1 //===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// This file contains the declarations for metadata subclasses.
11 /// They represent the different flavors of metadata that live in LLVM.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_METADATA_H
16 #define LLVM_IR_METADATA_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DenseMapInfo.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/PointerUnion.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/ilist_node.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/Support/CBindingWrapping.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include <cassert>
36 #include <cstddef>
37 #include <cstdint>
38 #include <iterator>
39 #include <memory>
40 #include <string>
41 #include <type_traits>
42 #include <utility>
43 
44 namespace llvm {
45 
46 class Module;
47 class ModuleSlotTracker;
48 class raw_ostream;
49 class Type;
50 
51 enum LLVMConstants : uint32_t {
52   DEBUG_METADATA_VERSION = 3 // Current debug info version number.
53 };
54 
55 /// Root of the metadata hierarchy.
56 ///
57 /// This is a root class for typeless data in the IR.
58 class Metadata {
59   friend class ReplaceableMetadataImpl;
60 
61   /// RTTI.
62   const unsigned char SubclassID;
63 
64 protected:
65   /// Active type of storage.
66   enum StorageType { Uniqued, Distinct, Temporary };
67 
68   /// Storage flag for non-uniqued, otherwise unowned, metadata.
69   unsigned char Storage : 7;
70   // TODO: expose remaining bits to subclasses.
71 
72   unsigned char ImplicitCode : 1;
73 
74   unsigned short SubclassData16 = 0;
75   unsigned SubclassData32 = 0;
76 
77 public:
78   enum MetadataKind {
79 #define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
80 #include "llvm/IR/Metadata.def"
81   };
82 
83 protected:
Metadata(unsigned ID,StorageType Storage)84   Metadata(unsigned ID, StorageType Storage)
85       : SubclassID(ID), Storage(Storage), ImplicitCode(false) {
86     static_assert(sizeof(*this) == 8, "Metadata fields poorly packed");
87   }
88 
89   ~Metadata() = default;
90 
91   /// Default handling of a changed operand, which asserts.
92   ///
93   /// If subclasses pass themselves in as owners to a tracking node reference,
94   /// they must provide an implementation of this method.
handleChangedOperand(void *,Metadata *)95   void handleChangedOperand(void *, Metadata *) {
96     llvm_unreachable("Unimplemented in Metadata subclass");
97   }
98 
99 public:
getMetadataID()100   unsigned getMetadataID() const { return SubclassID; }
101 
102   /// User-friendly dump.
103   ///
104   /// If \c M is provided, metadata nodes will be numbered canonically;
105   /// otherwise, pointer addresses are substituted.
106   ///
107   /// Note: this uses an explicit overload instead of default arguments so that
108   /// the nullptr version is easy to call from a debugger.
109   ///
110   /// @{
111   void dump() const;
112   void dump(const Module *M) const;
113   /// @}
114 
115   /// Print.
116   ///
117   /// Prints definition of \c this.
118   ///
119   /// If \c M is provided, metadata nodes will be numbered canonically;
120   /// otherwise, pointer addresses are substituted.
121   /// @{
122   void print(raw_ostream &OS, const Module *M = nullptr,
123              bool IsForDebug = false) const;
124   void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
125              bool IsForDebug = false) const;
126   /// @}
127 
128   /// Print as operand.
129   ///
130   /// Prints reference of \c this.
131   ///
132   /// If \c M is provided, metadata nodes will be numbered canonically;
133   /// otherwise, pointer addresses are substituted.
134   /// @{
135   void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
136   void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
137                       const Module *M = nullptr) const;
138   /// @}
139 };
140 
141 // Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata,LLVMMetadataRef)142 DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata, LLVMMetadataRef)
143 
144 // Specialized opaque metadata conversions.
145 inline Metadata **unwrap(LLVMMetadataRef *MDs) {
146   return reinterpret_cast<Metadata**>(MDs);
147 }
148 
149 #define HANDLE_METADATA(CLASS) class CLASS;
150 #include "llvm/IR/Metadata.def"
151 
152 // Provide specializations of isa so that we don't need definitions of
153 // subclasses to see if the metadata is a subclass.
154 #define HANDLE_METADATA_LEAF(CLASS)                                            \
155   template <> struct isa_impl<CLASS, Metadata> {                               \
156     static inline bool doit(const Metadata &MD) {                              \
157       return MD.getMetadataID() == Metadata::CLASS##Kind;                      \
158     }                                                                          \
159   };
160 #include "llvm/IR/Metadata.def"
161 
162 inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
163   MD.print(OS);
164   return OS;
165 }
166 
167 /// Metadata wrapper in the Value hierarchy.
168 ///
169 /// A member of the \a Value hierarchy to represent a reference to metadata.
170 /// This allows, e.g., instrinsics to have metadata as operands.
171 ///
172 /// Notably, this is the only thing in either hierarchy that is allowed to
173 /// reference \a LocalAsMetadata.
174 class MetadataAsValue : public Value {
175   friend class ReplaceableMetadataImpl;
176   friend class LLVMContextImpl;
177 
178   Metadata *MD;
179 
180   MetadataAsValue(Type *Ty, Metadata *MD);
181 
182   /// Drop use of metadata (during teardown).
dropUse()183   void dropUse() { MD = nullptr; }
184 
185 public:
186   ~MetadataAsValue();
187 
188   static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
189   static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
190 
getMetadata()191   Metadata *getMetadata() const { return MD; }
192 
classof(const Value * V)193   static bool classof(const Value *V) {
194     return V->getValueID() == MetadataAsValueVal;
195   }
196 
197 private:
198   void handleChangedMetadata(Metadata *MD);
199   void track();
200   void untrack();
201 };
202 
203 /// API for tracking metadata references through RAUW and deletion.
204 ///
205 /// Shared API for updating \a Metadata pointers in subclasses that support
206 /// RAUW.
207 ///
208 /// This API is not meant to be used directly.  See \a TrackingMDRef for a
209 /// user-friendly tracking reference.
210 class MetadataTracking {
211 public:
212   /// Track the reference to metadata.
213   ///
214   /// Register \c MD with \c *MD, if the subclass supports tracking.  If \c *MD
215   /// gets RAUW'ed, \c MD will be updated to the new address.  If \c *MD gets
216   /// deleted, \c MD will be set to \c nullptr.
217   ///
218   /// If tracking isn't supported, \c *MD will not change.
219   ///
220   /// \return true iff tracking is supported by \c MD.
track(Metadata * & MD)221   static bool track(Metadata *&MD) {
222     return track(&MD, *MD, static_cast<Metadata *>(nullptr));
223   }
224 
225   /// Track the reference to metadata for \a Metadata.
226   ///
227   /// As \a track(Metadata*&), but with support for calling back to \c Owner to
228   /// tell it that its operand changed.  This could trigger \c Owner being
229   /// re-uniqued.
track(void * Ref,Metadata & MD,Metadata & Owner)230   static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
231     return track(Ref, MD, &Owner);
232   }
233 
234   /// Track the reference to metadata for \a MetadataAsValue.
235   ///
236   /// As \a track(Metadata*&), but with support for calling back to \c Owner to
237   /// tell it that its operand changed.  This could trigger \c Owner being
238   /// re-uniqued.
track(void * Ref,Metadata & MD,MetadataAsValue & Owner)239   static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
240     return track(Ref, MD, &Owner);
241   }
242 
243   /// Stop tracking a reference to metadata.
244   ///
245   /// Stops \c *MD from tracking \c MD.
untrack(Metadata * & MD)246   static void untrack(Metadata *&MD) { untrack(&MD, *MD); }
247   static void untrack(void *Ref, Metadata &MD);
248 
249   /// Move tracking from one reference to another.
250   ///
251   /// Semantically equivalent to \c untrack(MD) followed by \c track(New),
252   /// except that ownership callbacks are maintained.
253   ///
254   /// Note: it is an error if \c *MD does not equal \c New.
255   ///
256   /// \return true iff tracking is supported by \c MD.
retrack(Metadata * & MD,Metadata * & New)257   static bool retrack(Metadata *&MD, Metadata *&New) {
258     return retrack(&MD, *MD, &New);
259   }
260   static bool retrack(void *Ref, Metadata &MD, void *New);
261 
262   /// Check whether metadata is replaceable.
263   static bool isReplaceable(const Metadata &MD);
264 
265   using OwnerTy = PointerUnion<MetadataAsValue *, Metadata *>;
266 
267 private:
268   /// Track a reference to metadata for an owner.
269   ///
270   /// Generalized version of tracking.
271   static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
272 };
273 
274 /// Shared implementation of use-lists for replaceable metadata.
275 ///
276 /// Most metadata cannot be RAUW'ed.  This is a shared implementation of
277 /// use-lists and associated API for the two that support it (\a ValueAsMetadata
278 /// and \a TempMDNode).
279 class ReplaceableMetadataImpl {
280   friend class MetadataTracking;
281 
282 public:
283   using OwnerTy = MetadataTracking::OwnerTy;
284 
285 private:
286   LLVMContext &Context;
287   uint64_t NextIndex = 0;
288   SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
289 
290 public:
ReplaceableMetadataImpl(LLVMContext & Context)291   ReplaceableMetadataImpl(LLVMContext &Context) : Context(Context) {}
292 
~ReplaceableMetadataImpl()293   ~ReplaceableMetadataImpl() {
294     assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
295   }
296 
getContext()297   LLVMContext &getContext() const { return Context; }
298 
299   /// Replace all uses of this with MD.
300   ///
301   /// Replace all uses of this with \c MD, which is allowed to be null.
302   void replaceAllUsesWith(Metadata *MD);
303 
304   /// Resolve all uses of this.
305   ///
306   /// Resolve all uses of this, turning off RAUW permanently.  If \c
307   /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
308   /// is resolved.
309   void resolveAllUses(bool ResolveUsers = true);
310 
311 private:
312   void addRef(void *Ref, OwnerTy Owner);
313   void dropRef(void *Ref);
314   void moveRef(void *Ref, void *New, const Metadata &MD);
315 
316   /// Lazily construct RAUW support on MD.
317   ///
318   /// If this is an unresolved MDNode, RAUW support will be created on-demand.
319   /// ValueAsMetadata always has RAUW support.
320   static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);
321 
322   /// Get RAUW support on MD, if it exists.
323   static ReplaceableMetadataImpl *getIfExists(Metadata &MD);
324 
325   /// Check whether this node will support RAUW.
326   ///
327   /// Returns \c true unless getOrCreate() would return null.
328   static bool isReplaceable(const Metadata &MD);
329 };
330 
331 /// Value wrapper in the Metadata hierarchy.
332 ///
333 /// This is a custom value handle that allows other metadata to refer to
334 /// classes in the Value hierarchy.
335 ///
336 /// Because of full uniquing support, each value is only wrapped by a single \a
337 /// ValueAsMetadata object, so the lookup maps are far more efficient than
338 /// those using ValueHandleBase.
339 class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
340   friend class ReplaceableMetadataImpl;
341   friend class LLVMContextImpl;
342 
343   Value *V;
344 
345   /// Drop users without RAUW (during teardown).
dropUsers()346   void dropUsers() {
347     ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
348   }
349 
350 protected:
ValueAsMetadata(unsigned ID,Value * V)351   ValueAsMetadata(unsigned ID, Value *V)
352       : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
353     assert(V && "Expected valid value");
354   }
355 
356   ~ValueAsMetadata() = default;
357 
358 public:
359   static ValueAsMetadata *get(Value *V);
360 
getConstant(Value * C)361   static ConstantAsMetadata *getConstant(Value *C) {
362     return cast<ConstantAsMetadata>(get(C));
363   }
364 
getLocal(Value * Local)365   static LocalAsMetadata *getLocal(Value *Local) {
366     return cast<LocalAsMetadata>(get(Local));
367   }
368 
369   static ValueAsMetadata *getIfExists(Value *V);
370 
getConstantIfExists(Value * C)371   static ConstantAsMetadata *getConstantIfExists(Value *C) {
372     return cast_or_null<ConstantAsMetadata>(getIfExists(C));
373   }
374 
getLocalIfExists(Value * Local)375   static LocalAsMetadata *getLocalIfExists(Value *Local) {
376     return cast_or_null<LocalAsMetadata>(getIfExists(Local));
377   }
378 
getValue()379   Value *getValue() const { return V; }
getType()380   Type *getType() const { return V->getType(); }
getContext()381   LLVMContext &getContext() const { return V->getContext(); }
382 
383   static void handleDeletion(Value *V);
384   static void handleRAUW(Value *From, Value *To);
385 
386 protected:
387   /// Handle collisions after \a Value::replaceAllUsesWith().
388   ///
389   /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
390   /// \a Value gets RAUW'ed and the target already exists, this is used to
391   /// merge the two metadata nodes.
replaceAllUsesWith(Metadata * MD)392   void replaceAllUsesWith(Metadata *MD) {
393     ReplaceableMetadataImpl::replaceAllUsesWith(MD);
394   }
395 
396 public:
classof(const Metadata * MD)397   static bool classof(const Metadata *MD) {
398     return MD->getMetadataID() == LocalAsMetadataKind ||
399            MD->getMetadataID() == ConstantAsMetadataKind;
400   }
401 };
402 
403 class ConstantAsMetadata : public ValueAsMetadata {
404   friend class ValueAsMetadata;
405 
ConstantAsMetadata(Constant * C)406   ConstantAsMetadata(Constant *C)
407       : ValueAsMetadata(ConstantAsMetadataKind, C) {}
408 
409 public:
get(Constant * C)410   static ConstantAsMetadata *get(Constant *C) {
411     return ValueAsMetadata::getConstant(C);
412   }
413 
getIfExists(Constant * C)414   static ConstantAsMetadata *getIfExists(Constant *C) {
415     return ValueAsMetadata::getConstantIfExists(C);
416   }
417 
getValue()418   Constant *getValue() const {
419     return cast<Constant>(ValueAsMetadata::getValue());
420   }
421 
classof(const Metadata * MD)422   static bool classof(const Metadata *MD) {
423     return MD->getMetadataID() == ConstantAsMetadataKind;
424   }
425 };
426 
427 class LocalAsMetadata : public ValueAsMetadata {
428   friend class ValueAsMetadata;
429 
LocalAsMetadata(Value * Local)430   LocalAsMetadata(Value *Local)
431       : ValueAsMetadata(LocalAsMetadataKind, Local) {
432     assert(!isa<Constant>(Local) && "Expected local value");
433   }
434 
435 public:
get(Value * Local)436   static LocalAsMetadata *get(Value *Local) {
437     return ValueAsMetadata::getLocal(Local);
438   }
439 
getIfExists(Value * Local)440   static LocalAsMetadata *getIfExists(Value *Local) {
441     return ValueAsMetadata::getLocalIfExists(Local);
442   }
443 
classof(const Metadata * MD)444   static bool classof(const Metadata *MD) {
445     return MD->getMetadataID() == LocalAsMetadataKind;
446   }
447 };
448 
449 /// Transitional API for extracting constants from Metadata.
450 ///
451 /// This namespace contains transitional functions for metadata that points to
452 /// \a Constants.
453 ///
454 /// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
455 /// operands could refer to any \a Value.  There's was a lot of code like this:
456 ///
457 /// \code
458 ///     MDNode *N = ...;
459 ///     auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
460 /// \endcode
461 ///
462 /// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
463 /// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
464 /// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
465 /// cast in the \a Value hierarchy.  Besides creating boiler-plate, this
466 /// requires subtle control flow changes.
467 ///
468 /// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
469 /// so that metadata can refer to numbers without traversing a bridge to the \a
470 /// Value hierarchy.  In this final state, the code above would look like this:
471 ///
472 /// \code
473 ///     MDNode *N = ...;
474 ///     auto *MI = dyn_cast<MDInt>(N->getOperand(2));
475 /// \endcode
476 ///
477 /// The API in this namespace supports the transition.  \a MDInt doesn't exist
478 /// yet, and even once it does, changing each metadata schema to use it is its
479 /// own mini-project.  In the meantime this API prevents us from introducing
480 /// complex and bug-prone control flow that will disappear in the end.  In
481 /// particular, the above code looks like this:
482 ///
483 /// \code
484 ///     MDNode *N = ...;
485 ///     auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
486 /// \endcode
487 ///
488 /// The full set of provided functions includes:
489 ///
490 ///   mdconst::hasa                <=> isa
491 ///   mdconst::extract             <=> cast
492 ///   mdconst::extract_or_null     <=> cast_or_null
493 ///   mdconst::dyn_extract         <=> dyn_cast
494 ///   mdconst::dyn_extract_or_null <=> dyn_cast_or_null
495 ///
496 /// The target of the cast must be a subclass of \a Constant.
497 namespace mdconst {
498 
499 namespace detail {
500 
501 template <class T> T &make();
502 template <class T, class Result> struct HasDereference {
503   using Yes = char[1];
504   using No = char[2];
505   template <size_t N> struct SFINAE {};
506 
507   template <class U, class V>
508   static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
509   template <class U, class V> static No &hasDereference(...);
510 
511   static const bool value =
512       sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
513 };
514 template <class V, class M> struct IsValidPointer {
515   static const bool value = std::is_base_of<Constant, V>::value &&
516                             HasDereference<M, const Metadata &>::value;
517 };
518 template <class V, class M> struct IsValidReference {
519   static const bool value = std::is_base_of<Constant, V>::value &&
520                             std::is_convertible<M, const Metadata &>::value;
521 };
522 
523 } // end namespace detail
524 
525 /// Check whether Metadata has a Value.
526 ///
527 /// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
528 /// type \c X.
529 template <class X, class Y>
530 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, bool>
hasa(Y && MD)531 hasa(Y &&MD) {
532   assert(MD && "Null pointer sent into hasa");
533   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
534     return isa<X>(V->getValue());
535   return false;
536 }
537 template <class X, class Y>
538 inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, bool>
hasa(Y & MD)539 hasa(Y &MD) {
540   return hasa(&MD);
541 }
542 
543 /// Extract a Value from Metadata.
544 ///
545 /// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
546 template <class X, class Y>
547 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
extract(Y && MD)548 extract(Y &&MD) {
549   return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
550 }
551 template <class X, class Y>
552 inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, X *>
extract(Y & MD)553 extract(Y &MD) {
554   return extract(&MD);
555 }
556 
557 /// Extract a Value from Metadata, allowing null.
558 ///
559 /// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
560 /// from \c MD, allowing \c MD to be null.
561 template <class X, class Y>
562 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
extract_or_null(Y && MD)563 extract_or_null(Y &&MD) {
564   if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
565     return cast<X>(V->getValue());
566   return nullptr;
567 }
568 
569 /// Extract a Value from Metadata, if any.
570 ///
571 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
572 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
573 /// Value it does contain is of the wrong subclass.
574 template <class X, class Y>
575 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
dyn_extract(Y && MD)576 dyn_extract(Y &&MD) {
577   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
578     return dyn_cast<X>(V->getValue());
579   return nullptr;
580 }
581 
582 /// Extract a Value from Metadata, if any, allowing null.
583 ///
584 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
585 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
586 /// Value it does contain is of the wrong subclass, allowing \c MD to be null.
587 template <class X, class Y>
588 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
dyn_extract_or_null(Y && MD)589 dyn_extract_or_null(Y &&MD) {
590   if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
591     return dyn_cast<X>(V->getValue());
592   return nullptr;
593 }
594 
595 } // end namespace mdconst
596 
597 //===----------------------------------------------------------------------===//
598 /// A single uniqued string.
599 ///
600 /// These are used to efficiently contain a byte sequence for metadata.
601 /// MDString is always unnamed.
602 class MDString : public Metadata {
603   friend class StringMapEntryStorage<MDString>;
604 
605   StringMapEntry<MDString> *Entry = nullptr;
606 
MDString()607   MDString() : Metadata(MDStringKind, Uniqued) {}
608 
609 public:
610   MDString(const MDString &) = delete;
611   MDString &operator=(MDString &&) = delete;
612   MDString &operator=(const MDString &) = delete;
613 
614   static MDString *get(LLVMContext &Context, StringRef Str);
get(LLVMContext & Context,const char * Str)615   static MDString *get(LLVMContext &Context, const char *Str) {
616     return get(Context, Str ? StringRef(Str) : StringRef());
617   }
618 
619   StringRef getString() const;
620 
getLength()621   unsigned getLength() const { return (unsigned)getString().size(); }
622 
623   using iterator = StringRef::iterator;
624 
625   /// Pointer to the first byte of the string.
begin()626   iterator begin() const { return getString().begin(); }
627 
628   /// Pointer to one byte past the end of the string.
end()629   iterator end() const { return getString().end(); }
630 
bytes_begin()631   const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
bytes_end()632   const unsigned char *bytes_end() const { return getString().bytes_end(); }
633 
634   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Metadata * MD)635   static bool classof(const Metadata *MD) {
636     return MD->getMetadataID() == MDStringKind;
637   }
638 };
639 
640 /// A collection of metadata nodes that might be associated with a
641 /// memory access used by the alias-analysis infrastructure.
642 struct AAMDNodes {
643   explicit AAMDNodes() = default;
AAMDNodesAAMDNodes644   explicit AAMDNodes(MDNode *T, MDNode *TS, MDNode *S, MDNode *N)
645       : TBAA(T), TBAAStruct(TS), Scope(S), NoAlias(N) {}
646 
647   bool operator==(const AAMDNodes &A) const {
648     return TBAA == A.TBAA && TBAAStruct == A.TBAAStruct && Scope == A.Scope &&
649            NoAlias == A.NoAlias;
650   }
651 
652   bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
653 
654   explicit operator bool() const {
655     return TBAA || TBAAStruct || Scope || NoAlias;
656   }
657 
658   /// The tag for type-based alias analysis.
659   MDNode *TBAA = nullptr;
660 
661   /// The tag for type-based alias analysis (tbaa struct).
662   MDNode *TBAAStruct = nullptr;
663 
664   /// The tag for alias scope specification (used with noalias).
665   MDNode *Scope = nullptr;
666 
667   /// The tag specifying the noalias scope.
668   MDNode *NoAlias = nullptr;
669 
670   // Shift tbaa Metadata node to start off bytes later
671   static MDNode *ShiftTBAA(MDNode *M, size_t off);
672 
673   // Shift tbaa.struct Metadata node to start off bytes later
674   static MDNode *ShiftTBAAStruct(MDNode *M, size_t off);
675 
676   /// Given two sets of AAMDNodes that apply to the same pointer,
677   /// give the best AAMDNodes that are compatible with both (i.e. a set of
678   /// nodes whose allowable aliasing conclusions are a subset of those
679   /// allowable by both of the inputs). However, for efficiency
680   /// reasons, do not create any new MDNodes.
intersectAAMDNodes681   AAMDNodes intersect(const AAMDNodes &Other) {
682     AAMDNodes Result;
683     Result.TBAA = Other.TBAA == TBAA ? TBAA : nullptr;
684     Result.TBAAStruct = Other.TBAAStruct == TBAAStruct ? TBAAStruct : nullptr;
685     Result.Scope = Other.Scope == Scope ? Scope : nullptr;
686     Result.NoAlias = Other.NoAlias == NoAlias ? NoAlias : nullptr;
687     return Result;
688   }
689 
690   /// Create a new AAMDNode that describes this AAMDNode after applying a
691   /// constant offset to the start of the pointer
shiftAAMDNodes692   AAMDNodes shift(size_t Offset) {
693     AAMDNodes Result;
694     Result.TBAA = TBAA ? ShiftTBAA(TBAA, Offset) : nullptr;
695     Result.TBAAStruct =
696         TBAAStruct ? ShiftTBAAStruct(TBAAStruct, Offset) : nullptr;
697     Result.Scope = Scope;
698     Result.NoAlias = NoAlias;
699     return Result;
700   }
701 };
702 
703 // Specialize DenseMapInfo for AAMDNodes.
704 template<>
705 struct DenseMapInfo<AAMDNodes> {
706   static inline AAMDNodes getEmptyKey() {
707     return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
708                      nullptr, nullptr, nullptr);
709   }
710 
711   static inline AAMDNodes getTombstoneKey() {
712     return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
713                      nullptr, nullptr, nullptr);
714   }
715 
716   static unsigned getHashValue(const AAMDNodes &Val) {
717     return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
718            DenseMapInfo<MDNode *>::getHashValue(Val.TBAAStruct) ^
719            DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
720            DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
721   }
722 
723   static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
724     return LHS == RHS;
725   }
726 };
727 
728 /// Tracking metadata reference owned by Metadata.
729 ///
730 /// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
731 /// of \a Metadata, which has the option of registering itself for callbacks to
732 /// re-unique itself.
733 ///
734 /// In particular, this is used by \a MDNode.
735 class MDOperand {
736   Metadata *MD = nullptr;
737 
738 public:
739   MDOperand() = default;
740   MDOperand(MDOperand &&) = delete;
741   MDOperand(const MDOperand &) = delete;
742   MDOperand &operator=(MDOperand &&) = delete;
743   MDOperand &operator=(const MDOperand &) = delete;
744   ~MDOperand() { untrack(); }
745 
746   Metadata *get() const { return MD; }
747   operator Metadata *() const { return get(); }
748   Metadata *operator->() const { return get(); }
749   Metadata &operator*() const { return *get(); }
750 
751   void reset() {
752     untrack();
753     MD = nullptr;
754   }
755   void reset(Metadata *MD, Metadata *Owner) {
756     untrack();
757     this->MD = MD;
758     track(Owner);
759   }
760 
761 private:
762   void track(Metadata *Owner) {
763     if (MD) {
764       if (Owner)
765         MetadataTracking::track(this, *MD, *Owner);
766       else
767         MetadataTracking::track(MD);
768     }
769   }
770 
771   void untrack() {
772     assert(static_cast<void *>(this) == &MD && "Expected same address");
773     if (MD)
774       MetadataTracking::untrack(MD);
775   }
776 };
777 
778 template <> struct simplify_type<MDOperand> {
779   using SimpleType = Metadata *;
780 
781   static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
782 };
783 
784 template <> struct simplify_type<const MDOperand> {
785   using SimpleType = Metadata *;
786 
787   static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
788 };
789 
790 /// Pointer to the context, with optional RAUW support.
791 ///
792 /// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
793 /// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
794 class ContextAndReplaceableUses {
795   PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
796 
797 public:
798   ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
799   ContextAndReplaceableUses(
800       std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
801       : Ptr(ReplaceableUses.release()) {
802     assert(getReplaceableUses() && "Expected non-null replaceable uses");
803   }
804   ContextAndReplaceableUses() = delete;
805   ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
806   ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
807   ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
808   ContextAndReplaceableUses &
809   operator=(const ContextAndReplaceableUses &) = delete;
810   ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
811 
812   operator LLVMContext &() { return getContext(); }
813 
814   /// Whether this contains RAUW support.
815   bool hasReplaceableUses() const {
816     return Ptr.is<ReplaceableMetadataImpl *>();
817   }
818 
819   LLVMContext &getContext() const {
820     if (hasReplaceableUses())
821       return getReplaceableUses()->getContext();
822     return *Ptr.get<LLVMContext *>();
823   }
824 
825   ReplaceableMetadataImpl *getReplaceableUses() const {
826     if (hasReplaceableUses())
827       return Ptr.get<ReplaceableMetadataImpl *>();
828     return nullptr;
829   }
830 
831   /// Ensure that this has RAUW support, and then return it.
832   ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
833     if (!hasReplaceableUses())
834       makeReplaceable(std::make_unique<ReplaceableMetadataImpl>(getContext()));
835     return getReplaceableUses();
836   }
837 
838   /// Assign RAUW support to this.
839   ///
840   /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
841   /// not be null).
842   void
843   makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
844     assert(ReplaceableUses && "Expected non-null replaceable uses");
845     assert(&ReplaceableUses->getContext() == &getContext() &&
846            "Expected same context");
847     delete getReplaceableUses();
848     Ptr = ReplaceableUses.release();
849   }
850 
851   /// Drop RAUW support.
852   ///
853   /// Cede ownership of RAUW support, returning it.
854   std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
855     assert(hasReplaceableUses() && "Expected to own replaceable uses");
856     std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
857         getReplaceableUses());
858     Ptr = &ReplaceableUses->getContext();
859     return ReplaceableUses;
860   }
861 };
862 
863 struct TempMDNodeDeleter {
864   inline void operator()(MDNode *Node) const;
865 };
866 
867 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
868   using Temp##CLASS = std::unique_ptr<CLASS, TempMDNodeDeleter>;
869 #define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
870 #include "llvm/IR/Metadata.def"
871 
872 /// Metadata node.
873 ///
874 /// Metadata nodes can be uniqued, like constants, or distinct.  Temporary
875 /// metadata nodes (with full support for RAUW) can be used to delay uniquing
876 /// until forward references are known.  The basic metadata node is an \a
877 /// MDTuple.
878 ///
879 /// There is limited support for RAUW at construction time.  At construction
880 /// time, if any operand is a temporary node (or an unresolved uniqued node,
881 /// which indicates a transitive temporary operand), the node itself will be
882 /// unresolved.  As soon as all operands become resolved, it will drop RAUW
883 /// support permanently.
884 ///
885 /// If an unresolved node is part of a cycle, \a resolveCycles() needs
886 /// to be called on some member of the cycle once all temporary nodes have been
887 /// replaced.
888 class MDNode : public Metadata {
889   friend class ReplaceableMetadataImpl;
890   friend class LLVMContextImpl;
891 
892   unsigned NumOperands;
893   unsigned NumUnresolved;
894 
895   ContextAndReplaceableUses Context;
896 
897 protected:
898   MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
899          ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None);
900   ~MDNode() = default;
901 
902   void *operator new(size_t Size, unsigned NumOps);
903   void operator delete(void *Mem);
904 
905   /// Required by std, but never called.
906   void operator delete(void *, unsigned) {
907     llvm_unreachable("Constructor throws?");
908   }
909 
910   /// Required by std, but never called.
911   void operator delete(void *, unsigned, bool) {
912     llvm_unreachable("Constructor throws?");
913   }
914 
915   void dropAllReferences();
916 
917   MDOperand *mutable_begin() { return mutable_end() - NumOperands; }
918   MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); }
919 
920   using mutable_op_range = iterator_range<MDOperand *>;
921 
922   mutable_op_range mutable_operands() {
923     return mutable_op_range(mutable_begin(), mutable_end());
924   }
925 
926 public:
927   MDNode(const MDNode &) = delete;
928   void operator=(const MDNode &) = delete;
929   void *operator new(size_t) = delete;
930 
931   static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
932   static inline MDTuple *getIfExists(LLVMContext &Context,
933                                      ArrayRef<Metadata *> MDs);
934   static inline MDTuple *getDistinct(LLVMContext &Context,
935                                      ArrayRef<Metadata *> MDs);
936   static inline TempMDTuple getTemporary(LLVMContext &Context,
937                                          ArrayRef<Metadata *> MDs);
938 
939   /// Create a (temporary) clone of this.
940   TempMDNode clone() const;
941 
942   /// Deallocate a node created by getTemporary.
943   ///
944   /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
945   /// references will be reset.
946   static void deleteTemporary(MDNode *N);
947 
948   LLVMContext &getContext() const { return Context.getContext(); }
949 
950   /// Replace a specific operand.
951   void replaceOperandWith(unsigned I, Metadata *New);
952 
953   /// Check if node is fully resolved.
954   ///
955   /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
956   /// this always returns \c true.
957   ///
958   /// If \a isUniqued(), returns \c true if this has already dropped RAUW
959   /// support (because all operands are resolved).
960   ///
961   /// As forward declarations are resolved, their containers should get
962   /// resolved automatically.  However, if this (or one of its operands) is
963   /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
964   bool isResolved() const { return !isTemporary() && !NumUnresolved; }
965 
966   bool isUniqued() const { return Storage == Uniqued; }
967   bool isDistinct() const { return Storage == Distinct; }
968   bool isTemporary() const { return Storage == Temporary; }
969 
970   /// RAUW a temporary.
971   ///
972   /// \pre \a isTemporary() must be \c true.
973   void replaceAllUsesWith(Metadata *MD) {
974     assert(isTemporary() && "Expected temporary node");
975     if (Context.hasReplaceableUses())
976       Context.getReplaceableUses()->replaceAllUsesWith(MD);
977   }
978 
979   /// Resolve cycles.
980   ///
981   /// Once all forward declarations have been resolved, force cycles to be
982   /// resolved.
983   ///
984   /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
985   void resolveCycles();
986 
987   /// Resolve a unique, unresolved node.
988   void resolve();
989 
990   /// Replace a temporary node with a permanent one.
991   ///
992   /// Try to create a uniqued version of \c N -- in place, if possible -- and
993   /// return it.  If \c N cannot be uniqued, return a distinct node instead.
994   template <class T>
995   static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
996   replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
997     return cast<T>(N.release()->replaceWithPermanentImpl());
998   }
999 
1000   /// Replace a temporary node with a uniqued one.
1001   ///
1002   /// Create a uniqued version of \c N -- in place, if possible -- and return
1003   /// it.  Takes ownership of the temporary node.
1004   ///
1005   /// \pre N does not self-reference.
1006   template <class T>
1007   static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1008   replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
1009     return cast<T>(N.release()->replaceWithUniquedImpl());
1010   }
1011 
1012   /// Replace a temporary node with a distinct one.
1013   ///
1014   /// Create a distinct version of \c N -- in place, if possible -- and return
1015   /// it.  Takes ownership of the temporary node.
1016   template <class T>
1017   static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1018   replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
1019     return cast<T>(N.release()->replaceWithDistinctImpl());
1020   }
1021 
1022 private:
1023   MDNode *replaceWithPermanentImpl();
1024   MDNode *replaceWithUniquedImpl();
1025   MDNode *replaceWithDistinctImpl();
1026 
1027 protected:
1028   /// Set an operand.
1029   ///
1030   /// Sets the operand directly, without worrying about uniquing.
1031   void setOperand(unsigned I, Metadata *New);
1032 
1033   void storeDistinctInContext();
1034   template <class T, class StoreT>
1035   static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
1036   template <class T> static T *storeImpl(T *N, StorageType Storage);
1037 
1038 private:
1039   void handleChangedOperand(void *Ref, Metadata *New);
1040 
1041   /// Drop RAUW support, if any.
1042   void dropReplaceableUses();
1043 
1044   void resolveAfterOperandChange(Metadata *Old, Metadata *New);
1045   void decrementUnresolvedOperandCount();
1046   void countUnresolvedOperands();
1047 
1048   /// Mutate this to be "uniqued".
1049   ///
1050   /// Mutate this so that \a isUniqued().
1051   /// \pre \a isTemporary().
1052   /// \pre already added to uniquing set.
1053   void makeUniqued();
1054 
1055   /// Mutate this to be "distinct".
1056   ///
1057   /// Mutate this so that \a isDistinct().
1058   /// \pre \a isTemporary().
1059   void makeDistinct();
1060 
1061   void deleteAsSubclass();
1062   MDNode *uniquify();
1063   void eraseFromStore();
1064 
1065   template <class NodeTy> struct HasCachedHash;
1066   template <class NodeTy>
1067   static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
1068     N->recalculateHash();
1069   }
1070   template <class NodeTy>
1071   static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
1072   template <class NodeTy>
1073   static void dispatchResetHash(NodeTy *N, std::true_type) {
1074     N->setHash(0);
1075   }
1076   template <class NodeTy>
1077   static void dispatchResetHash(NodeTy *, std::false_type) {}
1078 
1079 public:
1080   using op_iterator = const MDOperand *;
1081   using op_range = iterator_range<op_iterator>;
1082 
1083   op_iterator op_begin() const {
1084     return const_cast<MDNode *>(this)->mutable_begin();
1085   }
1086 
1087   op_iterator op_end() const {
1088     return const_cast<MDNode *>(this)->mutable_end();
1089   }
1090 
1091   op_range operands() const { return op_range(op_begin(), op_end()); }
1092 
1093   const MDOperand &getOperand(unsigned I) const {
1094     assert(I < NumOperands && "Out of range");
1095     return op_begin()[I];
1096   }
1097 
1098   /// Return number of MDNode operands.
1099   unsigned getNumOperands() const { return NumOperands; }
1100 
1101   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1102   static bool classof(const Metadata *MD) {
1103     switch (MD->getMetadataID()) {
1104     default:
1105       return false;
1106 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1107   case CLASS##Kind:                                                            \
1108     return true;
1109 #include "llvm/IR/Metadata.def"
1110     }
1111   }
1112 
1113   /// Check whether MDNode is a vtable access.
1114   bool isTBAAVtableAccess() const;
1115 
1116   /// Methods for metadata merging.
1117   static MDNode *concatenate(MDNode *A, MDNode *B);
1118   static MDNode *intersect(MDNode *A, MDNode *B);
1119   static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
1120   static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
1121   static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
1122   static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
1123   static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
1124 };
1125 
1126 /// Tuple of metadata.
1127 ///
1128 /// This is the simple \a MDNode arbitrary tuple.  Nodes are uniqued by
1129 /// default based on their operands.
1130 class MDTuple : public MDNode {
1131   friend class LLVMContextImpl;
1132   friend class MDNode;
1133 
1134   MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
1135           ArrayRef<Metadata *> Vals)
1136       : MDNode(C, MDTupleKind, Storage, Vals) {
1137     setHash(Hash);
1138   }
1139 
1140   ~MDTuple() { dropAllReferences(); }
1141 
1142   void setHash(unsigned Hash) { SubclassData32 = Hash; }
1143   void recalculateHash();
1144 
1145   static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
1146                           StorageType Storage, bool ShouldCreate = true);
1147 
1148   TempMDTuple cloneImpl() const {
1149     return getTemporary(getContext(), SmallVector<Metadata *, 4>(operands()));
1150   }
1151 
1152 public:
1153   /// Get the hash, if any.
1154   unsigned getHash() const { return SubclassData32; }
1155 
1156   static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1157     return getImpl(Context, MDs, Uniqued);
1158   }
1159 
1160   static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1161     return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
1162   }
1163 
1164   /// Return a distinct node.
1165   ///
1166   /// Return a distinct node -- i.e., a node that is not uniqued.
1167   static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1168     return getImpl(Context, MDs, Distinct);
1169   }
1170 
1171   /// Return a temporary node.
1172   ///
1173   /// For use in constructing cyclic MDNode structures. A temporary MDNode is
1174   /// not uniqued, may be RAUW'd, and must be manually deleted with
1175   /// deleteTemporary.
1176   static TempMDTuple getTemporary(LLVMContext &Context,
1177                                   ArrayRef<Metadata *> MDs) {
1178     return TempMDTuple(getImpl(Context, MDs, Temporary));
1179   }
1180 
1181   /// Return a (temporary) clone of this.
1182   TempMDTuple clone() const { return cloneImpl(); }
1183 
1184   static bool classof(const Metadata *MD) {
1185     return MD->getMetadataID() == MDTupleKind;
1186   }
1187 };
1188 
1189 MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1190   return MDTuple::get(Context, MDs);
1191 }
1192 
1193 MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1194   return MDTuple::getIfExists(Context, MDs);
1195 }
1196 
1197 MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1198   return MDTuple::getDistinct(Context, MDs);
1199 }
1200 
1201 TempMDTuple MDNode::getTemporary(LLVMContext &Context,
1202                                  ArrayRef<Metadata *> MDs) {
1203   return MDTuple::getTemporary(Context, MDs);
1204 }
1205 
1206 void TempMDNodeDeleter::operator()(MDNode *Node) const {
1207   MDNode::deleteTemporary(Node);
1208 }
1209 
1210 /// This is a simple wrapper around an MDNode which provides a higher-level
1211 /// interface by hiding the details of how alias analysis information is encoded
1212 /// in its operands.
1213 class AliasScopeNode {
1214   const MDNode *Node = nullptr;
1215 
1216 public:
1217   AliasScopeNode() = default;
1218   explicit AliasScopeNode(const MDNode *N) : Node(N) {}
1219 
1220   /// Get the MDNode for this AliasScopeNode.
1221   const MDNode *getNode() const { return Node; }
1222 
1223   /// Get the MDNode for this AliasScopeNode's domain.
1224   const MDNode *getDomain() const {
1225     if (Node->getNumOperands() < 2)
1226       return nullptr;
1227     return dyn_cast_or_null<MDNode>(Node->getOperand(1));
1228   }
1229   StringRef getName() const {
1230     if (Node->getNumOperands() > 2)
1231       if (MDString *N = dyn_cast_or_null<MDString>(Node->getOperand(2)))
1232         return N->getString();
1233     return StringRef();
1234   }
1235 };
1236 
1237 /// Typed iterator through MDNode operands.
1238 ///
1239 /// An iterator that transforms an \a MDNode::iterator into an iterator over a
1240 /// particular Metadata subclass.
1241 template <class T>
1242 class TypedMDOperandIterator
1243     : public std::iterator<std::input_iterator_tag, T *, std::ptrdiff_t, void,
1244                            T *> {
1245   MDNode::op_iterator I = nullptr;
1246 
1247 public:
1248   TypedMDOperandIterator() = default;
1249   explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
1250 
1251   T *operator*() const { return cast_or_null<T>(*I); }
1252 
1253   TypedMDOperandIterator &operator++() {
1254     ++I;
1255     return *this;
1256   }
1257 
1258   TypedMDOperandIterator operator++(int) {
1259     TypedMDOperandIterator Temp(*this);
1260     ++I;
1261     return Temp;
1262   }
1263 
1264   bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
1265   bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
1266 };
1267 
1268 /// Typed, array-like tuple of metadata.
1269 ///
1270 /// This is a wrapper for \a MDTuple that makes it act like an array holding a
1271 /// particular type of metadata.
1272 template <class T> class MDTupleTypedArrayWrapper {
1273   const MDTuple *N = nullptr;
1274 
1275 public:
1276   MDTupleTypedArrayWrapper() = default;
1277   MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
1278 
1279   template <class U>
1280   MDTupleTypedArrayWrapper(
1281       const MDTupleTypedArrayWrapper<U> &Other,
1282       std::enable_if_t<std::is_convertible<U *, T *>::value> * = nullptr)
1283       : N(Other.get()) {}
1284 
1285   template <class U>
1286   explicit MDTupleTypedArrayWrapper(
1287       const MDTupleTypedArrayWrapper<U> &Other,
1288       std::enable_if_t<!std::is_convertible<U *, T *>::value> * = nullptr)
1289       : N(Other.get()) {}
1290 
1291   explicit operator bool() const { return get(); }
1292   explicit operator MDTuple *() const { return get(); }
1293 
1294   MDTuple *get() const { return const_cast<MDTuple *>(N); }
1295   MDTuple *operator->() const { return get(); }
1296   MDTuple &operator*() const { return *get(); }
1297 
1298   // FIXME: Fix callers and remove condition on N.
1299   unsigned size() const { return N ? N->getNumOperands() : 0u; }
1300   bool empty() const { return N ? N->getNumOperands() == 0 : true; }
1301   T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
1302 
1303   // FIXME: Fix callers and remove condition on N.
1304   using iterator = TypedMDOperandIterator<T>;
1305 
1306   iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
1307   iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
1308 };
1309 
1310 #define HANDLE_METADATA(CLASS)                                                 \
1311   using CLASS##Array = MDTupleTypedArrayWrapper<CLASS>;
1312 #include "llvm/IR/Metadata.def"
1313 
1314 /// Placeholder metadata for operands of distinct MDNodes.
1315 ///
1316 /// This is a lightweight placeholder for an operand of a distinct node.  It's
1317 /// purpose is to help track forward references when creating a distinct node.
1318 /// This allows distinct nodes involved in a cycle to be constructed before
1319 /// their operands without requiring a heavyweight temporary node with
1320 /// full-blown RAUW support.
1321 ///
1322 /// Each placeholder supports only a single MDNode user.  Clients should pass
1323 /// an ID, retrieved via \a getID(), to indicate the "real" operand that this
1324 /// should be replaced with.
1325 ///
1326 /// While it would be possible to implement move operators, they would be
1327 /// fairly expensive.  Leave them unimplemented to discourage their use
1328 /// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
1329 class DistinctMDOperandPlaceholder : public Metadata {
1330   friend class MetadataTracking;
1331 
1332   Metadata **Use = nullptr;
1333 
1334 public:
1335   explicit DistinctMDOperandPlaceholder(unsigned ID)
1336       : Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
1337     SubclassData32 = ID;
1338   }
1339 
1340   DistinctMDOperandPlaceholder() = delete;
1341   DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
1342   DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;
1343 
1344   ~DistinctMDOperandPlaceholder() {
1345     if (Use)
1346       *Use = nullptr;
1347   }
1348 
1349   unsigned getID() const { return SubclassData32; }
1350 
1351   /// Replace the use of this with MD.
1352   void replaceUseWith(Metadata *MD) {
1353     if (!Use)
1354       return;
1355     *Use = MD;
1356 
1357     if (*Use)
1358       MetadataTracking::track(*Use);
1359 
1360     Metadata *T = cast<Metadata>(this);
1361     MetadataTracking::untrack(T);
1362     assert(!Use && "Use is still being tracked despite being untracked!");
1363   }
1364 };
1365 
1366 //===----------------------------------------------------------------------===//
1367 /// A tuple of MDNodes.
1368 ///
1369 /// Despite its name, a NamedMDNode isn't itself an MDNode.
1370 ///
1371 /// NamedMDNodes are named module-level entities that contain lists of MDNodes.
1372 ///
1373 /// It is illegal for a NamedMDNode to appear as an operand of an MDNode.
1374 class NamedMDNode : public ilist_node<NamedMDNode> {
1375   friend class LLVMContextImpl;
1376   friend class Module;
1377 
1378   std::string Name;
1379   Module *Parent = nullptr;
1380   void *Operands; // SmallVector<TrackingMDRef, 4>
1381 
1382   void setParent(Module *M) { Parent = M; }
1383 
1384   explicit NamedMDNode(const Twine &N);
1385 
1386   template<class T1, class T2>
1387   class op_iterator_impl :
1388       public std::iterator<std::bidirectional_iterator_tag, T2> {
1389     friend class NamedMDNode;
1390 
1391     const NamedMDNode *Node = nullptr;
1392     unsigned Idx = 0;
1393 
1394     op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) {}
1395 
1396   public:
1397     op_iterator_impl() = default;
1398 
1399     bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
1400     bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
1401 
1402     op_iterator_impl &operator++() {
1403       ++Idx;
1404       return *this;
1405     }
1406 
1407     op_iterator_impl operator++(int) {
1408       op_iterator_impl tmp(*this);
1409       operator++();
1410       return tmp;
1411     }
1412 
1413     op_iterator_impl &operator--() {
1414       --Idx;
1415       return *this;
1416     }
1417 
1418     op_iterator_impl operator--(int) {
1419       op_iterator_impl tmp(*this);
1420       operator--();
1421       return tmp;
1422     }
1423 
1424     T1 operator*() const { return Node->getOperand(Idx); }
1425   };
1426 
1427 public:
1428   NamedMDNode(const NamedMDNode &) = delete;
1429   ~NamedMDNode();
1430 
1431   /// Drop all references and remove the node from parent module.
1432   void eraseFromParent();
1433 
1434   /// Remove all uses and clear node vector.
1435   void dropAllReferences() { clearOperands(); }
1436   /// Drop all references to this node's operands.
1437   void clearOperands();
1438 
1439   /// Get the module that holds this named metadata collection.
1440   inline Module *getParent() { return Parent; }
1441   inline const Module *getParent() const { return Parent; }
1442 
1443   MDNode *getOperand(unsigned i) const;
1444   unsigned getNumOperands() const;
1445   void addOperand(MDNode *M);
1446   void setOperand(unsigned I, MDNode *New);
1447   StringRef getName() const;
1448   void print(raw_ostream &ROS, bool IsForDebug = false) const;
1449   void print(raw_ostream &ROS, ModuleSlotTracker &MST,
1450              bool IsForDebug = false) const;
1451   void dump() const;
1452 
1453   // ---------------------------------------------------------------------------
1454   // Operand Iterator interface...
1455   //
1456   using op_iterator = op_iterator_impl<MDNode *, MDNode>;
1457 
1458   op_iterator op_begin() { return op_iterator(this, 0); }
1459   op_iterator op_end()   { return op_iterator(this, getNumOperands()); }
1460 
1461   using const_op_iterator = op_iterator_impl<const MDNode *, MDNode>;
1462 
1463   const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
1464   const_op_iterator op_end()   const { return const_op_iterator(this, getNumOperands()); }
1465 
1466   inline iterator_range<op_iterator>  operands() {
1467     return make_range(op_begin(), op_end());
1468   }
1469   inline iterator_range<const_op_iterator> operands() const {
1470     return make_range(op_begin(), op_end());
1471   }
1472 };
1473 
1474 // Create wrappers for C Binding types (see CBindingWrapping.h).
1475 DEFINE_ISA_CONVERSION_FUNCTIONS(NamedMDNode, LLVMNamedMDNodeRef)
1476 
1477 } // end namespace llvm
1478 
1479 #endif // LLVM_IR_METADATA_H
1480