1; RUN: opt < %s -sroa -S | FileCheck %s
2; RUN: opt < %s -passes=sroa -S | FileCheck %s
3
4target datalayout = "e-p:64:64:64-p1:16:16:16-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64"
5
6declare void @llvm.lifetime.start.p0i8(i64, i8* nocapture)
7declare void @llvm.lifetime.end.p0i8(i64, i8* nocapture)
8
9define i32 @test0() {
10; CHECK-LABEL: @test0(
11; CHECK-NOT: alloca
12; CHECK: ret i32
13
14entry:
15  %a1 = alloca i32
16  %a2 = alloca float
17
18  %a1.i8 = bitcast i32* %a1 to i8*
19  call void @llvm.lifetime.start.p0i8(i64 4, i8* %a1.i8)
20
21  store i32 0, i32* %a1
22  %v1 = load i32, i32* %a1
23
24  call void @llvm.lifetime.end.p0i8(i64 4, i8* %a1.i8)
25
26  %a2.i8 = bitcast float* %a2 to i8*
27  call void @llvm.lifetime.start.p0i8(i64 4, i8* %a2.i8)
28
29  store float 0.0, float* %a2
30  %v2 = load float , float * %a2
31  %v2.int = bitcast float %v2 to i32
32  %sum1 = add i32 %v1, %v2.int
33
34  call void @llvm.lifetime.end.p0i8(i64 4, i8* %a2.i8)
35
36  ret i32 %sum1
37}
38
39define i32 @test1() {
40; CHECK-LABEL: @test1(
41; CHECK-NOT: alloca
42; CHECK: ret i32 0
43
44entry:
45  %X = alloca { i32, float }
46  %Y = getelementptr { i32, float }, { i32, float }* %X, i64 0, i32 0
47  store i32 0, i32* %Y
48  %Z = load i32, i32* %Y
49  ret i32 %Z
50}
51
52define i64 @test2(i64 %X) {
53; CHECK-LABEL: @test2(
54; CHECK-NOT: alloca
55; CHECK: ret i64 %X
56
57entry:
58  %A = alloca [8 x i8]
59  %B = bitcast [8 x i8]* %A to i64*
60  store i64 %X, i64* %B
61  br label %L2
62
63L2:
64  %Z = load i64, i64* %B
65  ret i64 %Z
66}
67
68define i64 @test2_addrspacecast(i64 %X) {
69; CHECK-LABEL: @test2_addrspacecast(
70; CHECK-NOT: alloca
71; CHECK: ret i64 %X
72
73entry:
74  %A = alloca [8 x i8]
75  %B = addrspacecast [8 x i8]* %A to i64 addrspace(1)*
76  store i64 %X, i64 addrspace(1)* %B
77  br label %L2
78
79L2:
80  %Z = load i64, i64 addrspace(1)* %B
81  ret i64 %Z
82}
83
84define i64 @test2_addrspacecast_gep(i64 %X, i16 %idx) {
85; CHECK-LABEL: @test2_addrspacecast_gep(
86; CHECK-NOT: alloca
87; CHECK: ret i64 %X
88
89entry:
90  %A = alloca [256 x i8]
91  %B = addrspacecast [256 x i8]* %A to i64 addrspace(1)*
92  %gepA = getelementptr [256 x i8], [256 x i8]* %A, i16 0, i16 32
93  %gepB = getelementptr i64, i64 addrspace(1)* %B, i16 4
94  store i64 %X, i64 addrspace(1)* %gepB, align 1
95  br label %L2
96
97L2:
98  %gepA.bc = bitcast i8* %gepA to i64*
99  %Z = load i64, i64* %gepA.bc, align 1
100  ret i64 %Z
101}
102
103; Avoid crashing when load/storing at at different offsets.
104define i64 @test2_addrspacecast_gep_offset(i64 %X) {
105; CHECK-LABEL: @test2_addrspacecast_gep_offset(
106; CHECK: %A.sroa.0 = alloca [10 x i8]
107; CHECK: [[GEP0:%.*]] = getelementptr inbounds [10 x i8], [10 x i8]* %A.sroa.0, i16 0, i16 2
108; CHECK-NEXT: [[GEP1:%.*]] = addrspacecast i8* [[GEP0]] to i64 addrspace(1)*
109; CHECK-NEXT: store i64 %X, i64 addrspace(1)* [[GEP1]], align 1
110; CHECK: br
111
112; CHECK: [[BITCAST:%.*]] = bitcast [10 x i8]* %A.sroa.0 to i64*
113; CHECK: %A.sroa.0.0.A.sroa.0.30.Z = load i64, i64* [[BITCAST]], align 1
114; CHECK-NEXT: ret
115entry:
116  %A = alloca [256 x i8]
117  %B = addrspacecast [256 x i8]* %A to i64 addrspace(1)*
118  %gepA = getelementptr [256 x i8], [256 x i8]* %A, i16 0, i16 30
119  %gepB = getelementptr i64, i64 addrspace(1)* %B, i16 4
120  store i64 %X, i64 addrspace(1)* %gepB, align 1
121  br label %L2
122
123L2:
124  %gepA.bc = bitcast i8* %gepA to i64*
125  %Z = load i64, i64* %gepA.bc, align 1
126  ret i64 %Z
127}
128
129define void @test3(i8* %dst, i8* align 8 %src) {
130; CHECK-LABEL: @test3(
131
132entry:
133  %a = alloca [300 x i8]
134; CHECK-NOT:  alloca
135; CHECK:      %[[test3_a1:.*]] = alloca [42 x i8]
136; CHECK-NEXT: %[[test3_a2:.*]] = alloca [99 x i8]
137; CHECK-NEXT: %[[test3_a3:.*]] = alloca [16 x i8]
138; CHECK-NEXT: %[[test3_a4:.*]] = alloca [42 x i8]
139; CHECK-NEXT: %[[test3_a5:.*]] = alloca [7 x i8]
140; CHECK-NEXT: %[[test3_a6:.*]] = alloca [7 x i8]
141; CHECK-NEXT: %[[test3_a7:.*]] = alloca [85 x i8]
142
143  %b = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 0
144  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* align 8 %src, i32 300, i1 false), !tbaa !0
145; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a1]], i64 0, i64 0
146; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 8 %src, i32 42, {{.*}}), !tbaa [[TAG_0:!.*]]
147; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 42
148; CHECK-NEXT: %[[test3_r1:.*]] = load i8, i8* %[[gep]], {{.*}}, !tbaa [[TAG_0_M42:!.*]]
149; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 43
150; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [99 x i8], [99 x i8]* %[[test3_a2]], i64 0, i64 0
151; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 99, {{.*}}), !tbaa [[TAG_0_M43:!.*]]
152; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 142
153; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
154; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 2 %[[gep_src]], i32 16, {{.*}}), !tbaa [[TAG_0_M142:!.*]]
155; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 158
156; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 0
157; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 2 %[[gep_src]], i32 42, {{.*}}), !tbaa [[TAG_0_M158:!.*]]
158; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 200
159; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
160; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 8 %[[gep_src]], i32 7, {{.*}})
161; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 207
162; CHECK-NOT:  %[[bad_test3_r2:.*]] = load i8, i8* %[[gep]], {{.*}}, !tbaa
163; CHECK-NEXT: %[[test3_r2:.*]] = load i8, i8* %[[gep]], {{.*}}
164; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 208
165; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
166; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 8 %[[gep_src]], i32 7, {{.*}})
167; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 215
168; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
169; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 85, {{.*}})
170
171  ; Clobber a single element of the array, this should be promotable, and be deleted.
172  %c = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 42
173  store i8 0, i8* %c
174
175  ; Make a sequence of overlapping stores to the array. These overlap both in
176  ; forward strides and in shrinking accesses.
177  %overlap.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 142
178  %overlap.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 143
179  %overlap.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 144
180  %overlap.4.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 145
181  %overlap.5.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 146
182  %overlap.6.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 147
183  %overlap.7.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 148
184  %overlap.8.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 149
185  %overlap.9.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 150
186  %overlap.1.i16 = bitcast i8* %overlap.1.i8 to i16*
187  %overlap.1.i32 = bitcast i8* %overlap.1.i8 to i32*
188  %overlap.1.i64 = bitcast i8* %overlap.1.i8 to i64*
189  %overlap.2.i64 = bitcast i8* %overlap.2.i8 to i64*
190  %overlap.3.i64 = bitcast i8* %overlap.3.i8 to i64*
191  %overlap.4.i64 = bitcast i8* %overlap.4.i8 to i64*
192  %overlap.5.i64 = bitcast i8* %overlap.5.i8 to i64*
193  %overlap.6.i64 = bitcast i8* %overlap.6.i8 to i64*
194  %overlap.7.i64 = bitcast i8* %overlap.7.i8 to i64*
195  %overlap.8.i64 = bitcast i8* %overlap.8.i8 to i64*
196  %overlap.9.i64 = bitcast i8* %overlap.9.i8 to i64*
197  store i8 1, i8* %overlap.1.i8, !tbaa !3
198; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
199; CHECK-NEXT: store i8 1, i8* %[[gep]], align 1, !tbaa [[TAG_3:!.*]]
200  store i16 1, i16* %overlap.1.i16, !tbaa !5
201; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i16*
202; CHECK-NEXT: store i16 1, i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_5:!.*]]
203  store i32 1, i32* %overlap.1.i32, !tbaa !7
204; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i32*
205; CHECK-NEXT: store i32 1, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_7:!.*]]
206  store i64 1, i64* %overlap.1.i64, !tbaa !9
207; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i64*
208; CHECK-NEXT: store i64 1, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_9:!.*]]
209  store i64 2, i64* %overlap.2.i64, !tbaa !11
210; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 1
211; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
212; CHECK-NEXT: store i64 2, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_11:!.*]]
213  store i64 3, i64* %overlap.3.i64, !tbaa !13
214; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 2
215; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
216; CHECK-NEXT: store i64 3, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_13:!.*]]
217  store i64 4, i64* %overlap.4.i64, !tbaa !15
218; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 3
219; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
220; CHECK-NEXT: store i64 4, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_15:!.*]]
221  store i64 5, i64* %overlap.5.i64, !tbaa !17
222; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 4
223; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
224; CHECK-NEXT: store i64 5, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_17:!.*]]
225  store i64 6, i64* %overlap.6.i64, !tbaa !19
226; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 5
227; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
228; CHECK-NEXT: store i64 6, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_19:!.*]]
229  store i64 7, i64* %overlap.7.i64, !tbaa !21
230; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 6
231; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
232; CHECK-NEXT: store i64 7, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_21:!.*]]
233  store i64 8, i64* %overlap.8.i64, !tbaa !23
234; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 7
235; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
236; CHECK-NEXT: store i64 8, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_23:!.*]]
237  store i64 9, i64* %overlap.9.i64, !tbaa !25
238; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 8
239; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
240; CHECK-NEXT: store i64 9, i64* %[[bitcast]], {{.*}}, !tbaa [[TAG_25:!.*]]
241
242  ; Make two sequences of overlapping stores with more gaps and irregularities.
243  %overlap2.1.0.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 200
244  %overlap2.1.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 201
245  %overlap2.1.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 202
246  %overlap2.1.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 203
247
248  %overlap2.2.0.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 208
249  %overlap2.2.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 209
250  %overlap2.2.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 210
251  %overlap2.2.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 211
252
253  %overlap2.1.0.i16 = bitcast i8* %overlap2.1.0.i8 to i16*
254  %overlap2.1.0.i32 = bitcast i8* %overlap2.1.0.i8 to i32*
255  %overlap2.1.1.i32 = bitcast i8* %overlap2.1.1.i8 to i32*
256  %overlap2.1.2.i32 = bitcast i8* %overlap2.1.2.i8 to i32*
257  %overlap2.1.3.i32 = bitcast i8* %overlap2.1.3.i8 to i32*
258  store i8 1,  i8*  %overlap2.1.0.i8, !tbaa !27
259; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
260; CHECK-NEXT: store i8 1, i8* %[[gep]], align 1, !tbaa [[TAG_27:!.*]]
261  store i16 1, i16* %overlap2.1.0.i16, !tbaa !29
262; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i16*
263; CHECK-NEXT: store i16 1, i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_29:!.*]]
264  store i32 1, i32* %overlap2.1.0.i32, !tbaa !31
265; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i32*
266; CHECK-NEXT: store i32 1, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_31:!.*]]
267  store i32 2, i32* %overlap2.1.1.i32, !tbaa !33
268; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 1
269; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
270; CHECK-NEXT: store i32 2, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_33:!.*]]
271  store i32 3, i32* %overlap2.1.2.i32, !tbaa !35
272; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 2
273; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
274; CHECK-NEXT: store i32 3, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_35:!.*]]
275  store i32 4, i32* %overlap2.1.3.i32, !tbaa !37
276; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 3
277; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
278; CHECK-NEXT: store i32 4, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_37:!.*]]
279
280  %overlap2.2.0.i32 = bitcast i8* %overlap2.2.0.i8 to i32*
281  %overlap2.2.1.i16 = bitcast i8* %overlap2.2.1.i8 to i16*
282  %overlap2.2.1.i32 = bitcast i8* %overlap2.2.1.i8 to i32*
283  %overlap2.2.2.i32 = bitcast i8* %overlap2.2.2.i8 to i32*
284  %overlap2.2.3.i32 = bitcast i8* %overlap2.2.3.i8 to i32*
285  store i32 1, i32* %overlap2.2.0.i32, !tbaa !39
286; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a6]] to i32*
287; CHECK-NEXT: store i32 1, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_39:!.*]]
288  store i8 1,  i8*  %overlap2.2.1.i8, !tbaa !41
289; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
290; CHECK-NEXT: store i8 1, i8* %[[gep]], align 1, !tbaa [[TAG_41:!.*]]
291  store i16 1, i16* %overlap2.2.1.i16, !tbaa !43
292; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
293; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
294; CHECK-NEXT: store i16 1, i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_43:!.*]]
295  store i32 1, i32* %overlap2.2.1.i32, !tbaa !45
296; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
297; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
298; CHECK-NEXT: store i32 1, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_45:!.*]]
299  store i32 3, i32* %overlap2.2.2.i32, !tbaa !47
300; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 2
301; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
302; CHECK-NEXT: store i32 3, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_47:!.*]]
303  store i32 4, i32* %overlap2.2.3.i32, !tbaa !49
304; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 3
305; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
306; CHECK-NEXT: store i32 4, i32* %[[bitcast]], {{.*}}, !tbaa [[TAG_49:!.*]]
307
308  %overlap2.prefix = getelementptr i8, i8* %overlap2.1.1.i8, i64 -4
309  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.prefix, i8* %src, i32 8, i1 false), !tbaa !51
310; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 39
311; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %src, i32 3, {{.*}}), !tbaa [[TAG_51:!.*]]
312; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 3
313; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
314; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 5, {{.*}})
315
316  ; Bridge between the overlapping areas
317  call void @llvm.memset.p0i8.i32(i8* %overlap2.1.2.i8, i8 42, i32 8, i1 false), !tbaa !53
318; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 2
319; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* align 1 %[[gep]], i8 42, i32 5, {{.*}}), !tbaa [[TAG_53:!.*]]
320; ...promoted i8 store...
321; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
322; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* align 1 %[[gep]], i8 42, i32 2, {{.*}})
323
324  ; Entirely within the second overlap.
325  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.1.i8, i8* %src, i32 5, i1 false), !tbaa !55
326; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
327; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep]], i8* align 1 %src, i32 5, {{.*}}), !tbaa [[TAG_55:!.*]]
328
329  ; Trailing past the second overlap.
330  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.2.i8, i8* %src, i32 8, i1 false), !tbaa !57
331; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 2
332; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep]], i8* align 1 %src, i32 5, {{.*}}), !tbaa [[TAG_57:!.*]]
333; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 5
334; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
335; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 3, {{.*}})
336
337  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 300, i1 false), !tbaa !59
338; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a1]], i64 0, i64 0
339; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %dst, i8* align 1 %[[gep]], i32 42, {{.*}}), !tbaa [[TAG_59:!.*]]
340; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 42
341; CHECK-NEXT: store i8 0, i8* %[[gep]], {{.*}}
342; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 43
343; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [99 x i8], [99 x i8]* %[[test3_a2]], i64 0, i64 0
344; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 99, {{.*}})
345; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 142
346; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
347; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 16, {{.*}})
348; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 158
349; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 0
350; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 42, {{.*}})
351; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 200
352; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
353; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}})
354; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 207
355; CHECK-NEXT: store i8 42, i8* %[[gep]], {{.*}}
356; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 208
357; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
358; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}})
359; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 215
360; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
361; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 85, {{.*}})
362
363  ret void
364}
365
366define void @test4(i8* %dst, i8* %src) {
367; CHECK-LABEL: @test4(
368
369entry:
370  %a = alloca [100 x i8]
371; CHECK-NOT:  alloca
372; CHECK:      %[[test4_a1:.*]] = alloca [20 x i8]
373; CHECK-NEXT: %[[test4_a2:.*]] = alloca [7 x i8]
374; CHECK-NEXT: %[[test4_a3:.*]] = alloca [10 x i8]
375; CHECK-NEXT: %[[test4_a4:.*]] = alloca [7 x i8]
376; CHECK-NEXT: %[[test4_a5:.*]] = alloca [7 x i8]
377; CHECK-NEXT: %[[test4_a6:.*]] = alloca [40 x i8]
378
379  %b = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 0
380  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 100, i1 false), !tbaa !0
381; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8], [20 x i8]* %[[test4_a1]], i64 0, i64 0
382; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep]], i8* align 1 %src, i32 20, {{.*}}), !tbaa [[TAG_0]]
383; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 20
384; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
385; CHECK-NEXT: %[[test4_r1:.*]] = load i16, i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_0_M20:!.*]]
386; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 22
387; CHECK-NEXT: %[[test4_r2:.*]] = load i8, i8* %[[gep]], {{.*}}, !tbaa [[TAG_0_M22:!.*]]
388; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 23
389; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
390; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_0_M23:!.*]]
391; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 30
392; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [10 x i8], [10 x i8]* %[[test4_a3]], i64 0, i64 0
393; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 10, {{.*}}), !tbaa [[TAG_0_M30:!.*]]
394; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 40
395; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
396; CHECK-NEXT: %[[test4_r3:.*]] = load i16, i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_0_M40:!.*]]
397; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 42
398; CHECK-NEXT: %[[test4_r4:.*]] = load i8, i8* %[[gep]], {{.*}}, !tbaa [[TAG_0_M42]]
399; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 43
400; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
401; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_0_M43]]
402; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 50
403; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
404; CHECK-NEXT: %[[test4_r5:.*]] = load i16, i16* %[[bitcast]], {{.*}}, !tbaa [[TAG_0_M50:!.*]]
405; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 52
406; CHECK-NEXT: %[[test4_r6:.*]] = load i8, i8* %[[gep]], {{.*}}, !tbaa [[TAG_0_M52:!.*]]
407; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 53
408; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
409; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}}), !tbaa [[TAG_0_M53:!.+]]
410; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 60
411; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [40 x i8], [40 x i8]* %[[test4_a6]], i64 0, i64 0
412; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 40, {{.*}}), !tbaa [[TAG_0_M60:!.+]]
413
414  %a.src.1 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 20
415  %a.dst.1 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 40
416  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.1, i32 10, i1 false), !tbaa !3
417; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
418; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
419; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}})
420
421  ; Clobber a single element of the array, this should be promotable, and be deleted.
422  %c = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 42
423  store i8 0, i8* %c
424
425  %a.src.2 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 50
426  call void @llvm.memmove.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.2, i32 10, i1 false), !tbaa !5
427; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
428; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
429; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}})
430
431  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 100, i1 false), !tbaa !7
432; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8], [20 x i8]* %[[test4_a1]], i64 0, i64 0
433; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %dst, i8* align 1 %[[gep]], i32 20, {{.*}}), !tbaa [[TAG_7]]
434; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 20
435; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
436; CHECK-NEXT: store i16 %[[test4_r1]], i16* %[[bitcast]], {{.*}}
437; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 22
438; CHECK-NEXT: store i8 %[[test4_r2]], i8* %[[gep]], {{.*}}
439; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 23
440; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
441; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}})
442; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 30
443; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [10 x i8], [10 x i8]* %[[test4_a3]], i64 0, i64 0
444; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 10, {{.*}})
445; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 40
446; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
447; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]], {{.*}}
448; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 42
449; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]], {{.*}}
450; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 43
451; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
452; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}})
453; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 50
454; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
455; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]], {{.*}}
456; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 52
457; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]], {{.*}}
458; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 53
459; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
460; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 7, {{.*}})
461; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 60
462; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [40 x i8], [40 x i8]* %[[test4_a6]], i64 0, i64 0
463; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[gep_dst]], i8* align 1 %[[gep_src]], i32 40, {{.*}})
464
465  ret void
466}
467
468declare void @llvm.memcpy.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i1) nounwind
469declare void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)* nocapture, i8* nocapture, i32, i1) nounwind
470declare void @llvm.memmove.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i1) nounwind
471declare void @llvm.memset.p0i8.i32(i8* nocapture, i8, i32, i1) nounwind
472
473define i16 @test5() {
474; CHECK-LABEL: @test5(
475; CHECK-NOT: alloca float
476; CHECK:      %[[cast:.*]] = bitcast float 0.0{{.*}} to i32
477; CHECK-NEXT: %[[shr:.*]] = lshr i32 %[[cast]], 16
478; CHECK-NEXT: %[[trunc:.*]] = trunc i32 %[[shr]] to i16
479; CHECK-NEXT: ret i16 %[[trunc]]
480
481entry:
482  %a = alloca [4 x i8]
483  %fptr = bitcast [4 x i8]* %a to float*
484  store float 0.0, float* %fptr
485  %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 2
486  %iptr = bitcast i8* %ptr to i16*
487  %val = load i16, i16* %iptr
488  ret i16 %val
489}
490
491define i16 @test5_multi_addrspace_access() {
492; CHECK-LABEL: @test5_multi_addrspace_access(
493; CHECK-NOT: alloca float
494; CHECK:      %[[cast:.*]] = bitcast float 0.0{{.*}} to i32
495; CHECK-NEXT: %[[shr:.*]] = lshr i32 %[[cast]], 16
496; CHECK-NEXT: %[[trunc:.*]] = trunc i32 %[[shr]] to i16
497; CHECK-NEXT: ret i16 %[[trunc]]
498
499entry:
500  %a = alloca [4 x i8]
501  %fptr = bitcast [4 x i8]* %a to float*
502  %fptr.as1 = addrspacecast float* %fptr to float addrspace(1)*
503  store float 0.0, float addrspace(1)* %fptr.as1
504  %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 2
505  %iptr = bitcast i8* %ptr to i16*
506  %val = load i16, i16* %iptr
507  ret i16 %val
508}
509
510define i32 @test6() {
511; CHECK-LABEL: @test6(
512; CHECK: alloca i32
513; CHECK-NEXT: store volatile i32
514; CHECK-NEXT: load i32, i32*
515; CHECK-NEXT: ret i32
516
517entry:
518  %a = alloca [4 x i8]
519  %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 0
520  call void @llvm.memset.p0i8.i32(i8* %ptr, i8 42, i32 4, i1 true)
521  %iptr = bitcast i8* %ptr to i32*
522  %val = load i32, i32* %iptr
523  ret i32 %val
524}
525
526define void @test7(i8* %src, i8* %dst) {
527; CHECK-LABEL: @test7(
528; CHECK: alloca i32
529; CHECK-NEXT: bitcast i8* %src to i32*
530; CHECK-NEXT: load volatile i32, {{.*}}, !tbaa [[TAG_0]]
531; CHECK-NEXT: store volatile i32 {{.*}}, !tbaa [[TAG_0]]
532; CHECK-NEXT: bitcast i8* %dst to i32*
533; CHECK-NEXT: load volatile i32, {{.*}}, !tbaa [[TAG_3]]
534; CHECK-NEXT: store volatile i32 {{.*}}, !tbaa [[TAG_3]]
535; CHECK-NEXT: ret
536
537entry:
538  %a = alloca [4 x i8]
539  %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 0
540  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i1 true), !tbaa !0
541  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i1 true), !tbaa !3
542  ret void
543}
544
545
546%S1 = type { i32, i32, [16 x i8] }
547%S2 = type { %S1*, %S2* }
548
549define %S2 @test8(%S2* %s2) {
550; CHECK-LABEL: @test8(
551entry:
552  %new = alloca %S2
553; CHECK-NOT: alloca
554
555  %s2.next.ptr = getelementptr %S2, %S2* %s2, i64 0, i32 1
556  %s2.next = load %S2*, %S2** %s2.next.ptr, !tbaa !0
557; CHECK:      %[[gep:.*]] = getelementptr %S2, %S2* %s2, i64 0, i32 1
558; CHECK-NEXT: %[[next:.*]] = load %S2*, %S2** %[[gep]], align 8, !tbaa [[TAG_0]]
559
560  %s2.next.s1.ptr = getelementptr %S2, %S2* %s2.next, i64 0, i32 0
561  %s2.next.s1 = load %S1*, %S1** %s2.next.s1.ptr, !tbaa !3
562  %new.s1.ptr = getelementptr %S2, %S2* %new, i64 0, i32 0
563  store %S1* %s2.next.s1, %S1** %new.s1.ptr, !tbaa !5
564  %s2.next.next.ptr = getelementptr %S2, %S2* %s2.next, i64 0, i32 1
565  %s2.next.next = load %S2*, %S2** %s2.next.next.ptr, !tbaa !7
566  %new.next.ptr = getelementptr %S2, %S2* %new, i64 0, i32 1
567  store %S2* %s2.next.next, %S2** %new.next.ptr, !tbaa !9
568; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2, %S2* %[[next]], i64 0, i32 0
569; CHECK-NEXT: %[[next_s1:.*]] = load %S1*, %S1** %[[gep]], align 8, !tbaa [[TAG_3]]
570; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2, %S2* %[[next]], i64 0, i32 1
571; CHECK-NEXT: %[[next_next:.*]] = load %S2*, %S2** %[[gep]], align 8, !tbaa [[TAG_7]]
572
573  %new.s1 = load %S1*, %S1** %new.s1.ptr
574  %result1 = insertvalue %S2 undef, %S1* %new.s1, 0
575; CHECK-NEXT: %[[result1:.*]] = insertvalue %S2 undef, %S1* %[[next_s1]], 0
576  %new.next = load %S2*, %S2** %new.next.ptr
577  %result2 = insertvalue %S2 %result1, %S2* %new.next, 1
578; CHECK-NEXT: %[[result2:.*]] = insertvalue %S2 %[[result1]], %S2* %[[next_next]], 1
579  ret %S2 %result2
580; CHECK-NEXT: ret %S2 %[[result2]]
581}
582
583define i64 @test9() {
584; Ensure we can handle loads off the end of an alloca even when wrapped in
585; weird bit casts and types. This is valid IR due to the alignment and masking
586; off the bits past the end of the alloca.
587;
588; CHECK-LABEL: @test9(
589; CHECK-NOT: alloca
590; CHECK:      %[[b2:.*]] = zext i8 26 to i64
591; CHECK-NEXT: %[[s2:.*]] = shl i64 %[[b2]], 16
592; CHECK-NEXT: %[[m2:.*]] = and i64 undef, -16711681
593; CHECK-NEXT: %[[i2:.*]] = or i64 %[[m2]], %[[s2]]
594; CHECK-NEXT: %[[b1:.*]] = zext i8 0 to i64
595; CHECK-NEXT: %[[s1:.*]] = shl i64 %[[b1]], 8
596; CHECK-NEXT: %[[m1:.*]] = and i64 %[[i2]], -65281
597; CHECK-NEXT: %[[i1:.*]] = or i64 %[[m1]], %[[s1]]
598; CHECK-NEXT: %[[b0:.*]] = zext i8 0 to i64
599; CHECK-NEXT: %[[m0:.*]] = and i64 %[[i1]], -256
600; CHECK-NEXT: %[[i0:.*]] = or i64 %[[m0]], %[[b0]]
601; CHECK-NEXT: %[[result:.*]] = and i64 %[[i0]], 16777215
602; CHECK-NEXT: ret i64 %[[result]]
603
604entry:
605  %a = alloca { [3 x i8] }, align 8
606  %gep1 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 0
607  store i8 0, i8* %gep1, align 1
608  %gep2 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 1
609  store i8 0, i8* %gep2, align 1
610  %gep3 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 2
611  store i8 26, i8* %gep3, align 1
612  %cast = bitcast { [3 x i8] }* %a to { i64 }*
613  %elt = getelementptr inbounds { i64 }, { i64 }* %cast, i32 0, i32 0
614  %load = load i64, i64* %elt
615  %result = and i64 %load, 16777215
616  ret i64 %result
617}
618
619define %S2* @test10() {
620; CHECK-LABEL: @test10(
621; CHECK-NOT: alloca %S2*
622; CHECK: ret %S2* null
623
624entry:
625  %a = alloca [8 x i8]
626  %ptr = getelementptr [8 x i8], [8 x i8]* %a, i32 0, i32 0
627  call void @llvm.memset.p0i8.i32(i8* %ptr, i8 0, i32 8, i1 false)
628  %s2ptrptr = bitcast i8* %ptr to %S2**
629  %s2ptr = load %S2*, %S2** %s2ptrptr
630  ret %S2* %s2ptr
631}
632
633define i32 @test11() {
634; CHECK-LABEL: @test11(
635; CHECK-NOT: alloca
636; CHECK: ret i32 0
637
638entry:
639  %X = alloca i32
640  br i1 undef, label %good, label %bad
641
642good:
643  %Y = getelementptr i32, i32* %X, i64 0
644  store i32 0, i32* %Y
645  %Z = load i32, i32* %Y
646  ret i32 %Z
647
648bad:
649  %Y2 = getelementptr i32, i32* %X, i64 1
650  store i32 0, i32* %Y2
651  %Z2 = load i32, i32* %Y2
652  ret i32 %Z2
653}
654
655define i8 @test12() {
656; We fully promote these to the i24 load or store size, resulting in just masks
657; and other operations that instcombine will fold, but no alloca.
658;
659; CHECK-LABEL: @test12(
660
661entry:
662  %a = alloca [3 x i8]
663  %b = alloca [3 x i8]
664; CHECK-NOT: alloca
665
666  %a0ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 0
667  store i8 0, i8* %a0ptr
668  %a1ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 1
669  store i8 0, i8* %a1ptr
670  %a2ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 2
671  store i8 0, i8* %a2ptr
672  %aiptr = bitcast [3 x i8]* %a to i24*
673  %ai = load i24, i24* %aiptr
674; CHECK-NOT: store
675; CHECK-NOT: load
676; CHECK:      %[[ext2:.*]] = zext i8 0 to i24
677; CHECK-NEXT: %[[shift2:.*]] = shl i24 %[[ext2]], 16
678; CHECK-NEXT: %[[mask2:.*]] = and i24 undef, 65535
679; CHECK-NEXT: %[[insert2:.*]] = or i24 %[[mask2]], %[[shift2]]
680; CHECK-NEXT: %[[ext1:.*]] = zext i8 0 to i24
681; CHECK-NEXT: %[[shift1:.*]] = shl i24 %[[ext1]], 8
682; CHECK-NEXT: %[[mask1:.*]] = and i24 %[[insert2]], -65281
683; CHECK-NEXT: %[[insert1:.*]] = or i24 %[[mask1]], %[[shift1]]
684; CHECK-NEXT: %[[ext0:.*]] = zext i8 0 to i24
685; CHECK-NEXT: %[[mask0:.*]] = and i24 %[[insert1]], -256
686; CHECK-NEXT: %[[insert0:.*]] = or i24 %[[mask0]], %[[ext0]]
687
688  %biptr = bitcast [3 x i8]* %b to i24*
689  store i24 %ai, i24* %biptr
690  %b0ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 0
691  %b0 = load i8, i8* %b0ptr
692  %b1ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 1
693  %b1 = load i8, i8* %b1ptr
694  %b2ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 2
695  %b2 = load i8, i8* %b2ptr
696; CHECK-NOT: store
697; CHECK-NOT: load
698; CHECK:      %[[trunc0:.*]] = trunc i24 %[[insert0]] to i8
699; CHECK-NEXT: %[[shift1:.*]] = lshr i24 %[[insert0]], 8
700; CHECK-NEXT: %[[trunc1:.*]] = trunc i24 %[[shift1]] to i8
701; CHECK-NEXT: %[[shift2:.*]] = lshr i24 %[[insert0]], 16
702; CHECK-NEXT: %[[trunc2:.*]] = trunc i24 %[[shift2]] to i8
703
704  %bsum0 = add i8 %b0, %b1
705  %bsum1 = add i8 %bsum0, %b2
706  ret i8 %bsum1
707; CHECK:      %[[sum0:.*]] = add i8 %[[trunc0]], %[[trunc1]]
708; CHECK-NEXT: %[[sum1:.*]] = add i8 %[[sum0]], %[[trunc2]]
709; CHECK-NEXT: ret i8 %[[sum1]]
710}
711
712define i32 @test13() {
713; Ensure we don't crash and handle undefined loads that straddle the end of the
714; allocation.
715; CHECK-LABEL: @test13(
716; CHECK:      %[[value:.*]] = zext i8 0 to i16
717; CHECK-NEXT: %[[ret:.*]] = zext i16 %[[value]] to i32
718; CHECK-NEXT: ret i32 %[[ret]]
719
720entry:
721  %a = alloca [3 x i8], align 2
722  %b0ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 0
723  store i8 0, i8* %b0ptr
724  %b1ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 1
725  store i8 0, i8* %b1ptr
726  %b2ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 2
727  store i8 0, i8* %b2ptr
728  %iptrcast = bitcast [3 x i8]* %a to i16*
729  %iptrgep = getelementptr i16, i16* %iptrcast, i64 1
730  %i = load i16, i16* %iptrgep
731  %ret = zext i16 %i to i32
732  ret i32 %ret
733}
734
735%test14.struct = type { [3 x i32] }
736
737define void @test14(...) nounwind uwtable {
738; This is a strange case where we split allocas into promotable partitions, but
739; also gain enough data to prove they must be dead allocas due to GEPs that walk
740; across two adjacent allocas. Test that we don't try to promote or otherwise
741; do bad things to these dead allocas, they should just be removed.
742; CHECK-LABEL: @test14(
743; CHECK-NEXT: entry:
744; CHECK-NEXT: ret void
745
746entry:
747  %a = alloca %test14.struct
748  %p = alloca %test14.struct*
749  %0 = bitcast %test14.struct* %a to i8*
750  %1 = getelementptr i8, i8* %0, i64 12
751  %2 = bitcast i8* %1 to %test14.struct*
752  %3 = getelementptr inbounds %test14.struct, %test14.struct* %2, i32 0, i32 0
753  %4 = getelementptr inbounds %test14.struct, %test14.struct* %a, i32 0, i32 0
754  %5 = bitcast [3 x i32]* %3 to i32*
755  %6 = bitcast [3 x i32]* %4 to i32*
756  %7 = load i32, i32* %6, align 4
757  store i32 %7, i32* %5, align 4
758  %8 = getelementptr inbounds i32, i32* %5, i32 1
759  %9 = getelementptr inbounds i32, i32* %6, i32 1
760  %10 = load i32, i32* %9, align 4
761  store i32 %10, i32* %8, align 4
762  %11 = getelementptr inbounds i32, i32* %5, i32 2
763  %12 = getelementptr inbounds i32, i32* %6, i32 2
764  %13 = load i32, i32* %12, align 4
765  store i32 %13, i32* %11, align 4
766  ret void
767}
768
769define i32 @test15(i1 %flag) nounwind uwtable {
770; Ensure that when there are dead instructions using an alloca that are not
771; loads or stores we still delete them during partitioning and rewriting.
772; Otherwise we'll go to promote them while thy still have unpromotable uses.
773; CHECK-LABEL: @test15(
774; CHECK-NEXT: entry:
775; CHECK-NEXT:   br label %loop
776; CHECK:      loop:
777; CHECK-NEXT:   br label %loop
778
779entry:
780  %l0 = alloca i64
781  %l1 = alloca i64
782  %l2 = alloca i64
783  %l3 = alloca i64
784  br label %loop
785
786loop:
787  %dead3 = phi i8* [ %gep3, %loop ], [ null, %entry ]
788
789  store i64 1879048192, i64* %l0, align 8
790  %bc0 = bitcast i64* %l0 to i8*
791  %gep0 = getelementptr i8, i8* %bc0, i64 3
792  %dead0 = bitcast i8* %gep0 to i64*
793
794  store i64 1879048192, i64* %l1, align 8
795  %bc1 = bitcast i64* %l1 to i8*
796  %gep1 = getelementptr i8, i8* %bc1, i64 3
797  %dead1 = getelementptr i8, i8* %gep1, i64 1
798
799  store i64 1879048192, i64* %l2, align 8
800  %bc2 = bitcast i64* %l2 to i8*
801  %gep2.1 = getelementptr i8, i8* %bc2, i64 1
802  %gep2.2 = getelementptr i8, i8* %bc2, i64 3
803  ; Note that this select should get visited multiple times due to using two
804  ; different GEPs off the same alloca. We should only delete it once.
805  %dead2 = select i1 %flag, i8* %gep2.1, i8* %gep2.2
806
807  store i64 1879048192, i64* %l3, align 8
808  %bc3 = bitcast i64* %l3 to i8*
809  %gep3 = getelementptr i8, i8* %bc3, i64 3
810
811  br label %loop
812}
813
814define void @test16(i8* %src, i8* %dst) {
815; Ensure that we can promote an alloca of [3 x i8] to an i24 SSA value.
816; CHECK-LABEL: @test16(
817; CHECK-NOT: alloca
818; CHECK:      %[[srccast:.*]] = bitcast i8* %src to i24*
819; CHECK-NEXT: load i24, i24* %[[srccast]], {{.*}}, !tbaa [[TAG_0]]
820; CHECK-NEXT: %[[dstcast:.*]] = bitcast i8* %dst to i24*
821; CHECK-NEXT: store i24 0, i24* %[[dstcast]], {{.*}}, !tbaa [[TAG_5]]
822; CHECK-NEXT: ret void
823
824entry:
825  %a = alloca [3 x i8]
826  %ptr = getelementptr [3 x i8], [3 x i8]* %a, i32 0, i32 0
827  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i1 false), !tbaa !0
828  %cast = bitcast i8* %ptr to i24*
829  store i24 0, i24* %cast, !tbaa !3
830  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i1 false), !tbaa !5
831  ret void
832}
833
834define void @test17(i8* %src, i8* %dst) {
835; Ensure that we can rewrite unpromotable memcpys which extend past the end of
836; the alloca.
837; CHECK-LABEL: @test17(
838; CHECK:      %[[a:.*]] = alloca [3 x i8]
839; CHECK-NEXT: %[[ptr:.*]] = getelementptr [3 x i8], [3 x i8]* %[[a]], i32 0, i32 0
840; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[ptr]], i8* %src, {{.*}}), !tbaa [[TAG_0]]
841; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[ptr]], {{.*}}), !tbaa [[TAG_3]]
842; CHECK-NEXT: ret void
843
844entry:
845  %a = alloca [3 x i8]
846  %ptr = getelementptr [3 x i8], [3 x i8]* %a, i32 0, i32 0
847  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i1 true), !tbaa !0
848  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i1 true), !tbaa !3
849  ret void
850}
851
852define void @test18(i8* %src, i8* %dst, i32 %size) {
853; Preserve transfer instrinsics with a variable size, even if they overlap with
854; fixed size operations. Further, continue to split and promote allocas preceding
855; the variable sized intrinsic.
856; CHECK-LABEL: @test18(
857; CHECK:      %[[a:.*]] = alloca [34 x i8]
858; CHECK:      %[[srcgep1:.*]] = getelementptr inbounds i8, i8* %src, i64 4
859; CHECK-NEXT: %[[srccast1:.*]] = bitcast i8* %[[srcgep1]] to i32*
860; CHECK-NEXT: %[[srcload:.*]] = load i32, i32* %[[srccast1]], {{.*}}, !tbaa [[TAG_0_M4:!.*]]
861; CHECK-NEXT: %[[agep1:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
862; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 1 %[[agep1]], i8* %src, i32 %size, {{.*}}), !tbaa [[TAG_3]]
863; CHECK-NEXT: %[[agep2:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
864; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* align 1 %[[agep2]], i8 42, i32 %size, {{.*}}), !tbaa [[TAG_5]]
865; CHECK-NEXT: %[[dstcast1:.*]] = bitcast i8* %dst to i32*
866; CHECK-NEXT: store i32 42, i32* %[[dstcast1]], {{.*}}, !tbaa [[TAG_9]]
867; CHECK-NEXT: %[[dstgep1:.*]] = getelementptr inbounds i8, i8* %dst, i64 4
868; CHECK-NEXT: %[[dstcast2:.*]] = bitcast i8* %[[dstgep1]] to i32*
869; CHECK-NEXT: store i32 %[[srcload]], i32* %[[dstcast2]], {{.*}}
870; CHECK-NEXT: %[[agep3:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
871; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* align 1 %[[agep3]], i32 %size, {{.*}}), !tbaa [[TAG_11]]
872; CHECK-NEXT: ret void
873
874entry:
875  %a = alloca [42 x i8]
876  %ptr = getelementptr [42 x i8], [42 x i8]* %a, i32 0, i32 0
877  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i1 false), !tbaa !0
878  %ptr2 = getelementptr [42 x i8], [42 x i8]* %a, i32 0, i32 8
879  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr2, i8* %src, i32 %size, i1 false), !tbaa !3
880  call void @llvm.memset.p0i8.i32(i8* %ptr2, i8 42, i32 %size, i1 false), !tbaa !5
881  %cast = bitcast i8* %ptr to i32*
882  store i32 42, i32* %cast, !tbaa !7
883  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i1 false), !tbaa !9
884  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr2, i32 %size, i1 false), !tbaa !11
885  ret void
886}
887
888%opaque = type opaque
889
890define i32 @test19(%opaque* %x) {
891; This input will cause us to try to compute a natural GEP when rewriting
892; pointers in such a way that we try to GEP through the opaque type. Previously,
893; a check for an unsized type was missing and this crashed. Ensure it behaves
894; reasonably now.
895; CHECK-LABEL: @test19(
896; CHECK-NOT: alloca
897; CHECK: ret i32 undef
898
899entry:
900  %a = alloca { i64, i8* }
901  %cast1 = bitcast %opaque* %x to i8*
902  %cast2 = bitcast { i64, i8* }* %a to i8*
903  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast2, i8* %cast1, i32 16, i1 false)
904  %gep = getelementptr inbounds { i64, i8* }, { i64, i8* }* %a, i32 0, i32 0
905  %val = load i64, i64* %gep
906  ret i32 undef
907}
908
909declare void @llvm.memcpy.p0i8.p1i8.i32(i8* nocapture, i8 addrspace(1)* nocapture, i32, i32, i1) nounwind
910
911define i32 @test19_addrspacecast(%opaque* %x) {
912; This input will cause us to try to compute a natural GEP when rewriting
913; pointers in such a way that we try to GEP through the opaque type. Previously,
914; a check for an unsized type was missing and this crashed. Ensure it behaves
915; reasonably now.
916; CHECK-LABEL: @test19_addrspacecast(
917; CHECK-NOT: alloca
918; CHECK: ret i32 undef
919
920entry:
921  %a = alloca { i64, i8* }
922  %cast1 = addrspacecast %opaque* %x to i8 addrspace(1)*
923  %cast2 = bitcast { i64, i8* }* %a to i8*
924  call void @llvm.memcpy.p0i8.p1i8.i32(i8* %cast2, i8 addrspace(1)* %cast1, i32 16, i32 1, i1 false)
925  %gep = getelementptr inbounds { i64, i8* }, { i64, i8* }* %a, i32 0, i32 0
926  %val = load i64, i64* %gep
927  ret i32 undef
928}
929
930define i32 @test20() {
931; Ensure we can track negative offsets (before the beginning of the alloca) and
932; negative relative offsets from offsets starting past the end of the alloca.
933; CHECK-LABEL: @test20(
934; CHECK-NOT: alloca
935; CHECK: %[[sum1:.*]] = add i32 1, 2
936; CHECK: %[[sum2:.*]] = add i32 %[[sum1]], 3
937; CHECK: ret i32 %[[sum2]]
938
939entry:
940  %a = alloca [3 x i32]
941  %gep1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 0
942  store i32 1, i32* %gep1
943  %gep2.1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 -2
944  %gep2.2 = getelementptr i32, i32* %gep2.1, i32 3
945  store i32 2, i32* %gep2.2
946  %gep3.1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 14
947  %gep3.2 = getelementptr i32, i32* %gep3.1, i32 -12
948  store i32 3, i32* %gep3.2
949
950  %load1 = load i32, i32* %gep1
951  %load2 = load i32, i32* %gep2.2
952  %load3 = load i32, i32* %gep3.2
953  %sum1 = add i32 %load1, %load2
954  %sum2 = add i32 %sum1, %load3
955  ret i32 %sum2
956}
957
958declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64, i1) nounwind
959
960define i8 @test21() {
961; Test allocations and offsets which border on overflow of the int64_t used
962; internally. This is really awkward to really test as LLVM doesn't really
963; support such extreme constructs cleanly.
964; CHECK-LABEL: @test21(
965; CHECK-NOT: alloca
966; CHECK: or i8 -1, -1
967
968entry:
969  %a = alloca [2305843009213693951 x i8]
970  %gep0 = getelementptr [2305843009213693951 x i8], [2305843009213693951 x i8]* %a, i64 0, i64 2305843009213693949
971  store i8 255, i8* %gep0
972  %gep1 = getelementptr [2305843009213693951 x i8], [2305843009213693951 x i8]* %a, i64 0, i64 -9223372036854775807
973  %gep2 = getelementptr i8, i8* %gep1, i64 -1
974  call void @llvm.memset.p0i8.i64(i8* %gep2, i8 0, i64 18446744073709551615, i1 false)
975  %gep3 = getelementptr i8, i8* %gep1, i64 9223372036854775807
976  %gep4 = getelementptr i8, i8* %gep3, i64 9223372036854775807
977  %gep5 = getelementptr i8, i8* %gep4, i64 -6917529027641081857
978  store i8 255, i8* %gep5
979  %cast1 = bitcast i8* %gep4 to i32*
980  store i32 0, i32* %cast1
981  %load = load i8, i8* %gep0
982  %gep6 = getelementptr i8, i8* %gep0, i32 1
983  %load2 = load i8, i8* %gep6
984  %result = or i8 %load, %load2
985  ret i8 %result
986}
987
988%PR13916.struct = type { i8 }
989
990define void @PR13916.1() {
991; Ensure that we handle overlapping memcpy intrinsics correctly, especially in
992; the case where there is a directly identical value for both source and dest.
993; CHECK: @PR13916.1
994; CHECK-NOT: alloca
995; CHECK: ret void
996
997entry:
998  %a = alloca i8
999  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a, i8* %a, i32 1, i1 false)
1000  %tmp2 = load i8, i8* %a
1001  ret void
1002}
1003
1004define void @PR13916.2() {
1005; Check whether we continue to handle them correctly when they start off with
1006; different pointer value chains, but during rewriting we coalesce them into the
1007; same value.
1008; CHECK: @PR13916.2
1009; CHECK-NOT: alloca
1010; CHECK: ret void
1011
1012entry:
1013  %a = alloca %PR13916.struct, align 1
1014  br i1 undef, label %if.then, label %if.end
1015
1016if.then:
1017  %tmp0 = bitcast %PR13916.struct* %a to i8*
1018  %tmp1 = bitcast %PR13916.struct* %a to i8*
1019  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %tmp0, i8* %tmp1, i32 1, i1 false)
1020  br label %if.end
1021
1022if.end:
1023  %gep = getelementptr %PR13916.struct, %PR13916.struct* %a, i32 0, i32 0
1024  %tmp2 = load i8, i8* %gep
1025  ret void
1026}
1027
1028define void @PR13990() {
1029; Ensure we can handle cases where processing one alloca causes the other
1030; alloca to become dead and get deleted. This might crash or fail under
1031; Valgrind if we regress.
1032; CHECK-LABEL: @PR13990(
1033; CHECK-NOT: alloca
1034; CHECK: unreachable
1035; CHECK: unreachable
1036
1037entry:
1038  %tmp1 = alloca i8*
1039  %tmp2 = alloca i8*
1040  br i1 undef, label %bb1, label %bb2
1041
1042bb1:
1043  store i8* undef, i8** %tmp2
1044  br i1 undef, label %bb2, label %bb3
1045
1046bb2:
1047  %tmp50 = select i1 undef, i8** %tmp2, i8** %tmp1
1048  br i1 undef, label %bb3, label %bb4
1049
1050bb3:
1051  unreachable
1052
1053bb4:
1054  unreachable
1055}
1056
1057define double @PR13969(double %x) {
1058; Check that we detect when promotion will un-escape an alloca and iterate to
1059; re-try running SROA over that alloca. Without that, the two allocas that are
1060; stored into a dead alloca don't get rewritten and promoted.
1061; CHECK-LABEL: @PR13969(
1062
1063entry:
1064  %a = alloca double
1065  %b = alloca double*
1066  %c = alloca double
1067; CHECK-NOT: alloca
1068
1069  store double %x, double* %a
1070  store double* %c, double** %b
1071  store double* %a, double** %b
1072  store double %x, double* %c
1073  %ret = load double, double* %a
1074; CHECK-NOT: store
1075; CHECK-NOT: load
1076
1077  ret double %ret
1078; CHECK: ret double %x
1079}
1080
1081%PR14034.struct = type { { {} }, i32, %PR14034.list }
1082%PR14034.list = type { %PR14034.list*, %PR14034.list* }
1083
1084define void @PR14034() {
1085; This test case tries to form GEPs into the empty leading struct members, and
1086; subsequently crashed (under valgrind) before we fixed the PR. The important
1087; thing is to handle empty structs gracefully.
1088; CHECK-LABEL: @PR14034(
1089
1090entry:
1091  %a = alloca %PR14034.struct
1092  %list = getelementptr %PR14034.struct, %PR14034.struct* %a, i32 0, i32 2
1093  %prev = getelementptr %PR14034.list, %PR14034.list* %list, i32 0, i32 1
1094  store %PR14034.list* undef, %PR14034.list** %prev
1095  %cast0 = bitcast %PR14034.struct* undef to i8*
1096  %cast1 = bitcast %PR14034.struct* %a to i8*
1097  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast0, i8* %cast1, i32 12, i1 false)
1098  ret void
1099}
1100
1101define i32 @test22(i32 %x) {
1102; Test that SROA and promotion is not confused by a grab bax mixture of pointer
1103; types involving wrapper aggregates and zero-length aggregate members.
1104; CHECK-LABEL: @test22(
1105
1106entry:
1107  %a1 = alloca { { [1 x { i32 }] } }
1108  %a2 = alloca { {}, { float }, [0 x i8] }
1109  %a3 = alloca { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }
1110; CHECK-NOT: alloca
1111
1112  %wrap1 = insertvalue [1 x { i32 }] undef, i32 %x, 0, 0
1113  %gep1 = getelementptr { { [1 x { i32 }] } }, { { [1 x { i32 }] } }* %a1, i32 0, i32 0, i32 0
1114  store [1 x { i32 }] %wrap1, [1 x { i32 }]* %gep1
1115
1116  %gep2 = getelementptr { { [1 x { i32 }] } }, { { [1 x { i32 }] } }* %a1, i32 0, i32 0
1117  %ptrcast1 = bitcast { [1 x { i32 }] }* %gep2 to { [1 x { float }] }*
1118  %load1 = load { [1 x { float }] }, { [1 x { float }] }* %ptrcast1
1119  %unwrap1 = extractvalue { [1 x { float }] } %load1, 0, 0
1120
1121  %wrap2 = insertvalue { {}, { float }, [0 x i8] } undef, { float } %unwrap1, 1
1122  store { {}, { float }, [0 x i8] } %wrap2, { {}, { float }, [0 x i8] }* %a2
1123
1124  %gep3 = getelementptr { {}, { float }, [0 x i8] }, { {}, { float }, [0 x i8] }* %a2, i32 0, i32 1, i32 0
1125  %ptrcast2 = bitcast float* %gep3 to <4 x i8>*
1126  %load3 = load <4 x i8>, <4 x i8>* %ptrcast2
1127  %valcast1 = bitcast <4 x i8> %load3 to i32
1128
1129  %wrap3 = insertvalue [1 x [1 x i32]] undef, i32 %valcast1, 0, 0
1130  %wrap4 = insertvalue { [1 x [1 x i32]], {} } undef, [1 x [1 x i32]] %wrap3, 0
1131  %gep4 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }, { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1
1132  %ptrcast3 = bitcast { [0 x double], [1 x [1 x <4 x i8>]], {} }* %gep4 to { [1 x [1 x i32]], {} }*
1133  store { [1 x [1 x i32]], {} } %wrap4, { [1 x [1 x i32]], {} }* %ptrcast3
1134
1135  %gep5 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }, { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1, i32 1, i32 0
1136  %ptrcast4 = bitcast [1 x <4 x i8>]* %gep5 to { {}, float, {} }*
1137  %load4 = load { {}, float, {} }, { {}, float, {} }* %ptrcast4
1138  %unwrap2 = extractvalue { {}, float, {} } %load4, 1
1139  %valcast2 = bitcast float %unwrap2 to i32
1140
1141  ret i32 %valcast2
1142; CHECK: ret i32
1143}
1144
1145define void @PR14059.1(double* %d) {
1146; In PR14059 a peculiar construct was identified as something that is used
1147; pervasively in ARM's ABI-calling-convention lowering: the passing of a struct
1148; of doubles via an array of i32 in order to place the data into integer
1149; registers. This in turn was missed as an optimization by SROA due to the
1150; partial loads and stores of integers to the double alloca we were trying to
1151; form and promote. The solution is to widen the integer operations to be
1152; whole-alloca operations, and perform the appropriate bitcasting on the
1153; *values* rather than the pointers. When this works, partial reads and writes
1154; via integers can be promoted away.
1155; CHECK: @PR14059.1
1156; CHECK-NOT: alloca
1157; CHECK: ret void
1158
1159entry:
1160  %X.sroa.0.i = alloca double, align 8
1161  %0 = bitcast double* %X.sroa.0.i to i8*
1162  call void @llvm.lifetime.start.p0i8(i64 -1, i8* %0)
1163
1164  ; Store to the low 32-bits...
1165  %X.sroa.0.0.cast2.i = bitcast double* %X.sroa.0.i to i32*
1166  store i32 0, i32* %X.sroa.0.0.cast2.i, align 8
1167
1168  ; Also use a memset to the middle 32-bits for fun.
1169  %X.sroa.0.2.raw_idx2.i = getelementptr inbounds i8, i8* %0, i32 2
1170  call void @llvm.memset.p0i8.i64(i8* %X.sroa.0.2.raw_idx2.i, i8 0, i64 4, i1 false)
1171
1172  ; Or a memset of the whole thing.
1173  call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 8, i1 false)
1174
1175  ; Write to the high 32-bits with a memcpy.
1176  %X.sroa.0.4.raw_idx4.i = getelementptr inbounds i8, i8* %0, i32 4
1177  %d.raw = bitcast double* %d to i8*
1178  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %X.sroa.0.4.raw_idx4.i, i8* %d.raw, i32 4, i1 false)
1179
1180  ; Store to the high 32-bits...
1181  %X.sroa.0.4.cast5.i = bitcast i8* %X.sroa.0.4.raw_idx4.i to i32*
1182  store i32 1072693248, i32* %X.sroa.0.4.cast5.i, align 4
1183
1184  ; Do the actual math...
1185  %X.sroa.0.0.load1.i = load double, double* %X.sroa.0.i, align 8
1186  %accum.real.i = load double, double* %d, align 8
1187  %add.r.i = fadd double %accum.real.i, %X.sroa.0.0.load1.i
1188  store double %add.r.i, double* %d, align 8
1189  call void @llvm.lifetime.end.p0i8(i64 -1, i8* %0)
1190  ret void
1191}
1192
1193define i64 @PR14059.2({ float, float }* %phi) {
1194; Check that SROA can split up alloca-wide integer loads and stores where the
1195; underlying alloca has smaller components that are accessed independently. This
1196; shows up particularly with ABI lowering patterns coming out of Clang that rely
1197; on the particular register placement of a single large integer return value.
1198; CHECK: @PR14059.2
1199
1200entry:
1201  %retval = alloca { float, float }, align 4
1202  ; CHECK-NOT: alloca
1203
1204  %0 = bitcast { float, float }* %retval to i64*
1205  store i64 0, i64* %0
1206  ; CHECK-NOT: store
1207
1208  %phi.realp = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 0
1209  %phi.real = load float, float* %phi.realp
1210  %phi.imagp = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 1
1211  %phi.imag = load float, float* %phi.imagp
1212  ; CHECK:      %[[realp:.*]] = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 0
1213  ; CHECK-NEXT: %[[real:.*]] = load float, float* %[[realp]]
1214  ; CHECK-NEXT: %[[imagp:.*]] = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 1
1215  ; CHECK-NEXT: %[[imag:.*]] = load float, float* %[[imagp]]
1216
1217  %real = getelementptr inbounds { float, float }, { float, float }* %retval, i32 0, i32 0
1218  %imag = getelementptr inbounds { float, float }, { float, float }* %retval, i32 0, i32 1
1219  store float %phi.real, float* %real
1220  store float %phi.imag, float* %imag
1221  ; CHECK-NEXT: %[[real_convert:.*]] = bitcast float %[[real]] to i32
1222  ; CHECK-NEXT: %[[imag_convert:.*]] = bitcast float %[[imag]] to i32
1223  ; CHECK-NEXT: %[[imag_ext:.*]] = zext i32 %[[imag_convert]] to i64
1224  ; CHECK-NEXT: %[[imag_shift:.*]] = shl i64 %[[imag_ext]], 32
1225  ; CHECK-NEXT: %[[imag_mask:.*]] = and i64 undef, 4294967295
1226  ; CHECK-NEXT: %[[imag_insert:.*]] = or i64 %[[imag_mask]], %[[imag_shift]]
1227  ; CHECK-NEXT: %[[real_ext:.*]] = zext i32 %[[real_convert]] to i64
1228  ; CHECK-NEXT: %[[real_mask:.*]] = and i64 %[[imag_insert]], -4294967296
1229  ; CHECK-NEXT: %[[real_insert:.*]] = or i64 %[[real_mask]], %[[real_ext]]
1230
1231  %1 = load i64, i64* %0, align 1
1232  ret i64 %1
1233  ; CHECK-NEXT: ret i64 %[[real_insert]]
1234}
1235
1236define void @PR14105({ [16 x i8] }* %ptr) {
1237; Ensure that when rewriting the GEP index '-1' for this alloca we preserve is
1238; sign as negative. We use a volatile memcpy to ensure promotion never actually
1239; occurs.
1240; CHECK-LABEL: @PR14105(
1241
1242entry:
1243  %a = alloca { [16 x i8] }, align 8
1244; CHECK: alloca [16 x i8], align 8
1245
1246  %gep = getelementptr inbounds { [16 x i8] }, { [16 x i8] }* %ptr, i64 -1
1247; CHECK-NEXT: getelementptr inbounds { [16 x i8] }, { [16 x i8] }* %ptr, i64 -1, i32 0, i64 0
1248
1249  %cast1 = bitcast { [16 x i8 ] }* %gep to i8*
1250  %cast2 = bitcast { [16 x i8 ] }* %a to i8*
1251  call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %cast1, i8* align 8 %cast2, i32 16, i1 true)
1252  ret void
1253; CHECK: ret
1254}
1255
1256define void @PR14105_as1({ [16 x i8] } addrspace(1)* %ptr) {
1257; Make sure this the right address space pointer is used for type check.
1258; CHECK-LABEL: @PR14105_as1(
1259; CHECK: alloca { [16 x i8] }, align 8
1260; CHECK-NEXT: %gep = getelementptr inbounds { [16 x i8] }, { [16 x i8] } addrspace(1)* %ptr, i64 -1
1261; CHECK-NEXT: %cast1 = bitcast { [16 x i8] } addrspace(1)* %gep to i8 addrspace(1)*
1262; CHECK-NEXT: %cast2 = bitcast { [16 x i8] }* %a to i8*
1263; CHECK-NEXT: call void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)* align 8 %cast1, i8* align 8 %cast2, i32 16, i1 true)
1264
1265entry:
1266  %a = alloca { [16 x i8] }, align 8
1267  %gep = getelementptr inbounds { [16 x i8] }, { [16 x i8] } addrspace(1)* %ptr, i64 -1
1268  %cast1 = bitcast { [16 x i8 ] } addrspace(1)* %gep to i8 addrspace(1)*
1269  %cast2 = bitcast { [16 x i8 ] }* %a to i8*
1270  call void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)* align 8 %cast1, i8* align 8 %cast2, i32 16, i1 true)
1271  ret void
1272; CHECK: ret
1273}
1274
1275define void @PR14465() {
1276; Ensure that we don't crash when analyzing a alloca larger than the maximum
1277; integer type width (MAX_INT_BITS) supported by llvm (1048576*32 > (1<<23)-1).
1278; CHECK-LABEL: @PR14465(
1279
1280  %stack = alloca [1048576 x i32], align 16
1281; CHECK: alloca [1048576 x i32]
1282  %cast = bitcast [1048576 x i32]* %stack to i8*
1283  call void @llvm.memset.p0i8.i64(i8* align 16 %cast, i8 -2, i64 4194304, i1 false)
1284  ret void
1285; CHECK: ret
1286}
1287
1288define void @PR14548(i1 %x) {
1289; Handle a mixture of i1 and i8 loads and stores to allocas. This particular
1290; pattern caused crashes and invalid output in the PR, and its nature will
1291; trigger a mixture in several permutations as we resolve each alloca
1292; iteratively.
1293; Note that we don't do a particularly good *job* of handling these mixtures,
1294; but the hope is that this is very rare.
1295; CHECK-LABEL: @PR14548(
1296
1297entry:
1298  %a = alloca <{ i1 }>, align 8
1299  %b = alloca <{ i1 }>, align 8
1300; CHECK:      %[[a:.*]] = alloca i8, align 8
1301; CHECK-NEXT: %[[b:.*]] = alloca i8, align 8
1302
1303  %b.i1 = bitcast <{ i1 }>* %b to i1*
1304  store i1 %x, i1* %b.i1, align 8
1305  %b.i8 = bitcast <{ i1 }>* %b to i8*
1306  %foo = load i8, i8* %b.i8, align 1
1307; CHECK-NEXT: %[[b_cast:.*]] = bitcast i8* %[[b]] to i1*
1308; CHECK-NEXT: store i1 %x, i1* %[[b_cast]], align 8
1309; CHECK-NEXT: {{.*}} = load i8, i8* %[[b]], align 8
1310
1311  %a.i8 = bitcast <{ i1 }>* %a to i8*
1312  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.i8, i8* %b.i8, i32 1, i1 false) nounwind
1313  %bar = load i8, i8* %a.i8, align 1
1314  %a.i1 = getelementptr inbounds <{ i1 }>, <{ i1 }>* %a, i32 0, i32 0
1315  %baz = load i1, i1* %a.i1, align 1
1316; CHECK-NEXT: %[[copy:.*]] = load i8, i8* %[[b]], align 8
1317; CHECK-NEXT: store i8 %[[copy]], i8* %[[a]], align 8
1318; CHECK-NEXT: {{.*}} = load i8, i8* %[[a]], align 8
1319; CHECK-NEXT: %[[a_cast:.*]] = bitcast i8* %[[a]] to i1*
1320; CHECK-NEXT: {{.*}} = load i1, i1* %[[a_cast]], align 8
1321
1322  ret void
1323}
1324
1325define <3 x i8> @PR14572.1(i32 %x) {
1326; Ensure that a split integer store which is wider than the type size of the
1327; alloca (relying on the alloc size padding) doesn't trigger an assert.
1328; CHECK: @PR14572.1
1329
1330entry:
1331  %a = alloca <3 x i8>, align 4
1332; CHECK-NOT: alloca
1333
1334  %cast = bitcast <3 x i8>* %a to i32*
1335  store i32 %x, i32* %cast, align 1
1336  %y = load <3 x i8>, <3 x i8>* %a, align 4
1337  ret <3 x i8> %y
1338; CHECK: ret <3 x i8>
1339}
1340
1341define i32 @PR14572.2(<3 x i8> %x) {
1342; Ensure that a split integer load which is wider than the type size of the
1343; alloca (relying on the alloc size padding) doesn't trigger an assert.
1344; CHECK: @PR14572.2
1345
1346entry:
1347  %a = alloca <3 x i8>, align 4
1348; CHECK-NOT: alloca
1349
1350  store <3 x i8> %x, <3 x i8>* %a, align 1
1351  %cast = bitcast <3 x i8>* %a to i32*
1352  %y = load i32, i32* %cast, align 4
1353  ret i32 %y
1354; CHECK: ret i32
1355}
1356
1357define i32 @PR14601(i32 %x) {
1358; Don't try to form a promotable integer alloca when there is a variable length
1359; memory intrinsic.
1360; CHECK-LABEL: @PR14601(
1361
1362entry:
1363  %a = alloca i32
1364; CHECK: alloca
1365
1366  %a.i8 = bitcast i32* %a to i8*
1367  call void @llvm.memset.p0i8.i32(i8* %a.i8, i8 0, i32 %x, i1 false)
1368  %v = load i32, i32* %a
1369  ret i32 %v
1370}
1371
1372define void @PR15674(i8* %data, i8* %src, i32 %size) {
1373; Arrange (via control flow) to have unmerged stores of a particular width to
1374; an alloca where we incrementally store from the end of the array toward the
1375; beginning of the array. Ensure that the final integer store, despite being
1376; convertable to the integer type that we end up promoting this alloca toward,
1377; doesn't get widened to a full alloca store.
1378; CHECK-LABEL: @PR15674(
1379
1380entry:
1381  %tmp = alloca [4 x i8], align 1
1382; CHECK: alloca i32
1383
1384  switch i32 %size, label %end [
1385    i32 4, label %bb4
1386    i32 3, label %bb3
1387    i32 2, label %bb2
1388    i32 1, label %bb1
1389  ]
1390
1391bb4:
1392  %src.gep3 = getelementptr inbounds i8, i8* %src, i32 3
1393  %src.3 = load i8, i8* %src.gep3
1394  %tmp.gep3 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 3
1395  store i8 %src.3, i8* %tmp.gep3
1396; CHECK: store i8
1397
1398  br label %bb3
1399
1400bb3:
1401  %src.gep2 = getelementptr inbounds i8, i8* %src, i32 2
1402  %src.2 = load i8, i8* %src.gep2
1403  %tmp.gep2 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 2
1404  store i8 %src.2, i8* %tmp.gep2
1405; CHECK: store i8
1406
1407  br label %bb2
1408
1409bb2:
1410  %src.gep1 = getelementptr inbounds i8, i8* %src, i32 1
1411  %src.1 = load i8, i8* %src.gep1
1412  %tmp.gep1 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 1
1413  store i8 %src.1, i8* %tmp.gep1
1414; CHECK: store i8
1415
1416  br label %bb1
1417
1418bb1:
1419  %src.gep0 = getelementptr inbounds i8, i8* %src, i32 0
1420  %src.0 = load i8, i8* %src.gep0
1421  %tmp.gep0 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 0
1422  store i8 %src.0, i8* %tmp.gep0
1423; CHECK: store i8
1424
1425  br label %end
1426
1427end:
1428  %tmp.raw = bitcast [4 x i8]* %tmp to i8*
1429  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %data, i8* %tmp.raw, i32 %size, i1 false)
1430  ret void
1431; CHECK: ret void
1432}
1433
1434define void @PR15805(i1 %a, i1 %b) {
1435; CHECK-LABEL: @PR15805(
1436; CHECK-NOT: alloca
1437; CHECK: ret void
1438
1439  %c = alloca i64, align 8
1440  %p.0.c = select i1 undef, i64* %c, i64* %c
1441  %cond.in = select i1 undef, i64* %p.0.c, i64* %c
1442  %cond = load i64, i64* %cond.in, align 8
1443  ret void
1444}
1445
1446define void @PR15805.1(i1 %a, i1 %b) {
1447; Same as the normal PR15805, but rigged to place the use before the def inside
1448; of looping unreachable code. This helps ensure that we aren't sensitive to the
1449; order in which the uses of the alloca are visited.
1450;
1451; CHECK-LABEL: @PR15805.1(
1452; CHECK-NOT: alloca
1453; CHECK: ret void
1454
1455  %c = alloca i64, align 8
1456  br label %exit
1457
1458loop:
1459  %cond.in = select i1 undef, i64* %c, i64* %p.0.c
1460  %p.0.c = select i1 undef, i64* %c, i64* %c
1461  %cond = load i64, i64* %cond.in, align 8
1462  br i1 undef, label %loop, label %exit
1463
1464exit:
1465  ret void
1466}
1467
1468define void @PR16651.1(i8* %a) {
1469; This test case caused a crash due to the volatile memcpy in combination with
1470; lowering to integer loads and stores of a width other than that of the original
1471; memcpy.
1472;
1473; CHECK-LABEL: @PR16651.1(
1474; CHECK: alloca i16
1475; CHECK: alloca i8
1476; CHECK: alloca i8
1477; CHECK: unreachable
1478
1479entry:
1480  %b = alloca i32, align 4
1481  %b.cast = bitcast i32* %b to i8*
1482  call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %b.cast, i8* align 4 %a, i32 4, i1 true)
1483  %b.gep = getelementptr inbounds i8, i8* %b.cast, i32 2
1484  load i8, i8* %b.gep, align 2
1485  unreachable
1486}
1487
1488define void @PR16651.2() {
1489; This test case caused a crash due to failing to promote given a select that
1490; can't be speculated. It shouldn't be promoted, but we missed that fact when
1491; analyzing whether we could form a vector promotion because that code didn't
1492; bail on select instructions.
1493;
1494; CHECK-LABEL: @PR16651.2(
1495; CHECK: alloca <2 x float>
1496; CHECK: ret void
1497
1498entry:
1499  %tv1 = alloca { <2 x float>, <2 x float> }, align 8
1500  %0 = getelementptr { <2 x float>, <2 x float> }, { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1
1501  store <2 x float> undef, <2 x float>* %0, align 8
1502  %1 = getelementptr inbounds { <2 x float>, <2 x float> }, { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1, i64 0
1503  %cond105.in.i.i = select i1 undef, float* null, float* %1
1504  %cond105.i.i = load float, float* %cond105.in.i.i, align 8
1505  ret void
1506}
1507
1508define void @test23(i32 %x) {
1509; CHECK-LABEL: @test23(
1510; CHECK-NOT: alloca
1511; CHECK: ret void
1512entry:
1513  %a = alloca i32, align 4
1514  store i32 %x, i32* %a, align 4
1515  %gep1 = getelementptr inbounds i32, i32* %a, i32 1
1516  %gep0 = getelementptr inbounds i32, i32* %a, i32 0
1517  %cast1 = bitcast i32* %gep1 to i8*
1518  %cast0 = bitcast i32* %gep0 to i8*
1519  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast1, i8* %cast0, i32 4, i1 false)
1520  ret void
1521}
1522
1523define void @PR18615() {
1524; CHECK-LABEL: @PR18615(
1525; CHECK-NOT: alloca
1526; CHECK: ret void
1527entry:
1528  %f = alloca i8
1529  %gep = getelementptr i8, i8* %f, i64 -1
1530  call void @llvm.memcpy.p0i8.p0i8.i32(i8* undef, i8* %gep, i32 1, i1 false)
1531  ret void
1532}
1533
1534define void @test24(i8* %src, i8* %dst) {
1535; CHECK-LABEL: @test24(
1536; CHECK: alloca i64, align 16
1537; CHECK: load volatile i64, i64* %{{[^,]*}}, align 1, !tbaa [[TAG_0]]
1538; CHECK: store volatile i64 %{{[^,]*}}, i64* %{{[^,]*}}, align 16, !tbaa [[TAG_0]]
1539; CHECK: load volatile i64, i64* %{{[^,]*}}, align 16, !tbaa [[TAG_3]]
1540; CHECK: store volatile i64 %{{[^,]*}}, i64* %{{[^,]*}}, align 1, !tbaa [[TAG_3]]
1541
1542entry:
1543  %a = alloca i64, align 16
1544  %ptr = bitcast i64* %a to i8*
1545  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i1 true), !tbaa !0
1546  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i1 true), !tbaa !3
1547  ret void
1548}
1549
1550define float @test25() {
1551; Check that we split up stores in order to promote the smaller SSA values.. These types
1552; of patterns can arise because LLVM maps small memcpy's to integer load and
1553; stores. If we get a memcpy of an aggregate (such as C and C++ frontends would
1554; produce, but so might any language frontend), this will in many cases turn into
1555; an integer load and store. SROA needs to be extremely powerful to correctly
1556; handle these cases and form splitable and promotable SSA values.
1557;
1558; CHECK-LABEL: @test25(
1559; CHECK-NOT: alloca
1560; CHECK: %[[F1:.*]] = bitcast i32 0 to float
1561; CHECK: %[[F2:.*]] = bitcast i32 1065353216 to float
1562; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
1563; CHECK: ret float %[[SUM]]
1564
1565entry:
1566  %a = alloca i64
1567  %b = alloca i64
1568  %a.cast = bitcast i64* %a to [2 x float]*
1569  %a.gep1 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 0
1570  %a.gep2 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 1
1571  %b.cast = bitcast i64* %b to [2 x float]*
1572  %b.gep1 = getelementptr [2 x float], [2 x float]* %b.cast, i32 0, i32 0
1573  %b.gep2 = getelementptr [2 x float], [2 x float]* %b.cast, i32 0, i32 1
1574  store float 0.0, float* %a.gep1
1575  store float 1.0, float* %a.gep2
1576  %v = load i64, i64* %a
1577  store i64 %v, i64* %b
1578  %f1 = load float, float* %b.gep1
1579  %f2 = load float, float* %b.gep2
1580  %ret = fadd float %f1, %f2
1581  ret float %ret
1582}
1583
1584@complex1 = external global [2 x float]
1585@complex2 = external global [2 x float]
1586
1587define void @test26() {
1588; Test a case of splitting up loads and stores against a globals.
1589;
1590; CHECK-LABEL: @test26(
1591; CHECK-NOT: alloca
1592; CHECK: %[[L1:.*]] = load i32, i32* bitcast
1593; CHECK: %[[L2:.*]] = load i32, i32* bitcast
1594; CHECK: %[[F1:.*]] = bitcast i32 %[[L1]] to float
1595; CHECK: %[[F2:.*]] = bitcast i32 %[[L2]] to float
1596; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
1597; CHECK: %[[C1:.*]] = bitcast float %[[SUM]] to i32
1598; CHECK: %[[C2:.*]] = bitcast float %[[SUM]] to i32
1599; CHECK: store i32 %[[C1]], i32* bitcast
1600; CHECK: store i32 %[[C2]], i32* bitcast
1601; CHECK: ret void
1602
1603entry:
1604  %a = alloca i64
1605  %a.cast = bitcast i64* %a to [2 x float]*
1606  %a.gep1 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 0
1607  %a.gep2 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 1
1608  %v1 = load i64, i64* bitcast ([2 x float]* @complex1 to i64*)
1609  store i64 %v1, i64* %a
1610  %f1 = load float, float* %a.gep1
1611  %f2 = load float, float* %a.gep2
1612  %sum = fadd float %f1, %f2
1613  store float %sum, float* %a.gep1
1614  store float %sum, float* %a.gep2
1615  %v2 = load i64, i64* %a
1616  store i64 %v2, i64* bitcast ([2 x float]* @complex2 to i64*)
1617  ret void
1618}
1619
1620define float @test27() {
1621; Another, more complex case of splittable i64 loads and stores. This example
1622; is a particularly challenging one because the load and store both point into
1623; the alloca SROA is processing, and they overlap but at an offset.
1624;
1625; CHECK-LABEL: @test27(
1626; CHECK-NOT: alloca
1627; CHECK: %[[F1:.*]] = bitcast i32 0 to float
1628; CHECK: %[[F2:.*]] = bitcast i32 1065353216 to float
1629; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
1630; CHECK: ret float %[[SUM]]
1631
1632entry:
1633  %a = alloca [12 x i8]
1634  %gep1 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 0
1635  %gep2 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 4
1636  %gep3 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 8
1637  %iptr1 = bitcast i8* %gep1 to i64*
1638  %iptr2 = bitcast i8* %gep2 to i64*
1639  %fptr1 = bitcast i8* %gep1 to float*
1640  %fptr2 = bitcast i8* %gep2 to float*
1641  %fptr3 = bitcast i8* %gep3 to float*
1642  store float 0.0, float* %fptr1
1643  store float 1.0, float* %fptr2
1644  %v = load i64, i64* %iptr1
1645  store i64 %v, i64* %iptr2
1646  %f1 = load float, float* %fptr2
1647  %f2 = load float, float* %fptr3
1648  %ret = fadd float %f1, %f2
1649  ret float %ret
1650}
1651
1652define i32 @PR22093() {
1653; Test that we don't try to pre-split a splittable store of a splittable but
1654; not pre-splittable load over the same alloca. We "handle" this case when the
1655; load is unsplittable but unrelated to this alloca by just generating extra
1656; loads without touching the original, but when the original load was out of
1657; this alloca we need to handle it specially to ensure the splits line up
1658; properly for rewriting.
1659;
1660; CHECK-LABEL: @PR22093(
1661; CHECK-NOT: alloca
1662; CHECK: alloca i16
1663; CHECK-NOT: alloca
1664; CHECK: store volatile i16
1665
1666entry:
1667  %a = alloca i32
1668  %a.cast = bitcast i32* %a to i16*
1669  store volatile i16 42, i16* %a.cast
1670  %load = load i32, i32* %a
1671  store i32 %load, i32* %a
1672  ret i32 %load
1673}
1674
1675define void @PR22093.2() {
1676; Another way that we end up being unable to split a particular set of loads
1677; and stores can even have ordering importance. Here we have a load which is
1678; pre-splittable by itself, and the first store is also compatible. But the
1679; second store of the load makes the load unsplittable because of a mismatch of
1680; splits. Because this makes the load unsplittable, we also have to go back and
1681; remove the first store from the presplit candidates as its load won't be
1682; presplit.
1683;
1684; CHECK-LABEL: @PR22093.2(
1685; CHECK-NOT: alloca
1686; CHECK: alloca i16
1687; CHECK-NEXT: alloca i8
1688; CHECK-NOT: alloca
1689; CHECK: store volatile i16
1690; CHECK: store volatile i8
1691
1692entry:
1693  %a = alloca i64
1694  %a.cast1 = bitcast i64* %a to i32*
1695  %a.cast2 = bitcast i64* %a to i16*
1696  store volatile i16 42, i16* %a.cast2
1697  %load = load i32, i32* %a.cast1
1698  store i32 %load, i32* %a.cast1
1699  %a.gep1 = getelementptr i32, i32* %a.cast1, i32 1
1700  %a.cast3 = bitcast i32* %a.gep1 to i8*
1701  store volatile i8 13, i8* %a.cast3
1702  store i32 %load, i32* %a.gep1
1703  ret void
1704}
1705
1706define void @PR23737() {
1707; CHECK-LABEL: @PR23737(
1708; CHECK: store atomic volatile {{.*}} seq_cst
1709; CHECK: load atomic volatile {{.*}} seq_cst
1710entry:
1711  %ptr = alloca i64, align 8
1712  store atomic volatile i64 0, i64* %ptr seq_cst, align 8
1713  %load = load atomic volatile i64, i64* %ptr seq_cst, align 8
1714  ret void
1715}
1716
1717define i16 @PR24463() {
1718; Ensure we can handle a very interesting case where there is an integer-based
1719; rewrite of the uses of the alloca, but where one of the integers in that is
1720; a sub-integer that requires extraction *and* extends past the end of the
1721; alloca. SROA can split the alloca to avoid shift or trunc.
1722;
1723; CHECK-LABEL: @PR24463(
1724; CHECK-NOT: alloca
1725; CHECK-NOT: trunc
1726; CHECK-NOT: lshr
1727; CHECK: %[[ZEXT:.*]] = zext i8 {{.*}} to i16
1728; CHECK: ret i16 %[[ZEXT]]
1729entry:
1730  %alloca = alloca [3 x i8]
1731  %gep1 = getelementptr inbounds [3 x i8], [3 x i8]* %alloca, i64 0, i64 1
1732  %bc1 = bitcast i8* %gep1 to i16*
1733  store i16 0, i16* %bc1
1734  %gep2 = getelementptr inbounds [3 x i8], [3 x i8]* %alloca, i64 0, i64 2
1735  %bc2 = bitcast i8* %gep2 to i16*
1736  %load = load i16, i16* %bc2
1737  ret i16 %load
1738}
1739
1740%struct.STest = type { %struct.SPos, %struct.SPos }
1741%struct.SPos = type { float, float }
1742
1743define void @PR25873(%struct.STest* %outData) {
1744; CHECK-LABEL: @PR25873(
1745; CHECK: store i32 1123418112
1746; CHECK: store i32 1139015680
1747; CHECK: %[[HIZEXT:.*]] = zext i32 1139015680 to i64
1748; CHECK: %[[HISHL:.*]] = shl i64 %[[HIZEXT]], 32
1749; CHECK: %[[HIMASK:.*]] = and i64 undef, 4294967295
1750; CHECK: %[[HIINSERT:.*]] = or i64 %[[HIMASK]], %[[HISHL]]
1751; CHECK: %[[LOZEXT:.*]] = zext i32 1123418112 to i64
1752; CHECK: %[[LOMASK:.*]] = and i64 %[[HIINSERT]], -4294967296
1753; CHECK: %[[LOINSERT:.*]] = or i64 %[[LOMASK]], %[[LOZEXT]]
1754; CHECK: store i64 %[[LOINSERT]]
1755entry:
1756  %tmpData = alloca %struct.STest, align 8
1757  %0 = bitcast %struct.STest* %tmpData to i8*
1758  call void @llvm.lifetime.start.p0i8(i64 16, i8* %0)
1759  %x = getelementptr inbounds %struct.STest, %struct.STest* %tmpData, i64 0, i32 0, i32 0
1760  store float 1.230000e+02, float* %x, align 8
1761  %y = getelementptr inbounds %struct.STest, %struct.STest* %tmpData, i64 0, i32 0, i32 1
1762  store float 4.560000e+02, float* %y, align 4
1763  %m_posB = getelementptr inbounds %struct.STest, %struct.STest* %tmpData, i64 0, i32 1
1764  %1 = bitcast %struct.STest* %tmpData to i64*
1765  %2 = bitcast %struct.SPos* %m_posB to i64*
1766  %3 = load i64, i64* %1, align 8
1767  store i64 %3, i64* %2, align 8
1768  %4 = bitcast %struct.STest* %outData to i8*
1769  call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 %4, i8* align 4 %0, i64 16, i1 false)
1770  call void @llvm.lifetime.end.p0i8(i64 16, i8* %0)
1771  ret void
1772}
1773
1774declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8* nocapture, i64, i1) nounwind
1775
1776define void @PR27999() unnamed_addr {
1777; CHECK-LABEL: @PR27999(
1778; CHECK: entry-block:
1779; CHECK-NEXT: ret void
1780entry-block:
1781  %0 = alloca [2 x i64], align 8
1782  %1 = bitcast [2 x i64]* %0 to i8*
1783  call void @llvm.lifetime.start.p0i8(i64 16, i8* %1)
1784  %2 = getelementptr inbounds [2 x i64], [2 x i64]* %0, i32 0, i32 1
1785  %3 = bitcast i64* %2 to i8*
1786  call void @llvm.lifetime.end.p0i8(i64 8, i8* %3)
1787  ret void
1788}
1789
1790define void @PR29139() {
1791; CHECK-LABEL: @PR29139(
1792; CHECK: bb1:
1793; CHECK-NEXT: ret void
1794bb1:
1795  %e.7.sroa.6.i = alloca i32, align 1
1796  %e.7.sroa.6.0.load81.i = load i32, i32* %e.7.sroa.6.i, align 1
1797  %0 = bitcast i32* %e.7.sroa.6.i to i8*
1798  call void @llvm.lifetime.end.p0i8(i64 2, i8* %0)
1799  ret void
1800}
1801
1802; PR35657 reports assertion failure with this code
1803define void @PR35657(i64 %v) {
1804; CHECK-LABEL: @PR35657
1805; CHECK: call void @callee16(i16 %{{.*}})
1806; CHECK: call void @callee48(i48 %{{.*}})
1807; CHECK: ret void
1808entry:
1809  %a48 = alloca i48
1810  %a48.cast64 = bitcast i48* %a48 to i64*
1811  store i64 %v, i64* %a48.cast64
1812  %a48.cast16 = bitcast i48* %a48 to i16*
1813  %b0_15 = load i16, i16* %a48.cast16
1814  %a48.cast8 = bitcast i48* %a48 to i8*
1815  %a48_offset2 = getelementptr inbounds i8, i8* %a48.cast8, i64 2
1816  %a48_offset2.cast48 = bitcast i8* %a48_offset2 to i48*
1817  %b16_63 = load i48, i48* %a48_offset2.cast48, align 2
1818  call void @callee16(i16 %b0_15)
1819  call void @callee48(i48 %b16_63)
1820  ret void
1821}
1822
1823declare void @callee16(i16 %a)
1824declare void @callee48(i48 %a)
1825
1826define void @test28(i64 %v) #0 {
1827; SROA should split the first i64 store to avoid additional and/or instructions
1828; when storing into i32 fields
1829
1830; CHECK-LABEL: @test28(
1831; CHECK-NOT: alloca
1832; CHECK-NOT: and
1833; CHECK-NOT: or
1834; CHECK:      %[[shift:.*]] = lshr i64 %v, 32
1835; CHECK-NEXT: %{{.*}} = trunc i64 %[[shift]] to i32
1836; CHECK-NEXT: ret void
1837
1838entry:
1839  %t = alloca { i64, i32, i32 }
1840
1841  %b = getelementptr { i64, i32, i32 }, { i64, i32, i32 }* %t, i32 0, i32 1
1842  %0 = bitcast i32* %b to i64*
1843  store i64 %v, i64* %0
1844
1845  %1 = load i32, i32* %b
1846  %c = getelementptr { i64, i32, i32 }, { i64, i32, i32 }* %t, i32 0, i32 2
1847  store i32 %1, i32* %c
1848  ret void
1849}
1850
1851declare void @llvm.lifetime.start.isVoid.i64.p0i8(i64, [10 x float]* nocapture)
1852declare void @llvm.lifetime.end.isVoid.i64.p0i8(i64, [10 x float]* nocapture)
1853@array = dso_local global [10 x float] undef, align 4
1854
1855define void @test29(i32 %num, i32 %tid) {
1856; CHECK-LABEL: @test29(
1857; CHECK-NOT: alloca [10 x float]
1858; CHECK: ret void
1859
1860entry:
1861  %ra = alloca [10 x float], align 4
1862  call void @llvm.lifetime.start.isVoid.i64.p0i8(i64 40, [10 x float]* nonnull %ra)
1863
1864  %cmp1 = icmp sgt i32 %num, 0
1865  br i1 %cmp1, label %bb1, label %bb7
1866
1867bb1:
1868  %tobool = icmp eq i32 %tid, 0
1869  %conv.i = zext i32 %tid to i64
1870  %0 = bitcast [10 x float]* %ra to i32*
1871  %1 = load i32, i32* %0, align 4
1872  %arrayidx5 = getelementptr inbounds [10 x float], [10 x float]* @array, i64 0, i64 %conv.i
1873  %2 = bitcast float* %arrayidx5 to i32*
1874  br label %bb2
1875
1876bb2:
1877  %i.02 = phi i32 [ %num, %bb1 ], [ %sub, %bb5 ]
1878  br i1 %tobool, label %bb3, label %bb4
1879
1880bb3:
1881  br label %bb5
1882
1883bb4:
1884  store i32 %1, i32* %2, align 4
1885  br label %bb5
1886
1887bb5:
1888  %sub = add i32 %i.02, -1
1889  %cmp = icmp sgt i32 %sub, 0
1890  br i1 %cmp, label %bb2, label %bb6
1891
1892bb6:
1893  br label %bb7
1894
1895bb7:
1896  call void @llvm.lifetime.end.isVoid.i64.p0i8(i64 40, [10 x float]* nonnull %ra)
1897  ret void
1898}
1899
1900!0 = !{!1, !1, i64 0, i64 200}
1901!1 = !{!2, i64 1, !"type_0"}
1902!2 = !{!"root"}
1903!3 = !{!4, !4, i64 0, i64 1}
1904!4 = !{!2, i64 1, !"type_3"}
1905!5 = !{!6, !6, i64 0, i64 1}
1906!6 = !{!2, i64 1, !"type_5"}
1907!7 = !{!8, !8, i64 0, i64 1}
1908!8 = !{!2, i64 1, !"type_7"}
1909!9 = !{!10, !10, i64 0, i64 1}
1910!10 = !{!2, i64 1, !"type_9"}
1911!11 = !{!12, !12, i64 0, i64 1}
1912!12 = !{!2, i64 1, !"type_11"}
1913!13 = !{!14, !14, i64 0, i64 1}
1914!14 = !{!2, i64 1, !"type_13"}
1915!15 = !{!16, !16, i64 0, i64 1}
1916!16 = !{!2, i64 1, !"type_15"}
1917!17 = !{!18, !18, i64 0, i64 1}
1918!18 = !{!2, i64 1, !"type_17"}
1919!19 = !{!20, !20, i64 0, i64 1}
1920!20 = !{!2, i64 1, !"type_19"}
1921!21 = !{!22, !22, i64 0, i64 1}
1922!22 = !{!2, i64 1, !"type_21"}
1923!23 = !{!24, !24, i64 0, i64 1}
1924!24 = !{!2, i64 1, !"type_23"}
1925!25 = !{!26, !26, i64 0, i64 1}
1926!26 = !{!2, i64 1, !"type_25"}
1927!27 = !{!28, !28, i64 0, i64 1}
1928!28 = !{!2, i64 1, !"type_27"}
1929!29 = !{!30, !30, i64 0, i64 1}
1930!30 = !{!2, i64 1, !"type_29"}
1931!31 = !{!32, !32, i64 0, i64 1}
1932!32 = !{!2, i64 1, !"type_31"}
1933!33 = !{!34, !34, i64 0, i64 1}
1934!34 = !{!2, i64 1, !"type_33"}
1935!35 = !{!36, !36, i64 0, i64 1}
1936!36 = !{!2, i64 1, !"type_35"}
1937!37 = !{!38, !38, i64 0, i64 1}
1938!38 = !{!2, i64 1, !"type_37"}
1939!39 = !{!40, !40, i64 0, i64 1}
1940!40 = !{!2, i64 1, !"type_39"}
1941!41 = !{!42, !42, i64 0, i64 1}
1942!42 = !{!2, i64 1, !"type_41"}
1943!43 = !{!44, !44, i64 0, i64 1}
1944!44 = !{!2, i64 1, !"type_43"}
1945!45 = !{!46, !46, i64 0, i64 1}
1946!46 = !{!2, i64 1, !"type_45"}
1947!47 = !{!48, !48, i64 0, i64 1}
1948!48 = !{!2, i64 1, !"type_47"}
1949!49 = !{!50, !50, i64 0, i64 1}
1950!50 = !{!2, i64 1, !"type_49"}
1951!51 = !{!52, !52, i64 0, i64 1}
1952!52 = !{!2, i64 1, !"type_51"}
1953!53 = !{!54, !54, i64 0, i64 1}
1954!54 = !{!2, i64 1, !"type_53"}
1955!55 = !{!56, !56, i64 0, i64 1}
1956!56 = !{!2, i64 1, !"type_55"}
1957!57 = !{!58, !58, i64 0, i64 1}
1958!58 = !{!2, i64 1, !"type_57"}
1959!59 = !{!60, !60, i64 0, i64 1}
1960!60 = !{!2, i64 1, !"type_59"}
1961
1962; CHECK-DAG: [[TAG_0]] = !{[[TYPE_0:!.*]], [[TYPE_0]], i64 0, i64 200}
1963; CHECK-DAG: [[TYPE_0]] = !{{{.*}}, !"type_0"}
1964
1965; CHECK-DAG: [[TAG_0_M42]] = !{[[TYPE_0]], [[TYPE_0]], i64 0, i64 158}
1966; CHECK-DAG: [[TAG_0_M43]] = !{[[TYPE_0]], [[TYPE_0]], i64 0, i64 157}
1967; CHECK-DAG: [[TAG_0_M142]] = !{[[TYPE_0]], [[TYPE_0]], i64 0, i64 58}
1968; CHECK-DAG: [[TAG_0_M158]] = !{[[TYPE_0]], [[TYPE_0]], i64 0, i64 42}
1969
1970; CHECK-DAG: [[TAG_59]] = !{[[TYPE_59:!.*]], [[TYPE_59]], i64 0, i64 1}
1971; CHECK-DAG: [[TYPE_59]] = !{{{.*}}, !"type_59"}
1972
1973; CHECK-DAG: [[TAG_0_M20]] = !{[[TYPE_0]], [[TYPE_0]], i64 0, i64 180}
1974; CHECK-DAG: [[TAG_0_M22]] = !{[[TYPE_0]], [[TYPE_0]], i64 0, i64 178}
1975; CHECK-DAG: [[TAG_0_M23]] = !{[[TYPE_0]], [[TYPE_0]], i64 0, i64 177}
1976; CHECK-DAG: [[TAG_0_M30]] = !{[[TYPE_0]], [[TYPE_0]], i64 0, i64 170}
1977; CHECK-DAG: [[TAG_0_M40]] = !{[[TYPE_0]], [[TYPE_0]], i64 0, i64 160}
1978; CHECK-DAG: [[TAG_0_M50]] = !{[[TYPE_0]], [[TYPE_0]], i64 0, i64 150}
1979; CHECK-DAG: [[TAG_0_M52]] = !{[[TYPE_0]], [[TYPE_0]], i64 0, i64 148}
1980; CHECK-DAG: [[TAG_0_M53]] = !{[[TYPE_0]], [[TYPE_0]], i64 0, i64 147}
1981; CHECK-DAG: [[TAG_0_M60]] = !{[[TYPE_0]], [[TYPE_0]], i64 0, i64 140}
1982
1983; CHECK-DAG: [[TYPE_7:!.*]] = !{{{.*}}, !"type_7"}
1984; CHECK-DAG: [[TAG_7]] = !{[[TYPE_7]], [[TYPE_7]], i64 0, i64 1}
1985
1986; CHECK-DAG: [[TYPE_3:!.*]] = !{{{.*}}, !"type_3"}
1987; CHECK-DAG: [[TAG_3]] = !{[[TYPE_3]], [[TYPE_3]], i64 0, i64 1}
1988
1989; CHECK-DAG: [[TYPE_5:!.*]] = !{{{.*}}, !"type_5"}
1990; CHECK-DAG: [[TAG_5]] = !{[[TYPE_5]], [[TYPE_5]], i64 0, i64 1}
1991
1992; CHECK-DAG: [[TAG_0_M4]] = !{[[TYPE_0]], [[TYPE_0]], i64 0, i64 196}
1993
1994
1995; CHECK-DAG: [[TYPE_9:!.*]] = !{{{.*}}, !"type_9"}
1996; CHECK-DAG: [[TAG_9]] = !{[[TYPE_9]], [[TYPE_9]], i64 0, i64 1}
1997; CHECK-DAG: [[TYPE_11:!.*]] = !{{{.*}}, !"type_11"}
1998; CHECK-DAG: [[TAG_11]] = !{[[TYPE_11]], [[TYPE_11]], i64 0, i64 1}
1999; CHECK-DAG: [[TYPE_13:!.*]] = !{{{.*}}, !"type_13"}
2000; CHECK-DAG: [[TAG_13]] = !{[[TYPE_13]], [[TYPE_13]], i64 0, i64 1}
2001; CHECK-DAG: [[TYPE_15:!.*]] = !{{{.*}}, !"type_15"}
2002; CHECK-DAG: [[TAG_15]] = !{[[TYPE_15]], [[TYPE_15]], i64 0, i64 1}
2003; CHECK-DAG: [[TYPE_17:!.*]] = !{{{.*}}, !"type_17"}
2004; CHECK-DAG: [[TAG_17]] = !{[[TYPE_17]], [[TYPE_17]], i64 0, i64 1}
2005; CHECK-DAG: [[TYPE_19:!.*]] = !{{{.*}}, !"type_19"}
2006; CHECK-DAG: [[TAG_19]] = !{[[TYPE_19]], [[TYPE_19]], i64 0, i64 1}
2007; CHECK-DAG: [[TYPE_21:!.*]] = !{{{.*}}, !"type_21"}
2008; CHECK-DAG: [[TAG_21]] = !{[[TYPE_21]], [[TYPE_21]], i64 0, i64 1}
2009; CHECK-DAG: [[TYPE_23:!.*]] = !{{{.*}}, !"type_23"}
2010; CHECK-DAG: [[TAG_23]] = !{[[TYPE_23]], [[TYPE_23]], i64 0, i64 1}
2011; CHECK-DAG: [[TYPE_25:!.*]] = !{{{.*}}, !"type_25"}
2012; CHECK-DAG: [[TAG_25]] = !{[[TYPE_25]], [[TYPE_25]], i64 0, i64 1}
2013; CHECK-DAG: [[TYPE_27:!.*]] = !{{{.*}}, !"type_27"}
2014; CHECK-DAG: [[TAG_27]] = !{[[TYPE_27]], [[TYPE_27]], i64 0, i64 1}
2015; CHECK-DAG: [[TYPE_29:!.*]] = !{{{.*}}, !"type_29"}
2016; CHECK-DAG: [[TAG_29]] = !{[[TYPE_29]], [[TYPE_29]], i64 0, i64 1}
2017; CHECK-DAG: [[TYPE_31:!.*]] = !{{{.*}}, !"type_31"}
2018; CHECK-DAG: [[TAG_31]] = !{[[TYPE_31]], [[TYPE_31]], i64 0, i64 1}
2019; CHECK-DAG: [[TYPE_33:!.*]] = !{{{.*}}, !"type_33"}
2020; CHECK-DAG: [[TAG_33]] = !{[[TYPE_33]], [[TYPE_33]], i64 0, i64 1}
2021; CHECK-DAG: [[TYPE_35:!.*]] = !{{{.*}}, !"type_35"}
2022; CHECK-DAG: [[TAG_35]] = !{[[TYPE_35]], [[TYPE_35]], i64 0, i64 1}
2023; CHECK-DAG: [[TYPE_37:!.*]] = !{{{.*}}, !"type_37"}
2024; CHECK-DAG: [[TAG_37]] = !{[[TYPE_37]], [[TYPE_37]], i64 0, i64 1}
2025; CHECK-DAG: [[TYPE_39:!.*]] = !{{{.*}}, !"type_39"}
2026; CHECK-DAG: [[TAG_39]] = !{[[TYPE_39]], [[TYPE_39]], i64 0, i64 1}
2027; CHECK-DAG: [[TYPE_41:!.*]] = !{{{.*}}, !"type_41"}
2028; CHECK-DAG: [[TAG_41]] = !{[[TYPE_41]], [[TYPE_41]], i64 0, i64 1}
2029; CHECK-DAG: [[TYPE_43:!.*]] = !{{{.*}}, !"type_43"}
2030; CHECK-DAG: [[TAG_43]] = !{[[TYPE_43]], [[TYPE_43]], i64 0, i64 1}
2031; CHECK-DAG: [[TYPE_45:!.*]] = !{{{.*}}, !"type_45"}
2032; CHECK-DAG: [[TAG_45]] = !{[[TYPE_45]], [[TYPE_45]], i64 0, i64 1}
2033; CHECK-DAG: [[TYPE_47:!.*]] = !{{{.*}}, !"type_47"}
2034; CHECK-DAG: [[TAG_47]] = !{[[TYPE_47]], [[TYPE_47]], i64 0, i64 1}
2035; CHECK-DAG: [[TYPE_49:!.*]] = !{{{.*}}, !"type_49"}
2036; CHECK-DAG: [[TAG_49]] = !{[[TYPE_49]], [[TYPE_49]], i64 0, i64 1}
2037; CHECK-DAG: [[TYPE_51:!.*]] = !{{{.*}}, !"type_51"}
2038; CHECK-DAG: [[TAG_51]] = !{[[TYPE_51]], [[TYPE_51]], i64 0, i64 1}
2039; CHECK-DAG: [[TYPE_53:!.*]] = !{{{.*}}, !"type_53"}
2040; CHECK-DAG: [[TAG_53]] = !{[[TYPE_53]], [[TYPE_53]], i64 0, i64 1}
2041; CHECK-DAG: [[TYPE_55:!.*]] = !{{{.*}}, !"type_55"}
2042; CHECK-DAG: [[TAG_55]] = !{[[TYPE_55]], [[TYPE_55]], i64 0, i64 1}
2043; CHECK-DAG: [[TYPE_57:!.*]] = !{{{.*}}, !"type_57"}
2044; CHECK-DAG: [[TAG_57]] = !{[[TYPE_57]], [[TYPE_57]], i64 0, i64 1}
2045