1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 ///
11 /// This file provides internal interfaces used to implement the InstCombine.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17 
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/TargetFolder.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/InstVisitor.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
28 #include "llvm/Transforms/InstCombine/InstCombiner.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include <cassert>
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 using namespace llvm::PatternMatch;
35 
36 // As a default, let's assume that we want to be aggressive,
37 // and attempt to traverse with no limits in attempt to sink negation.
38 static constexpr unsigned NegatorDefaultMaxDepth = ~0U;
39 
40 // Let's guesstimate that most often we will end up visiting/producing
41 // fairly small number of new instructions.
42 static constexpr unsigned NegatorMaxNodesSSO = 16;
43 
44 namespace llvm {
45 
46 class AAResults;
47 class APInt;
48 class AssumptionCache;
49 class BlockFrequencyInfo;
50 class DataLayout;
51 class DominatorTree;
52 class GEPOperator;
53 class GlobalVariable;
54 class LoopInfo;
55 class OptimizationRemarkEmitter;
56 class ProfileSummaryInfo;
57 class TargetLibraryInfo;
58 class User;
59 
60 class LLVM_LIBRARY_VISIBILITY InstCombinerImpl final
61     : public InstCombiner,
62       public InstVisitor<InstCombinerImpl, Instruction *> {
63 public:
InstCombinerImpl(InstCombineWorklist & Worklist,BuilderTy & Builder,bool MinimizeSize,AAResults * AA,AssumptionCache & AC,TargetLibraryInfo & TLI,TargetTransformInfo & TTI,DominatorTree & DT,OptimizationRemarkEmitter & ORE,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,const DataLayout & DL,LoopInfo * LI)64   InstCombinerImpl(InstCombineWorklist &Worklist, BuilderTy &Builder,
65                    bool MinimizeSize, AAResults *AA, AssumptionCache &AC,
66                    TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
67                    DominatorTree &DT, OptimizationRemarkEmitter &ORE,
68                    BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
69                    const DataLayout &DL, LoopInfo *LI)
70       : InstCombiner(Worklist, Builder, MinimizeSize, AA, AC, TLI, TTI, DT, ORE,
71                      BFI, PSI, DL, LI) {}
72 
~InstCombinerImpl()73   virtual ~InstCombinerImpl() {}
74 
75   /// Run the combiner over the entire worklist until it is empty.
76   ///
77   /// \returns true if the IR is changed.
78   bool run();
79 
80   // Visitation implementation - Implement instruction combining for different
81   // instruction types.  The semantics are as follows:
82   // Return Value:
83   //    null        - No change was made
84   //     I          - Change was made, I is still valid, I may be dead though
85   //   otherwise    - Change was made, replace I with returned instruction
86   //
87   Instruction *visitFNeg(UnaryOperator &I);
88   Instruction *visitAdd(BinaryOperator &I);
89   Instruction *visitFAdd(BinaryOperator &I);
90   Value *OptimizePointerDifference(
91       Value *LHS, Value *RHS, Type *Ty, bool isNUW);
92   Instruction *visitSub(BinaryOperator &I);
93   Instruction *visitFSub(BinaryOperator &I);
94   Instruction *visitMul(BinaryOperator &I);
95   Instruction *visitFMul(BinaryOperator &I);
96   Instruction *visitURem(BinaryOperator &I);
97   Instruction *visitSRem(BinaryOperator &I);
98   Instruction *visitFRem(BinaryOperator &I);
99   bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
100   Instruction *commonIRemTransforms(BinaryOperator &I);
101   Instruction *commonIDivTransforms(BinaryOperator &I);
102   Instruction *visitUDiv(BinaryOperator &I);
103   Instruction *visitSDiv(BinaryOperator &I);
104   Instruction *visitFDiv(BinaryOperator &I);
105   Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
106   Instruction *visitAnd(BinaryOperator &I);
107   Instruction *visitOr(BinaryOperator &I);
108   bool sinkNotIntoOtherHandOfAndOrOr(BinaryOperator &I);
109   Instruction *visitXor(BinaryOperator &I);
110   Instruction *visitShl(BinaryOperator &I);
111   Value *reassociateShiftAmtsOfTwoSameDirectionShifts(
112       BinaryOperator *Sh0, const SimplifyQuery &SQ,
113       bool AnalyzeForSignBitExtraction = false);
114   Instruction *canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
115       BinaryOperator &I);
116   Instruction *foldVariableSignZeroExtensionOfVariableHighBitExtract(
117       BinaryOperator &OldAShr);
118   Instruction *visitAShr(BinaryOperator &I);
119   Instruction *visitLShr(BinaryOperator &I);
120   Instruction *commonShiftTransforms(BinaryOperator &I);
121   Instruction *visitFCmpInst(FCmpInst &I);
122   CmpInst *canonicalizeICmpPredicate(CmpInst &I);
123   Instruction *visitICmpInst(ICmpInst &I);
124   Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
125                                    BinaryOperator &I);
126   Instruction *commonCastTransforms(CastInst &CI);
127   Instruction *commonPointerCastTransforms(CastInst &CI);
128   Instruction *visitTrunc(TruncInst &CI);
129   Instruction *visitZExt(ZExtInst &CI);
130   Instruction *visitSExt(SExtInst &CI);
131   Instruction *visitFPTrunc(FPTruncInst &CI);
132   Instruction *visitFPExt(CastInst &CI);
133   Instruction *visitFPToUI(FPToUIInst &FI);
134   Instruction *visitFPToSI(FPToSIInst &FI);
135   Instruction *visitUIToFP(CastInst &CI);
136   Instruction *visitSIToFP(CastInst &CI);
137   Instruction *visitPtrToInt(PtrToIntInst &CI);
138   Instruction *visitIntToPtr(IntToPtrInst &CI);
139   Instruction *visitBitCast(BitCastInst &CI);
140   Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
141   Instruction *foldItoFPtoI(CastInst &FI);
142   Instruction *visitSelectInst(SelectInst &SI);
143   Instruction *visitCallInst(CallInst &CI);
144   Instruction *visitInvokeInst(InvokeInst &II);
145   Instruction *visitCallBrInst(CallBrInst &CBI);
146 
147   Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
148   Instruction *visitPHINode(PHINode &PN);
149   Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
150   Instruction *visitAllocaInst(AllocaInst &AI);
151   Instruction *visitAllocSite(Instruction &FI);
152   Instruction *visitFree(CallInst &FI);
153   Instruction *visitLoadInst(LoadInst &LI);
154   Instruction *visitStoreInst(StoreInst &SI);
155   Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
156   Instruction *visitUnconditionalBranchInst(BranchInst &BI);
157   Instruction *visitBranchInst(BranchInst &BI);
158   Instruction *visitFenceInst(FenceInst &FI);
159   Instruction *visitSwitchInst(SwitchInst &SI);
160   Instruction *visitReturnInst(ReturnInst &RI);
161   Instruction *visitUnreachableInst(UnreachableInst &I);
162   Instruction *
163   foldAggregateConstructionIntoAggregateReuse(InsertValueInst &OrigIVI);
164   Instruction *visitInsertValueInst(InsertValueInst &IV);
165   Instruction *visitInsertElementInst(InsertElementInst &IE);
166   Instruction *visitExtractElementInst(ExtractElementInst &EI);
167   Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
168   Instruction *visitExtractValueInst(ExtractValueInst &EV);
169   Instruction *visitLandingPadInst(LandingPadInst &LI);
170   Instruction *visitVAEndInst(VAEndInst &I);
171   Instruction *visitFreeze(FreezeInst &I);
172 
173   /// Specify what to return for unhandled instructions.
visitInstruction(Instruction & I)174   Instruction *visitInstruction(Instruction &I) { return nullptr; }
175 
176   /// True when DB dominates all uses of DI except UI.
177   /// UI must be in the same block as DI.
178   /// The routine checks that the DI parent and DB are different.
179   bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
180                         const BasicBlock *DB) const;
181 
182   /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
183   bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
184                                  const unsigned SIOpd);
185 
186   LoadInst *combineLoadToNewType(LoadInst &LI, Type *NewTy,
187                                  const Twine &Suffix = "");
188 
189 private:
190   bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
191   bool shouldChangeType(Type *From, Type *To) const;
192   Value *dyn_castNegVal(Value *V) const;
193   Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
194                             SmallVectorImpl<Value *> &NewIndices);
195 
196   /// Classify whether a cast is worth optimizing.
197   ///
198   /// This is a helper to decide whether the simplification of
199   /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
200   ///
201   /// \param CI The cast we are interested in.
202   ///
203   /// \return true if this cast actually results in any code being generated and
204   /// if it cannot already be eliminated by some other transformation.
205   bool shouldOptimizeCast(CastInst *CI);
206 
207   /// Try to optimize a sequence of instructions checking if an operation
208   /// on LHS and RHS overflows.
209   ///
210   /// If this overflow check is done via one of the overflow check intrinsics,
211   /// then CtxI has to be the call instruction calling that intrinsic.  If this
212   /// overflow check is done by arithmetic followed by a compare, then CtxI has
213   /// to be the arithmetic instruction.
214   ///
215   /// If a simplification is possible, stores the simplified result of the
216   /// operation in OperationResult and result of the overflow check in
217   /// OverflowResult, and return true.  If no simplification is possible,
218   /// returns false.
219   bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned,
220                              Value *LHS, Value *RHS,
221                              Instruction &CtxI, Value *&OperationResult,
222                              Constant *&OverflowResult);
223 
224   Instruction *visitCallBase(CallBase &Call);
225   Instruction *tryOptimizeCall(CallInst *CI);
226   bool transformConstExprCastCall(CallBase &Call);
227   Instruction *transformCallThroughTrampoline(CallBase &Call,
228                                               IntrinsicInst &Tramp);
229 
230   Value *simplifyMaskedLoad(IntrinsicInst &II);
231   Instruction *simplifyMaskedStore(IntrinsicInst &II);
232   Instruction *simplifyMaskedGather(IntrinsicInst &II);
233   Instruction *simplifyMaskedScatter(IntrinsicInst &II);
234 
235   /// Transform (zext icmp) to bitwise / integer operations in order to
236   /// eliminate it.
237   ///
238   /// \param ICI The icmp of the (zext icmp) pair we are interested in.
239   /// \parem CI The zext of the (zext icmp) pair we are interested in.
240   /// \param DoTransform Pass false to just test whether the given (zext icmp)
241   /// would be transformed. Pass true to actually perform the transformation.
242   ///
243   /// \return null if the transformation cannot be performed. If the
244   /// transformation can be performed the new instruction that replaces the
245   /// (zext icmp) pair will be returned (if \p DoTransform is false the
246   /// unmodified \p ICI will be returned in this case).
247   Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
248                                  bool DoTransform = true);
249 
250   Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
251 
willNotOverflowSignedAdd(const Value * LHS,const Value * RHS,const Instruction & CxtI)252   bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
253                                 const Instruction &CxtI) const {
254     return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
255            OverflowResult::NeverOverflows;
256   }
257 
willNotOverflowUnsignedAdd(const Value * LHS,const Value * RHS,const Instruction & CxtI)258   bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
259                                   const Instruction &CxtI) const {
260     return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
261            OverflowResult::NeverOverflows;
262   }
263 
willNotOverflowAdd(const Value * LHS,const Value * RHS,const Instruction & CxtI,bool IsSigned)264   bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
265                           const Instruction &CxtI, bool IsSigned) const {
266     return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
267                     : willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
268   }
269 
willNotOverflowSignedSub(const Value * LHS,const Value * RHS,const Instruction & CxtI)270   bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
271                                 const Instruction &CxtI) const {
272     return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
273            OverflowResult::NeverOverflows;
274   }
275 
willNotOverflowUnsignedSub(const Value * LHS,const Value * RHS,const Instruction & CxtI)276   bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
277                                   const Instruction &CxtI) const {
278     return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
279            OverflowResult::NeverOverflows;
280   }
281 
willNotOverflowSub(const Value * LHS,const Value * RHS,const Instruction & CxtI,bool IsSigned)282   bool willNotOverflowSub(const Value *LHS, const Value *RHS,
283                           const Instruction &CxtI, bool IsSigned) const {
284     return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
285                     : willNotOverflowUnsignedSub(LHS, RHS, CxtI);
286   }
287 
willNotOverflowSignedMul(const Value * LHS,const Value * RHS,const Instruction & CxtI)288   bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
289                                 const Instruction &CxtI) const {
290     return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
291            OverflowResult::NeverOverflows;
292   }
293 
willNotOverflowUnsignedMul(const Value * LHS,const Value * RHS,const Instruction & CxtI)294   bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
295                                   const Instruction &CxtI) const {
296     return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
297            OverflowResult::NeverOverflows;
298   }
299 
willNotOverflowMul(const Value * LHS,const Value * RHS,const Instruction & CxtI,bool IsSigned)300   bool willNotOverflowMul(const Value *LHS, const Value *RHS,
301                           const Instruction &CxtI, bool IsSigned) const {
302     return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
303                     : willNotOverflowUnsignedMul(LHS, RHS, CxtI);
304   }
305 
willNotOverflow(BinaryOperator::BinaryOps Opcode,const Value * LHS,const Value * RHS,const Instruction & CxtI,bool IsSigned)306   bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
307                        const Value *RHS, const Instruction &CxtI,
308                        bool IsSigned) const {
309     switch (Opcode) {
310     case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
311     case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
312     case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
313     default: llvm_unreachable("Unexpected opcode for overflow query");
314     }
315   }
316 
317   Value *EmitGEPOffset(User *GEP);
318   Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
319   Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
320   Instruction *narrowBinOp(TruncInst &Trunc);
321   Instruction *narrowMaskedBinOp(BinaryOperator &And);
322   Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
323   Instruction *narrowFunnelShift(TruncInst &Trunc);
324   Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
325   Instruction *matchSAddSubSat(SelectInst &MinMax1);
326 
327   void freelyInvertAllUsersOf(Value *V);
328 
329   /// Determine if a pair of casts can be replaced by a single cast.
330   ///
331   /// \param CI1 The first of a pair of casts.
332   /// \param CI2 The second of a pair of casts.
333   ///
334   /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
335   /// Instruction::CastOps value for a cast that can replace the pair, casting
336   /// CI1->getSrcTy() to CI2->getDstTy().
337   ///
338   /// \see CastInst::isEliminableCastPair
339   Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
340                                             const CastInst *CI2);
341 
342   Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &And);
343   Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Or);
344   Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Xor);
345 
346   /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
347   /// NOTE: Unlike most of instcombine, this returns a Value which should
348   /// already be inserted into the function.
349   Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd);
350 
351   Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
352                                        BinaryOperator &Logic);
353   Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D);
354   Value *getSelectCondition(Value *A, Value *B);
355 
356   Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);
357   Instruction *foldFPSignBitOps(BinaryOperator &I);
358 
359 public:
360   /// Inserts an instruction \p New before instruction \p Old
361   ///
362   /// Also adds the new instruction to the worklist and returns \p New so that
363   /// it is suitable for use as the return from the visitation patterns.
InsertNewInstBefore(Instruction * New,Instruction & Old)364   Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
365     assert(New && !New->getParent() &&
366            "New instruction already inserted into a basic block!");
367     BasicBlock *BB = Old.getParent();
368     BB->getInstList().insert(Old.getIterator(), New); // Insert inst
369     Worklist.add(New);
370     return New;
371   }
372 
373   /// Same as InsertNewInstBefore, but also sets the debug loc.
InsertNewInstWith(Instruction * New,Instruction & Old)374   Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
375     New->setDebugLoc(Old.getDebugLoc());
376     return InsertNewInstBefore(New, Old);
377   }
378 
379   /// A combiner-aware RAUW-like routine.
380   ///
381   /// This method is to be used when an instruction is found to be dead,
382   /// replaceable with another preexisting expression. Here we add all uses of
383   /// I to the worklist, replace all uses of I with the new value, then return
384   /// I, so that the inst combiner will know that I was modified.
replaceInstUsesWith(Instruction & I,Value * V)385   Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
386     // If there are no uses to replace, then we return nullptr to indicate that
387     // no changes were made to the program.
388     if (I.use_empty()) return nullptr;
389 
390     Worklist.pushUsersToWorkList(I); // Add all modified instrs to worklist.
391 
392     // If we are replacing the instruction with itself, this must be in a
393     // segment of unreachable code, so just clobber the instruction.
394     if (&I == V)
395       V = UndefValue::get(I.getType());
396 
397     LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
398                       << "    with " << *V << '\n');
399 
400     I.replaceAllUsesWith(V);
401     MadeIRChange = true;
402     return &I;
403   }
404 
405   /// Replace operand of instruction and add old operand to the worklist.
replaceOperand(Instruction & I,unsigned OpNum,Value * V)406   Instruction *replaceOperand(Instruction &I, unsigned OpNum, Value *V) {
407     Worklist.addValue(I.getOperand(OpNum));
408     I.setOperand(OpNum, V);
409     return &I;
410   }
411 
412   /// Replace use and add the previously used value to the worklist.
replaceUse(Use & U,Value * NewValue)413   void replaceUse(Use &U, Value *NewValue) {
414     Worklist.addValue(U);
415     U = NewValue;
416   }
417 
418   /// Creates a result tuple for an overflow intrinsic \p II with a given
419   /// \p Result and a constant \p Overflow value.
CreateOverflowTuple(IntrinsicInst * II,Value * Result,Constant * Overflow)420   Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
421                                    Constant *Overflow) {
422     Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
423     StructType *ST = cast<StructType>(II->getType());
424     Constant *Struct = ConstantStruct::get(ST, V);
425     return InsertValueInst::Create(Struct, Result, 0);
426   }
427 
428   /// Create and insert the idiom we use to indicate a block is unreachable
429   /// without having to rewrite the CFG from within InstCombine.
CreateNonTerminatorUnreachable(Instruction * InsertAt)430   void CreateNonTerminatorUnreachable(Instruction *InsertAt) {
431     auto &Ctx = InsertAt->getContext();
432     new StoreInst(ConstantInt::getTrue(Ctx),
433                   UndefValue::get(Type::getInt1PtrTy(Ctx)),
434                   InsertAt);
435   }
436 
437 
438   /// Combiner aware instruction erasure.
439   ///
440   /// When dealing with an instruction that has side effects or produces a void
441   /// value, we can't rely on DCE to delete the instruction. Instead, visit
442   /// methods should return the value returned by this function.
eraseInstFromFunction(Instruction & I)443   Instruction *eraseInstFromFunction(Instruction &I) override {
444     LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
445     assert(I.use_empty() && "Cannot erase instruction that is used!");
446     salvageDebugInfo(I);
447 
448     // Make sure that we reprocess all operands now that we reduced their
449     // use counts.
450     for (Use &Operand : I.operands())
451       if (auto *Inst = dyn_cast<Instruction>(Operand))
452         Worklist.add(Inst);
453 
454     Worklist.remove(&I);
455     I.eraseFromParent();
456     MadeIRChange = true;
457     return nullptr; // Don't do anything with FI
458   }
459 
computeKnownBits(const Value * V,KnownBits & Known,unsigned Depth,const Instruction * CxtI)460   void computeKnownBits(const Value *V, KnownBits &Known,
461                         unsigned Depth, const Instruction *CxtI) const {
462     llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
463   }
464 
computeKnownBits(const Value * V,unsigned Depth,const Instruction * CxtI)465   KnownBits computeKnownBits(const Value *V, unsigned Depth,
466                              const Instruction *CxtI) const {
467     return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
468   }
469 
470   bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
471                               unsigned Depth = 0,
472                               const Instruction *CxtI = nullptr) {
473     return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
474   }
475 
476   bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
477                          const Instruction *CxtI = nullptr) const {
478     return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
479   }
480 
481   unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
482                               const Instruction *CxtI = nullptr) const {
483     return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
484   }
485 
computeOverflowForUnsignedMul(const Value * LHS,const Value * RHS,const Instruction * CxtI)486   OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
487                                                const Value *RHS,
488                                                const Instruction *CxtI) const {
489     return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
490   }
491 
computeOverflowForSignedMul(const Value * LHS,const Value * RHS,const Instruction * CxtI)492   OverflowResult computeOverflowForSignedMul(const Value *LHS,
493                                              const Value *RHS,
494                                              const Instruction *CxtI) const {
495     return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
496   }
497 
computeOverflowForUnsignedAdd(const Value * LHS,const Value * RHS,const Instruction * CxtI)498   OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
499                                                const Value *RHS,
500                                                const Instruction *CxtI) const {
501     return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
502   }
503 
computeOverflowForSignedAdd(const Value * LHS,const Value * RHS,const Instruction * CxtI)504   OverflowResult computeOverflowForSignedAdd(const Value *LHS,
505                                              const Value *RHS,
506                                              const Instruction *CxtI) const {
507     return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
508   }
509 
computeOverflowForUnsignedSub(const Value * LHS,const Value * RHS,const Instruction * CxtI)510   OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
511                                                const Value *RHS,
512                                                const Instruction *CxtI) const {
513     return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
514   }
515 
computeOverflowForSignedSub(const Value * LHS,const Value * RHS,const Instruction * CxtI)516   OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
517                                              const Instruction *CxtI) const {
518     return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
519   }
520 
521   OverflowResult computeOverflow(
522       Instruction::BinaryOps BinaryOp, bool IsSigned,
523       Value *LHS, Value *RHS, Instruction *CxtI) const;
524 
525   /// Performs a few simplifications for operators which are associative
526   /// or commutative.
527   bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
528 
529   /// Tries to simplify binary operations which some other binary
530   /// operation distributes over.
531   ///
532   /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
533   /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
534   /// & (B | C) -> (A&B) | (A&C)" if this is a win).  Returns the simplified
535   /// value, or null if it didn't simplify.
536   Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
537 
538   /// Tries to simplify add operations using the definition of remainder.
539   ///
540   /// The definition of remainder is X % C = X - (X / C ) * C. The add
541   /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
542   /// X % (C0 * C1)
543   Value *SimplifyAddWithRemainder(BinaryOperator &I);
544 
545   // Binary Op helper for select operations where the expression can be
546   // efficiently reorganized.
547   Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
548                                         Value *RHS);
549 
550   /// This tries to simplify binary operations by factorizing out common terms
551   /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
552   Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
553                           Value *, Value *, Value *);
554 
555   /// Match a select chain which produces one of three values based on whether
556   /// the LHS is less than, equal to, or greater than RHS respectively.
557   /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
558   /// Equal and Greater values are saved in the matching process and returned to
559   /// the caller.
560   bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
561                                ConstantInt *&Less, ConstantInt *&Equal,
562                                ConstantInt *&Greater);
563 
564   /// Attempts to replace V with a simpler value based on the demanded
565   /// bits.
566   Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
567                                  unsigned Depth, Instruction *CxtI);
568   bool SimplifyDemandedBits(Instruction *I, unsigned Op,
569                             const APInt &DemandedMask, KnownBits &Known,
570                             unsigned Depth = 0) override;
571 
572   /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
573   /// bits. It also tries to handle simplifications that can be done based on
574   /// DemandedMask, but without modifying the Instruction.
575   Value *SimplifyMultipleUseDemandedBits(Instruction *I,
576                                          const APInt &DemandedMask,
577                                          KnownBits &Known,
578                                          unsigned Depth, Instruction *CxtI);
579 
580   /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
581   /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
582   Value *simplifyShrShlDemandedBits(
583       Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
584       const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
585 
586   /// Tries to simplify operands to an integer instruction based on its
587   /// demanded bits.
588   bool SimplifyDemandedInstructionBits(Instruction &Inst);
589 
590   virtual Value *
591   SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &UndefElts,
592                              unsigned Depth = 0,
593                              bool AllowMultipleUsers = false) override;
594 
595   /// Canonicalize the position of binops relative to shufflevector.
596   Instruction *foldVectorBinop(BinaryOperator &Inst);
597   Instruction *foldVectorSelect(SelectInst &Sel);
598 
599   /// Given a binary operator, cast instruction, or select which has a PHI node
600   /// as operand #0, see if we can fold the instruction into the PHI (which is
601   /// only possible if all operands to the PHI are constants).
602   Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
603 
604   /// Given an instruction with a select as one operand and a constant as the
605   /// other operand, try to fold the binary operator into the select arguments.
606   /// This also works for Cast instructions, which obviously do not have a
607   /// second operand.
608   Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
609 
610   /// This is a convenience wrapper function for the above two functions.
611   Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
612 
613   Instruction *foldAddWithConstant(BinaryOperator &Add);
614 
615   /// Try to rotate an operation below a PHI node, using PHI nodes for
616   /// its operands.
617   Instruction *foldPHIArgOpIntoPHI(PHINode &PN);
618   Instruction *foldPHIArgBinOpIntoPHI(PHINode &PN);
619   Instruction *foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN);
620   Instruction *foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN);
621   Instruction *foldPHIArgGEPIntoPHI(PHINode &PN);
622   Instruction *foldPHIArgLoadIntoPHI(PHINode &PN);
623   Instruction *foldPHIArgZextsIntoPHI(PHINode &PN);
624 
625   /// If an integer typed PHI has only one use which is an IntToPtr operation,
626   /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
627   /// insert a new pointer typed PHI and replace the original one.
628   Instruction *foldIntegerTypedPHI(PHINode &PN);
629 
630   /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
631   /// folded operation.
632   void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
633 
634   Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
635                            ICmpInst::Predicate Cond, Instruction &I);
636   Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
637                              const Value *Other);
638   Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
639                                             GlobalVariable *GV, CmpInst &ICI,
640                                             ConstantInt *AndCst = nullptr);
641   Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
642                                     Constant *RHSC);
643   Instruction *foldICmpAddOpConst(Value *X, const APInt &C,
644                                   ICmpInst::Predicate Pred);
645   Instruction *foldICmpWithCastOp(ICmpInst &ICI);
646 
647   Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
648   Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp);
649   Instruction *foldICmpWithConstant(ICmpInst &Cmp);
650   Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
651   Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
652   Instruction *foldICmpBinOp(ICmpInst &Cmp, const SimplifyQuery &SQ);
653   Instruction *foldICmpEquality(ICmpInst &Cmp);
654   Instruction *foldIRemByPowerOfTwoToBitTest(ICmpInst &I);
655   Instruction *foldSignBitTest(ICmpInst &I);
656   Instruction *foldICmpWithZero(ICmpInst &Cmp);
657 
658   Value *foldUnsignedMultiplicationOverflowCheck(ICmpInst &Cmp);
659 
660   Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
661                                       ConstantInt *C);
662   Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
663                                      const APInt &C);
664   Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
665                                    const APInt &C);
666   Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
667                                    const APInt &C);
668   Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
669                                   const APInt &C);
670   Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
671                                    const APInt &C);
672   Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
673                                    const APInt &C);
674   Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
675                                    const APInt &C);
676   Instruction *foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
677                                     const APInt &C);
678   Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
679                                     const APInt &C);
680   Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
681                                    const APInt &C);
682   Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
683                                    const APInt &C);
684   Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
685                                    const APInt &C);
686   Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
687                                      const APInt &C1);
688   Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
689                                 const APInt &C1, const APInt &C2);
690   Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
691                                      const APInt &C2);
692   Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
693                                      const APInt &C2);
694 
695   Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
696                                                  BinaryOperator *BO,
697                                                  const APInt &C);
698   Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
699                                              const APInt &C);
700   Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
701                                                const APInt &C);
702 
703   // Helpers of visitSelectInst().
704   Instruction *foldSelectExtConst(SelectInst &Sel);
705   Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
706   Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
707   Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
708                             Value *A, Value *B, Instruction &Outer,
709                             SelectPatternFlavor SPF2, Value *C);
710   Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
711   Instruction *foldSelectValueEquivalence(SelectInst &SI, ICmpInst &ICI);
712 
713   Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
714                          bool isSigned, bool Inside);
715   Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
716   bool mergeStoreIntoSuccessor(StoreInst &SI);
717 
718   /// Given an 'or' instruction, check to see if it is part of a
719   /// bswap/bitreverse idiom. If so, return the equivalent bswap/bitreverse
720   /// intrinsic.
721   Instruction *matchBSwapOrBitReverse(BinaryOperator &Or, bool MatchBSwaps,
722                                       bool MatchBitReversals);
723 
724   Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
725   Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
726 
727   Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
728 
729   /// Returns a value X such that Val = X * Scale, or null if none.
730   ///
731   /// If the multiplication is known not to overflow then NoSignedWrap is set.
732   Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
733 };
734 
735 class Negator final {
736   /// Top-to-bottom, def-to-use negated instruction tree we produced.
737   SmallVector<Instruction *, NegatorMaxNodesSSO> NewInstructions;
738 
739   using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
740   BuilderTy Builder;
741 
742   const DataLayout &DL;
743   AssumptionCache &AC;
744   const DominatorTree &DT;
745 
746   const bool IsTrulyNegation;
747 
748   SmallDenseMap<Value *, Value *> NegationsCache;
749 
750   Negator(LLVMContext &C, const DataLayout &DL, AssumptionCache &AC,
751           const DominatorTree &DT, bool IsTrulyNegation);
752 
753 #if LLVM_ENABLE_STATS
754   unsigned NumValuesVisitedInThisNegator = 0;
755   ~Negator();
756 #endif
757 
758   using Result = std::pair<ArrayRef<Instruction *> /*NewInstructions*/,
759                            Value * /*NegatedRoot*/>;
760 
761   std::array<Value *, 2> getSortedOperandsOfBinOp(Instruction *I);
762 
763   LLVM_NODISCARD Value *visitImpl(Value *V, unsigned Depth);
764 
765   LLVM_NODISCARD Value *negate(Value *V, unsigned Depth);
766 
767   /// Recurse depth-first and attempt to sink the negation.
768   /// FIXME: use worklist?
769   LLVM_NODISCARD Optional<Result> run(Value *Root);
770 
771   Negator(const Negator &) = delete;
772   Negator(Negator &&) = delete;
773   Negator &operator=(const Negator &) = delete;
774   Negator &operator=(Negator &&) = delete;
775 
776 public:
777   /// Attempt to negate \p Root. Retuns nullptr if negation can't be performed,
778   /// otherwise returns negated value.
779   LLVM_NODISCARD static Value *Negate(bool LHSIsZero, Value *Root,
780                                       InstCombinerImpl &IC);
781 };
782 
783 } // end namespace llvm
784 
785 #undef DEBUG_TYPE
786 
787 #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
788