, Flags);
1633   }
1634 
1635   /// Build and insert \p Dst = G_FPOW \p Src0, \p Src1
1636   MachineInstrBuilder buildFPow(const DstOp &Dst, const SrcOp &Src0,
1637                                 const SrcOp &Src1,
1638                                 Optional<unsigned> Flags = None) {
1639     return buildInstr(TargetOpcode::G_FPOW, {Dst}, {Src0, Src1}, Flags);
1640   }
1641 
1642   /// Build and insert \p Res = G_FCOPYSIGN \p Op0, \p Op1
buildFCopysign(const DstOp & Dst,const SrcOp & Src0,const SrcOp & Src1)1643   MachineInstrBuilder buildFCopysign(const DstOp &Dst, const SrcOp &Src0,
1644                                      const SrcOp &Src1) {
1645     return buildInstr(TargetOpcode::G_FCOPYSIGN, {Dst}, {Src0, Src1});
1646   }
1647 
1648   /// Build and insert \p Res = G_UITOFP \p Src0
buildUITOFP(const DstOp & Dst,const SrcOp & Src0)1649   MachineInstrBuilder buildUITOFP(const DstOp &Dst, const SrcOp &Src0) {
1650     return buildInstr(TargetOpcode::G_UITOFP, {Dst}, {Src0});
1651   }
1652 
1653   /// Build and insert \p Res = G_SITOFP \p Src0
buildSITOFP(const DstOp & Dst,const SrcOp & Src0)1654   MachineInstrBuilder buildSITOFP(const DstOp &Dst, const SrcOp &Src0) {
1655     return buildInstr(TargetOpcode::G_SITOFP, {Dst}, {Src0});
1656   }
1657 
1658   /// Build and insert \p Res = G_FPTOUI \p Src0
buildFPTOUI(const DstOp & Dst,const SrcOp & Src0)1659   MachineInstrBuilder buildFPTOUI(const DstOp &Dst, const SrcOp &Src0) {
1660     return buildInstr(TargetOpcode::G_FPTOUI, {Dst}, {Src0});
1661   }
1662 
1663   /// Build and insert \p Res = G_FPTOSI \p Src0
buildFPTOSI(const DstOp & Dst,const SrcOp & Src0)1664   MachineInstrBuilder buildFPTOSI(const DstOp &Dst, const SrcOp &Src0) {
1665     return buildInstr(TargetOpcode::G_FPTOSI, {Dst}, {Src0});
1666   }
1667 
1668   /// Build and insert \p Res = G_SMIN \p Op0, \p Op1
buildSMin(const DstOp & Dst,const SrcOp & Src0,const SrcOp & Src1)1669   MachineInstrBuilder buildSMin(const DstOp &Dst, const SrcOp &Src0,
1670                                 const SrcOp &Src1) {
1671     return buildInstr(TargetOpcode::G_SMIN, {Dst}, {Src0, Src1});
1672   }
1673 
1674   /// Build and insert \p Res = G_SMAX \p Op0, \p Op1
buildSMax(const DstOp & Dst,const SrcOp & Src0,const SrcOp & Src1)1675   MachineInstrBuilder buildSMax(const DstOp &Dst, const SrcOp &Src0,
1676                                 const SrcOp &Src1) {
1677     return buildInstr(TargetOpcode::G_SMAX, {Dst}, {Src0, Src1});
1678   }
1679 
1680   /// Build and insert \p Res = G_UMIN \p Op0, \p Op1
buildUMin(const DstOp & Dst,const SrcOp & Src0,const SrcOp & Src1)1681   MachineInstrBuilder buildUMin(const DstOp &Dst, const SrcOp &Src0,
1682                                 const SrcOp &Src1) {
1683     return buildInstr(TargetOpcode::G_UMIN, {Dst}, {Src0, Src1});
1684   }
1685 
1686   /// Build and insert \p Res = G_UMAX \p Op0, \p Op1
buildUMax(const DstOp & Dst,const SrcOp & Src0,const SrcOp & Src1)1687   MachineInstrBuilder buildUMax(const DstOp &Dst, const SrcOp &Src0,
1688                                 const SrcOp &Src1) {
1689     return buildInstr(TargetOpcode::G_UMAX, {Dst}, {Src0, Src1});
1690   }
1691 
1692   /// Build and insert \p Dst = G_ABS \p Src
buildAbs(const DstOp & Dst,const SrcOp & Src)1693   MachineInstrBuilder buildAbs(const DstOp &Dst, const SrcOp &Src) {
1694     return buildInstr(TargetOpcode::G_ABS, {Dst}, {Src});
1695   }
1696 
1697   /// Build and insert \p Res = G_JUMP_TABLE \p JTI
1698   ///
1699   /// G_JUMP_TABLE sets \p Res to the address of the jump table specified by
1700   /// the jump table index \p JTI.
1701   ///
1702   /// \return a MachineInstrBuilder for the newly created instruction.
1703   MachineInstrBuilder buildJumpTable(const LLT PtrTy, unsigned JTI);
1704 
1705   /// Build and insert \p Res = G_VECREDUCE_SEQ_FADD \p ScalarIn, \p VecIn
1706   ///
1707   /// \p ScalarIn is the scalar accumulator input to start the sequential
1708   /// reduction operation of \p VecIn.
buildVecReduceSeqFAdd(const DstOp & Dst,const SrcOp & ScalarIn,const SrcOp & VecIn)1709   MachineInstrBuilder buildVecReduceSeqFAdd(const DstOp &Dst,
1710                                             const SrcOp &ScalarIn,
1711                                             const SrcOp &VecIn) {
1712     return buildInstr(TargetOpcode::G_VECREDUCE_SEQ_FADD, {Dst},
1713                       {ScalarIn, {VecIn}});
1714   }
1715 
1716   /// Build and insert \p Res = G_VECREDUCE_SEQ_FMUL \p ScalarIn, \p VecIn
1717   ///
1718   /// \p ScalarIn is the scalar accumulator input to start the sequential
1719   /// reduction operation of \p VecIn.
buildVecReduceSeqFMul(const DstOp & Dst,const SrcOp & ScalarIn,const SrcOp & VecIn)1720   MachineInstrBuilder buildVecReduceSeqFMul(const DstOp &Dst,
1721                                             const SrcOp &ScalarIn,
1722                                             const SrcOp &VecIn) {
1723     return buildInstr(TargetOpcode::G_VECREDUCE_SEQ_FMUL, {Dst},
1724                       {ScalarIn, {VecIn}});
1725   }
1726 
1727   /// Build and insert \p Res = G_VECREDUCE_FADD \p Src
1728   ///
1729   /// \p ScalarIn is the scalar accumulator input to the reduction operation of
1730   /// \p VecIn.
buildVecReduceFAdd(const DstOp & Dst,const SrcOp & ScalarIn,const SrcOp & VecIn)1731   MachineInstrBuilder buildVecReduceFAdd(const DstOp &Dst,
1732                                          const SrcOp &ScalarIn,
1733                                          const SrcOp &VecIn) {
1734     return buildInstr(TargetOpcode::G_VECREDUCE_FADD, {Dst}, {ScalarIn, VecIn});
1735   }
1736 
1737   /// Build and insert \p Res = G_VECREDUCE_FMUL \p Src
1738   ///
1739   /// \p ScalarIn is the scalar accumulator input to the reduction operation of
1740   /// \p VecIn.
buildVecReduceFMul(const DstOp & Dst,const SrcOp & ScalarIn,const SrcOp & VecIn)1741   MachineInstrBuilder buildVecReduceFMul(const DstOp &Dst,
1742                                          const SrcOp &ScalarIn,
1743                                          const SrcOp &VecIn) {
1744     return buildInstr(TargetOpcode::G_VECREDUCE_FMUL, {Dst}, {ScalarIn, VecIn});
1745   }
1746 
1747   /// Build and insert \p Res = G_VECREDUCE_FMAX \p Src
buildVecReduceFMax(const DstOp & Dst,const SrcOp & Src)1748   MachineInstrBuilder buildVecReduceFMax(const DstOp &Dst, const SrcOp &Src) {
1749     return buildInstr(TargetOpcode::G_VECREDUCE_FMAX, {Dst}, {Src});
1750   }
1751 
1752   /// Build and insert \p Res = G_VECREDUCE_FMIN \p Src
buildVecReduceFMin(const DstOp & Dst,const SrcOp & Src)1753   MachineInstrBuilder buildVecReduceFMin(const DstOp &Dst, const SrcOp &Src) {
1754     return buildInstr(TargetOpcode::G_VECREDUCE_FMIN, {Dst}, {Src});
1755   }
1756   /// Build and insert \p Res = G_VECREDUCE_ADD \p Src
buildVecReduceAdd(const DstOp & Dst,const SrcOp & Src)1757   MachineInstrBuilder buildVecReduceAdd(const DstOp &Dst, const SrcOp &Src) {
1758     return buildInstr(TargetOpcode::G_VECREDUCE_ADD, {Dst}, {Src});
1759   }
1760 
1761   /// Build and insert \p Res = G_VECREDUCE_MUL \p Src
buildVecReduceMul(const DstOp & Dst,const SrcOp & Src)1762   MachineInstrBuilder buildVecReduceMul(const DstOp &Dst, const SrcOp &Src) {
1763     return buildInstr(TargetOpcode::G_VECREDUCE_MUL, {Dst}, {Src});
1764   }
1765 
1766   /// Build and insert \p Res = G_VECREDUCE_AND \p Src
buildVecReduceAnd(const DstOp & Dst,const SrcOp & Src)1767   MachineInstrBuilder buildVecReduceAnd(const DstOp &Dst, const SrcOp &Src) {
1768     return buildInstr(TargetOpcode::G_VECREDUCE_AND, {Dst}, {Src});
1769   }
1770 
1771   /// Build and insert \p Res = G_VECREDUCE_OR \p Src
buildVecReduceOr(const DstOp & Dst,const SrcOp & Src)1772   MachineInstrBuilder buildVecReduceOr(const DstOp &Dst, const SrcOp &Src) {
1773     return buildInstr(TargetOpcode::G_VECREDUCE_OR, {Dst}, {Src});
1774   }
1775 
1776   /// Build and insert \p Res = G_VECREDUCE_XOR \p Src
buildVecReduceXor(const DstOp & Dst,const SrcOp & Src)1777   MachineInstrBuilder buildVecReduceXor(const DstOp &Dst, const SrcOp &Src) {
1778     return buildInstr(TargetOpcode::G_VECREDUCE_XOR, {Dst}, {Src});
1779   }
1780 
1781   /// Build and insert \p Res = G_VECREDUCE_SMAX \p Src
buildVecReduceSMax(const DstOp & Dst,const SrcOp & Src)1782   MachineInstrBuilder buildVecReduceSMax(const DstOp &Dst, const SrcOp &Src) {
1783     return buildInstr(TargetOpcode::G_VECREDUCE_SMAX, {Dst}, {Src});
1784   }
1785 
1786   /// Build and insert \p Res = G_VECREDUCE_SMIN \p Src
buildVecReduceSMin(const DstOp & Dst,const SrcOp & Src)1787   MachineInstrBuilder buildVecReduceSMin(const DstOp &Dst, const SrcOp &Src) {
1788     return buildInstr(TargetOpcode::G_VECREDUCE_SMIN, {Dst}, {Src});
1789   }
1790 
1791   /// Build and insert \p Res = G_VECREDUCE_UMAX \p Src
buildVecReduceUMax(const DstOp & Dst,const SrcOp & Src)1792   MachineInstrBuilder buildVecReduceUMax(const DstOp &Dst, const SrcOp &Src) {
1793     return buildInstr(TargetOpcode::G_VECREDUCE_UMAX, {Dst}, {Src});
1794   }
1795 
1796   /// Build and insert \p Res = G_VECREDUCE_UMIN \p Src
buildVecReduceUMin(const DstOp & Dst,const SrcOp & Src)1797   MachineInstrBuilder buildVecReduceUMin(const DstOp &Dst, const SrcOp &Src) {
1798     return buildInstr(TargetOpcode::G_VECREDUCE_UMIN, {Dst}, {Src});
1799   }
1800   virtual MachineInstrBuilder buildInstr(unsigned Opc, ArrayRef<DstOp> DstOps,
1801                                          ArrayRef<SrcOp> SrcOps,
1802                                          Optional<unsigned> Flags = None);
1803 };
1804 
1805 } // End namespace llvm.
1806 #endif // LLVM_CODEGEN_GLOBALISEL_MACHINEIRBUILDER_H
1807