1 /*
2  * Double-precision e^x function.
3  *
4  * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5  * See https://llvm.org/LICENSE.txt for license information.
6  * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7  */
8 
9 #include <float.h>
10 #include <math.h>
11 #include <stdint.h>
12 #include "math_config.h"
13 
14 #define N (1 << EXP_TABLE_BITS)
15 #define InvLn2N __exp_data.invln2N
16 #define NegLn2hiN __exp_data.negln2hiN
17 #define NegLn2loN __exp_data.negln2loN
18 #define Shift __exp_data.shift
19 #define T __exp_data.tab
20 #define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
21 #define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
22 #define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
23 #define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
24 #define C6 __exp_data.poly[9 - EXP_POLY_ORDER]
25 
26 /* Handle cases that may overflow or underflow when computing the result that
27    is scale*(1+TMP) without intermediate rounding.  The bit representation of
28    scale is in SBITS, however it has a computed exponent that may have
29    overflown into the sign bit so that needs to be adjusted before using it as
30    a double.  (int32_t)KI is the k used in the argument reduction and exponent
31    adjustment of scale, positive k here means the result may overflow and
32    negative k means the result may underflow.  */
33 static inline double
specialcase(double_t tmp,uint64_t sbits,uint64_t ki)34 specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
35 {
36   double_t scale, y;
37 
38   if ((ki & 0x80000000) == 0)
39     {
40       /* k > 0, the exponent of scale might have overflowed by <= 460.  */
41       sbits -= 1009ull << 52;
42       scale = asdouble (sbits);
43       y = 0x1p1009 * (scale + scale * tmp);
44       return check_oflow (eval_as_double (y));
45     }
46   /* k < 0, need special care in the subnormal range.  */
47   sbits += 1022ull << 52;
48   scale = asdouble (sbits);
49   y = scale + scale * tmp;
50   if (y < 1.0)
51     {
52       /* Round y to the right precision before scaling it into the subnormal
53 	 range to avoid double rounding that can cause 0.5+E/2 ulp error where
54 	 E is the worst-case ulp error outside the subnormal range.  So this
55 	 is only useful if the goal is better than 1 ulp worst-case error.  */
56       double_t hi, lo;
57       lo = scale - y + scale * tmp;
58       hi = 1.0 + y;
59       lo = 1.0 - hi + y + lo;
60       y = eval_as_double (hi + lo) - 1.0;
61       /* Avoid -0.0 with downward rounding.  */
62       if (WANT_ROUNDING && y == 0.0)
63 	y = 0.0;
64       /* The underflow exception needs to be signaled explicitly.  */
65       force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022);
66     }
67   y = 0x1p-1022 * y;
68   return check_uflow (eval_as_double (y));
69 }
70 
71 /* Top 12 bits of a double (sign and exponent bits).  */
72 static inline uint32_t
top12(double x)73 top12 (double x)
74 {
75   return asuint64 (x) >> 52;
76 }
77 
78 /* Computes exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
79    If hastail is 0 then xtail is assumed to be 0 too.  */
80 static inline double
exp_inline(double x,double xtail,int hastail)81 exp_inline (double x, double xtail, int hastail)
82 {
83   uint32_t abstop;
84   uint64_t ki, idx, top, sbits;
85   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
86   double_t kd, z, r, r2, scale, tail, tmp;
87 
88   abstop = top12 (x) & 0x7ff;
89   if (unlikely (abstop - top12 (0x1p-54) >= top12 (512.0) - top12 (0x1p-54)))
90     {
91       if (abstop - top12 (0x1p-54) >= 0x80000000)
92 	/* Avoid spurious underflow for tiny x.  */
93 	/* Note: 0 is common input.  */
94 	return WANT_ROUNDING ? 1.0 + x : 1.0;
95       if (abstop >= top12 (1024.0))
96 	{
97 	  if (asuint64 (x) == asuint64 (-INFINITY))
98 	    return 0.0;
99 	  if (abstop >= top12 (INFINITY))
100 	    return 1.0 + x;
101 	  if (asuint64 (x) >> 63)
102 	    return __math_uflow (0);
103 	  else
104 	    return __math_oflow (0);
105 	}
106       /* Large x is special cased below.  */
107       abstop = 0;
108     }
109 
110   /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)].  */
111   /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N].  */
112   z = InvLn2N * x;
113 #if TOINT_INTRINSICS
114   kd = roundtoint (z);
115   ki = converttoint (z);
116 #elif EXP_USE_TOINT_NARROW
117   /* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes.  */
118   kd = eval_as_double (z + Shift);
119   ki = asuint64 (kd) >> 16;
120   kd = (double_t) (int32_t) ki;
121 #else
122   /* z - kd is in [-1, 1] in non-nearest rounding modes.  */
123   kd = eval_as_double (z + Shift);
124   ki = asuint64 (kd);
125   kd -= Shift;
126 #endif
127   r = x + kd * NegLn2hiN + kd * NegLn2loN;
128   /* The code assumes 2^-200 < |xtail| < 2^-8/N.  */
129   if (hastail)
130     r += xtail;
131   /* 2^(k/N) ~= scale * (1 + tail).  */
132   idx = 2 * (ki % N);
133   top = ki << (52 - EXP_TABLE_BITS);
134   tail = asdouble (T[idx]);
135   /* This is only a valid scale when -1023*N < k < 1024*N.  */
136   sbits = T[idx + 1] + top;
137   /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1).  */
138   /* Evaluation is optimized assuming superscalar pipelined execution.  */
139   r2 = r * r;
140   /* Without fma the worst case error is 0.25/N ulp larger.  */
141   /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp.  */
142 #if EXP_POLY_ORDER == 4
143   tmp = tail + r + r2 * C2 + r * r2 * (C3 + r * C4);
144 #elif EXP_POLY_ORDER == 5
145   tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
146 #elif EXP_POLY_ORDER == 6
147   tmp = tail + r + r2 * (0.5 + r * C3) + r2 * r2 * (C4 + r * C5 + r2 * C6);
148 #endif
149   if (unlikely (abstop == 0))
150     return specialcase (tmp, sbits, ki);
151   scale = asdouble (sbits);
152   /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
153      is no spurious underflow here even without fma.  */
154   return eval_as_double (scale + scale * tmp);
155 }
156 
157 double
exp(double x)158 exp (double x)
159 {
160   return exp_inline (x, 0, 0);
161 }
162 
163 /* May be useful for implementing pow where more than double
164    precision input is needed.  */
165 double
__exp_dd(double x,double xtail)166 __exp_dd (double x, double xtail)
167 {
168   return exp_inline (x, xtail, 1);
169 }
170 #if USE_GLIBC_ABI
strong_alias(exp,__exp_finite)171 strong_alias (exp, __exp_finite)
172 hidden_alias (exp, __ieee754_exp)
173 hidden_alias (__exp_dd, __exp1)
174 # if LDBL_MANT_DIG == 53
175 long double expl (long double x) { return exp (x); }
176 # endif
177 #endif
178