1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/BasicAliasAnalysis.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/InitializePasses.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Transforms/Vectorize.h"
33 
34 using namespace llvm;
35 using namespace llvm::PatternMatch;
36 
37 #define DEBUG_TYPE "vector-combine"
38 STATISTIC(NumVecLoad, "Number of vector loads formed");
39 STATISTIC(NumVecCmp, "Number of vector compares formed");
40 STATISTIC(NumVecBO, "Number of vector binops formed");
41 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
42 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
43 STATISTIC(NumScalarBO, "Number of scalar binops formed");
44 STATISTIC(NumScalarCmp, "Number of scalar compares formed");
45 
46 static cl::opt<bool> DisableVectorCombine(
47     "disable-vector-combine", cl::init(false), cl::Hidden,
48     cl::desc("Disable all vector combine transforms"));
49 
50 static cl::opt<bool> DisableBinopExtractShuffle(
51     "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
52     cl::desc("Disable binop extract to shuffle transforms"));
53 
54 static cl::opt<unsigned> MaxInstrsToScan(
55     "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
56     cl::desc("Max number of instructions to scan for vector combining."));
57 
58 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
59 
60 namespace {
61 class VectorCombine {
62 public:
VectorCombine(Function & F,const TargetTransformInfo & TTI,const DominatorTree & DT,AAResults & AA,AssumptionCache & AC)63   VectorCombine(Function &F, const TargetTransformInfo &TTI,
64                 const DominatorTree &DT, AAResults &AA, AssumptionCache &AC)
65       : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC) {}
66 
67   bool run();
68 
69 private:
70   Function &F;
71   IRBuilder<> Builder;
72   const TargetTransformInfo &TTI;
73   const DominatorTree &DT;
74   AAResults &AA;
75   AssumptionCache &AC;
76 
77   bool vectorizeLoadInsert(Instruction &I);
78   ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
79                                         ExtractElementInst *Ext1,
80                                         unsigned PreferredExtractIndex) const;
81   bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
82                              unsigned Opcode,
83                              ExtractElementInst *&ConvertToShuffle,
84                              unsigned PreferredExtractIndex);
85   void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
86                      Instruction &I);
87   void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
88                        Instruction &I);
89   bool foldExtractExtract(Instruction &I);
90   bool foldBitcastShuf(Instruction &I);
91   bool scalarizeBinopOrCmp(Instruction &I);
92   bool foldExtractedCmps(Instruction &I);
93   bool foldSingleElementStore(Instruction &I);
94   bool scalarizeLoadExtract(Instruction &I);
95 };
96 } // namespace
97 
replaceValue(Value & Old,Value & New)98 static void replaceValue(Value &Old, Value &New) {
99   Old.replaceAllUsesWith(&New);
100   New.takeName(&Old);
101 }
102 
vectorizeLoadInsert(Instruction & I)103 bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
104   // Match insert into fixed vector of scalar value.
105   // TODO: Handle non-zero insert index.
106   auto *Ty = dyn_cast<FixedVectorType>(I.getType());
107   Value *Scalar;
108   if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
109       !Scalar->hasOneUse())
110     return false;
111 
112   // Optionally match an extract from another vector.
113   Value *X;
114   bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
115   if (!HasExtract)
116     X = Scalar;
117 
118   // Match source value as load of scalar or vector.
119   // Do not vectorize scalar load (widening) if atomic/volatile or under
120   // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions
121   // or create data races non-existent in the source.
122   auto *Load = dyn_cast<LoadInst>(X);
123   if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
124       Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
125       mustSuppressSpeculation(*Load))
126     return false;
127 
128   const DataLayout &DL = I.getModule()->getDataLayout();
129   Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
130   assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
131 
132   // If original AS != Load's AS, we can't bitcast the original pointer and have
133   // to use Load's operand instead. Ideally we would want to strip pointer casts
134   // without changing AS, but there's no API to do that ATM.
135   unsigned AS = Load->getPointerAddressSpace();
136   if (AS != SrcPtr->getType()->getPointerAddressSpace())
137     SrcPtr = Load->getPointerOperand();
138 
139   // We are potentially transforming byte-sized (8-bit) memory accesses, so make
140   // sure we have all of our type-based constraints in place for this target.
141   Type *ScalarTy = Scalar->getType();
142   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
143   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
144   if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
145       ScalarSize % 8 != 0)
146     return false;
147 
148   // Check safety of replacing the scalar load with a larger vector load.
149   // We use minimal alignment (maximum flexibility) because we only care about
150   // the dereferenceable region. When calculating cost and creating a new op,
151   // we may use a larger value based on alignment attributes.
152   unsigned MinVecNumElts = MinVectorSize / ScalarSize;
153   auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
154   unsigned OffsetEltIndex = 0;
155   Align Alignment = Load->getAlign();
156   if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) {
157     // It is not safe to load directly from the pointer, but we can still peek
158     // through gep offsets and check if it safe to load from a base address with
159     // updated alignment. If it is, we can shuffle the element(s) into place
160     // after loading.
161     unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType());
162     APInt Offset(OffsetBitWidth, 0);
163     SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
164 
165     // We want to shuffle the result down from a high element of a vector, so
166     // the offset must be positive.
167     if (Offset.isNegative())
168       return false;
169 
170     // The offset must be a multiple of the scalar element to shuffle cleanly
171     // in the element's size.
172     uint64_t ScalarSizeInBytes = ScalarSize / 8;
173     if (Offset.urem(ScalarSizeInBytes) != 0)
174       return false;
175 
176     // If we load MinVecNumElts, will our target element still be loaded?
177     OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
178     if (OffsetEltIndex >= MinVecNumElts)
179       return false;
180 
181     if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT))
182       return false;
183 
184     // Update alignment with offset value. Note that the offset could be negated
185     // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
186     // negation does not change the result of the alignment calculation.
187     Alignment = commonAlignment(Alignment, Offset.getZExtValue());
188   }
189 
190   // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
191   // Use the greater of the alignment on the load or its source pointer.
192   Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment);
193   Type *LoadTy = Load->getType();
194   InstructionCost OldCost =
195       TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
196   APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
197   OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
198                                           /* Insert */ true, HasExtract);
199 
200   // New pattern: load VecPtr
201   InstructionCost NewCost =
202       TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
203   // Optionally, we are shuffling the loaded vector element(s) into place.
204   // For the mask set everything but element 0 to undef to prevent poison from
205   // propagating from the extra loaded memory. This will also optionally
206   // shrink/grow the vector from the loaded size to the output size.
207   // We assume this operation has no cost in codegen if there was no offset.
208   // Note that we could use freeze to avoid poison problems, but then we might
209   // still need a shuffle to change the vector size.
210   unsigned OutputNumElts = Ty->getNumElements();
211   SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem);
212   assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
213   Mask[0] = OffsetEltIndex;
214   if (OffsetEltIndex)
215     NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask);
216 
217   // We can aggressively convert to the vector form because the backend can
218   // invert this transform if it does not result in a performance win.
219   if (OldCost < NewCost || !NewCost.isValid())
220     return false;
221 
222   // It is safe and potentially profitable to load a vector directly:
223   // inselt undef, load Scalar, 0 --> load VecPtr
224   IRBuilder<> Builder(Load);
225   Value *CastedPtr = Builder.CreateBitCast(SrcPtr, MinVecTy->getPointerTo(AS));
226   Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
227   VecLd = Builder.CreateShuffleVector(VecLd, Mask);
228 
229   replaceValue(I, *VecLd);
230   ++NumVecLoad;
231   return true;
232 }
233 
234 /// Determine which, if any, of the inputs should be replaced by a shuffle
235 /// followed by extract from a different index.
getShuffleExtract(ExtractElementInst * Ext0,ExtractElementInst * Ext1,unsigned PreferredExtractIndex=InvalidIndex) const236 ExtractElementInst *VectorCombine::getShuffleExtract(
237     ExtractElementInst *Ext0, ExtractElementInst *Ext1,
238     unsigned PreferredExtractIndex = InvalidIndex) const {
239   assert(isa<ConstantInt>(Ext0->getIndexOperand()) &&
240          isa<ConstantInt>(Ext1->getIndexOperand()) &&
241          "Expected constant extract indexes");
242 
243   unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue();
244   unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue();
245 
246   // If the extract indexes are identical, no shuffle is needed.
247   if (Index0 == Index1)
248     return nullptr;
249 
250   Type *VecTy = Ext0->getVectorOperand()->getType();
251   assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
252   InstructionCost Cost0 =
253       TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
254   InstructionCost Cost1 =
255       TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
256 
257   // If both costs are invalid no shuffle is needed
258   if (!Cost0.isValid() && !Cost1.isValid())
259     return nullptr;
260 
261   // We are extracting from 2 different indexes, so one operand must be shuffled
262   // before performing a vector operation and/or extract. The more expensive
263   // extract will be replaced by a shuffle.
264   if (Cost0 > Cost1)
265     return Ext0;
266   if (Cost1 > Cost0)
267     return Ext1;
268 
269   // If the costs are equal and there is a preferred extract index, shuffle the
270   // opposite operand.
271   if (PreferredExtractIndex == Index0)
272     return Ext1;
273   if (PreferredExtractIndex == Index1)
274     return Ext0;
275 
276   // Otherwise, replace the extract with the higher index.
277   return Index0 > Index1 ? Ext0 : Ext1;
278 }
279 
280 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
281 /// vector operation(s) followed by extract. Return true if the existing
282 /// instructions are cheaper than a vector alternative. Otherwise, return false
283 /// and if one of the extracts should be transformed to a shufflevector, set
284 /// \p ConvertToShuffle to that extract instruction.
isExtractExtractCheap(ExtractElementInst * Ext0,ExtractElementInst * Ext1,unsigned Opcode,ExtractElementInst * & ConvertToShuffle,unsigned PreferredExtractIndex)285 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
286                                           ExtractElementInst *Ext1,
287                                           unsigned Opcode,
288                                           ExtractElementInst *&ConvertToShuffle,
289                                           unsigned PreferredExtractIndex) {
290   assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
291          isa<ConstantInt>(Ext1->getOperand(1)) &&
292          "Expected constant extract indexes");
293   Type *ScalarTy = Ext0->getType();
294   auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
295   InstructionCost ScalarOpCost, VectorOpCost;
296 
297   // Get cost estimates for scalar and vector versions of the operation.
298   bool IsBinOp = Instruction::isBinaryOp(Opcode);
299   if (IsBinOp) {
300     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
301     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
302   } else {
303     assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
304            "Expected a compare");
305     ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy,
306                                           CmpInst::makeCmpResultType(ScalarTy));
307     VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy,
308                                           CmpInst::makeCmpResultType(VecTy));
309   }
310 
311   // Get cost estimates for the extract elements. These costs will factor into
312   // both sequences.
313   unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
314   unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
315 
316   InstructionCost Extract0Cost =
317       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index);
318   InstructionCost Extract1Cost =
319       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index);
320 
321   // A more expensive extract will always be replaced by a splat shuffle.
322   // For example, if Ext0 is more expensive:
323   // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
324   // extelt (opcode (splat V0, Ext0), V1), Ext1
325   // TODO: Evaluate whether that always results in lowest cost. Alternatively,
326   //       check the cost of creating a broadcast shuffle and shuffling both
327   //       operands to element 0.
328   InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
329 
330   // Extra uses of the extracts mean that we include those costs in the
331   // vector total because those instructions will not be eliminated.
332   InstructionCost OldCost, NewCost;
333   if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
334     // Handle a special case. If the 2 extracts are identical, adjust the
335     // formulas to account for that. The extra use charge allows for either the
336     // CSE'd pattern or an unoptimized form with identical values:
337     // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
338     bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
339                                   : !Ext0->hasOneUse() || !Ext1->hasOneUse();
340     OldCost = CheapExtractCost + ScalarOpCost;
341     NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
342   } else {
343     // Handle the general case. Each extract is actually a different value:
344     // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
345     OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
346     NewCost = VectorOpCost + CheapExtractCost +
347               !Ext0->hasOneUse() * Extract0Cost +
348               !Ext1->hasOneUse() * Extract1Cost;
349   }
350 
351   ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
352   if (ConvertToShuffle) {
353     if (IsBinOp && DisableBinopExtractShuffle)
354       return true;
355 
356     // If we are extracting from 2 different indexes, then one operand must be
357     // shuffled before performing the vector operation. The shuffle mask is
358     // undefined except for 1 lane that is being translated to the remaining
359     // extraction lane. Therefore, it is a splat shuffle. Ex:
360     // ShufMask = { undef, undef, 0, undef }
361     // TODO: The cost model has an option for a "broadcast" shuffle
362     //       (splat-from-element-0), but no option for a more general splat.
363     NewCost +=
364         TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
365   }
366 
367   // Aggressively form a vector op if the cost is equal because the transform
368   // may enable further optimization.
369   // Codegen can reverse this transform (scalarize) if it was not profitable.
370   return OldCost < NewCost;
371 }
372 
373 /// Create a shuffle that translates (shifts) 1 element from the input vector
374 /// to a new element location.
createShiftShuffle(Value * Vec,unsigned OldIndex,unsigned NewIndex,IRBuilder<> & Builder)375 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
376                                  unsigned NewIndex, IRBuilder<> &Builder) {
377   // The shuffle mask is undefined except for 1 lane that is being translated
378   // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
379   // ShufMask = { 2, undef, undef, undef }
380   auto *VecTy = cast<FixedVectorType>(Vec->getType());
381   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
382   ShufMask[NewIndex] = OldIndex;
383   return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
384 }
385 
386 /// Given an extract element instruction with constant index operand, shuffle
387 /// the source vector (shift the scalar element) to a NewIndex for extraction.
388 /// Return null if the input can be constant folded, so that we are not creating
389 /// unnecessary instructions.
translateExtract(ExtractElementInst * ExtElt,unsigned NewIndex,IRBuilder<> & Builder)390 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
391                                             unsigned NewIndex,
392                                             IRBuilder<> &Builder) {
393   // If the extract can be constant-folded, this code is unsimplified. Defer
394   // to other passes to handle that.
395   Value *X = ExtElt->getVectorOperand();
396   Value *C = ExtElt->getIndexOperand();
397   assert(isa<ConstantInt>(C) && "Expected a constant index operand");
398   if (isa<Constant>(X))
399     return nullptr;
400 
401   Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
402                                    NewIndex, Builder);
403   return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
404 }
405 
406 /// Try to reduce extract element costs by converting scalar compares to vector
407 /// compares followed by extract.
408 /// cmp (ext0 V0, C), (ext1 V1, C)
foldExtExtCmp(ExtractElementInst * Ext0,ExtractElementInst * Ext1,Instruction & I)409 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
410                                   ExtractElementInst *Ext1, Instruction &I) {
411   assert(isa<CmpInst>(&I) && "Expected a compare");
412   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
413              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
414          "Expected matching constant extract indexes");
415 
416   // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
417   ++NumVecCmp;
418   CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
419   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
420   Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
421   Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
422   replaceValue(I, *NewExt);
423 }
424 
425 /// Try to reduce extract element costs by converting scalar binops to vector
426 /// binops followed by extract.
427 /// bo (ext0 V0, C), (ext1 V1, C)
foldExtExtBinop(ExtractElementInst * Ext0,ExtractElementInst * Ext1,Instruction & I)428 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
429                                     ExtractElementInst *Ext1, Instruction &I) {
430   assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
431   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
432              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
433          "Expected matching constant extract indexes");
434 
435   // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
436   ++NumVecBO;
437   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
438   Value *VecBO =
439       Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
440 
441   // All IR flags are safe to back-propagate because any potential poison
442   // created in unused vector elements is discarded by the extract.
443   if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
444     VecBOInst->copyIRFlags(&I);
445 
446   Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
447   replaceValue(I, *NewExt);
448 }
449 
450 /// Match an instruction with extracted vector operands.
foldExtractExtract(Instruction & I)451 bool VectorCombine::foldExtractExtract(Instruction &I) {
452   // It is not safe to transform things like div, urem, etc. because we may
453   // create undefined behavior when executing those on unknown vector elements.
454   if (!isSafeToSpeculativelyExecute(&I))
455     return false;
456 
457   Instruction *I0, *I1;
458   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
459   if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
460       !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
461     return false;
462 
463   Value *V0, *V1;
464   uint64_t C0, C1;
465   if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
466       !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
467       V0->getType() != V1->getType())
468     return false;
469 
470   // If the scalar value 'I' is going to be re-inserted into a vector, then try
471   // to create an extract to that same element. The extract/insert can be
472   // reduced to a "select shuffle".
473   // TODO: If we add a larger pattern match that starts from an insert, this
474   //       probably becomes unnecessary.
475   auto *Ext0 = cast<ExtractElementInst>(I0);
476   auto *Ext1 = cast<ExtractElementInst>(I1);
477   uint64_t InsertIndex = InvalidIndex;
478   if (I.hasOneUse())
479     match(I.user_back(),
480           m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
481 
482   ExtractElementInst *ExtractToChange;
483   if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange,
484                             InsertIndex))
485     return false;
486 
487   if (ExtractToChange) {
488     unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
489     ExtractElementInst *NewExtract =
490         translateExtract(ExtractToChange, CheapExtractIdx, Builder);
491     if (!NewExtract)
492       return false;
493     if (ExtractToChange == Ext0)
494       Ext0 = NewExtract;
495     else
496       Ext1 = NewExtract;
497   }
498 
499   if (Pred != CmpInst::BAD_ICMP_PREDICATE)
500     foldExtExtCmp(Ext0, Ext1, I);
501   else
502     foldExtExtBinop(Ext0, Ext1, I);
503 
504   return true;
505 }
506 
507 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
508 /// destination type followed by shuffle. This can enable further transforms by
509 /// moving bitcasts or shuffles together.
foldBitcastShuf(Instruction & I)510 bool VectorCombine::foldBitcastShuf(Instruction &I) {
511   Value *V;
512   ArrayRef<int> Mask;
513   if (!match(&I, m_BitCast(
514                      m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
515     return false;
516 
517   // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
518   // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
519   // mask for scalable type is a splat or not.
520   // 2) Disallow non-vector casts and length-changing shuffles.
521   // TODO: We could allow any shuffle.
522   auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
523   auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
524   if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy)
525     return false;
526 
527   unsigned DestNumElts = DestTy->getNumElements();
528   unsigned SrcNumElts = SrcTy->getNumElements();
529   SmallVector<int, 16> NewMask;
530   if (SrcNumElts <= DestNumElts) {
531     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
532     // always be expanded to the equivalent form choosing narrower elements.
533     assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
534     unsigned ScaleFactor = DestNumElts / SrcNumElts;
535     narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
536   } else {
537     // The bitcast is from narrow elements to wide elements. The shuffle mask
538     // must choose consecutive elements to allow casting first.
539     assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
540     unsigned ScaleFactor = SrcNumElts / DestNumElts;
541     if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
542       return false;
543   }
544 
545   // The new shuffle must not cost more than the old shuffle. The bitcast is
546   // moved ahead of the shuffle, so assume that it has the same cost as before.
547   InstructionCost DestCost = TTI.getShuffleCost(
548       TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask);
549   InstructionCost SrcCost =
550       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask);
551   if (DestCost > SrcCost || !DestCost.isValid())
552     return false;
553 
554   // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
555   ++NumShufOfBitcast;
556   Value *CastV = Builder.CreateBitCast(V, DestTy);
557   Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask);
558   replaceValue(I, *Shuf);
559   return true;
560 }
561 
562 /// Match a vector binop or compare instruction with at least one inserted
563 /// scalar operand and convert to scalar binop/cmp followed by insertelement.
scalarizeBinopOrCmp(Instruction & I)564 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
565   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
566   Value *Ins0, *Ins1;
567   if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
568       !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
569     return false;
570 
571   // Do not convert the vector condition of a vector select into a scalar
572   // condition. That may cause problems for codegen because of differences in
573   // boolean formats and register-file transfers.
574   // TODO: Can we account for that in the cost model?
575   bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
576   if (IsCmp)
577     for (User *U : I.users())
578       if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
579         return false;
580 
581   // Match against one or both scalar values being inserted into constant
582   // vectors:
583   // vec_op VecC0, (inselt VecC1, V1, Index)
584   // vec_op (inselt VecC0, V0, Index), VecC1
585   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
586   // TODO: Deal with mismatched index constants and variable indexes?
587   Constant *VecC0 = nullptr, *VecC1 = nullptr;
588   Value *V0 = nullptr, *V1 = nullptr;
589   uint64_t Index0 = 0, Index1 = 0;
590   if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
591                                m_ConstantInt(Index0))) &&
592       !match(Ins0, m_Constant(VecC0)))
593     return false;
594   if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
595                                m_ConstantInt(Index1))) &&
596       !match(Ins1, m_Constant(VecC1)))
597     return false;
598 
599   bool IsConst0 = !V0;
600   bool IsConst1 = !V1;
601   if (IsConst0 && IsConst1)
602     return false;
603   if (!IsConst0 && !IsConst1 && Index0 != Index1)
604     return false;
605 
606   // Bail for single insertion if it is a load.
607   // TODO: Handle this once getVectorInstrCost can cost for load/stores.
608   auto *I0 = dyn_cast_or_null<Instruction>(V0);
609   auto *I1 = dyn_cast_or_null<Instruction>(V1);
610   if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
611       (IsConst1 && I0 && I0->mayReadFromMemory()))
612     return false;
613 
614   uint64_t Index = IsConst0 ? Index1 : Index0;
615   Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
616   Type *VecTy = I.getType();
617   assert(VecTy->isVectorTy() &&
618          (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
619          (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
620           ScalarTy->isPointerTy()) &&
621          "Unexpected types for insert element into binop or cmp");
622 
623   unsigned Opcode = I.getOpcode();
624   InstructionCost ScalarOpCost, VectorOpCost;
625   if (IsCmp) {
626     ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy);
627     VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy);
628   } else {
629     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
630     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
631   }
632 
633   // Get cost estimate for the insert element. This cost will factor into
634   // both sequences.
635   InstructionCost InsertCost =
636       TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
637   InstructionCost OldCost =
638       (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
639   InstructionCost NewCost = ScalarOpCost + InsertCost +
640                             (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
641                             (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
642 
643   // We want to scalarize unless the vector variant actually has lower cost.
644   if (OldCost < NewCost || !NewCost.isValid())
645     return false;
646 
647   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
648   // inselt NewVecC, (scalar_op V0, V1), Index
649   if (IsCmp)
650     ++NumScalarCmp;
651   else
652     ++NumScalarBO;
653 
654   // For constant cases, extract the scalar element, this should constant fold.
655   if (IsConst0)
656     V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
657   if (IsConst1)
658     V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
659 
660   Value *Scalar =
661       IsCmp ? Builder.CreateCmp(Pred, V0, V1)
662             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
663 
664   Scalar->setName(I.getName() + ".scalar");
665 
666   // All IR flags are safe to back-propagate. There is no potential for extra
667   // poison to be created by the scalar instruction.
668   if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
669     ScalarInst->copyIRFlags(&I);
670 
671   // Fold the vector constants in the original vectors into a new base vector.
672   Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1)
673                             : ConstantExpr::get(Opcode, VecC0, VecC1);
674   Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
675   replaceValue(I, *Insert);
676   return true;
677 }
678 
679 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
680 /// a vector into vector operations followed by extract. Note: The SLP pass
681 /// may miss this pattern because of implementation problems.
foldExtractedCmps(Instruction & I)682 bool VectorCombine::foldExtractedCmps(Instruction &I) {
683   // We are looking for a scalar binop of booleans.
684   // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
685   if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
686     return false;
687 
688   // The compare predicates should match, and each compare should have a
689   // constant operand.
690   // TODO: Relax the one-use constraints.
691   Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
692   Instruction *I0, *I1;
693   Constant *C0, *C1;
694   CmpInst::Predicate P0, P1;
695   if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
696       !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
697       P0 != P1)
698     return false;
699 
700   // The compare operands must be extracts of the same vector with constant
701   // extract indexes.
702   // TODO: Relax the one-use constraints.
703   Value *X;
704   uint64_t Index0, Index1;
705   if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
706       !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
707     return false;
708 
709   auto *Ext0 = cast<ExtractElementInst>(I0);
710   auto *Ext1 = cast<ExtractElementInst>(I1);
711   ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
712   if (!ConvertToShuf)
713     return false;
714 
715   // The original scalar pattern is:
716   // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
717   CmpInst::Predicate Pred = P0;
718   unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
719                                                     : Instruction::ICmp;
720   auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
721   if (!VecTy)
722     return false;
723 
724   InstructionCost OldCost =
725       TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
726   OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
727   OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2;
728   OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
729 
730   // The proposed vector pattern is:
731   // vcmp = cmp Pred X, VecC
732   // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
733   int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
734   int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
735   auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
736   InstructionCost NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType());
737   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
738   ShufMask[CheapIndex] = ExpensiveIndex;
739   NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy,
740                                 ShufMask);
741   NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
742   NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex);
743 
744   // Aggressively form vector ops if the cost is equal because the transform
745   // may enable further optimization.
746   // Codegen can reverse this transform (scalarize) if it was not profitable.
747   if (OldCost < NewCost || !NewCost.isValid())
748     return false;
749 
750   // Create a vector constant from the 2 scalar constants.
751   SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
752                                    UndefValue::get(VecTy->getElementType()));
753   CmpC[Index0] = C0;
754   CmpC[Index1] = C1;
755   Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
756 
757   Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
758   Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
759                                         VCmp, Shuf);
760   Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
761   replaceValue(I, *NewExt);
762   ++NumVecCmpBO;
763   return true;
764 }
765 
766 // Check if memory loc modified between two instrs in the same BB
isMemModifiedBetween(BasicBlock::iterator Begin,BasicBlock::iterator End,const MemoryLocation & Loc,AAResults & AA)767 static bool isMemModifiedBetween(BasicBlock::iterator Begin,
768                                  BasicBlock::iterator End,
769                                  const MemoryLocation &Loc, AAResults &AA) {
770   unsigned NumScanned = 0;
771   return std::any_of(Begin, End, [&](const Instruction &Instr) {
772     return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
773            ++NumScanned > MaxInstrsToScan;
774   });
775 }
776 
777 /// Check if it is legal to scalarize a memory access to \p VecTy at index \p
778 /// Idx. \p Idx must access a valid vector element.
canScalarizeAccess(FixedVectorType * VecTy,Value * Idx,Instruction * CtxI,AssumptionCache & AC)779 static bool canScalarizeAccess(FixedVectorType *VecTy, Value *Idx,
780                                Instruction *CtxI, AssumptionCache &AC) {
781   if (auto *C = dyn_cast<ConstantInt>(Idx))
782     return C->getValue().ult(VecTy->getNumElements());
783 
784   APInt Zero(Idx->getType()->getScalarSizeInBits(), 0);
785   APInt MaxElts(Idx->getType()->getScalarSizeInBits(), VecTy->getNumElements());
786   ConstantRange ValidIndices(Zero, MaxElts);
787   ConstantRange IdxRange = computeConstantRange(Idx, true, &AC, CtxI, 0);
788   return ValidIndices.contains(IdxRange);
789 }
790 
791 /// The memory operation on a vector of \p ScalarType had alignment of
792 /// \p VectorAlignment. Compute the maximal, but conservatively correct,
793 /// alignment that will be valid for the memory operation on a single scalar
794 /// element of the same type with index \p Idx.
computeAlignmentAfterScalarization(Align VectorAlignment,Type * ScalarType,Value * Idx,const DataLayout & DL)795 static Align computeAlignmentAfterScalarization(Align VectorAlignment,
796                                                 Type *ScalarType, Value *Idx,
797                                                 const DataLayout &DL) {
798   if (auto *C = dyn_cast<ConstantInt>(Idx))
799     return commonAlignment(VectorAlignment,
800                            C->getZExtValue() * DL.getTypeStoreSize(ScalarType));
801   return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType));
802 }
803 
804 // Combine patterns like:
805 //   %0 = load <4 x i32>, <4 x i32>* %a
806 //   %1 = insertelement <4 x i32> %0, i32 %b, i32 1
807 //   store <4 x i32> %1, <4 x i32>* %a
808 // to:
809 //   %0 = bitcast <4 x i32>* %a to i32*
810 //   %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
811 //   store i32 %b, i32* %1
foldSingleElementStore(Instruction & I)812 bool VectorCombine::foldSingleElementStore(Instruction &I) {
813   StoreInst *SI = dyn_cast<StoreInst>(&I);
814   if (!SI || !SI->isSimple() ||
815       !isa<FixedVectorType>(SI->getValueOperand()->getType()))
816     return false;
817 
818   // TODO: Combine more complicated patterns (multiple insert) by referencing
819   // TargetTransformInfo.
820   Instruction *Source;
821   Value *NewElement;
822   Value *Idx;
823   if (!match(SI->getValueOperand(),
824              m_InsertElt(m_Instruction(Source), m_Value(NewElement),
825                          m_Value(Idx))))
826     return false;
827 
828   if (auto *Load = dyn_cast<LoadInst>(Source)) {
829     auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType());
830     const DataLayout &DL = I.getModule()->getDataLayout();
831     Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
832     // Don't optimize for atomic/volatile load or store. Ensure memory is not
833     // modified between, vector type matches store size, and index is inbounds.
834     if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
835         !DL.typeSizeEqualsStoreSize(Load->getType()) ||
836         !canScalarizeAccess(VecTy, Idx, Load, AC) ||
837         SrcAddr != SI->getPointerOperand()->stripPointerCasts() ||
838         isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
839                              MemoryLocation::get(SI), AA))
840       return false;
841 
842     Value *GEP = Builder.CreateInBoundsGEP(
843         SI->getValueOperand()->getType(), SI->getPointerOperand(),
844         {ConstantInt::get(Idx->getType(), 0), Idx});
845     StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
846     NSI->copyMetadata(*SI);
847     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
848         std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx,
849         DL);
850     NSI->setAlignment(ScalarOpAlignment);
851     replaceValue(I, *NSI);
852     // Need erasing the store manually.
853     I.eraseFromParent();
854     return true;
855   }
856 
857   return false;
858 }
859 
860 /// Try to scalarize vector loads feeding extractelement instructions.
scalarizeLoadExtract(Instruction & I)861 bool VectorCombine::scalarizeLoadExtract(Instruction &I) {
862   Value *Ptr;
863   Value *Idx;
864   if (!match(&I, m_ExtractElt(m_Load(m_Value(Ptr)), m_Value(Idx))))
865     return false;
866 
867   auto *LI = cast<LoadInst>(I.getOperand(0));
868   const DataLayout &DL = I.getModule()->getDataLayout();
869   if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType()))
870     return false;
871 
872   auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType());
873   if (!FixedVT)
874     return false;
875 
876   InstructionCost OriginalCost = TTI.getMemoryOpCost(
877       Instruction::Load, LI->getType(), Align(LI->getAlignment()),
878       LI->getPointerAddressSpace());
879   InstructionCost ScalarizedCost = 0;
880 
881   Instruction *LastCheckedInst = LI;
882   unsigned NumInstChecked = 0;
883   // Check if all users of the load are extracts with no memory modifications
884   // between the load and the extract. Compute the cost of both the original
885   // code and the scalarized version.
886   for (User *U : LI->users()) {
887     auto *UI = dyn_cast<ExtractElementInst>(U);
888     if (!UI || UI->getParent() != LI->getParent())
889       return false;
890 
891     if (!isGuaranteedNotToBePoison(UI->getOperand(1), &AC, LI, &DT))
892       return false;
893 
894     // Check if any instruction between the load and the extract may modify
895     // memory.
896     if (LastCheckedInst->comesBefore(UI)) {
897       for (Instruction &I :
898            make_range(std::next(LI->getIterator()), UI->getIterator())) {
899         // Bail out if we reached the check limit or the instruction may write
900         // to memory.
901         if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory())
902           return false;
903         NumInstChecked++;
904       }
905     }
906 
907     if (!LastCheckedInst)
908       LastCheckedInst = UI;
909     else if (LastCheckedInst->comesBefore(UI))
910       LastCheckedInst = UI;
911 
912     if (!canScalarizeAccess(FixedVT, UI->getOperand(1), &I, AC))
913       return false;
914 
915     auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1));
916     OriginalCost +=
917         TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(),
918                                Index ? Index->getZExtValue() : -1);
919     ScalarizedCost +=
920         TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(),
921                             Align(1), LI->getPointerAddressSpace());
922     ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType());
923   }
924 
925   if (ScalarizedCost >= OriginalCost)
926     return false;
927 
928   // Replace extracts with narrow scalar loads.
929   for (User *U : LI->users()) {
930     auto *EI = cast<ExtractElementInst>(U);
931     Builder.SetInsertPoint(EI);
932 
933     Value *Idx = EI->getOperand(1);
934     Value *GEP =
935         Builder.CreateInBoundsGEP(FixedVT, Ptr, {Builder.getInt32(0), Idx});
936     auto *NewLoad = cast<LoadInst>(Builder.CreateLoad(
937         FixedVT->getElementType(), GEP, EI->getName() + ".scalar"));
938 
939     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
940         LI->getAlign(), FixedVT->getElementType(), Idx, DL);
941     NewLoad->setAlignment(ScalarOpAlignment);
942 
943     replaceValue(*EI, *NewLoad);
944   }
945 
946   return true;
947 }
948 
949 /// This is the entry point for all transforms. Pass manager differences are
950 /// handled in the callers of this function.
run()951 bool VectorCombine::run() {
952   if (DisableVectorCombine)
953     return false;
954 
955   // Don't attempt vectorization if the target does not support vectors.
956   if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
957     return false;
958 
959   bool MadeChange = false;
960   for (BasicBlock &BB : F) {
961     // Ignore unreachable basic blocks.
962     if (!DT.isReachableFromEntry(&BB))
963       continue;
964     // Use early increment range so that we can erase instructions in loop.
965     for (Instruction &I : make_early_inc_range(BB)) {
966       if (isa<DbgInfoIntrinsic>(I))
967         continue;
968       Builder.SetInsertPoint(&I);
969       MadeChange |= vectorizeLoadInsert(I);
970       MadeChange |= foldExtractExtract(I);
971       MadeChange |= foldBitcastShuf(I);
972       MadeChange |= scalarizeBinopOrCmp(I);
973       MadeChange |= foldExtractedCmps(I);
974       MadeChange |= scalarizeLoadExtract(I);
975       MadeChange |= foldSingleElementStore(I);
976     }
977   }
978 
979   // We're done with transforms, so remove dead instructions.
980   if (MadeChange)
981     for (BasicBlock &BB : F)
982       SimplifyInstructionsInBlock(&BB);
983 
984   return MadeChange;
985 }
986 
987 // Pass manager boilerplate below here.
988 
989 namespace {
990 class VectorCombineLegacyPass : public FunctionPass {
991 public:
992   static char ID;
VectorCombineLegacyPass()993   VectorCombineLegacyPass() : FunctionPass(ID) {
994     initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
995   }
996 
getAnalysisUsage(AnalysisUsage & AU) const997   void getAnalysisUsage(AnalysisUsage &AU) const override {
998     AU.addRequired<AssumptionCacheTracker>();
999     AU.addRequired<DominatorTreeWrapperPass>();
1000     AU.addRequired<TargetTransformInfoWrapperPass>();
1001     AU.addRequired<AAResultsWrapperPass>();
1002     AU.setPreservesCFG();
1003     AU.addPreserved<DominatorTreeWrapperPass>();
1004     AU.addPreserved<GlobalsAAWrapperPass>();
1005     AU.addPreserved<AAResultsWrapperPass>();
1006     AU.addPreserved<BasicAAWrapperPass>();
1007     FunctionPass::getAnalysisUsage(AU);
1008   }
1009 
runOnFunction(Function & F)1010   bool runOnFunction(Function &F) override {
1011     if (skipFunction(F))
1012       return false;
1013     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1014     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1015     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1016     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1017     VectorCombine Combiner(F, TTI, DT, AA, AC);
1018     return Combiner.run();
1019   }
1020 };
1021 } // namespace
1022 
1023 char VectorCombineLegacyPass::ID = 0;
1024 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
1025                       "Optimize scalar/vector ops", false,
1026                       false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1027 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1028 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1029 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
1030                     "Optimize scalar/vector ops", false, false)
1031 Pass *llvm::createVectorCombinePass() {
1032   return new VectorCombineLegacyPass();
1033 }
1034 
run(Function & F,FunctionAnalysisManager & FAM)1035 PreservedAnalyses VectorCombinePass::run(Function &F,
1036                                          FunctionAnalysisManager &FAM) {
1037   auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1038   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
1039   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
1040   AAResults &AA = FAM.getResult<AAManager>(F);
1041   VectorCombine Combiner(F, TTI, DT, AA, AC);
1042   if (!Combiner.run())
1043     return PreservedAnalyses::all();
1044   PreservedAnalyses PA;
1045   PA.preserveSet<CFGAnalyses>();
1046   return PA;
1047 }
1048