1 //===- ShadowStackGCLowering.cpp - Custom lowering for shadow-stack gc ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the custom lowering code required by the shadow-stack GC
10 // strategy.
11 //
12 // This pass implements the code transformation described in this paper:
13 // "Accurate Garbage Collection in an Uncooperative Environment"
14 // Fergus Henderson, ISMM, 2002
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Transforms/Utils/EscapeEnumerator.h"
41 #include <cassert>
42 #include <cstddef>
43 #include <string>
44 #include <utility>
45 #include <vector>
46
47 using namespace llvm;
48
49 #define DEBUG_TYPE "shadow-stack-gc-lowering"
50
51 namespace {
52
53 class ShadowStackGCLowering : public FunctionPass {
54 /// RootChain - This is the global linked-list that contains the chain of GC
55 /// roots.
56 GlobalVariable *Head = nullptr;
57
58 /// StackEntryTy - Abstract type of a link in the shadow stack.
59 StructType *StackEntryTy = nullptr;
60 StructType *FrameMapTy = nullptr;
61
62 /// Roots - GC roots in the current function. Each is a pair of the
63 /// intrinsic call and its corresponding alloca.
64 std::vector<std::pair<CallInst *, AllocaInst *>> Roots;
65
66 public:
67 static char ID;
68
69 ShadowStackGCLowering();
70
71 bool doInitialization(Module &M) override;
72 void getAnalysisUsage(AnalysisUsage &AU) const override;
73 bool runOnFunction(Function &F) override;
74
75 private:
76 bool IsNullValue(Value *V);
77 Constant *GetFrameMap(Function &F);
78 Type *GetConcreteStackEntryType(Function &F);
79 void CollectRoots(Function &F);
80
81 static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B,
82 Type *Ty, Value *BasePtr, int Idx1,
83 const char *Name);
84 static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B,
85 Type *Ty, Value *BasePtr, int Idx1, int Idx2,
86 const char *Name);
87 };
88
89 } // end anonymous namespace
90
91 char ShadowStackGCLowering::ID = 0;
92 char &llvm::ShadowStackGCLoweringID = ShadowStackGCLowering::ID;
93
94 INITIALIZE_PASS_BEGIN(ShadowStackGCLowering, DEBUG_TYPE,
95 "Shadow Stack GC Lowering", false, false)
INITIALIZE_PASS_DEPENDENCY(GCModuleInfo)96 INITIALIZE_PASS_DEPENDENCY(GCModuleInfo)
97 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
98 INITIALIZE_PASS_END(ShadowStackGCLowering, DEBUG_TYPE,
99 "Shadow Stack GC Lowering", false, false)
100
101 FunctionPass *llvm::createShadowStackGCLoweringPass() { return new ShadowStackGCLowering(); }
102
ShadowStackGCLowering()103 ShadowStackGCLowering::ShadowStackGCLowering() : FunctionPass(ID) {
104 initializeShadowStackGCLoweringPass(*PassRegistry::getPassRegistry());
105 }
106
GetFrameMap(Function & F)107 Constant *ShadowStackGCLowering::GetFrameMap(Function &F) {
108 // doInitialization creates the abstract type of this value.
109 Type *VoidPtr = Type::getInt8PtrTy(F.getContext());
110
111 // Truncate the ShadowStackDescriptor if some metadata is null.
112 unsigned NumMeta = 0;
113 SmallVector<Constant *, 16> Metadata;
114 for (unsigned I = 0; I != Roots.size(); ++I) {
115 Constant *C = cast<Constant>(Roots[I].first->getArgOperand(1));
116 if (!C->isNullValue())
117 NumMeta = I + 1;
118 Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr));
119 }
120 Metadata.resize(NumMeta);
121
122 Type *Int32Ty = Type::getInt32Ty(F.getContext());
123
124 Constant *BaseElts[] = {
125 ConstantInt::get(Int32Ty, Roots.size(), false),
126 ConstantInt::get(Int32Ty, NumMeta, false),
127 };
128
129 Constant *DescriptorElts[] = {
130 ConstantStruct::get(FrameMapTy, BaseElts),
131 ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), Metadata)};
132
133 Type *EltTys[] = {DescriptorElts[0]->getType(), DescriptorElts[1]->getType()};
134 StructType *STy = StructType::create(EltTys, "gc_map." + utostr(NumMeta));
135
136 Constant *FrameMap = ConstantStruct::get(STy, DescriptorElts);
137
138 // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems
139 // that, short of multithreaded LLVM, it should be safe; all that is
140 // necessary is that a simple Module::iterator loop not be invalidated.
141 // Appending to the GlobalVariable list is safe in that sense.
142 //
143 // All of the output passes emit globals last. The ExecutionEngine
144 // explicitly supports adding globals to the module after
145 // initialization.
146 //
147 // Still, if it isn't deemed acceptable, then this transformation needs
148 // to be a ModulePass (which means it cannot be in the 'llc' pipeline
149 // (which uses a FunctionPassManager (which segfaults (not asserts) if
150 // provided a ModulePass))).
151 Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true,
152 GlobalVariable::InternalLinkage, FrameMap,
153 "__gc_" + F.getName());
154
155 Constant *GEPIndices[2] = {
156 ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
157 ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)};
158 return ConstantExpr::getGetElementPtr(FrameMap->getType(), GV, GEPIndices);
159 }
160
GetConcreteStackEntryType(Function & F)161 Type *ShadowStackGCLowering::GetConcreteStackEntryType(Function &F) {
162 // doInitialization creates the generic version of this type.
163 std::vector<Type *> EltTys;
164 EltTys.push_back(StackEntryTy);
165 for (size_t I = 0; I != Roots.size(); I++)
166 EltTys.push_back(Roots[I].second->getAllocatedType());
167
168 return StructType::create(EltTys, ("gc_stackentry." + F.getName()).str());
169 }
170
171 /// doInitialization - If this module uses the GC intrinsics, find them now. If
172 /// not, exit fast.
doInitialization(Module & M)173 bool ShadowStackGCLowering::doInitialization(Module &M) {
174 bool Active = false;
175 for (Function &F : M) {
176 if (F.hasGC() && F.getGC() == std::string("shadow-stack")) {
177 Active = true;
178 break;
179 }
180 }
181 if (!Active)
182 return false;
183
184 // struct FrameMap {
185 // int32_t NumRoots; // Number of roots in stack frame.
186 // int32_t NumMeta; // Number of metadata descriptors. May be < NumRoots.
187 // void *Meta[]; // May be absent for roots without metadata.
188 // };
189 std::vector<Type *> EltTys;
190 // 32 bits is ok up to a 32GB stack frame. :)
191 EltTys.push_back(Type::getInt32Ty(M.getContext()));
192 // Specifies length of variable length array.
193 EltTys.push_back(Type::getInt32Ty(M.getContext()));
194 FrameMapTy = StructType::create(EltTys, "gc_map");
195 PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy);
196
197 // struct StackEntry {
198 // ShadowStackEntry *Next; // Caller's stack entry.
199 // FrameMap *Map; // Pointer to constant FrameMap.
200 // void *Roots[]; // Stack roots (in-place array, so we pretend).
201 // };
202
203 StackEntryTy = StructType::create(M.getContext(), "gc_stackentry");
204
205 EltTys.clear();
206 EltTys.push_back(PointerType::getUnqual(StackEntryTy));
207 EltTys.push_back(FrameMapPtrTy);
208 StackEntryTy->setBody(EltTys);
209 PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy);
210
211 // Get the root chain if it already exists.
212 Head = M.getGlobalVariable("llvm_gc_root_chain");
213 if (!Head) {
214 // If the root chain does not exist, insert a new one with linkonce
215 // linkage!
216 Head = new GlobalVariable(
217 M, StackEntryPtrTy, false, GlobalValue::LinkOnceAnyLinkage,
218 Constant::getNullValue(StackEntryPtrTy), "llvm_gc_root_chain");
219 } else if (Head->hasExternalLinkage() && Head->isDeclaration()) {
220 Head->setInitializer(Constant::getNullValue(StackEntryPtrTy));
221 Head->setLinkage(GlobalValue::LinkOnceAnyLinkage);
222 }
223
224 return true;
225 }
226
IsNullValue(Value * V)227 bool ShadowStackGCLowering::IsNullValue(Value *V) {
228 if (Constant *C = dyn_cast<Constant>(V))
229 return C->isNullValue();
230 return false;
231 }
232
CollectRoots(Function & F)233 void ShadowStackGCLowering::CollectRoots(Function &F) {
234 // FIXME: Account for original alignment. Could fragment the root array.
235 // Approach 1: Null initialize empty slots at runtime. Yuck.
236 // Approach 2: Emit a map of the array instead of just a count.
237
238 assert(Roots.empty() && "Not cleaned up?");
239
240 SmallVector<std::pair<CallInst *, AllocaInst *>, 16> MetaRoots;
241
242 for (BasicBlock &BB : F)
243 for (BasicBlock::iterator II = BB.begin(), E = BB.end(); II != E;)
244 if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++))
245 if (Function *F = CI->getCalledFunction())
246 if (F->getIntrinsicID() == Intrinsic::gcroot) {
247 std::pair<CallInst *, AllocaInst *> Pair = std::make_pair(
248 CI,
249 cast<AllocaInst>(CI->getArgOperand(0)->stripPointerCasts()));
250 if (IsNullValue(CI->getArgOperand(1)))
251 Roots.push_back(Pair);
252 else
253 MetaRoots.push_back(Pair);
254 }
255
256 // Number roots with metadata (usually empty) at the beginning, so that the
257 // FrameMap::Meta array can be elided.
258 Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end());
259 }
260
CreateGEP(LLVMContext & Context,IRBuilder<> & B,Type * Ty,Value * BasePtr,int Idx,int Idx2,const char * Name)261 GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context,
262 IRBuilder<> &B, Type *Ty,
263 Value *BasePtr, int Idx,
264 int Idx2,
265 const char *Name) {
266 Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0),
267 ConstantInt::get(Type::getInt32Ty(Context), Idx),
268 ConstantInt::get(Type::getInt32Ty(Context), Idx2)};
269 Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name);
270
271 assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
272
273 return dyn_cast<GetElementPtrInst>(Val);
274 }
275
CreateGEP(LLVMContext & Context,IRBuilder<> & B,Type * Ty,Value * BasePtr,int Idx,const char * Name)276 GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context,
277 IRBuilder<> &B, Type *Ty, Value *BasePtr,
278 int Idx, const char *Name) {
279 Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0),
280 ConstantInt::get(Type::getInt32Ty(Context), Idx)};
281 Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name);
282
283 assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
284
285 return dyn_cast<GetElementPtrInst>(Val);
286 }
287
getAnalysisUsage(AnalysisUsage & AU) const288 void ShadowStackGCLowering::getAnalysisUsage(AnalysisUsage &AU) const {
289 AU.addPreserved<DominatorTreeWrapperPass>();
290 }
291
292 /// runOnFunction - Insert code to maintain the shadow stack.
runOnFunction(Function & F)293 bool ShadowStackGCLowering::runOnFunction(Function &F) {
294 // Quick exit for functions that do not use the shadow stack GC.
295 if (!F.hasGC() ||
296 F.getGC() != std::string("shadow-stack"))
297 return false;
298
299 LLVMContext &Context = F.getContext();
300
301 // Find calls to llvm.gcroot.
302 CollectRoots(F);
303
304 // If there are no roots in this function, then there is no need to add a
305 // stack map entry for it.
306 if (Roots.empty())
307 return false;
308
309 Optional<DomTreeUpdater> DTU;
310 if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
311 DTU.emplace(DTWP->getDomTree(), DomTreeUpdater::UpdateStrategy::Lazy);
312
313 // Build the constant map and figure the type of the shadow stack entry.
314 Value *FrameMap = GetFrameMap(F);
315 Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F);
316
317 // Build the shadow stack entry at the very start of the function.
318 BasicBlock::iterator IP = F.getEntryBlock().begin();
319 IRBuilder<> AtEntry(IP->getParent(), IP);
320
321 Instruction *StackEntry =
322 AtEntry.CreateAlloca(ConcreteStackEntryTy, nullptr, "gc_frame");
323
324 while (isa<AllocaInst>(IP))
325 ++IP;
326 AtEntry.SetInsertPoint(IP->getParent(), IP);
327
328 // Initialize the map pointer and load the current head of the shadow stack.
329 Instruction *CurrentHead =
330 AtEntry.CreateLoad(StackEntryTy->getPointerTo(), Head, "gc_currhead");
331 Instruction *EntryMapPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
332 StackEntry, 0, 1, "gc_frame.map");
333 AtEntry.CreateStore(FrameMap, EntryMapPtr);
334
335 // After all the allocas...
336 for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
337 // For each root, find the corresponding slot in the aggregate...
338 Value *SlotPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
339 StackEntry, 1 + I, "gc_root");
340
341 // And use it in lieu of the alloca.
342 AllocaInst *OriginalAlloca = Roots[I].second;
343 SlotPtr->takeName(OriginalAlloca);
344 OriginalAlloca->replaceAllUsesWith(SlotPtr);
345 }
346
347 // Move past the original stores inserted by GCStrategy::InitRoots. This isn't
348 // really necessary (the collector would never see the intermediate state at
349 // runtime), but it's nicer not to push the half-initialized entry onto the
350 // shadow stack.
351 while (isa<StoreInst>(IP))
352 ++IP;
353 AtEntry.SetInsertPoint(IP->getParent(), IP);
354
355 // Push the entry onto the shadow stack.
356 Instruction *EntryNextPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
357 StackEntry, 0, 0, "gc_frame.next");
358 Instruction *NewHeadVal = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
359 StackEntry, 0, "gc_newhead");
360 AtEntry.CreateStore(CurrentHead, EntryNextPtr);
361 AtEntry.CreateStore(NewHeadVal, Head);
362
363 // For each instruction that escapes...
364 EscapeEnumerator EE(F, "gc_cleanup", /*HandleExceptions=*/true,
365 DTU.hasValue() ? DTU.getPointer() : nullptr);
366 while (IRBuilder<> *AtExit = EE.Next()) {
367 // Pop the entry from the shadow stack. Don't reuse CurrentHead from
368 // AtEntry, since that would make the value live for the entire function.
369 Instruction *EntryNextPtr2 =
370 CreateGEP(Context, *AtExit, ConcreteStackEntryTy, StackEntry, 0, 0,
371 "gc_frame.next");
372 Value *SavedHead = AtExit->CreateLoad(StackEntryTy->getPointerTo(),
373 EntryNextPtr2, "gc_savedhead");
374 AtExit->CreateStore(SavedHead, Head);
375 }
376
377 // Delete the original allocas (which are no longer used) and the intrinsic
378 // calls (which are no longer valid). Doing this last avoids invalidating
379 // iterators.
380 for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
381 Roots[I].first->eraseFromParent();
382 Roots[I].second->eraseFromParent();
383 }
384
385 Roots.clear();
386 return true;
387 }
388