1 #include "../include/KaleidoscopeJIT.h"
2 #include "llvm/ADT/APFloat.h"
3 #include "llvm/ADT/STLExtras.h"
4 #include "llvm/IR/BasicBlock.h"
5 #include "llvm/IR/Constants.h"
6 #include "llvm/IR/DerivedTypes.h"
7 #include "llvm/IR/Function.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/Instructions.h"
10 #include "llvm/IR/LLVMContext.h"
11 #include "llvm/IR/LegacyPassManager.h"
12 #include "llvm/IR/Module.h"
13 #include "llvm/IR/Type.h"
14 #include "llvm/IR/Verifier.h"
15 #include "llvm/Support/TargetSelect.h"
16 #include "llvm/Target/TargetMachine.h"
17 #include "llvm/Transforms/InstCombine/InstCombine.h"
18 #include "llvm/Transforms/Scalar.h"
19 #include "llvm/Transforms/Scalar/GVN.h"
20 #include <algorithm>
21 #include <cassert>
22 #include <cctype>
23 #include <cstdint>
24 #include <cstdio>
25 #include <cstdlib>
26 #include <map>
27 #include <memory>
28 #include <string>
29 #include <vector>
30 
31 using namespace llvm;
32 using namespace llvm::orc;
33 
34 //===----------------------------------------------------------------------===//
35 // Lexer
36 //===----------------------------------------------------------------------===//
37 
38 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
39 // of these for known things.
40 enum Token {
41   tok_eof = -1,
42 
43   // commands
44   tok_def = -2,
45   tok_extern = -3,
46 
47   // primary
48   tok_identifier = -4,
49   tok_number = -5,
50 
51   // control
52   tok_if = -6,
53   tok_then = -7,
54   tok_else = -8,
55   tok_for = -9,
56   tok_in = -10,
57 
58   // operators
59   tok_binary = -11,
60   tok_unary = -12
61 };
62 
63 static std::string IdentifierStr; // Filled in if tok_identifier
64 static double NumVal;             // Filled in if tok_number
65 
66 /// gettok - Return the next token from standard input.
gettok()67 static int gettok() {
68   static int LastChar = ' ';
69 
70   // Skip any whitespace.
71   while (isspace(LastChar))
72     LastChar = getchar();
73 
74   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
75     IdentifierStr = LastChar;
76     while (isalnum((LastChar = getchar())))
77       IdentifierStr += LastChar;
78 
79     if (IdentifierStr == "def")
80       return tok_def;
81     if (IdentifierStr == "extern")
82       return tok_extern;
83     if (IdentifierStr == "if")
84       return tok_if;
85     if (IdentifierStr == "then")
86       return tok_then;
87     if (IdentifierStr == "else")
88       return tok_else;
89     if (IdentifierStr == "for")
90       return tok_for;
91     if (IdentifierStr == "in")
92       return tok_in;
93     if (IdentifierStr == "binary")
94       return tok_binary;
95     if (IdentifierStr == "unary")
96       return tok_unary;
97     return tok_identifier;
98   }
99 
100   if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
101     std::string NumStr;
102     do {
103       NumStr += LastChar;
104       LastChar = getchar();
105     } while (isdigit(LastChar) || LastChar == '.');
106 
107     NumVal = strtod(NumStr.c_str(), nullptr);
108     return tok_number;
109   }
110 
111   if (LastChar == '#') {
112     // Comment until end of line.
113     do
114       LastChar = getchar();
115     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
116 
117     if (LastChar != EOF)
118       return gettok();
119   }
120 
121   // Check for end of file.  Don't eat the EOF.
122   if (LastChar == EOF)
123     return tok_eof;
124 
125   // Otherwise, just return the character as its ascii value.
126   int ThisChar = LastChar;
127   LastChar = getchar();
128   return ThisChar;
129 }
130 
131 //===----------------------------------------------------------------------===//
132 // Abstract Syntax Tree (aka Parse Tree)
133 //===----------------------------------------------------------------------===//
134 
135 namespace {
136 
137 /// ExprAST - Base class for all expression nodes.
138 class ExprAST {
139 public:
140   virtual ~ExprAST() = default;
141 
142   virtual Value *codegen() = 0;
143 };
144 
145 /// NumberExprAST - Expression class for numeric literals like "1.0".
146 class NumberExprAST : public ExprAST {
147   double Val;
148 
149 public:
NumberExprAST(double Val)150   NumberExprAST(double Val) : Val(Val) {}
151 
152   Value *codegen() override;
153 };
154 
155 /// VariableExprAST - Expression class for referencing a variable, like "a".
156 class VariableExprAST : public ExprAST {
157   std::string Name;
158 
159 public:
VariableExprAST(const std::string & Name)160   VariableExprAST(const std::string &Name) : Name(Name) {}
161 
162   Value *codegen() override;
163 };
164 
165 /// UnaryExprAST - Expression class for a unary operator.
166 class UnaryExprAST : public ExprAST {
167   char Opcode;
168   std::unique_ptr<ExprAST> Operand;
169 
170 public:
UnaryExprAST(char Opcode,std::unique_ptr<ExprAST> Operand)171   UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
172       : Opcode(Opcode), Operand(std::move(Operand)) {}
173 
174   Value *codegen() override;
175 };
176 
177 /// BinaryExprAST - Expression class for a binary operator.
178 class BinaryExprAST : public ExprAST {
179   char Op;
180   std::unique_ptr<ExprAST> LHS, RHS;
181 
182 public:
BinaryExprAST(char Op,std::unique_ptr<ExprAST> LHS,std::unique_ptr<ExprAST> RHS)183   BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
184                 std::unique_ptr<ExprAST> RHS)
185       : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
186 
187   Value *codegen() override;
188 };
189 
190 /// CallExprAST - Expression class for function calls.
191 class CallExprAST : public ExprAST {
192   std::string Callee;
193   std::vector<std::unique_ptr<ExprAST>> Args;
194 
195 public:
CallExprAST(const std::string & Callee,std::vector<std::unique_ptr<ExprAST>> Args)196   CallExprAST(const std::string &Callee,
197               std::vector<std::unique_ptr<ExprAST>> Args)
198       : Callee(Callee), Args(std::move(Args)) {}
199 
200   Value *codegen() override;
201 };
202 
203 /// IfExprAST - Expression class for if/then/else.
204 class IfExprAST : public ExprAST {
205   std::unique_ptr<ExprAST> Cond, Then, Else;
206 
207 public:
IfExprAST(std::unique_ptr<ExprAST> Cond,std::unique_ptr<ExprAST> Then,std::unique_ptr<ExprAST> Else)208   IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
209             std::unique_ptr<ExprAST> Else)
210       : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
211 
212   Value *codegen() override;
213 };
214 
215 /// ForExprAST - Expression class for for/in.
216 class ForExprAST : public ExprAST {
217   std::string VarName;
218   std::unique_ptr<ExprAST> Start, End, Step, Body;
219 
220 public:
ForExprAST(const std::string & VarName,std::unique_ptr<ExprAST> Start,std::unique_ptr<ExprAST> End,std::unique_ptr<ExprAST> Step,std::unique_ptr<ExprAST> Body)221   ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
222              std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
223              std::unique_ptr<ExprAST> Body)
224       : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
225         Step(std::move(Step)), Body(std::move(Body)) {}
226 
227   Value *codegen() override;
228 };
229 
230 /// PrototypeAST - This class represents the "prototype" for a function,
231 /// which captures its name, and its argument names (thus implicitly the number
232 /// of arguments the function takes), as well as if it is an operator.
233 class PrototypeAST {
234   std::string Name;
235   std::vector<std::string> Args;
236   bool IsOperator;
237   unsigned Precedence; // Precedence if a binary op.
238 
239 public:
PrototypeAST(const std::string & Name,std::vector<std::string> Args,bool IsOperator=false,unsigned Prec=0)240   PrototypeAST(const std::string &Name, std::vector<std::string> Args,
241                bool IsOperator = false, unsigned Prec = 0)
242       : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
243         Precedence(Prec) {}
244 
245   Function *codegen();
getName() const246   const std::string &getName() const { return Name; }
247 
isUnaryOp() const248   bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
isBinaryOp() const249   bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
250 
getOperatorName() const251   char getOperatorName() const {
252     assert(isUnaryOp() || isBinaryOp());
253     return Name[Name.size() - 1];
254   }
255 
getBinaryPrecedence() const256   unsigned getBinaryPrecedence() const { return Precedence; }
257 };
258 
259 /// FunctionAST - This class represents a function definition itself.
260 class FunctionAST {
261   std::unique_ptr<PrototypeAST> Proto;
262   std::unique_ptr<ExprAST> Body;
263 
264 public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,std::unique_ptr<ExprAST> Body)265   FunctionAST(std::unique_ptr<PrototypeAST> Proto,
266               std::unique_ptr<ExprAST> Body)
267       : Proto(std::move(Proto)), Body(std::move(Body)) {}
268 
269   Function *codegen();
270 };
271 
272 } // end anonymous namespace
273 
274 //===----------------------------------------------------------------------===//
275 // Parser
276 //===----------------------------------------------------------------------===//
277 
278 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
279 /// token the parser is looking at.  getNextToken reads another token from the
280 /// lexer and updates CurTok with its results.
281 static int CurTok;
getNextToken()282 static int getNextToken() { return CurTok = gettok(); }
283 
284 /// BinopPrecedence - This holds the precedence for each binary operator that is
285 /// defined.
286 static std::map<char, int> BinopPrecedence;
287 
288 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()289 static int GetTokPrecedence() {
290   if (!isascii(CurTok))
291     return -1;
292 
293   // Make sure it's a declared binop.
294   int TokPrec = BinopPrecedence[CurTok];
295   if (TokPrec <= 0)
296     return -1;
297   return TokPrec;
298 }
299 
300 /// Error* - These are little helper functions for error handling.
LogError(const char * Str)301 std::unique_ptr<ExprAST> LogError(const char *Str) {
302   fprintf(stderr, "Error: %s\n", Str);
303   return nullptr;
304 }
305 
LogErrorP(const char * Str)306 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
307   LogError(Str);
308   return nullptr;
309 }
310 
311 static std::unique_ptr<ExprAST> ParseExpression();
312 
313 /// numberexpr ::= number
ParseNumberExpr()314 static std::unique_ptr<ExprAST> ParseNumberExpr() {
315   auto Result = std::make_unique<NumberExprAST>(NumVal);
316   getNextToken(); // consume the number
317   return std::move(Result);
318 }
319 
320 /// parenexpr ::= '(' expression ')'
ParseParenExpr()321 static std::unique_ptr<ExprAST> ParseParenExpr() {
322   getNextToken(); // eat (.
323   auto V = ParseExpression();
324   if (!V)
325     return nullptr;
326 
327   if (CurTok != ')')
328     return LogError("expected ')'");
329   getNextToken(); // eat ).
330   return V;
331 }
332 
333 /// identifierexpr
334 ///   ::= identifier
335 ///   ::= identifier '(' expression* ')'
ParseIdentifierExpr()336 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
337   std::string IdName = IdentifierStr;
338 
339   getNextToken(); // eat identifier.
340 
341   if (CurTok != '(') // Simple variable ref.
342     return std::make_unique<VariableExprAST>(IdName);
343 
344   // Call.
345   getNextToken(); // eat (
346   std::vector<std::unique_ptr<ExprAST>> Args;
347   if (CurTok != ')') {
348     while (true) {
349       if (auto Arg = ParseExpression())
350         Args.push_back(std::move(Arg));
351       else
352         return nullptr;
353 
354       if (CurTok == ')')
355         break;
356 
357       if (CurTok != ',')
358         return LogError("Expected ')' or ',' in argument list");
359       getNextToken();
360     }
361   }
362 
363   // Eat the ')'.
364   getNextToken();
365 
366   return std::make_unique<CallExprAST>(IdName, std::move(Args));
367 }
368 
369 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()370 static std::unique_ptr<ExprAST> ParseIfExpr() {
371   getNextToken(); // eat the if.
372 
373   // condition.
374   auto Cond = ParseExpression();
375   if (!Cond)
376     return nullptr;
377 
378   if (CurTok != tok_then)
379     return LogError("expected then");
380   getNextToken(); // eat the then
381 
382   auto Then = ParseExpression();
383   if (!Then)
384     return nullptr;
385 
386   if (CurTok != tok_else)
387     return LogError("expected else");
388 
389   getNextToken();
390 
391   auto Else = ParseExpression();
392   if (!Else)
393     return nullptr;
394 
395   return std::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
396                                       std::move(Else));
397 }
398 
399 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()400 static std::unique_ptr<ExprAST> ParseForExpr() {
401   getNextToken(); // eat the for.
402 
403   if (CurTok != tok_identifier)
404     return LogError("expected identifier after for");
405 
406   std::string IdName = IdentifierStr;
407   getNextToken(); // eat identifier.
408 
409   if (CurTok != '=')
410     return LogError("expected '=' after for");
411   getNextToken(); // eat '='.
412 
413   auto Start = ParseExpression();
414   if (!Start)
415     return nullptr;
416   if (CurTok != ',')
417     return LogError("expected ',' after for start value");
418   getNextToken();
419 
420   auto End = ParseExpression();
421   if (!End)
422     return nullptr;
423 
424   // The step value is optional.
425   std::unique_ptr<ExprAST> Step;
426   if (CurTok == ',') {
427     getNextToken();
428     Step = ParseExpression();
429     if (!Step)
430       return nullptr;
431   }
432 
433   if (CurTok != tok_in)
434     return LogError("expected 'in' after for");
435   getNextToken(); // eat 'in'.
436 
437   auto Body = ParseExpression();
438   if (!Body)
439     return nullptr;
440 
441   return std::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
442                                        std::move(Step), std::move(Body));
443 }
444 
445 /// primary
446 ///   ::= identifierexpr
447 ///   ::= numberexpr
448 ///   ::= parenexpr
449 ///   ::= ifexpr
450 ///   ::= forexpr
ParsePrimary()451 static std::unique_ptr<ExprAST> ParsePrimary() {
452   switch (CurTok) {
453   default:
454     return LogError("unknown token when expecting an expression");
455   case tok_identifier:
456     return ParseIdentifierExpr();
457   case tok_number:
458     return ParseNumberExpr();
459   case '(':
460     return ParseParenExpr();
461   case tok_if:
462     return ParseIfExpr();
463   case tok_for:
464     return ParseForExpr();
465   }
466 }
467 
468 /// unary
469 ///   ::= primary
470 ///   ::= '!' unary
ParseUnary()471 static std::unique_ptr<ExprAST> ParseUnary() {
472   // If the current token is not an operator, it must be a primary expr.
473   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
474     return ParsePrimary();
475 
476   // If this is a unary operator, read it.
477   int Opc = CurTok;
478   getNextToken();
479   if (auto Operand = ParseUnary())
480     return std::make_unique<UnaryExprAST>(Opc, std::move(Operand));
481   return nullptr;
482 }
483 
484 /// binoprhs
485 ///   ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,std::unique_ptr<ExprAST> LHS)486 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
487                                               std::unique_ptr<ExprAST> LHS) {
488   // If this is a binop, find its precedence.
489   while (true) {
490     int TokPrec = GetTokPrecedence();
491 
492     // If this is a binop that binds at least as tightly as the current binop,
493     // consume it, otherwise we are done.
494     if (TokPrec < ExprPrec)
495       return LHS;
496 
497     // Okay, we know this is a binop.
498     int BinOp = CurTok;
499     getNextToken(); // eat binop
500 
501     // Parse the unary expression after the binary operator.
502     auto RHS = ParseUnary();
503     if (!RHS)
504       return nullptr;
505 
506     // If BinOp binds less tightly with RHS than the operator after RHS, let
507     // the pending operator take RHS as its LHS.
508     int NextPrec = GetTokPrecedence();
509     if (TokPrec < NextPrec) {
510       RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
511       if (!RHS)
512         return nullptr;
513     }
514 
515     // Merge LHS/RHS.
516     LHS =
517         std::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
518   }
519 }
520 
521 /// expression
522 ///   ::= unary binoprhs
523 ///
ParseExpression()524 static std::unique_ptr<ExprAST> ParseExpression() {
525   auto LHS = ParseUnary();
526   if (!LHS)
527     return nullptr;
528 
529   return ParseBinOpRHS(0, std::move(LHS));
530 }
531 
532 /// prototype
533 ///   ::= id '(' id* ')'
534 ///   ::= binary LETTER number? (id, id)
535 ///   ::= unary LETTER (id)
ParsePrototype()536 static std::unique_ptr<PrototypeAST> ParsePrototype() {
537   std::string FnName;
538 
539   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
540   unsigned BinaryPrecedence = 30;
541 
542   switch (CurTok) {
543   default:
544     return LogErrorP("Expected function name in prototype");
545   case tok_identifier:
546     FnName = IdentifierStr;
547     Kind = 0;
548     getNextToken();
549     break;
550   case tok_unary:
551     getNextToken();
552     if (!isascii(CurTok))
553       return LogErrorP("Expected unary operator");
554     FnName = "unary";
555     FnName += (char)CurTok;
556     Kind = 1;
557     getNextToken();
558     break;
559   case tok_binary:
560     getNextToken();
561     if (!isascii(CurTok))
562       return LogErrorP("Expected binary operator");
563     FnName = "binary";
564     FnName += (char)CurTok;
565     Kind = 2;
566     getNextToken();
567 
568     // Read the precedence if present.
569     if (CurTok == tok_number) {
570       if (NumVal < 1 || NumVal > 100)
571         return LogErrorP("Invalid precedence: must be 1..100");
572       BinaryPrecedence = (unsigned)NumVal;
573       getNextToken();
574     }
575     break;
576   }
577 
578   if (CurTok != '(')
579     return LogErrorP("Expected '(' in prototype");
580 
581   std::vector<std::string> ArgNames;
582   while (getNextToken() == tok_identifier)
583     ArgNames.push_back(IdentifierStr);
584   if (CurTok != ')')
585     return LogErrorP("Expected ')' in prototype");
586 
587   // success.
588   getNextToken(); // eat ')'.
589 
590   // Verify right number of names for operator.
591   if (Kind && ArgNames.size() != Kind)
592     return LogErrorP("Invalid number of operands for operator");
593 
594   return std::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
595                                          BinaryPrecedence);
596 }
597 
598 /// definition ::= 'def' prototype expression
ParseDefinition()599 static std::unique_ptr<FunctionAST> ParseDefinition() {
600   getNextToken(); // eat def.
601   auto Proto = ParsePrototype();
602   if (!Proto)
603     return nullptr;
604 
605   if (auto E = ParseExpression())
606     return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
607   return nullptr;
608 }
609 
610 /// toplevelexpr ::= expression
ParseTopLevelExpr()611 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
612   if (auto E = ParseExpression()) {
613     // Make an anonymous proto.
614     auto Proto = std::make_unique<PrototypeAST>("__anon_expr",
615                                                  std::vector<std::string>());
616     return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
617   }
618   return nullptr;
619 }
620 
621 /// external ::= 'extern' prototype
ParseExtern()622 static std::unique_ptr<PrototypeAST> ParseExtern() {
623   getNextToken(); // eat extern.
624   return ParsePrototype();
625 }
626 
627 //===----------------------------------------------------------------------===//
628 // Code Generation
629 //===----------------------------------------------------------------------===//
630 
631 static std::unique_ptr<LLVMContext> TheContext;
632 static std::unique_ptr<Module> TheModule;
633 static std::unique_ptr<IRBuilder<>> Builder;
634 static std::map<std::string, Value *> NamedValues;
635 static std::unique_ptr<legacy::FunctionPassManager> TheFPM;
636 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
637 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
638 static ExitOnError ExitOnErr;
639 
LogErrorV(const char * Str)640 Value *LogErrorV(const char *Str) {
641   LogError(Str);
642   return nullptr;
643 }
644 
getFunction(std::string Name)645 Function *getFunction(std::string Name) {
646   // First, see if the function has already been added to the current module.
647   if (auto *F = TheModule->getFunction(Name))
648     return F;
649 
650   // If not, check whether we can codegen the declaration from some existing
651   // prototype.
652   auto FI = FunctionProtos.find(Name);
653   if (FI != FunctionProtos.end())
654     return FI->second->codegen();
655 
656   // If no existing prototype exists, return null.
657   return nullptr;
658 }
659 
codegen()660 Value *NumberExprAST::codegen() {
661   return ConstantFP::get(*TheContext, APFloat(Val));
662 }
663 
codegen()664 Value *VariableExprAST::codegen() {
665   // Look this variable up in the function.
666   Value *V = NamedValues[Name];
667   if (!V)
668     return LogErrorV("Unknown variable name");
669   return V;
670 }
671 
codegen()672 Value *UnaryExprAST::codegen() {
673   Value *OperandV = Operand->codegen();
674   if (!OperandV)
675     return nullptr;
676 
677   Function *F = getFunction(std::string("unary") + Opcode);
678   if (!F)
679     return LogErrorV("Unknown unary operator");
680 
681   return Builder->CreateCall(F, OperandV, "unop");
682 }
683 
codegen()684 Value *BinaryExprAST::codegen() {
685   Value *L = LHS->codegen();
686   Value *R = RHS->codegen();
687   if (!L || !R)
688     return nullptr;
689 
690   switch (Op) {
691   case '+':
692     return Builder->CreateFAdd(L, R, "addtmp");
693   case '-':
694     return Builder->CreateFSub(L, R, "subtmp");
695   case '*':
696     return Builder->CreateFMul(L, R, "multmp");
697   case '<':
698     L = Builder->CreateFCmpULT(L, R, "cmptmp");
699     // Convert bool 0/1 to double 0.0 or 1.0
700     return Builder->CreateUIToFP(L, Type::getDoubleTy(*TheContext), "booltmp");
701   default:
702     break;
703   }
704 
705   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
706   // a call to it.
707   Function *F = getFunction(std::string("binary") + Op);
708   assert(F && "binary operator not found!");
709 
710   Value *Ops[] = {L, R};
711   return Builder->CreateCall(F, Ops, "binop");
712 }
713 
codegen()714 Value *CallExprAST::codegen() {
715   // Look up the name in the global module table.
716   Function *CalleeF = getFunction(Callee);
717   if (!CalleeF)
718     return LogErrorV("Unknown function referenced");
719 
720   // If argument mismatch error.
721   if (CalleeF->arg_size() != Args.size())
722     return LogErrorV("Incorrect # arguments passed");
723 
724   std::vector<Value *> ArgsV;
725   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
726     ArgsV.push_back(Args[i]->codegen());
727     if (!ArgsV.back())
728       return nullptr;
729   }
730 
731   return Builder->CreateCall(CalleeF, ArgsV, "calltmp");
732 }
733 
codegen()734 Value *IfExprAST::codegen() {
735   Value *CondV = Cond->codegen();
736   if (!CondV)
737     return nullptr;
738 
739   // Convert condition to a bool by comparing non-equal to 0.0.
740   CondV = Builder->CreateFCmpONE(
741       CondV, ConstantFP::get(*TheContext, APFloat(0.0)), "ifcond");
742 
743   Function *TheFunction = Builder->GetInsertBlock()->getParent();
744 
745   // Create blocks for the then and else cases.  Insert the 'then' block at the
746   // end of the function.
747   BasicBlock *ThenBB = BasicBlock::Create(*TheContext, "then", TheFunction);
748   BasicBlock *ElseBB = BasicBlock::Create(*TheContext, "else");
749   BasicBlock *MergeBB = BasicBlock::Create(*TheContext, "ifcont");
750 
751   Builder->CreateCondBr(CondV, ThenBB, ElseBB);
752 
753   // Emit then value.
754   Builder->SetInsertPoint(ThenBB);
755 
756   Value *ThenV = Then->codegen();
757   if (!ThenV)
758     return nullptr;
759 
760   Builder->CreateBr(MergeBB);
761   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
762   ThenBB = Builder->GetInsertBlock();
763 
764   // Emit else block.
765   TheFunction->getBasicBlockList().push_back(ElseBB);
766   Builder->SetInsertPoint(ElseBB);
767 
768   Value *ElseV = Else->codegen();
769   if (!ElseV)
770     return nullptr;
771 
772   Builder->CreateBr(MergeBB);
773   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
774   ElseBB = Builder->GetInsertBlock();
775 
776   // Emit merge block.
777   TheFunction->getBasicBlockList().push_back(MergeBB);
778   Builder->SetInsertPoint(MergeBB);
779   PHINode *PN = Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, "iftmp");
780 
781   PN->addIncoming(ThenV, ThenBB);
782   PN->addIncoming(ElseV, ElseBB);
783   return PN;
784 }
785 
786 // Output for-loop as:
787 //   ...
788 //   start = startexpr
789 //   goto loop
790 // loop:
791 //   variable = phi [start, loopheader], [nextvariable, loopend]
792 //   ...
793 //   bodyexpr
794 //   ...
795 // loopend:
796 //   step = stepexpr
797 //   nextvariable = variable + step
798 //   endcond = endexpr
799 //   br endcond, loop, endloop
800 // outloop:
codegen()801 Value *ForExprAST::codegen() {
802   // Emit the start code first, without 'variable' in scope.
803   Value *StartVal = Start->codegen();
804   if (!StartVal)
805     return nullptr;
806 
807   // Make the new basic block for the loop header, inserting after current
808   // block.
809   Function *TheFunction = Builder->GetInsertBlock()->getParent();
810   BasicBlock *PreheaderBB = Builder->GetInsertBlock();
811   BasicBlock *LoopBB = BasicBlock::Create(*TheContext, "loop", TheFunction);
812 
813   // Insert an explicit fall through from the current block to the LoopBB.
814   Builder->CreateBr(LoopBB);
815 
816   // Start insertion in LoopBB.
817   Builder->SetInsertPoint(LoopBB);
818 
819   // Start the PHI node with an entry for Start.
820   PHINode *Variable =
821       Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, VarName);
822   Variable->addIncoming(StartVal, PreheaderBB);
823 
824   // Within the loop, the variable is defined equal to the PHI node.  If it
825   // shadows an existing variable, we have to restore it, so save it now.
826   Value *OldVal = NamedValues[VarName];
827   NamedValues[VarName] = Variable;
828 
829   // Emit the body of the loop.  This, like any other expr, can change the
830   // current BB.  Note that we ignore the value computed by the body, but don't
831   // allow an error.
832   if (!Body->codegen())
833     return nullptr;
834 
835   // Emit the step value.
836   Value *StepVal = nullptr;
837   if (Step) {
838     StepVal = Step->codegen();
839     if (!StepVal)
840       return nullptr;
841   } else {
842     // If not specified, use 1.0.
843     StepVal = ConstantFP::get(*TheContext, APFloat(1.0));
844   }
845 
846   Value *NextVar = Builder->CreateFAdd(Variable, StepVal, "nextvar");
847 
848   // Compute the end condition.
849   Value *EndCond = End->codegen();
850   if (!EndCond)
851     return nullptr;
852 
853   // Convert condition to a bool by comparing non-equal to 0.0.
854   EndCond = Builder->CreateFCmpONE(
855       EndCond, ConstantFP::get(*TheContext, APFloat(0.0)), "loopcond");
856 
857   // Create the "after loop" block and insert it.
858   BasicBlock *LoopEndBB = Builder->GetInsertBlock();
859   BasicBlock *AfterBB =
860       BasicBlock::Create(*TheContext, "afterloop", TheFunction);
861 
862   // Insert the conditional branch into the end of LoopEndBB.
863   Builder->CreateCondBr(EndCond, LoopBB, AfterBB);
864 
865   // Any new code will be inserted in AfterBB.
866   Builder->SetInsertPoint(AfterBB);
867 
868   // Add a new entry to the PHI node for the backedge.
869   Variable->addIncoming(NextVar, LoopEndBB);
870 
871   // Restore the unshadowed variable.
872   if (OldVal)
873     NamedValues[VarName] = OldVal;
874   else
875     NamedValues.erase(VarName);
876 
877   // for expr always returns 0.0.
878   return Constant::getNullValue(Type::getDoubleTy(*TheContext));
879 }
880 
codegen()881 Function *PrototypeAST::codegen() {
882   // Make the function type:  double(double,double) etc.
883   std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(*TheContext));
884   FunctionType *FT =
885       FunctionType::get(Type::getDoubleTy(*TheContext), Doubles, false);
886 
887   Function *F =
888       Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
889 
890   // Set names for all arguments.
891   unsigned Idx = 0;
892   for (auto &Arg : F->args())
893     Arg.setName(Args[Idx++]);
894 
895   return F;
896 }
897 
codegen()898 Function *FunctionAST::codegen() {
899   // Transfer ownership of the prototype to the FunctionProtos map, but keep a
900   // reference to it for use below.
901   auto &P = *Proto;
902   FunctionProtos[Proto->getName()] = std::move(Proto);
903   Function *TheFunction = getFunction(P.getName());
904   if (!TheFunction)
905     return nullptr;
906 
907   // If this is an operator, install it.
908   if (P.isBinaryOp())
909     BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
910 
911   // Create a new basic block to start insertion into.
912   BasicBlock *BB = BasicBlock::Create(*TheContext, "entry", TheFunction);
913   Builder->SetInsertPoint(BB);
914 
915   // Record the function arguments in the NamedValues map.
916   NamedValues.clear();
917   for (auto &Arg : TheFunction->args())
918     NamedValues[std::string(Arg.getName())] = &Arg;
919 
920   if (Value *RetVal = Body->codegen()) {
921     // Finish off the function.
922     Builder->CreateRet(RetVal);
923 
924     // Validate the generated code, checking for consistency.
925     verifyFunction(*TheFunction);
926 
927     // Run the optimizer on the function.
928     TheFPM->run(*TheFunction);
929 
930     return TheFunction;
931   }
932 
933   // Error reading body, remove function.
934   TheFunction->eraseFromParent();
935 
936   if (P.isBinaryOp())
937     BinopPrecedence.erase(P.getOperatorName());
938   return nullptr;
939 }
940 
941 //===----------------------------------------------------------------------===//
942 // Top-Level parsing and JIT Driver
943 //===----------------------------------------------------------------------===//
944 
InitializeModuleAndPassManager()945 static void InitializeModuleAndPassManager() {
946   // Open a new module.
947   TheContext = std::make_unique<LLVMContext>();
948   TheModule = std::make_unique<Module>("my cool jit", *TheContext);
949   TheModule->setDataLayout(TheJIT->getDataLayout());
950 
951   // Create a new builder for the module.
952   Builder = std::make_unique<IRBuilder<>>(*TheContext);
953 
954   // Create a new pass manager attached to it.
955   TheFPM = std::make_unique<legacy::FunctionPassManager>(TheModule.get());
956 
957   // Do simple "peephole" optimizations and bit-twiddling optzns.
958   TheFPM->add(createInstructionCombiningPass());
959   // Reassociate expressions.
960   TheFPM->add(createReassociatePass());
961   // Eliminate Common SubExpressions.
962   TheFPM->add(createGVNPass());
963   // Simplify the control flow graph (deleting unreachable blocks, etc).
964   TheFPM->add(createCFGSimplificationPass());
965 
966   TheFPM->doInitialization();
967 }
968 
HandleDefinition()969 static void HandleDefinition() {
970   if (auto FnAST = ParseDefinition()) {
971     if (auto *FnIR = FnAST->codegen()) {
972       fprintf(stderr, "Read function definition:");
973       FnIR->print(errs());
974       fprintf(stderr, "\n");
975       ExitOnErr(TheJIT->addModule(
976           ThreadSafeModule(std::move(TheModule), std::move(TheContext))));
977       InitializeModuleAndPassManager();
978     }
979   } else {
980     // Skip token for error recovery.
981     getNextToken();
982   }
983 }
984 
HandleExtern()985 static void HandleExtern() {
986   if (auto ProtoAST = ParseExtern()) {
987     if (auto *FnIR = ProtoAST->codegen()) {
988       fprintf(stderr, "Read extern: ");
989       FnIR->print(errs());
990       fprintf(stderr, "\n");
991       FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
992     }
993   } else {
994     // Skip token for error recovery.
995     getNextToken();
996   }
997 }
998 
HandleTopLevelExpression()999 static void HandleTopLevelExpression() {
1000   // Evaluate a top-level expression into an anonymous function.
1001   if (auto FnAST = ParseTopLevelExpr()) {
1002     if (FnAST->codegen()) {
1003       // Create a ResourceTracker to track JIT'd memory allocated to our
1004       // anonymous expression -- that way we can free it after executing.
1005       auto RT = TheJIT->getMainJITDylib().createResourceTracker();
1006 
1007       auto TSM = ThreadSafeModule(std::move(TheModule), std::move(TheContext));
1008       ExitOnErr(TheJIT->addModule(std::move(TSM), RT));
1009       InitializeModuleAndPassManager();
1010 
1011       // Search the JIT for the __anon_expr symbol.
1012       auto ExprSymbol = ExitOnErr(TheJIT->lookup("__anon_expr"));
1013 
1014       // Get the symbol's address and cast it to the right type (takes no
1015       // arguments, returns a double) so we can call it as a native function.
1016       double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
1017       fprintf(stderr, "Evaluated to %f\n", FP());
1018 
1019       // Delete the anonymous expression module from the JIT.
1020       ExitOnErr(RT->remove());
1021     }
1022   } else {
1023     // Skip token for error recovery.
1024     getNextToken();
1025   }
1026 }
1027 
1028 /// top ::= definition | external | expression | ';'
MainLoop()1029 static void MainLoop() {
1030   while (true) {
1031     fprintf(stderr, "ready> ");
1032     switch (CurTok) {
1033     case tok_eof:
1034       return;
1035     case ';': // ignore top-level semicolons.
1036       getNextToken();
1037       break;
1038     case tok_def:
1039       HandleDefinition();
1040       break;
1041     case tok_extern:
1042       HandleExtern();
1043       break;
1044     default:
1045       HandleTopLevelExpression();
1046       break;
1047     }
1048   }
1049 }
1050 
1051 //===----------------------------------------------------------------------===//
1052 // "Library" functions that can be "extern'd" from user code.
1053 //===----------------------------------------------------------------------===//
1054 
1055 #ifdef _WIN32
1056 #define DLLEXPORT __declspec(dllexport)
1057 #else
1058 #define DLLEXPORT
1059 #endif
1060 
1061 /// putchard - putchar that takes a double and returns 0.
putchard(double X)1062 extern "C" DLLEXPORT double putchard(double X) {
1063   fputc((char)X, stderr);
1064   return 0;
1065 }
1066 
1067 /// printd - printf that takes a double prints it as "%f\n", returning 0.
printd(double X)1068 extern "C" DLLEXPORT double printd(double X) {
1069   fprintf(stderr, "%f\n", X);
1070   return 0;
1071 }
1072 
1073 //===----------------------------------------------------------------------===//
1074 // Main driver code.
1075 //===----------------------------------------------------------------------===//
1076 
main()1077 int main() {
1078   InitializeNativeTarget();
1079   InitializeNativeTargetAsmPrinter();
1080   InitializeNativeTargetAsmParser();
1081 
1082   // Install standard binary operators.
1083   // 1 is lowest precedence.
1084   BinopPrecedence['<'] = 10;
1085   BinopPrecedence['+'] = 20;
1086   BinopPrecedence['-'] = 20;
1087   BinopPrecedence['*'] = 40; // highest.
1088 
1089   // Prime the first token.
1090   fprintf(stderr, "ready> ");
1091   getNextToken();
1092 
1093   TheJIT = ExitOnErr(KaleidoscopeJIT::Create());
1094 
1095   InitializeModuleAndPassManager();
1096 
1097   // Run the main "interpreter loop" now.
1098   MainLoop();
1099 
1100   return 0;
1101 }
1102