1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements hazard recognizers for scheduling on GCN processors.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "GCNHazardRecognizer.h"
14 #include "GCNSubtarget.h"
15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/ScheduleDAG.h"
18 #include "llvm/Support/TargetParser.h"
19 
20 using namespace llvm;
21 
22 //===----------------------------------------------------------------------===//
23 // Hazard Recoginizer Implementation
24 //===----------------------------------------------------------------------===//
25 
26 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF,
27                                                  const GCNSubtarget &ST);
28 
GCNHazardRecognizer(const MachineFunction & MF)29 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
30   IsHazardRecognizerMode(false),
31   CurrCycleInstr(nullptr),
32   MF(MF),
33   ST(MF.getSubtarget<GCNSubtarget>()),
34   TII(*ST.getInstrInfo()),
35   TRI(TII.getRegisterInfo()),
36   ClauseUses(TRI.getNumRegUnits()),
37   ClauseDefs(TRI.getNumRegUnits()) {
38   MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 19 : 5;
39   TSchedModel.init(&ST);
40   RunLdsBranchVmemWARHazardFixup = shouldRunLdsBranchVmemWARHazardFixup(MF, ST);
41 }
42 
Reset()43 void GCNHazardRecognizer::Reset() {
44   EmittedInstrs.clear();
45 }
46 
EmitInstruction(SUnit * SU)47 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
48   EmitInstruction(SU->getInstr());
49 }
50 
EmitInstruction(MachineInstr * MI)51 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
52   CurrCycleInstr = MI;
53 }
54 
isDivFMas(unsigned Opcode)55 static bool isDivFMas(unsigned Opcode) {
56   return Opcode == AMDGPU::V_DIV_FMAS_F32_e64 || Opcode == AMDGPU::V_DIV_FMAS_F64_e64;
57 }
58 
isSGetReg(unsigned Opcode)59 static bool isSGetReg(unsigned Opcode) {
60   return Opcode == AMDGPU::S_GETREG_B32;
61 }
62 
isSSetReg(unsigned Opcode)63 static bool isSSetReg(unsigned Opcode) {
64   switch (Opcode) {
65   case AMDGPU::S_SETREG_B32:
66   case AMDGPU::S_SETREG_B32_mode:
67   case AMDGPU::S_SETREG_IMM32_B32:
68   case AMDGPU::S_SETREG_IMM32_B32_mode:
69     return true;
70   }
71   return false;
72 }
73 
isRWLane(unsigned Opcode)74 static bool isRWLane(unsigned Opcode) {
75   return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32;
76 }
77 
isRFE(unsigned Opcode)78 static bool isRFE(unsigned Opcode) {
79   return Opcode == AMDGPU::S_RFE_B64;
80 }
81 
isSMovRel(unsigned Opcode)82 static bool isSMovRel(unsigned Opcode) {
83   switch (Opcode) {
84   case AMDGPU::S_MOVRELS_B32:
85   case AMDGPU::S_MOVRELS_B64:
86   case AMDGPU::S_MOVRELD_B32:
87   case AMDGPU::S_MOVRELD_B64:
88     return true;
89   default:
90     return false;
91   }
92 }
93 
isDGEMM(unsigned Opcode)94 static bool isDGEMM(unsigned Opcode) {
95   return Opcode == AMDGPU::V_MFMA_F64_4X4X4F64_e64 ||
96          Opcode == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64 ||
97          Opcode == AMDGPU::V_MFMA_F64_16X16X4F64_e64 ||
98          Opcode == AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64;
99 }
100 
isXDL(const GCNSubtarget & ST,const MachineInstr & MI)101 static bool isXDL(const GCNSubtarget &ST, const MachineInstr &MI) {
102   unsigned Opcode = MI.getOpcode();
103 
104   if (!SIInstrInfo::isMAI(MI) ||
105       isDGEMM(Opcode) ||
106       Opcode == AMDGPU::V_ACCVGPR_WRITE_B32_e64 ||
107       Opcode == AMDGPU::V_ACCVGPR_READ_B32_e64)
108     return false;
109 
110   return true;
111 }
112 
isSendMsgTraceDataOrGDS(const SIInstrInfo & TII,const MachineInstr & MI)113 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII,
114                                     const MachineInstr &MI) {
115   if (TII.isAlwaysGDS(MI.getOpcode()))
116     return true;
117 
118   switch (MI.getOpcode()) {
119   case AMDGPU::S_SENDMSG:
120   case AMDGPU::S_SENDMSGHALT:
121   case AMDGPU::S_TTRACEDATA:
122     return true;
123   // These DS opcodes don't support GDS.
124   case AMDGPU::DS_NOP:
125   case AMDGPU::DS_PERMUTE_B32:
126   case AMDGPU::DS_BPERMUTE_B32:
127     return false;
128   default:
129     if (TII.isDS(MI.getOpcode())) {
130       int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
131                                            AMDGPU::OpName::gds);
132       if (MI.getOperand(GDS).getImm())
133         return true;
134     }
135     return false;
136   }
137 }
138 
isPermlane(const MachineInstr & MI)139 static bool isPermlane(const MachineInstr &MI) {
140   unsigned Opcode = MI.getOpcode();
141   return Opcode == AMDGPU::V_PERMLANE16_B32_e64 ||
142          Opcode == AMDGPU::V_PERMLANEX16_B32_e64;
143 }
144 
getHWReg(const SIInstrInfo * TII,const MachineInstr & RegInstr)145 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) {
146   const MachineOperand *RegOp = TII->getNamedOperand(RegInstr,
147                                                      AMDGPU::OpName::simm16);
148   return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_;
149 }
150 
151 ScheduleHazardRecognizer::HazardType
getHazardType(SUnit * SU,int Stalls)152 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
153   MachineInstr *MI = SU->getInstr();
154   // If we are not in "HazardRecognizerMode" and therefore not being run from
155   // the scheduler, track possible stalls from hazards but don't insert noops.
156   auto HazardType = IsHazardRecognizerMode ? NoopHazard : Hazard;
157 
158   if (MI->isBundle())
159    return NoHazard;
160 
161   if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
162     return HazardType;
163 
164   if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0)
165     return HazardType;
166 
167   if (checkFPAtomicToDenormModeHazard(MI) > 0)
168     return HazardType;
169 
170   if (ST.hasNoDataDepHazard())
171     return NoHazard;
172 
173   // FIXME: Should flat be considered vmem?
174   if ((SIInstrInfo::isVMEM(*MI) ||
175        SIInstrInfo::isFLAT(*MI))
176       && checkVMEMHazards(MI) > 0)
177     return HazardType;
178 
179   if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0)
180     return HazardType;
181 
182   if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
183     return HazardType;
184 
185   if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
186     return HazardType;
187 
188   if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0)
189     return HazardType;
190 
191   if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) ||
192        SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) ||
193        SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0)
194     return HazardType;
195 
196   if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0)
197     return HazardType;
198 
199   if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0)
200     return HazardType;
201 
202   if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0)
203     return HazardType;
204 
205   if (ST.hasReadM0MovRelInterpHazard() &&
206       (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) &&
207       checkReadM0Hazards(MI) > 0)
208     return HazardType;
209 
210   if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI) &&
211       checkReadM0Hazards(MI) > 0)
212     return HazardType;
213 
214   if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0)
215     return HazardType;
216 
217   if ((SIInstrInfo::isVMEM(*MI) ||
218        SIInstrInfo::isFLAT(*MI) ||
219        SIInstrInfo::isDS(*MI)) && checkMAILdStHazards(MI) > 0)
220     return HazardType;
221 
222   if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0)
223     return HazardType;
224 
225   return NoHazard;
226 }
227 
insertNoopsInBundle(MachineInstr * MI,const SIInstrInfo & TII,unsigned Quantity)228 static void insertNoopsInBundle(MachineInstr *MI, const SIInstrInfo &TII,
229                                 unsigned Quantity) {
230   while (Quantity > 0) {
231     unsigned Arg = std::min(Quantity, 8u);
232     Quantity -= Arg;
233     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP))
234         .addImm(Arg - 1);
235   }
236 }
237 
processBundle()238 void GCNHazardRecognizer::processBundle() {
239   MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator());
240   MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end();
241   // Check bundled MachineInstr's for hazards.
242   for (; MI != E && MI->isInsideBundle(); ++MI) {
243     CurrCycleInstr = &*MI;
244     unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr);
245 
246     if (IsHazardRecognizerMode) {
247       fixHazards(CurrCycleInstr);
248 
249       insertNoopsInBundle(CurrCycleInstr, TII, WaitStates);
250     }
251 
252     // It’s unnecessary to track more than MaxLookAhead instructions. Since we
253     // include the bundled MI directly after, only add a maximum of
254     // (MaxLookAhead - 1) noops to EmittedInstrs.
255     for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i)
256       EmittedInstrs.push_front(nullptr);
257 
258     EmittedInstrs.push_front(CurrCycleInstr);
259     EmittedInstrs.resize(MaxLookAhead);
260   }
261   CurrCycleInstr = nullptr;
262 }
263 
PreEmitNoops(MachineInstr * MI)264 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
265   IsHazardRecognizerMode = true;
266   CurrCycleInstr = MI;
267   unsigned W = PreEmitNoopsCommon(MI);
268   fixHazards(MI);
269   CurrCycleInstr = nullptr;
270   return W;
271 }
272 
PreEmitNoopsCommon(MachineInstr * MI)273 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) {
274   if (MI->isBundle())
275     return 0;
276 
277   int WaitStates = 0;
278 
279   if (SIInstrInfo::isSMRD(*MI))
280     return std::max(WaitStates, checkSMRDHazards(MI));
281 
282   if (ST.hasNSAtoVMEMBug())
283     WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI));
284 
285   WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI));
286 
287   if (ST.hasNoDataDepHazard())
288     return WaitStates;
289 
290   if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI))
291     WaitStates = std::max(WaitStates, checkVMEMHazards(MI));
292 
293   if (SIInstrInfo::isVALU(*MI))
294     WaitStates = std::max(WaitStates, checkVALUHazards(MI));
295 
296   if (SIInstrInfo::isDPP(*MI))
297     WaitStates = std::max(WaitStates, checkDPPHazards(MI));
298 
299   if (isDivFMas(MI->getOpcode()))
300     WaitStates = std::max(WaitStates, checkDivFMasHazards(MI));
301 
302   if (isRWLane(MI->getOpcode()))
303     WaitStates = std::max(WaitStates, checkRWLaneHazards(MI));
304 
305   if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) ||
306        SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) ||
307        SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0)
308     WaitStates = std::max(WaitStates, checkMAIVALUHazards(MI));
309 
310   if (MI->isInlineAsm())
311     return std::max(WaitStates, checkInlineAsmHazards(MI));
312 
313   if (isSGetReg(MI->getOpcode()))
314     return std::max(WaitStates, checkGetRegHazards(MI));
315 
316   if (isSSetReg(MI->getOpcode()))
317     return std::max(WaitStates, checkSetRegHazards(MI));
318 
319   if (isRFE(MI->getOpcode()))
320     return std::max(WaitStates, checkRFEHazards(MI));
321 
322   if (ST.hasReadM0MovRelInterpHazard() && (TII.isVINTRP(*MI) ||
323                                            isSMovRel(MI->getOpcode())))
324     return std::max(WaitStates, checkReadM0Hazards(MI));
325 
326   if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI))
327     return std::max(WaitStates, checkReadM0Hazards(MI));
328 
329   if (SIInstrInfo::isMAI(*MI))
330     return std::max(WaitStates, checkMAIHazards(MI));
331 
332   if (SIInstrInfo::isVMEM(*MI) ||
333       SIInstrInfo::isFLAT(*MI) ||
334       SIInstrInfo::isDS(*MI))
335     return std::max(WaitStates, checkMAILdStHazards(MI));
336 
337   return WaitStates;
338 }
339 
EmitNoop()340 void GCNHazardRecognizer::EmitNoop() {
341   EmittedInstrs.push_front(nullptr);
342 }
343 
AdvanceCycle()344 void GCNHazardRecognizer::AdvanceCycle() {
345   // When the scheduler detects a stall, it will call AdvanceCycle() without
346   // emitting any instructions.
347   if (!CurrCycleInstr) {
348     EmittedInstrs.push_front(nullptr);
349     return;
350   }
351 
352   // Do not track non-instructions which do not affect the wait states.
353   // If included, these instructions can lead to buffer overflow such that
354   // detectable hazards are missed.
355   if (CurrCycleInstr->isMetaInstruction()) {
356     CurrCycleInstr = nullptr;
357     return;
358   }
359 
360   if (CurrCycleInstr->isBundle()) {
361     processBundle();
362     return;
363   }
364 
365   unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr);
366 
367   // Keep track of emitted instructions
368   EmittedInstrs.push_front(CurrCycleInstr);
369 
370   // Add a nullptr for each additional wait state after the first.  Make sure
371   // not to add more than getMaxLookAhead() items to the list, since we
372   // truncate the list to that size right after this loop.
373   for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
374        i < e; ++i) {
375     EmittedInstrs.push_front(nullptr);
376   }
377 
378   // getMaxLookahead() is the largest number of wait states we will ever need
379   // to insert, so there is no point in keeping track of more than that many
380   // wait states.
381   EmittedInstrs.resize(getMaxLookAhead());
382 
383   CurrCycleInstr = nullptr;
384 }
385 
RecedeCycle()386 void GCNHazardRecognizer::RecedeCycle() {
387   llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
388 }
389 
390 //===----------------------------------------------------------------------===//
391 // Helper Functions
392 //===----------------------------------------------------------------------===//
393 
394 typedef function_ref<bool(const MachineInstr &, int WaitStates)> IsExpiredFn;
395 
396 // Returns a minimum wait states since \p I walking all predecessors.
397 // Only scans until \p IsExpired does not return true.
398 // Can only be run in a hazard recognizer mode.
getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,const MachineBasicBlock * MBB,MachineBasicBlock::const_reverse_instr_iterator I,int WaitStates,IsExpiredFn IsExpired,DenseSet<const MachineBasicBlock * > & Visited)399 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,
400                               const MachineBasicBlock *MBB,
401                               MachineBasicBlock::const_reverse_instr_iterator I,
402                               int WaitStates, IsExpiredFn IsExpired,
403                               DenseSet<const MachineBasicBlock *> &Visited) {
404   for (auto E = MBB->instr_rend(); I != E; ++I) {
405     // Don't add WaitStates for parent BUNDLE instructions.
406     if (I->isBundle())
407       continue;
408 
409     if (IsHazard(*I))
410       return WaitStates;
411 
412     if (I->isInlineAsm() || I->isMetaInstruction())
413       continue;
414 
415     WaitStates += SIInstrInfo::getNumWaitStates(*I);
416 
417     if (IsExpired(*I, WaitStates))
418       return std::numeric_limits<int>::max();
419   }
420 
421   int MinWaitStates = std::numeric_limits<int>::max();
422   for (MachineBasicBlock *Pred : MBB->predecessors()) {
423     if (!Visited.insert(Pred).second)
424       continue;
425 
426     int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(),
427                                WaitStates, IsExpired, Visited);
428 
429     MinWaitStates = std::min(MinWaitStates, W);
430   }
431 
432   return MinWaitStates;
433 }
434 
getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,const MachineInstr * MI,IsExpiredFn IsExpired)435 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,
436                               const MachineInstr *MI, IsExpiredFn IsExpired) {
437   DenseSet<const MachineBasicBlock *> Visited;
438   return getWaitStatesSince(IsHazard, MI->getParent(),
439                             std::next(MI->getReverseIterator()),
440                             0, IsExpired, Visited);
441 }
442 
getWaitStatesSince(IsHazardFn IsHazard,int Limit)443 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) {
444   if (IsHazardRecognizerMode) {
445     auto IsExpiredFn = [Limit](const MachineInstr &, int WaitStates) {
446       return WaitStates >= Limit;
447     };
448     return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn);
449   }
450 
451   int WaitStates = 0;
452   for (MachineInstr *MI : EmittedInstrs) {
453     if (MI) {
454       if (IsHazard(*MI))
455         return WaitStates;
456 
457       if (MI->isInlineAsm())
458         continue;
459     }
460     ++WaitStates;
461 
462     if (WaitStates >= Limit)
463       break;
464   }
465   return std::numeric_limits<int>::max();
466 }
467 
getWaitStatesSinceDef(unsigned Reg,IsHazardFn IsHazardDef,int Limit)468 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg,
469                                                IsHazardFn IsHazardDef,
470                                                int Limit) {
471   const SIRegisterInfo *TRI = ST.getRegisterInfo();
472 
473   auto IsHazardFn = [IsHazardDef, TRI, Reg](const MachineInstr &MI) {
474     return IsHazardDef(MI) && MI.modifiesRegister(Reg, TRI);
475   };
476 
477   return getWaitStatesSince(IsHazardFn, Limit);
478 }
479 
getWaitStatesSinceSetReg(IsHazardFn IsHazard,int Limit)480 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard,
481                                                   int Limit) {
482   auto IsHazardFn = [IsHazard](const MachineInstr &MI) {
483     return isSSetReg(MI.getOpcode()) && IsHazard(MI);
484   };
485 
486   return getWaitStatesSince(IsHazardFn, Limit);
487 }
488 
489 //===----------------------------------------------------------------------===//
490 // No-op Hazard Detection
491 //===----------------------------------------------------------------------===//
492 
addRegUnits(const SIRegisterInfo & TRI,BitVector & BV,MCRegister Reg)493 static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV,
494                         MCRegister Reg) {
495   for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI)
496     BV.set(*RUI);
497 }
498 
addRegsToSet(const SIRegisterInfo & TRI,iterator_range<MachineInstr::const_mop_iterator> Ops,BitVector & Set)499 static void addRegsToSet(const SIRegisterInfo &TRI,
500                          iterator_range<MachineInstr::const_mop_iterator> Ops,
501                          BitVector &Set) {
502   for (const MachineOperand &Op : Ops) {
503     if (Op.isReg())
504       addRegUnits(TRI, Set, Op.getReg().asMCReg());
505   }
506 }
507 
addClauseInst(const MachineInstr & MI)508 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) {
509   // XXX: Do we need to worry about implicit operands
510   addRegsToSet(TRI, MI.defs(), ClauseDefs);
511   addRegsToSet(TRI, MI.uses(), ClauseUses);
512 }
513 
breaksSMEMSoftClause(MachineInstr * MI)514 static bool breaksSMEMSoftClause(MachineInstr *MI) {
515   return !SIInstrInfo::isSMRD(*MI);
516 }
517 
breaksVMEMSoftClause(MachineInstr * MI)518 static bool breaksVMEMSoftClause(MachineInstr *MI) {
519   return !SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI);
520 }
521 
checkSoftClauseHazards(MachineInstr * MEM)522 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) {
523   // SMEM soft clause are only present on VI+, and only matter if xnack is
524   // enabled.
525   if (!ST.isXNACKEnabled())
526     return 0;
527 
528   bool IsSMRD = TII.isSMRD(*MEM);
529 
530   resetClause();
531 
532   // A soft-clause is any group of consecutive SMEM instructions.  The
533   // instructions in this group may return out of order and/or may be
534   // replayed (i.e. the same instruction issued more than once).
535   //
536   // In order to handle these situations correctly we need to make sure that
537   // when a clause has more than one instruction, no instruction in the clause
538   // writes to a register that is read by another instruction in the clause
539   // (including itself). If we encounter this situaion, we need to break the
540   // clause by inserting a non SMEM instruction.
541 
542   for (MachineInstr *MI : EmittedInstrs) {
543     // When we hit a non-SMEM instruction then we have passed the start of the
544     // clause and we can stop.
545     if (!MI)
546       break;
547 
548     if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI))
549       break;
550 
551     addClauseInst(*MI);
552   }
553 
554   if (ClauseDefs.none())
555     return 0;
556 
557   // We need to make sure not to put loads and stores in the same clause if they
558   // use the same address. For now, just start a new clause whenever we see a
559   // store.
560   if (MEM->mayStore())
561     return 1;
562 
563   addClauseInst(*MEM);
564 
565   // If the set of defs and uses intersect then we cannot add this instruction
566   // to the clause, so we have a hazard.
567   return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0;
568 }
569 
checkSMRDHazards(MachineInstr * SMRD)570 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
571   int WaitStatesNeeded = 0;
572 
573   WaitStatesNeeded = checkSoftClauseHazards(SMRD);
574 
575   // This SMRD hazard only affects SI.
576   if (!ST.hasSMRDReadVALUDefHazard())
577     return WaitStatesNeeded;
578 
579   // A read of an SGPR by SMRD instruction requires 4 wait states when the
580   // SGPR was written by a VALU instruction.
581   int SmrdSgprWaitStates = 4;
582   auto IsHazardDefFn = [this](const MachineInstr &MI) {
583     return TII.isVALU(MI);
584   };
585   auto IsBufferHazardDefFn = [this](const MachineInstr &MI) {
586     return TII.isSALU(MI);
587   };
588 
589   bool IsBufferSMRD = TII.isBufferSMRD(*SMRD);
590 
591   for (const MachineOperand &Use : SMRD->uses()) {
592     if (!Use.isReg())
593       continue;
594     int WaitStatesNeededForUse =
595         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
596                                                    SmrdSgprWaitStates);
597     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
598 
599     // This fixes what appears to be undocumented hardware behavior in SI where
600     // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor
601     // needs some number of nops in between. We don't know how many we need, but
602     // let's use 4. This wasn't discovered before probably because the only
603     // case when this happens is when we expand a 64-bit pointer into a full
604     // descriptor and use s_buffer_load_dword instead of s_load_dword, which was
605     // probably never encountered in the closed-source land.
606     if (IsBufferSMRD) {
607       int WaitStatesNeededForUse =
608         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(),
609                                                    IsBufferHazardDefFn,
610                                                    SmrdSgprWaitStates);
611       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
612     }
613   }
614 
615   return WaitStatesNeeded;
616 }
617 
checkVMEMHazards(MachineInstr * VMEM)618 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
619   if (!ST.hasVMEMReadSGPRVALUDefHazard())
620     return 0;
621 
622   int WaitStatesNeeded = checkSoftClauseHazards(VMEM);
623 
624   // A read of an SGPR by a VMEM instruction requires 5 wait states when the
625   // SGPR was written by a VALU Instruction.
626   const int VmemSgprWaitStates = 5;
627   auto IsHazardDefFn = [this](const MachineInstr &MI) {
628     return TII.isVALU(MI);
629   };
630   for (const MachineOperand &Use : VMEM->uses()) {
631     if (!Use.isReg() || TRI.isVectorRegister(MF.getRegInfo(), Use.getReg()))
632       continue;
633 
634     int WaitStatesNeededForUse =
635         VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
636                                                    VmemSgprWaitStates);
637     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
638   }
639   return WaitStatesNeeded;
640 }
641 
checkDPPHazards(MachineInstr * DPP)642 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
643   const SIRegisterInfo *TRI = ST.getRegisterInfo();
644   const SIInstrInfo *TII = ST.getInstrInfo();
645 
646   // Check for DPP VGPR read after VALU VGPR write and EXEC write.
647   int DppVgprWaitStates = 2;
648   int DppExecWaitStates = 5;
649   int WaitStatesNeeded = 0;
650   auto IsHazardDefFn = [TII](const MachineInstr &MI) {
651     return TII->isVALU(MI);
652   };
653 
654   for (const MachineOperand &Use : DPP->uses()) {
655     if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
656       continue;
657     int WaitStatesNeededForUse =
658         DppVgprWaitStates - getWaitStatesSinceDef(
659                                 Use.getReg(),
660                                 [](const MachineInstr &) { return true; },
661                                 DppVgprWaitStates);
662     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
663   }
664 
665   WaitStatesNeeded = std::max(
666       WaitStatesNeeded,
667       DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn,
668                                                 DppExecWaitStates));
669 
670   return WaitStatesNeeded;
671 }
672 
checkDivFMasHazards(MachineInstr * DivFMas)673 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
674   const SIInstrInfo *TII = ST.getInstrInfo();
675 
676   // v_div_fmas requires 4 wait states after a write to vcc from a VALU
677   // instruction.
678   const int DivFMasWaitStates = 4;
679   auto IsHazardDefFn = [TII](const MachineInstr &MI) {
680     return TII->isVALU(MI);
681   };
682   int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn,
683                                                DivFMasWaitStates);
684 
685   return DivFMasWaitStates - WaitStatesNeeded;
686 }
687 
checkGetRegHazards(MachineInstr * GetRegInstr)688 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) {
689   const SIInstrInfo *TII = ST.getInstrInfo();
690   unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr);
691 
692   const int GetRegWaitStates = 2;
693   auto IsHazardFn = [TII, GetRegHWReg](const MachineInstr &MI) {
694     return GetRegHWReg == getHWReg(TII, MI);
695   };
696   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates);
697 
698   return GetRegWaitStates - WaitStatesNeeded;
699 }
700 
checkSetRegHazards(MachineInstr * SetRegInstr)701 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) {
702   const SIInstrInfo *TII = ST.getInstrInfo();
703   unsigned HWReg = getHWReg(TII, *SetRegInstr);
704 
705   const int SetRegWaitStates = ST.getSetRegWaitStates();
706   auto IsHazardFn = [TII, HWReg](const MachineInstr &MI) {
707     return HWReg == getHWReg(TII, MI);
708   };
709   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates);
710   return SetRegWaitStates - WaitStatesNeeded;
711 }
712 
createsVALUHazard(const MachineInstr & MI)713 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) {
714   if (!MI.mayStore())
715     return -1;
716 
717   const SIInstrInfo *TII = ST.getInstrInfo();
718   unsigned Opcode = MI.getOpcode();
719   const MCInstrDesc &Desc = MI.getDesc();
720 
721   int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
722   int VDataRCID = -1;
723   if (VDataIdx != -1)
724     VDataRCID = Desc.OpInfo[VDataIdx].RegClass;
725 
726   if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) {
727     // There is no hazard if the instruction does not use vector regs
728     // (like wbinvl1)
729     if (VDataIdx == -1)
730       return -1;
731     // For MUBUF/MTBUF instructions this hazard only exists if the
732     // instruction is not using a register in the soffset field.
733     const MachineOperand *SOffset =
734         TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
735     // If we have no soffset operand, then assume this field has been
736     // hardcoded to zero.
737     if (AMDGPU::getRegBitWidth(VDataRCID) > 64 &&
738         (!SOffset || !SOffset->isReg()))
739       return VDataIdx;
740   }
741 
742   // MIMG instructions create a hazard if they don't use a 256-bit T# and
743   // the store size is greater than 8 bytes and they have more than two bits
744   // of their dmask set.
745   // All our MIMG definitions use a 256-bit T#, so we can skip checking for them.
746   if (TII->isMIMG(MI)) {
747     int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
748     assert(SRsrcIdx != -1 &&
749            AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256);
750     (void)SRsrcIdx;
751   }
752 
753   if (TII->isFLAT(MI)) {
754     int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
755     if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64)
756       return DataIdx;
757   }
758 
759   return -1;
760 }
761 
762 int
checkVALUHazardsHelper(const MachineOperand & Def,const MachineRegisterInfo & MRI)763 GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def,
764                                             const MachineRegisterInfo &MRI) {
765   // Helper to check for the hazard where VMEM instructions that store more than
766   // 8 bytes can have there store data over written by the next instruction.
767   const SIRegisterInfo *TRI = ST.getRegisterInfo();
768 
769   const int VALUWaitStates = 1;
770   int WaitStatesNeeded = 0;
771 
772   if (!TRI->isVectorRegister(MRI, Def.getReg()))
773     return WaitStatesNeeded;
774   Register Reg = Def.getReg();
775   auto IsHazardFn = [this, Reg, TRI](const MachineInstr &MI) {
776     int DataIdx = createsVALUHazard(MI);
777     return DataIdx >= 0 &&
778            TRI->regsOverlap(MI.getOperand(DataIdx).getReg(), Reg);
779   };
780   int WaitStatesNeededForDef =
781     VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates);
782   WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
783 
784   return WaitStatesNeeded;
785 }
786 
checkVALUHazards(MachineInstr * VALU)787 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) {
788   // This checks for the hazard where VMEM instructions that store more than
789   // 8 bytes can have there store data over written by the next instruction.
790   if (!ST.has12DWordStoreHazard())
791     return 0;
792 
793   const MachineRegisterInfo &MRI = MF.getRegInfo();
794   int WaitStatesNeeded = 0;
795 
796   for (const MachineOperand &Def : VALU->defs()) {
797     WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI));
798   }
799 
800   return WaitStatesNeeded;
801 }
802 
checkInlineAsmHazards(MachineInstr * IA)803 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) {
804   // This checks for hazards associated with inline asm statements.
805   // Since inline asms can contain just about anything, we use this
806   // to call/leverage other check*Hazard routines. Note that
807   // this function doesn't attempt to address all possible inline asm
808   // hazards (good luck), but is a collection of what has been
809   // problematic thus far.
810 
811   // see checkVALUHazards()
812   if (!ST.has12DWordStoreHazard())
813     return 0;
814 
815   const MachineRegisterInfo &MRI = MF.getRegInfo();
816   int WaitStatesNeeded = 0;
817 
818   for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands();
819        I != E; ++I) {
820     const MachineOperand &Op = IA->getOperand(I);
821     if (Op.isReg() && Op.isDef()) {
822       WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI));
823     }
824   }
825 
826   return WaitStatesNeeded;
827 }
828 
checkRWLaneHazards(MachineInstr * RWLane)829 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) {
830   const SIInstrInfo *TII = ST.getInstrInfo();
831   const SIRegisterInfo *TRI = ST.getRegisterInfo();
832   const MachineRegisterInfo &MRI = MF.getRegInfo();
833 
834   const MachineOperand *LaneSelectOp =
835       TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1);
836 
837   if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg()))
838     return 0;
839 
840   Register LaneSelectReg = LaneSelectOp->getReg();
841   auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVALU(MI); };
842 
843   const int RWLaneWaitStates = 4;
844   int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn,
845                                               RWLaneWaitStates);
846   return RWLaneWaitStates - WaitStatesSince;
847 }
848 
checkRFEHazards(MachineInstr * RFE)849 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) {
850   if (!ST.hasRFEHazards())
851     return 0;
852 
853   const SIInstrInfo *TII = ST.getInstrInfo();
854 
855   const int RFEWaitStates = 1;
856 
857   auto IsHazardFn = [TII](const MachineInstr &MI) {
858     return getHWReg(TII, MI) == AMDGPU::Hwreg::ID_TRAPSTS;
859   };
860   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates);
861   return RFEWaitStates - WaitStatesNeeded;
862 }
863 
checkReadM0Hazards(MachineInstr * MI)864 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) {
865   const SIInstrInfo *TII = ST.getInstrInfo();
866   const int SMovRelWaitStates = 1;
867   auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isSALU(MI); };
868   return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn,
869                                                    SMovRelWaitStates);
870 }
871 
fixHazards(MachineInstr * MI)872 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) {
873   fixVMEMtoScalarWriteHazards(MI);
874   fixVcmpxPermlaneHazards(MI);
875   fixSMEMtoVectorWriteHazards(MI);
876   fixVcmpxExecWARHazard(MI);
877   fixLdsBranchVmemWARHazard(MI);
878 }
879 
fixVcmpxPermlaneHazards(MachineInstr * MI)880 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) {
881   if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI))
882     return false;
883 
884   const SIInstrInfo *TII = ST.getInstrInfo();
885   auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVOPC(MI); };
886 
887   auto IsExpiredFn = [](const MachineInstr &MI, int) {
888     unsigned Opc = MI.getOpcode();
889     return SIInstrInfo::isVALU(MI) && Opc != AMDGPU::V_NOP_e32 &&
890            Opc != AMDGPU::V_NOP_e64 && Opc != AMDGPU::V_NOP_sdwa;
891   };
892 
893   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
894       std::numeric_limits<int>::max())
895     return false;
896 
897   // V_NOP will be discarded by SQ.
898   // Use V_MOB_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE*
899   // which is always a VGPR and available.
900   auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
901   Register Reg = Src0->getReg();
902   bool IsUndef = Src0->isUndef();
903   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
904           TII->get(AMDGPU::V_MOV_B32_e32))
905     .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0))
906     .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill);
907 
908   return true;
909 }
910 
fixVMEMtoScalarWriteHazards(MachineInstr * MI)911 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) {
912   if (!ST.hasVMEMtoScalarWriteHazard())
913     return false;
914 
915   if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI))
916     return false;
917 
918   if (MI->getNumDefs() == 0)
919     return false;
920 
921   const SIRegisterInfo *TRI = ST.getRegisterInfo();
922 
923   auto IsHazardFn = [TRI, MI](const MachineInstr &I) {
924     if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isDS(I) &&
925         !SIInstrInfo::isFLAT(I))
926       return false;
927 
928     for (const MachineOperand &Def : MI->defs()) {
929       const MachineOperand *Op =
930           I.findRegisterUseOperand(Def.getReg(), false, TRI);
931       if (!Op)
932         continue;
933       return true;
934     }
935     return false;
936   };
937 
938   auto IsExpiredFn = [](const MachineInstr &MI, int) {
939     return SIInstrInfo::isVALU(MI) ||
940            (MI.getOpcode() == AMDGPU::S_WAITCNT &&
941             !MI.getOperand(0).getImm()) ||
942            (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
943             MI.getOperand(0).getImm() == 0xffe3);
944   };
945 
946   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
947       std::numeric_limits<int>::max())
948     return false;
949 
950   const SIInstrInfo *TII = ST.getInstrInfo();
951   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
952           TII->get(AMDGPU::S_WAITCNT_DEPCTR))
953       .addImm(0xffe3);
954   return true;
955 }
956 
fixSMEMtoVectorWriteHazards(MachineInstr * MI)957 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) {
958   if (!ST.hasSMEMtoVectorWriteHazard())
959     return false;
960 
961   if (!SIInstrInfo::isVALU(*MI))
962     return false;
963 
964   unsigned SDSTName;
965   switch (MI->getOpcode()) {
966   case AMDGPU::V_READLANE_B32:
967   case AMDGPU::V_READFIRSTLANE_B32:
968     SDSTName = AMDGPU::OpName::vdst;
969     break;
970   default:
971     SDSTName = AMDGPU::OpName::sdst;
972     break;
973   }
974 
975   const SIInstrInfo *TII = ST.getInstrInfo();
976   const SIRegisterInfo *TRI = ST.getRegisterInfo();
977   const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU());
978   const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName);
979   if (!SDST) {
980     for (const auto &MO : MI->implicit_operands()) {
981       if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) {
982         SDST = &MO;
983         break;
984       }
985     }
986   }
987 
988   if (!SDST)
989     return false;
990 
991   const Register SDSTReg = SDST->getReg();
992   auto IsHazardFn = [SDSTReg, TRI](const MachineInstr &I) {
993     return SIInstrInfo::isSMRD(I) && I.readsRegister(SDSTReg, TRI);
994   };
995 
996   auto IsExpiredFn = [TII, IV](const MachineInstr &MI, int) {
997     if (TII->isSALU(MI)) {
998       switch (MI.getOpcode()) {
999       case AMDGPU::S_SETVSKIP:
1000       case AMDGPU::S_VERSION:
1001       case AMDGPU::S_WAITCNT_VSCNT:
1002       case AMDGPU::S_WAITCNT_VMCNT:
1003       case AMDGPU::S_WAITCNT_EXPCNT:
1004         // These instructions cannot not mitigate the hazard.
1005         return false;
1006       case AMDGPU::S_WAITCNT_LGKMCNT:
1007         // Reducing lgkmcnt count to 0 always mitigates the hazard.
1008         return (MI.getOperand(1).getImm() == 0) &&
1009                (MI.getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1010       case AMDGPU::S_WAITCNT: {
1011         const int64_t Imm = MI.getOperand(0).getImm();
1012         AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm);
1013         return (Decoded.LgkmCnt == 0);
1014       }
1015       default:
1016         // SOPP instructions cannot mitigate the hazard.
1017         if (TII->isSOPP(MI))
1018           return false;
1019         // At this point the SALU can be assumed to mitigate the hazard
1020         // because either:
1021         // (a) it is independent of the at risk SMEM (breaking chain),
1022         // or
1023         // (b) it is dependent on the SMEM, in which case an appropriate
1024         //     s_waitcnt lgkmcnt _must_ exist between it and the at risk
1025         //     SMEM instruction.
1026         return true;
1027       }
1028     }
1029     return false;
1030   };
1031 
1032   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1033       std::numeric_limits<int>::max())
1034     return false;
1035 
1036   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1037           TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL)
1038       .addImm(0);
1039   return true;
1040 }
1041 
fixVcmpxExecWARHazard(MachineInstr * MI)1042 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) {
1043   if (!ST.hasVcmpxExecWARHazard() || !SIInstrInfo::isVALU(*MI))
1044     return false;
1045 
1046   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1047   if (!MI->modifiesRegister(AMDGPU::EXEC, TRI))
1048     return false;
1049 
1050   auto IsHazardFn = [TRI](const MachineInstr &I) {
1051     if (SIInstrInfo::isVALU(I))
1052       return false;
1053     return I.readsRegister(AMDGPU::EXEC, TRI);
1054   };
1055 
1056   const SIInstrInfo *TII = ST.getInstrInfo();
1057   auto IsExpiredFn = [TII, TRI](const MachineInstr &MI, int) {
1058     if (SIInstrInfo::isVALU(MI)) {
1059       if (TII->getNamedOperand(MI, AMDGPU::OpName::sdst))
1060         return true;
1061       for (auto MO : MI.implicit_operands())
1062         if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg())))
1063           return true;
1064     }
1065     if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1066         (MI.getOperand(0).getImm() & 0xfffe) == 0xfffe)
1067       return true;
1068     return false;
1069   };
1070 
1071   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1072       std::numeric_limits<int>::max())
1073     return false;
1074 
1075   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1076           TII->get(AMDGPU::S_WAITCNT_DEPCTR))
1077     .addImm(0xfffe);
1078   return true;
1079 }
1080 
shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction & MF,const GCNSubtarget & ST)1081 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF,
1082                                                  const GCNSubtarget &ST) {
1083   if (!ST.hasLdsBranchVmemWARHazard())
1084     return false;
1085 
1086   // Check if the necessary condition for the hazard is met: both LDS and VMEM
1087   // instructions need to appear in the same function.
1088   bool HasLds = false;
1089   bool HasVmem = false;
1090   for (auto &MBB : MF) {
1091     for (auto &MI : MBB) {
1092       HasLds |= SIInstrInfo::isDS(MI);
1093       HasVmem |=
1094           SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI);
1095       if (HasLds && HasVmem)
1096         return true;
1097     }
1098   }
1099   return false;
1100 }
1101 
fixLdsBranchVmemWARHazard(MachineInstr * MI)1102 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) {
1103   if (!RunLdsBranchVmemWARHazardFixup)
1104     return false;
1105 
1106   assert(ST.hasLdsBranchVmemWARHazard());
1107 
1108   auto IsHazardInst = [](const MachineInstr &MI) {
1109     if (SIInstrInfo::isDS(MI))
1110       return 1;
1111     if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI))
1112       return 2;
1113     return 0;
1114   };
1115 
1116   auto InstType = IsHazardInst(*MI);
1117   if (!InstType)
1118     return false;
1119 
1120   auto IsExpiredFn = [&IsHazardInst](const MachineInstr &I, int) {
1121     return IsHazardInst(I) || (I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1122                                I.getOperand(0).getReg() == AMDGPU::SGPR_NULL &&
1123                                !I.getOperand(1).getImm());
1124   };
1125 
1126   auto IsHazardFn = [InstType, &IsHazardInst](const MachineInstr &I) {
1127     if (!I.isBranch())
1128       return false;
1129 
1130     auto IsHazardFn = [InstType, IsHazardInst](const MachineInstr &I) {
1131       auto InstType2 = IsHazardInst(I);
1132       return InstType2 && InstType != InstType2;
1133     };
1134 
1135     auto IsExpiredFn = [InstType, &IsHazardInst](const MachineInstr &I, int) {
1136       auto InstType2 = IsHazardInst(I);
1137       if (InstType == InstType2)
1138         return true;
1139 
1140       return I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1141              I.getOperand(0).getReg() == AMDGPU::SGPR_NULL &&
1142              !I.getOperand(1).getImm();
1143     };
1144 
1145     return ::getWaitStatesSince(IsHazardFn, &I, IsExpiredFn) !=
1146            std::numeric_limits<int>::max();
1147   };
1148 
1149   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1150       std::numeric_limits<int>::max())
1151     return false;
1152 
1153   const SIInstrInfo *TII = ST.getInstrInfo();
1154   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1155           TII->get(AMDGPU::S_WAITCNT_VSCNT))
1156     .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1157     .addImm(0);
1158 
1159   return true;
1160 }
1161 
checkNSAtoVMEMHazard(MachineInstr * MI)1162 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) {
1163   int NSAtoVMEMWaitStates = 1;
1164 
1165   if (!ST.hasNSAtoVMEMBug())
1166     return 0;
1167 
1168   if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI))
1169     return 0;
1170 
1171   const SIInstrInfo *TII = ST.getInstrInfo();
1172   const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset);
1173   if (!Offset || (Offset->getImm() & 6) == 0)
1174     return 0;
1175 
1176   auto IsHazardFn = [TII](const MachineInstr &I) {
1177     if (!SIInstrInfo::isMIMG(I))
1178       return false;
1179     const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I.getOpcode());
1180     return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA &&
1181            TII->getInstSizeInBytes(I) >= 16;
1182   };
1183 
1184   return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1);
1185 }
1186 
checkFPAtomicToDenormModeHazard(MachineInstr * MI)1187 int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) {
1188   int FPAtomicToDenormModeWaitStates = 3;
1189 
1190   if (MI->getOpcode() != AMDGPU::S_DENORM_MODE)
1191     return 0;
1192 
1193   auto IsHazardFn = [](const MachineInstr &I) {
1194     if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I))
1195       return false;
1196     return SIInstrInfo::isFPAtomic(I);
1197   };
1198 
1199   auto IsExpiredFn = [](const MachineInstr &MI, int WaitStates) {
1200     if (WaitStates >= 3 || SIInstrInfo::isVALU(MI))
1201       return true;
1202 
1203     switch (MI.getOpcode()) {
1204     case AMDGPU::S_WAITCNT:
1205     case AMDGPU::S_WAITCNT_VSCNT:
1206     case AMDGPU::S_WAITCNT_VMCNT:
1207     case AMDGPU::S_WAITCNT_EXPCNT:
1208     case AMDGPU::S_WAITCNT_LGKMCNT:
1209     case AMDGPU::S_WAIT_IDLE:
1210       return true;
1211     default:
1212       break;
1213     }
1214 
1215     return false;
1216   };
1217 
1218   return FPAtomicToDenormModeWaitStates -
1219          ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn);
1220 }
1221 
checkMAIHazards(MachineInstr * MI)1222 int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) {
1223   assert(SIInstrInfo::isMAI(*MI));
1224 
1225   return ST.hasGFX90AInsts() ? checkMAIHazards90A(MI) : checkMAIHazards908(MI);
1226 }
1227 
checkMAIHazards908(MachineInstr * MI)1228 int GCNHazardRecognizer::checkMAIHazards908(MachineInstr *MI) {
1229   int WaitStatesNeeded = 0;
1230   unsigned Opc = MI->getOpcode();
1231 
1232   auto IsVALUFn = [](const MachineInstr &MI) {
1233     return SIInstrInfo::isVALU(MI);
1234   };
1235 
1236   if (Opc != AMDGPU::V_ACCVGPR_READ_B32_e64) { // MFMA or v_accvgpr_write
1237     const int LegacyVALUWritesVGPRWaitStates = 2;
1238     const int VALUWritesExecWaitStates = 4;
1239     const int MaxWaitStates = 4;
1240 
1241     int WaitStatesNeededForUse = VALUWritesExecWaitStates -
1242       getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates);
1243     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1244 
1245     if (WaitStatesNeeded < MaxWaitStates) {
1246       for (const MachineOperand &Use : MI->explicit_uses()) {
1247         const int MaxWaitStates = 2;
1248 
1249         if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
1250           continue;
1251 
1252         int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates -
1253           getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates);
1254         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1255 
1256         if (WaitStatesNeeded == MaxWaitStates)
1257           break;
1258       }
1259     }
1260   }
1261 
1262   auto IsMFMAFn = [](const MachineInstr &MI) {
1263     return SIInstrInfo::isMAI(MI) &&
1264            MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 &&
1265            MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64;
1266   };
1267 
1268   for (const MachineOperand &Op : MI->explicit_operands()) {
1269     if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg()))
1270       continue;
1271 
1272     if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
1273       continue;
1274 
1275     const int MFMAWritesAGPROverlappedSrcABWaitStates = 4;
1276     const int MFMAWritesAGPROverlappedSrcCWaitStates = 2;
1277     const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4;
1278     const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10;
1279     const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18;
1280     const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1;
1281     const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7;
1282     const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15;
1283     const int MaxWaitStates = 18;
1284     Register Reg = Op.getReg();
1285     unsigned HazardDefLatency = 0;
1286 
1287     auto IsOverlappedMFMAFn = [Reg, &IsMFMAFn, &HazardDefLatency,
1288                                this](const MachineInstr &MI) {
1289       if (!IsMFMAFn(MI))
1290         return false;
1291       Register DstReg = MI.getOperand(0).getReg();
1292       if (DstReg == Reg)
1293         return false;
1294       HazardDefLatency =
1295           std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI));
1296       return TRI.regsOverlap(DstReg, Reg);
1297     };
1298 
1299     int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn,
1300                                                    MaxWaitStates);
1301     int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates;
1302     int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
1303     int OpNo = MI->getOperandNo(&Op);
1304     if (OpNo == SrcCIdx) {
1305       NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates;
1306     } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) {
1307       switch (HazardDefLatency) {
1308       case 2:  NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates;
1309                break;
1310       case 8:  NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates;
1311                break;
1312       case 16: LLVM_FALLTHROUGH;
1313       default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates;
1314                break;
1315       }
1316     } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) {
1317       switch (HazardDefLatency) {
1318       case 2:  NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates;
1319                break;
1320       case 8:  NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates;
1321                break;
1322       case 16: LLVM_FALLTHROUGH;
1323       default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates;
1324                break;
1325       }
1326     }
1327 
1328     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
1329     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1330 
1331     if (WaitStatesNeeded == MaxWaitStates)
1332       return WaitStatesNeeded; // Early exit.
1333 
1334     auto IsAccVgprWriteFn = [Reg, this](const MachineInstr &MI) {
1335       if (MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
1336         return false;
1337       Register DstReg = MI.getOperand(0).getReg();
1338       return TRI.regsOverlap(Reg, DstReg);
1339     };
1340 
1341     const int AccVGPRWriteMFMAReadSrcCWaitStates = 1;
1342     const int AccVGPRWriteMFMAReadSrcABWaitStates = 3;
1343     const int AccVGPRWriteAccVgprReadWaitStates = 3;
1344     NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates;
1345     if (OpNo == SrcCIdx)
1346       NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates;
1347     else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64)
1348       NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates;
1349 
1350     WaitStatesNeededForUse = NeedWaitStates -
1351       getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates);
1352     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1353 
1354     if (WaitStatesNeeded == MaxWaitStates)
1355       return WaitStatesNeeded; // Early exit.
1356   }
1357 
1358   if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) {
1359     const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0;
1360     const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5;
1361     const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13;
1362     const int MaxWaitStates = 13;
1363     Register DstReg = MI->getOperand(0).getReg();
1364     unsigned HazardDefLatency = 0;
1365 
1366     auto IsSrcCMFMAFn = [DstReg, &IsMFMAFn, &HazardDefLatency,
1367                          this](const MachineInstr &MI) {
1368       if (!IsMFMAFn(MI))
1369         return false;
1370       Register Reg = TII.getNamedOperand(MI, AMDGPU::OpName::src2)->getReg();
1371       HazardDefLatency =
1372           std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI));
1373       return TRI.regsOverlap(Reg, DstReg);
1374     };
1375 
1376     int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates);
1377     int NeedWaitStates;
1378     switch (HazardDefLatency) {
1379     case 2:  NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates;
1380              break;
1381     case 8:  NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates;
1382              break;
1383     case 16: LLVM_FALLTHROUGH;
1384     default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates;
1385              break;
1386     }
1387 
1388     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince;
1389     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1390   }
1391 
1392   return WaitStatesNeeded;
1393 }
1394 
checkMAIHazards90A(MachineInstr * MI)1395 int GCNHazardRecognizer::checkMAIHazards90A(MachineInstr *MI) {
1396   int WaitStatesNeeded = 0;
1397   unsigned Opc = MI->getOpcode();
1398 
1399   auto IsMFMAFn = [](const MachineInstr &MI) {
1400     return SIInstrInfo::isMAI(MI) &&
1401            MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 &&
1402            MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64;
1403   };
1404 
1405   auto IsLegacyVALUFn = [&IsMFMAFn](const MachineInstr &MI) {
1406     return SIInstrInfo::isVALU(MI) && !IsMFMAFn(MI);
1407   };
1408 
1409   auto IsLegacyVALUNotDotFn = [&IsMFMAFn](const MachineInstr &MI) {
1410     return SIInstrInfo::isVALU(MI) && !IsMFMAFn(MI) && !SIInstrInfo::isDOT(MI);
1411   };
1412 
1413   if (!IsMFMAFn(*MI))
1414     return WaitStatesNeeded;
1415 
1416   const int VALUWritesExecWaitStates = 4;
1417   int WaitStatesNeededForUse = VALUWritesExecWaitStates -
1418     getWaitStatesSinceDef(AMDGPU::EXEC, IsLegacyVALUFn,
1419                           VALUWritesExecWaitStates);
1420   WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1421 
1422   int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
1423 
1424   // Loop for both DGEMM and S/HGEMM 2nd instruction.
1425   for (const MachineOperand &Use : MI->explicit_uses()) {
1426     const int LegacyVALUNotDotWritesVGPRWaitStates = 2;
1427     const int SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates = 2;
1428     const int SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates = 8;
1429     const int SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates = 16;
1430     const int SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates = 3;
1431     const int SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates = 9;
1432     const int SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates = 17;
1433     const int DMFMA16x16WritesVGPROverlappedSrcCWaitStates = 9;
1434     const int DMFMA4x4WritesVGPROverlappedSrcCWaitStates = 4;
1435     const int SMFMA4x4WritesVGPROverlappedSrcABWaitStates = 5;
1436     const int SMFMA16x16WritesVGPROverlappedSrcABWaitStates = 11;
1437     const int SMFMA32x32WritesVGPROverlappedSrcABWaitStates = 19;
1438     const int DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates = 6;
1439     const int DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates = 11;
1440     const int DMFMA4x4WritesVGPRFullSrcCWaitStates = 4;
1441     const int MaxWaitStates = 19;
1442 
1443     if (!Use.isReg())
1444       continue;
1445     unsigned Reg = Use.getReg();
1446     bool FullReg;
1447     const MachineInstr *MI1;
1448 
1449     auto IsOverlappedDGEMMorXDLFn = [Reg, &IsMFMAFn, &FullReg, &MI1,
1450                                      this](const MachineInstr &MI) {
1451       if (!IsMFMAFn(MI))
1452         return false;
1453       if (!isDGEMM(MI.getOpcode()) && !isXDL(ST, MI))
1454         return false;
1455       Register DstReg = MI.getOperand(0).getReg();
1456       FullReg = (DstReg == Reg);
1457       MI1 = &MI;
1458       return TRI.regsOverlap(DstReg, Reg);
1459     };
1460 
1461     WaitStatesNeededForUse = LegacyVALUNotDotWritesVGPRWaitStates -
1462       getWaitStatesSinceDef(Reg, IsLegacyVALUNotDotFn, MaxWaitStates);
1463     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1464 
1465     int NumWaitStates = getWaitStatesSinceDef(Reg, IsOverlappedDGEMMorXDLFn,
1466                                               MaxWaitStates);
1467     if (NumWaitStates == std::numeric_limits<int>::max())
1468       continue;
1469 
1470     int OpNo = MI->getOperandNo(&Use);
1471     unsigned Opc1 = MI1->getOpcode();
1472     int NeedWaitStates = 0;
1473     if (OpNo == SrcCIdx) {
1474       if (!isDGEMM(Opc) && isDGEMM(Opc1)) {
1475         NeedWaitStates = 0;
1476       } else if (FullReg) {
1477         if ((Opc == AMDGPU::V_MFMA_F64_4X4X4F64_e64 ||
1478              Opc == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64) &&
1479             (Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_e64 ||
1480              Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64))
1481           NeedWaitStates = DMFMA4x4WritesVGPRFullSrcCWaitStates;
1482       } else {
1483         switch (Opc1) {
1484         case AMDGPU::V_MFMA_F64_16X16X4F64_e64:
1485         case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64:
1486           if (!isXDL(ST, *MI))
1487             NeedWaitStates = DMFMA16x16WritesVGPROverlappedSrcCWaitStates;
1488           break;
1489         case AMDGPU::V_MFMA_F64_4X4X4F64_e64:
1490         case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64:
1491           if (!isXDL(ST, *MI))
1492             NeedWaitStates = DMFMA4x4WritesVGPROverlappedSrcCWaitStates;
1493           break;
1494         default:
1495           switch (TSchedModel.computeInstrLatency(MI1)) {
1496           case 2:
1497             NeedWaitStates = isDGEMM(Opc)
1498               ? SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates
1499               : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates;
1500             break;
1501           case 8:
1502             NeedWaitStates = isDGEMM(Opc)
1503               ? SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates
1504               : SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates;
1505             break;
1506           case 16: LLVM_FALLTHROUGH;
1507           default:
1508             NeedWaitStates = isDGEMM(Opc)
1509               ? SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates
1510               : SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates;
1511           }
1512         }
1513       }
1514     } else {
1515       switch (Opc1) {
1516       case AMDGPU::V_MFMA_F64_16X16X4F64_e64:
1517       case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64:
1518         NeedWaitStates = DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates;
1519         break;
1520       case AMDGPU::V_MFMA_F64_4X4X4F64_e64:
1521       case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64:
1522         NeedWaitStates = DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates;
1523         break;
1524       default:
1525         switch (TSchedModel.computeInstrLatency(MI1)) {
1526         case 2:
1527           NeedWaitStates = SMFMA4x4WritesVGPROverlappedSrcABWaitStates;
1528           break;
1529         case 8:
1530           NeedWaitStates = SMFMA16x16WritesVGPROverlappedSrcABWaitStates;
1531           break;
1532         case 16: LLVM_FALLTHROUGH;
1533         default:
1534           NeedWaitStates = SMFMA32x32WritesVGPROverlappedSrcABWaitStates;
1535         }
1536       }
1537     }
1538     if (WaitStatesNeeded >= NeedWaitStates)
1539       continue;
1540 
1541     WaitStatesNeededForUse = NeedWaitStates - NumWaitStates;
1542     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1543 
1544     if (WaitStatesNeeded == MaxWaitStates)
1545       break;
1546   }
1547 
1548   return WaitStatesNeeded;
1549 }
1550 
checkMAILdStHazards(MachineInstr * MI)1551 int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) {
1552   // On gfx90a+ releveant hazards are checked in checkMAIVALUHazards()
1553   if (!ST.hasMAIInsts() || ST.hasGFX90AInsts())
1554     return 0;
1555 
1556   int WaitStatesNeeded = 0;
1557 
1558   auto IsAccVgprReadFn = [](const MachineInstr &MI) {
1559     return MI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64;
1560   };
1561 
1562   for (const MachineOperand &Op : MI->explicit_uses()) {
1563     if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg()))
1564       continue;
1565 
1566     Register Reg = Op.getReg();
1567 
1568     const int AccVgprReadLdStWaitStates = 2;
1569     const int VALUWriteAccVgprRdWrLdStDepVALUWaitStates = 1;
1570     const int MaxWaitStates = 2;
1571 
1572     int WaitStatesNeededForUse = AccVgprReadLdStWaitStates -
1573       getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates);
1574     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1575 
1576     if (WaitStatesNeeded == MaxWaitStates)
1577       return WaitStatesNeeded; // Early exit.
1578 
1579     auto IsVALUAccVgprRdWrCheckFn = [Reg, this](const MachineInstr &MI) {
1580       if (MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64 &&
1581           MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
1582         return false;
1583       auto IsVALUFn = [](const MachineInstr &MI) {
1584         return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMAI(MI);
1585       };
1586       return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) <
1587              std::numeric_limits<int>::max();
1588     };
1589 
1590     WaitStatesNeededForUse = VALUWriteAccVgprRdWrLdStDepVALUWaitStates -
1591       getWaitStatesSince(IsVALUAccVgprRdWrCheckFn, MaxWaitStates);
1592     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1593   }
1594 
1595   return WaitStatesNeeded;
1596 }
1597 
checkMAIVALUHazards(MachineInstr * MI)1598 int GCNHazardRecognizer::checkMAIVALUHazards(MachineInstr *MI) {
1599   if (!ST.hasGFX90AInsts())
1600     return 0;
1601 
1602   auto IsMFMAFn = [](const MachineInstr &MI) -> bool {
1603     return SIInstrInfo::isMAI(MI) &&
1604            MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 &&
1605            MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64;
1606   };
1607 
1608   auto IsDGEMMFn = [](const MachineInstr &MI) -> bool {
1609     return isDGEMM(MI.getOpcode());
1610   };
1611 
1612   // This is checked in checkMAIHazards90A()
1613   if (IsMFMAFn(*MI))
1614     return 0;
1615 
1616   int WaitStatesNeeded = 0;
1617 
1618   bool IsMemOrExport = SIInstrInfo::isVMEM(*MI) ||
1619                        SIInstrInfo::isFLAT(*MI) ||
1620                        SIInstrInfo::isDS(*MI) ||
1621                        SIInstrInfo::isEXP(*MI);
1622   bool IsVALU = SIInstrInfo::isVALU(*MI);
1623 
1624   const MachineInstr *MFMA = nullptr;
1625   unsigned Reg;
1626   auto IsDGEMMorXDLWriteFn = [&Reg, &IsMFMAFn, &MFMA,
1627                               this](const MachineInstr &MI) {
1628     if (!IsMFMAFn(MI) || !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg))
1629       return false;
1630     if (!isDGEMM(MI.getOpcode()) && !isXDL(ST, MI))
1631       return false;
1632     MFMA = &MI;
1633     return true;
1634   };
1635 
1636   const MachineInstr *DOT = nullptr;
1637   auto IsDotWriteFn = [&Reg, &DOT, this](const MachineInstr &MI) {
1638     if (!SIInstrInfo::isDOT(MI) ||
1639         !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg))
1640       return false;
1641     DOT = &MI;
1642     return true;
1643   };
1644 
1645   int SrcCIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
1646                                            AMDGPU::OpName::src2);
1647 
1648   if (IsMemOrExport || IsVALU) {
1649     const int SMFMA4x4WriteVgprVALUMemExpReadWaitStates = 5;
1650     const int SMFMA16x16WriteVgprVALUMemExpReadWaitStates = 11;
1651     const int SMFMA32x32WriteVgprVALUMemExpReadWaitStates = 19;
1652     const int DMFMA4x4WriteVgprMemExpReadWaitStates = 9;
1653     const int DMFMA16x16WriteVgprMemExpReadWaitStates = 18;
1654     const int DMFMA4x4WriteVgprVALUReadWaitStates = 6;
1655     const int DMFMA16x16WriteVgprVALUReadWaitStates = 11;
1656     const int DotWriteSameDotReadSrcAB = 3;
1657     const int DotWriteDifferentVALURead = 3;
1658     const int MaxWaitStates = 19;
1659 
1660     for (const MachineOperand &Use : MI->explicit_uses()) {
1661       if (!Use.isReg())
1662         continue;
1663       Reg = Use.getReg();
1664 
1665       DOT = nullptr;
1666       int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn,
1667                                                      MaxWaitStates);
1668       if (DOT) {
1669         int NeedWaitStates = 0;
1670         if (DOT->getOpcode() == MI->getOpcode()) {
1671           if (&Use - &MI->getOperand(0) != SrcCIdx)
1672             NeedWaitStates = DotWriteSameDotReadSrcAB;
1673         } else {
1674           NeedWaitStates = DotWriteDifferentVALURead;
1675         }
1676 
1677         int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
1678         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1679       }
1680 
1681       MFMA = nullptr;
1682       WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDGEMMorXDLWriteFn,
1683                                                  MaxWaitStates);
1684       if (!MFMA)
1685         continue;
1686 
1687       unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA);
1688       int NeedWaitStates = MaxWaitStates;
1689       switch (HazardDefLatency) {
1690       case 2:
1691         NeedWaitStates = SMFMA4x4WriteVgprVALUMemExpReadWaitStates;
1692         break;
1693       case 4:
1694         assert(isDGEMM(MFMA->getOpcode()));
1695         NeedWaitStates =
1696             IsMemOrExport ? DMFMA4x4WriteVgprMemExpReadWaitStates
1697                           : DMFMA4x4WriteVgprVALUReadWaitStates;
1698         break;
1699       case 8:
1700         NeedWaitStates = SMFMA16x16WriteVgprVALUMemExpReadWaitStates;
1701         break;
1702       case 16: LLVM_FALLTHROUGH;
1703       default:
1704         NeedWaitStates =
1705           isDGEMM(MFMA->getOpcode())
1706             ? IsMemOrExport ? DMFMA16x16WriteVgprMemExpReadWaitStates
1707                             : DMFMA16x16WriteVgprVALUReadWaitStates
1708             : SMFMA32x32WriteVgprVALUMemExpReadWaitStates;
1709         break;
1710       }
1711 
1712       int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
1713       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1714 
1715       if (WaitStatesNeeded == MaxWaitStates)
1716         break;
1717     }
1718   }
1719 
1720   unsigned Opc = MI->getOpcode();
1721   const int DMFMAToFMA64WaitStates = 2;
1722   if ((Opc == AMDGPU::V_FMA_F64_e64 ||
1723        Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64 ||
1724        Opc == AMDGPU::V_FMAC_F64_dpp) &&
1725       WaitStatesNeeded < DMFMAToFMA64WaitStates) {
1726     int WaitStatesNeededForUse = DMFMAToFMA64WaitStates -
1727       getWaitStatesSince(IsDGEMMFn, DMFMAToFMA64WaitStates);
1728     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1729   }
1730 
1731   if (!IsVALU && !IsMemOrExport)
1732     return WaitStatesNeeded;
1733 
1734   for (const MachineOperand &Def : MI->defs()) {
1735     const int SMFMA4x4WriteVgprVALUWawWaitStates = 5;
1736     const int SMFMA16x16WriteVgprVALUWawWaitStates = 11;
1737     const int SMFMA32x32WriteVgprVALUWawWaitStates = 19;
1738     const int SMFMA4x4ReadVgprVALUWarWaitStates = 1;
1739     const int SMFMA16x16ReadVgprVALUWarWaitStates = 7;
1740     const int SMFMA32x32ReadVgprVALUWarWaitStates = 15;
1741     const int DMFMA4x4WriteVgprVALUWriteWaitStates = 6;
1742     const int DMFMA16x16WriteVgprVALUWriteWaitStates = 11;
1743     const int DotWriteDifferentVALUWrite = 3;
1744     const int MaxWaitStates = 19;
1745     const int MaxWarWaitStates = 15;
1746 
1747     Reg = Def.getReg();
1748 
1749     DOT = nullptr;
1750     int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn,
1751                                                    MaxWaitStates);
1752     if (DOT && DOT->getOpcode() != MI->getOpcode())
1753       WaitStatesNeeded = std::max(WaitStatesNeeded, DotWriteDifferentVALUWrite -
1754                                                     WaitStatesSinceDef);
1755 
1756     MFMA = nullptr;
1757     WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDGEMMorXDLWriteFn,
1758                                                MaxWaitStates);
1759     if (MFMA) {
1760       int NeedWaitStates = MaxWaitStates;
1761       switch (TSchedModel.computeInstrLatency(MFMA)) {
1762       case 2:
1763         NeedWaitStates = SMFMA4x4WriteVgprVALUWawWaitStates;
1764         break;
1765       case 4:
1766         assert(isDGEMM(MFMA->getOpcode()));
1767         NeedWaitStates = DMFMA4x4WriteVgprVALUWriteWaitStates;
1768         break;
1769       case 8:
1770         NeedWaitStates = SMFMA16x16WriteVgprVALUWawWaitStates;
1771         break;
1772       case 16: LLVM_FALLTHROUGH;
1773       default:
1774         NeedWaitStates = isDGEMM(MFMA->getOpcode())
1775                    ? DMFMA16x16WriteVgprVALUWriteWaitStates
1776                    : SMFMA32x32WriteVgprVALUWawWaitStates;
1777         break;
1778       }
1779 
1780       int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
1781       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1782 
1783       if (WaitStatesNeeded == MaxWaitStates)
1784         break;
1785     }
1786 
1787     auto IsSMFMAReadAsCFn = [&Reg, &IsMFMAFn, &MFMA,
1788                              this](const MachineInstr &MI) {
1789       if (!IsMFMAFn(MI) || isDGEMM(MI.getOpcode()) ||
1790           !MI.readsRegister(Reg, &TRI))
1791         return false;
1792 
1793       const MachineOperand *SrcC =
1794           TII.getNamedOperand(MI, AMDGPU::OpName::src2);
1795       assert(SrcC);
1796       if (!SrcC->isReg() || !TRI.regsOverlap(SrcC->getReg(), Reg))
1797         return false;
1798 
1799       MFMA = &MI;
1800       return true;
1801     };
1802 
1803     MFMA = nullptr;
1804     int WaitStatesSinceUse = getWaitStatesSince(IsSMFMAReadAsCFn,
1805                                                 MaxWarWaitStates);
1806     if (!MFMA)
1807       continue;
1808 
1809     unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA);
1810     int NeedWaitStates = MaxWaitStates;
1811     switch (HazardDefLatency) {
1812     case 2:  NeedWaitStates = SMFMA4x4ReadVgprVALUWarWaitStates;
1813              break;
1814     case 8:  NeedWaitStates = SMFMA16x16ReadVgprVALUWarWaitStates;
1815              break;
1816     case 16: LLVM_FALLTHROUGH;
1817     default: NeedWaitStates = SMFMA32x32ReadVgprVALUWarWaitStates;
1818              break;
1819     }
1820 
1821     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceUse;
1822     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1823   }
1824 
1825   return WaitStatesNeeded;
1826 }
1827 
ShouldPreferAnother(SUnit * SU)1828 bool GCNHazardRecognizer::ShouldPreferAnother(SUnit *SU) {
1829   if (!SU->isInstr())
1830     return false;
1831 
1832   const MachineInstr *MAI = nullptr;
1833   auto IsMFMAFn = [&MAI](const MachineInstr &MI) {
1834     MAI = nullptr;
1835     if (SIInstrInfo::isMAI(MI) &&
1836         MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 &&
1837         MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64)
1838       MAI = &MI;
1839     return MAI != nullptr;
1840   };
1841 
1842   MachineInstr *MI = SU->getInstr();
1843   if (IsMFMAFn(*MI)) {
1844     int W = getWaitStatesSince(IsMFMAFn, 16);
1845     if (MAI)
1846       return W < (int)TSchedModel.computeInstrLatency(MAI);
1847   }
1848 
1849   return false;
1850 }
1851