1 //===- LoopFusion.cpp - Code to perform loop fusion -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements loop fusion.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Analysis/AffineAnalysis.h"
15 #include "mlir/Analysis/AffineStructures.h"
16 #include "mlir/Analysis/LoopAnalysis.h"
17 #include "mlir/Analysis/Utils.h"
18 #include "mlir/Dialect/Affine/IR/AffineOps.h"
19 #include "mlir/Dialect/MemRef/IR/MemRef.h"
20 #include "mlir/IR/AffineExpr.h"
21 #include "mlir/IR/AffineMap.h"
22 #include "mlir/IR/Builders.h"
23 #include "mlir/Transforms/LoopFusionUtils.h"
24 #include "mlir/Transforms/LoopUtils.h"
25 #include "mlir/Transforms/Passes.h"
26 #include "mlir/Transforms/Utils.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <iomanip>
34 #include <sstream>
35 #define DEBUG_TYPE "affine-loop-fusion"
36 
37 using namespace mlir;
38 
39 namespace {
40 /// Loop fusion pass. This pass currently supports a greedy fusion policy,
41 /// which fuses loop nests with single-writer/single-reader memref dependences
42 /// with the goal of improving locality.
43 
44 // TODO: Support fusion of source loop nests which write to multiple
45 // memrefs, where each memref can have multiple users (if profitable).
46 // TODO: Extend this pass to check for fusion preventing dependences,
47 // and add support for more general loop fusion algorithms.
48 
49 struct LoopFusion : public AffineLoopFusionBase<LoopFusion> {
50   LoopFusion() = default;
LoopFusion__anon0903053b0111::LoopFusion51   LoopFusion(unsigned fastMemorySpace, uint64_t localBufSizeThresholdBytes,
52              bool maximalFusion) {
53     this->fastMemorySpace = fastMemorySpace;
54     this->localBufSizeThreshold = localBufSizeThresholdBytes / 1024;
55     this->maximalFusion = maximalFusion;
56   }
57 
58   void runOnFunction() override;
59 };
60 
61 } // end anonymous namespace
62 
63 std::unique_ptr<OperationPass<FuncOp>>
createLoopFusionPass(unsigned fastMemorySpace,uint64_t localBufSizeThreshold,bool maximalFusion)64 mlir::createLoopFusionPass(unsigned fastMemorySpace,
65                            uint64_t localBufSizeThreshold, bool maximalFusion) {
66   return std::make_unique<LoopFusion>(fastMemorySpace, localBufSizeThreshold,
67                                       maximalFusion);
68 }
69 
70 namespace {
71 
72 // LoopNestStateCollector walks loop nests and collects load and store
73 // operations, and whether or not an IfInst was encountered in the loop nest.
74 struct LoopNestStateCollector {
75   SmallVector<AffineForOp, 4> forOps;
76   SmallVector<Operation *, 4> loadOpInsts;
77   SmallVector<Operation *, 4> storeOpInsts;
78   bool hasNonForRegion = false;
79 
collect__anon0903053b0211::LoopNestStateCollector80   void collect(Operation *opToWalk) {
81     opToWalk->walk([&](Operation *op) {
82       if (isa<AffineForOp>(op))
83         forOps.push_back(cast<AffineForOp>(op));
84       else if (op->getNumRegions() != 0)
85         hasNonForRegion = true;
86       else if (isa<AffineReadOpInterface>(op))
87         loadOpInsts.push_back(op);
88       else if (isa<AffineWriteOpInterface>(op))
89         storeOpInsts.push_back(op);
90     });
91   }
92 };
93 
94 // MemRefDependenceGraph is a graph data structure where graph nodes are
95 // top-level operations in a FuncOp which contain load/store ops, and edges
96 // are memref dependences between the nodes.
97 // TODO: Add a more flexible dependence graph representation.
98 // TODO: Add a depth parameter to dependence graph construction.
99 struct MemRefDependenceGraph {
100 public:
101   // Node represents a node in the graph. A Node is either an entire loop nest
102   // rooted at the top level which contains loads/stores, or a top level
103   // load/store.
104   struct Node {
105     // The unique identifier of this node in the graph.
106     unsigned id;
107     // The top-level statement which is (or contains) a load/store.
108     Operation *op;
109     // List of load operations.
110     SmallVector<Operation *, 4> loads;
111     // List of store op insts.
112     SmallVector<Operation *, 4> stores;
Node__anon0903053b0211::MemRefDependenceGraph::Node113     Node(unsigned id, Operation *op) : id(id), op(op) {}
114 
115     // Returns the load op count for 'memref'.
getLoadOpCount__anon0903053b0211::MemRefDependenceGraph::Node116     unsigned getLoadOpCount(Value memref) {
117       unsigned loadOpCount = 0;
118       for (auto *loadOpInst : loads) {
119         if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef())
120           ++loadOpCount;
121       }
122       return loadOpCount;
123     }
124 
125     // Returns the store op count for 'memref'.
getStoreOpCount__anon0903053b0211::MemRefDependenceGraph::Node126     unsigned getStoreOpCount(Value memref) {
127       unsigned storeOpCount = 0;
128       for (auto *storeOpInst : stores) {
129         if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef())
130           ++storeOpCount;
131       }
132       return storeOpCount;
133     }
134 
135     // Returns all store ops in 'storeOps' which access 'memref'.
getStoreOpsForMemref__anon0903053b0211::MemRefDependenceGraph::Node136     void getStoreOpsForMemref(Value memref,
137                               SmallVectorImpl<Operation *> *storeOps) {
138       for (auto *storeOpInst : stores) {
139         if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef())
140           storeOps->push_back(storeOpInst);
141       }
142     }
143 
144     // Returns all load ops in 'loadOps' which access 'memref'.
getLoadOpsForMemref__anon0903053b0211::MemRefDependenceGraph::Node145     void getLoadOpsForMemref(Value memref,
146                              SmallVectorImpl<Operation *> *loadOps) {
147       for (auto *loadOpInst : loads) {
148         if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef())
149           loadOps->push_back(loadOpInst);
150       }
151     }
152 
153     // Returns all memrefs in 'loadAndStoreMemrefSet' for which this node
154     // has at least one load and store operation.
getLoadAndStoreMemrefSet__anon0903053b0211::MemRefDependenceGraph::Node155     void getLoadAndStoreMemrefSet(DenseSet<Value> *loadAndStoreMemrefSet) {
156       llvm::SmallDenseSet<Value, 2> loadMemrefs;
157       for (auto *loadOpInst : loads) {
158         loadMemrefs.insert(cast<AffineReadOpInterface>(loadOpInst).getMemRef());
159       }
160       for (auto *storeOpInst : stores) {
161         auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
162         if (loadMemrefs.count(memref) > 0)
163           loadAndStoreMemrefSet->insert(memref);
164       }
165     }
166   };
167 
168   // Edge represents a data dependence between nodes in the graph.
169   struct Edge {
170     // The id of the node at the other end of the edge.
171     // If this edge is stored in Edge = Node.inEdges[i], then
172     // 'Node.inEdges[i].id' is the identifier of the source node of the edge.
173     // If this edge is stored in Edge = Node.outEdges[i], then
174     // 'Node.outEdges[i].id' is the identifier of the dest node of the edge.
175     unsigned id;
176     // The SSA value on which this edge represents a dependence.
177     // If the value is a memref, then the dependence is between graph nodes
178     // which contain accesses to the same memref 'value'. If the value is a
179     // non-memref value, then the dependence is between a graph node which
180     // defines an SSA value and another graph node which uses the SSA value
181     // (e.g. a constant or load operation defining a value which is used inside
182     // a loop nest).
183     Value value;
184   };
185 
186   // Map from node id to Node.
187   DenseMap<unsigned, Node> nodes;
188   // Map from node id to list of input edges.
189   DenseMap<unsigned, SmallVector<Edge, 2>> inEdges;
190   // Map from node id to list of output edges.
191   DenseMap<unsigned, SmallVector<Edge, 2>> outEdges;
192   // Map from memref to a count on the dependence edges associated with that
193   // memref.
194   DenseMap<Value, unsigned> memrefEdgeCount;
195   // The next unique identifier to use for newly created graph nodes.
196   unsigned nextNodeId = 0;
197 
MemRefDependenceGraph__anon0903053b0211::MemRefDependenceGraph198   MemRefDependenceGraph() {}
199 
200   // Initializes the dependence graph based on operations in 'f'.
201   // Returns true on success, false otherwise.
202   bool init(FuncOp f);
203 
204   // Returns the graph node for 'id'.
getNode__anon0903053b0211::MemRefDependenceGraph205   Node *getNode(unsigned id) {
206     auto it = nodes.find(id);
207     assert(it != nodes.end());
208     return &it->second;
209   }
210 
211   // Returns the graph node for 'forOp'.
getForOpNode__anon0903053b0211::MemRefDependenceGraph212   Node *getForOpNode(AffineForOp forOp) {
213     for (auto &idAndNode : nodes)
214       if (idAndNode.second.op == forOp.getOperation())
215         return &idAndNode.second;
216     return nullptr;
217   }
218 
219   // Adds a node with 'op' to the graph and returns its unique identifier.
addNode__anon0903053b0211::MemRefDependenceGraph220   unsigned addNode(Operation *op) {
221     Node node(nextNodeId++, op);
222     nodes.insert({node.id, node});
223     return node.id;
224   }
225 
226   // Remove node 'id' (and its associated edges) from graph.
removeNode__anon0903053b0211::MemRefDependenceGraph227   void removeNode(unsigned id) {
228     // Remove each edge in 'inEdges[id]'.
229     if (inEdges.count(id) > 0) {
230       SmallVector<Edge, 2> oldInEdges = inEdges[id];
231       for (auto &inEdge : oldInEdges) {
232         removeEdge(inEdge.id, id, inEdge.value);
233       }
234     }
235     // Remove each edge in 'outEdges[id]'.
236     if (outEdges.count(id) > 0) {
237       SmallVector<Edge, 2> oldOutEdges = outEdges[id];
238       for (auto &outEdge : oldOutEdges) {
239         removeEdge(id, outEdge.id, outEdge.value);
240       }
241     }
242     // Erase remaining node state.
243     inEdges.erase(id);
244     outEdges.erase(id);
245     nodes.erase(id);
246   }
247 
248   // Returns true if node 'id' writes to any memref which escapes (or is an
249   // argument to) the function/block. Returns false otherwise.
writesToLiveInOrEscapingMemrefs__anon0903053b0211::MemRefDependenceGraph250   bool writesToLiveInOrEscapingMemrefs(unsigned id) {
251     Node *node = getNode(id);
252     for (auto *storeOpInst : node->stores) {
253       auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
254       auto *op = memref.getDefiningOp();
255       // Return true if 'memref' is a block argument.
256       if (!op)
257         return true;
258       // Return true if any use of 'memref' escapes the function.
259       for (auto *user : memref.getUsers())
260         if (!isa<AffineMapAccessInterface>(*user))
261           return true;
262     }
263     return false;
264   }
265 
266   // Returns true iff there is an edge from node 'srcId' to node 'dstId' which
267   // is for 'value' if non-null, or for any value otherwise. Returns false
268   // otherwise.
hasEdge__anon0903053b0211::MemRefDependenceGraph269   bool hasEdge(unsigned srcId, unsigned dstId, Value value = nullptr) {
270     if (outEdges.count(srcId) == 0 || inEdges.count(dstId) == 0) {
271       return false;
272     }
273     bool hasOutEdge = llvm::any_of(outEdges[srcId], [=](Edge &edge) {
274       return edge.id == dstId && (!value || edge.value == value);
275     });
276     bool hasInEdge = llvm::any_of(inEdges[dstId], [=](Edge &edge) {
277       return edge.id == srcId && (!value || edge.value == value);
278     });
279     return hasOutEdge && hasInEdge;
280   }
281 
282   // Adds an edge from node 'srcId' to node 'dstId' for 'value'.
addEdge__anon0903053b0211::MemRefDependenceGraph283   void addEdge(unsigned srcId, unsigned dstId, Value value) {
284     if (!hasEdge(srcId, dstId, value)) {
285       outEdges[srcId].push_back({dstId, value});
286       inEdges[dstId].push_back({srcId, value});
287       if (value.getType().isa<MemRefType>())
288         memrefEdgeCount[value]++;
289     }
290   }
291 
292   // Removes an edge from node 'srcId' to node 'dstId' for 'value'.
removeEdge__anon0903053b0211::MemRefDependenceGraph293   void removeEdge(unsigned srcId, unsigned dstId, Value value) {
294     assert(inEdges.count(dstId) > 0);
295     assert(outEdges.count(srcId) > 0);
296     if (value.getType().isa<MemRefType>()) {
297       assert(memrefEdgeCount.count(value) > 0);
298       memrefEdgeCount[value]--;
299     }
300     // Remove 'srcId' from 'inEdges[dstId]'.
301     for (auto it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) {
302       if ((*it).id == srcId && (*it).value == value) {
303         inEdges[dstId].erase(it);
304         break;
305       }
306     }
307     // Remove 'dstId' from 'outEdges[srcId]'.
308     for (auto it = outEdges[srcId].begin(); it != outEdges[srcId].end(); ++it) {
309       if ((*it).id == dstId && (*it).value == value) {
310         outEdges[srcId].erase(it);
311         break;
312       }
313     }
314   }
315 
316   // Returns true if there is a path in the dependence graph from node 'srcId'
317   // to node 'dstId'. Returns false otherwise.
hasDependencePath__anon0903053b0211::MemRefDependenceGraph318   bool hasDependencePath(unsigned srcId, unsigned dstId) {
319     // Worklist state is: <node-id, next-output-edge-index-to-visit>
320     SmallVector<std::pair<unsigned, unsigned>, 4> worklist;
321     worklist.push_back({srcId, 0});
322     // Run DFS traversal to see if 'dstId' is reachable from 'srcId'.
323     while (!worklist.empty()) {
324       auto &idAndIndex = worklist.back();
325       // Return true if we have reached 'dstId'.
326       if (idAndIndex.first == dstId)
327         return true;
328       // Pop and continue if node has no out edges, or if all out edges have
329       // already been visited.
330       if (outEdges.count(idAndIndex.first) == 0 ||
331           idAndIndex.second == outEdges[idAndIndex.first].size()) {
332         worklist.pop_back();
333         continue;
334       }
335       // Get graph edge to traverse.
336       Edge edge = outEdges[idAndIndex.first][idAndIndex.second];
337       // Increment next output edge index for 'idAndIndex'.
338       ++idAndIndex.second;
339       // Add node at 'edge.id' to worklist.
340       worklist.push_back({edge.id, 0});
341     }
342     return false;
343   }
344 
345   // Returns the input edge count for node 'id' and 'memref' from src nodes
346   // which access 'memref' with a store operation.
getIncomingMemRefAccesses__anon0903053b0211::MemRefDependenceGraph347   unsigned getIncomingMemRefAccesses(unsigned id, Value memref) {
348     unsigned inEdgeCount = 0;
349     if (inEdges.count(id) > 0)
350       for (auto &inEdge : inEdges[id])
351         if (inEdge.value == memref) {
352           Node *srcNode = getNode(inEdge.id);
353           // Only count in edges from 'srcNode' if 'srcNode' accesses 'memref'
354           if (srcNode->getStoreOpCount(memref) > 0)
355             ++inEdgeCount;
356         }
357     return inEdgeCount;
358   }
359 
360   // Returns the output edge count for node 'id' and 'memref' (if non-null),
361   // otherwise returns the total output edge count from node 'id'.
getOutEdgeCount__anon0903053b0211::MemRefDependenceGraph362   unsigned getOutEdgeCount(unsigned id, Value memref = nullptr) {
363     unsigned outEdgeCount = 0;
364     if (outEdges.count(id) > 0)
365       for (auto &outEdge : outEdges[id])
366         if (!memref || outEdge.value == memref)
367           ++outEdgeCount;
368     return outEdgeCount;
369   }
370 
371   /// Return all nodes which define SSA values used in node 'id'.
gatherDefiningNodes__anon0903053b0211::MemRefDependenceGraph372   void gatherDefiningNodes(unsigned id, DenseSet<unsigned> &definingNodes) {
373     for (MemRefDependenceGraph::Edge edge : inEdges[id])
374       // By definition of edge, if the edge value is a non-memref value,
375       // then the dependence is between a graph node which defines an SSA value
376       // and another graph node which uses the SSA value.
377       if (!edge.value.getType().isa<MemRefType>())
378         definingNodes.insert(edge.id);
379   }
380 
381   // Computes and returns an insertion point operation, before which the
382   // the fused <srcId, dstId> loop nest can be inserted while preserving
383   // dependences. Returns nullptr if no such insertion point is found.
getFusedLoopNestInsertionPoint__anon0903053b0211::MemRefDependenceGraph384   Operation *getFusedLoopNestInsertionPoint(unsigned srcId, unsigned dstId) {
385     if (outEdges.count(srcId) == 0)
386       return getNode(dstId)->op;
387 
388     // Skip if there is any defining node of 'dstId' that depends on 'srcId'.
389     DenseSet<unsigned> definingNodes;
390     gatherDefiningNodes(dstId, definingNodes);
391     if (llvm::any_of(definingNodes, [&](unsigned id) {
392           return hasDependencePath(srcId, id);
393         })) {
394       LLVM_DEBUG(llvm::dbgs()
395                  << "Can't fuse: a defining op with a user in the dst "
396                     "loop has dependence from the src loop\n");
397       return nullptr;
398     }
399 
400     // Build set of insts in range (srcId, dstId) which depend on 'srcId'.
401     SmallPtrSet<Operation *, 2> srcDepInsts;
402     for (auto &outEdge : outEdges[srcId])
403       if (outEdge.id != dstId)
404         srcDepInsts.insert(getNode(outEdge.id)->op);
405 
406     // Build set of insts in range (srcId, dstId) on which 'dstId' depends.
407     SmallPtrSet<Operation *, 2> dstDepInsts;
408     for (auto &inEdge : inEdges[dstId])
409       if (inEdge.id != srcId)
410         dstDepInsts.insert(getNode(inEdge.id)->op);
411 
412     Operation *srcNodeInst = getNode(srcId)->op;
413     Operation *dstNodeInst = getNode(dstId)->op;
414 
415     // Computing insertion point:
416     // *) Walk all operation positions in Block operation list in the
417     //    range (src, dst). For each operation 'op' visited in this search:
418     //   *) Store in 'firstSrcDepPos' the first position where 'op' has a
419     //      dependence edge from 'srcNode'.
420     //   *) Store in 'lastDstDepPost' the last position where 'op' has a
421     //      dependence edge to 'dstNode'.
422     // *) Compare 'firstSrcDepPos' and 'lastDstDepPost' to determine the
423     //    operation insertion point (or return null pointer if no such
424     //    insertion point exists: 'firstSrcDepPos' <= 'lastDstDepPos').
425     SmallVector<Operation *, 2> depInsts;
426     Optional<unsigned> firstSrcDepPos;
427     Optional<unsigned> lastDstDepPos;
428     unsigned pos = 0;
429     for (Block::iterator it = std::next(Block::iterator(srcNodeInst));
430          it != Block::iterator(dstNodeInst); ++it) {
431       Operation *op = &(*it);
432       if (srcDepInsts.count(op) > 0 && firstSrcDepPos == None)
433         firstSrcDepPos = pos;
434       if (dstDepInsts.count(op) > 0)
435         lastDstDepPos = pos;
436       depInsts.push_back(op);
437       ++pos;
438     }
439 
440     if (firstSrcDepPos.hasValue()) {
441       if (lastDstDepPos.hasValue()) {
442         if (firstSrcDepPos.getValue() <= lastDstDepPos.getValue()) {
443           // No valid insertion point exists which preserves dependences.
444           return nullptr;
445         }
446       }
447       // Return the insertion point at 'firstSrcDepPos'.
448       return depInsts[firstSrcDepPos.getValue()];
449     }
450     // No dependence targets in range (or only dst deps in range), return
451     // 'dstNodInst' insertion point.
452     return dstNodeInst;
453   }
454 
455   // Updates edge mappings from node 'srcId' to node 'dstId' after fusing them,
456   // taking into account that:
457   //   *) if 'removeSrcId' is true, 'srcId' will be removed after fusion,
458   //   *) memrefs in 'privateMemRefs' has been replaced in node at 'dstId' by a
459   //      private memref.
updateEdges__anon0903053b0211::MemRefDependenceGraph460   void updateEdges(unsigned srcId, unsigned dstId,
461                    const DenseSet<Value> &privateMemRefs, bool removeSrcId) {
462     // For each edge in 'inEdges[srcId]': add new edge remapping to 'dstId'.
463     if (inEdges.count(srcId) > 0) {
464       SmallVector<Edge, 2> oldInEdges = inEdges[srcId];
465       for (auto &inEdge : oldInEdges) {
466         // Add edge from 'inEdge.id' to 'dstId' if it's not a private memref.
467         if (privateMemRefs.count(inEdge.value) == 0)
468           addEdge(inEdge.id, dstId, inEdge.value);
469       }
470     }
471     // For each edge in 'outEdges[srcId]': remove edge from 'srcId' to 'dstId'.
472     // If 'srcId' is going to be removed, remap all the out edges to 'dstId'.
473     if (outEdges.count(srcId) > 0) {
474       SmallVector<Edge, 2> oldOutEdges = outEdges[srcId];
475       for (auto &outEdge : oldOutEdges) {
476         // Remove any out edges from 'srcId' to 'dstId' across memrefs.
477         if (outEdge.id == dstId)
478           removeEdge(srcId, outEdge.id, outEdge.value);
479         else if (removeSrcId) {
480           addEdge(dstId, outEdge.id, outEdge.value);
481           removeEdge(srcId, outEdge.id, outEdge.value);
482         }
483       }
484     }
485     // Remove any edges in 'inEdges[dstId]' on 'oldMemRef' (which is being
486     // replaced by a private memref). These edges could come from nodes
487     // other than 'srcId' which were removed in the previous step.
488     if (inEdges.count(dstId) > 0 && !privateMemRefs.empty()) {
489       SmallVector<Edge, 2> oldInEdges = inEdges[dstId];
490       for (auto &inEdge : oldInEdges)
491         if (privateMemRefs.count(inEdge.value) > 0)
492           removeEdge(inEdge.id, dstId, inEdge.value);
493     }
494   }
495 
496   // Update edge mappings for nodes 'sibId' and 'dstId' to reflect fusion
497   // of sibling node 'sibId' into node 'dstId'.
updateEdges__anon0903053b0211::MemRefDependenceGraph498   void updateEdges(unsigned sibId, unsigned dstId) {
499     // For each edge in 'inEdges[sibId]':
500     // *) Add new edge from source node 'inEdge.id' to 'dstNode'.
501     // *) Remove edge from source node 'inEdge.id' to 'sibNode'.
502     if (inEdges.count(sibId) > 0) {
503       SmallVector<Edge, 2> oldInEdges = inEdges[sibId];
504       for (auto &inEdge : oldInEdges) {
505         addEdge(inEdge.id, dstId, inEdge.value);
506         removeEdge(inEdge.id, sibId, inEdge.value);
507       }
508     }
509 
510     // For each edge in 'outEdges[sibId]' to node 'id'
511     // *) Add new edge from 'dstId' to 'outEdge.id'.
512     // *) Remove edge from 'sibId' to 'outEdge.id'.
513     if (outEdges.count(sibId) > 0) {
514       SmallVector<Edge, 2> oldOutEdges = outEdges[sibId];
515       for (auto &outEdge : oldOutEdges) {
516         addEdge(dstId, outEdge.id, outEdge.value);
517         removeEdge(sibId, outEdge.id, outEdge.value);
518       }
519     }
520   }
521 
522   // Adds ops in 'loads' and 'stores' to node at 'id'.
addToNode__anon0903053b0211::MemRefDependenceGraph523   void addToNode(unsigned id, const SmallVectorImpl<Operation *> &loads,
524                  const SmallVectorImpl<Operation *> &stores) {
525     Node *node = getNode(id);
526     for (auto *loadOpInst : loads)
527       node->loads.push_back(loadOpInst);
528     for (auto *storeOpInst : stores)
529       node->stores.push_back(storeOpInst);
530   }
531 
clearNodeLoadAndStores__anon0903053b0211::MemRefDependenceGraph532   void clearNodeLoadAndStores(unsigned id) {
533     Node *node = getNode(id);
534     node->loads.clear();
535     node->stores.clear();
536   }
537 
538   // Calls 'callback' for each input edge incident to node 'id' which carries a
539   // memref dependence.
forEachMemRefInputEdge__anon0903053b0211::MemRefDependenceGraph540   void forEachMemRefInputEdge(unsigned id,
541                               const std::function<void(Edge)> &callback) {
542     if (inEdges.count(id) > 0)
543       forEachMemRefEdge(inEdges[id], callback);
544   }
545 
546   // Calls 'callback' for each output edge from node 'id' which carries a
547   // memref dependence.
forEachMemRefOutputEdge__anon0903053b0211::MemRefDependenceGraph548   void forEachMemRefOutputEdge(unsigned id,
549                                const std::function<void(Edge)> &callback) {
550     if (outEdges.count(id) > 0)
551       forEachMemRefEdge(outEdges[id], callback);
552   }
553 
554   // Calls 'callback' for each edge in 'edges' which carries a memref
555   // dependence.
forEachMemRefEdge__anon0903053b0211::MemRefDependenceGraph556   void forEachMemRefEdge(ArrayRef<Edge> edges,
557                          const std::function<void(Edge)> &callback) {
558     for (const auto &edge : edges) {
559       // Skip if 'edge' is not a memref dependence edge.
560       if (!edge.value.getType().isa<MemRefType>())
561         continue;
562       assert(nodes.count(edge.id) > 0);
563       // Skip if 'edge.id' is not a loop nest.
564       if (!isa<AffineForOp>(getNode(edge.id)->op))
565         continue;
566       // Visit current input edge 'edge'.
567       callback(edge);
568     }
569   }
570 
print__anon0903053b0211::MemRefDependenceGraph571   void print(raw_ostream &os) const {
572     os << "\nMemRefDependenceGraph\n";
573     os << "\nNodes:\n";
574     for (const auto &idAndNode : nodes) {
575       os << "Node: " << idAndNode.first << "\n";
576       auto it = inEdges.find(idAndNode.first);
577       if (it != inEdges.end()) {
578         for (const auto &e : it->second)
579           os << "  InEdge: " << e.id << " " << e.value << "\n";
580       }
581       it = outEdges.find(idAndNode.first);
582       if (it != outEdges.end()) {
583         for (const auto &e : it->second)
584           os << "  OutEdge: " << e.id << " " << e.value << "\n";
585       }
586     }
587   }
dump__anon0903053b0211::MemRefDependenceGraph588   void dump() const { print(llvm::errs()); }
589 };
590 
591 /// Returns true if node 'srcId' can be removed after fusing it with node
592 /// 'dstId'. The node can be removed if any of the following conditions are met:
593 ///   1. 'srcId' has no output dependences after fusion and no escaping memrefs.
594 ///   2. 'srcId' has no output dependences after fusion, has escaping memrefs
595 ///       and the fusion slice is maximal.
596 ///   3. 'srcId' has output dependences after fusion, the fusion slice is
597 ///      maximal and the fusion insertion point dominates all the dependences.
canRemoveSrcNodeAfterFusion(unsigned srcId,unsigned dstId,const ComputationSliceState & fusionSlice,Operation * fusedLoopInsPoint,const DenseSet<Value> & escapingMemRefs,MemRefDependenceGraph * mdg)598 static bool canRemoveSrcNodeAfterFusion(
599     unsigned srcId, unsigned dstId, const ComputationSliceState &fusionSlice,
600     Operation *fusedLoopInsPoint, const DenseSet<Value> &escapingMemRefs,
601     MemRefDependenceGraph *mdg) {
602 
603   Operation *dstNodeOp = mdg->getNode(dstId)->op;
604   bool hasOutDepsAfterFusion = false;
605 
606   for (auto &outEdge : mdg->outEdges[srcId]) {
607     Operation *depNodeOp = mdg->getNode(outEdge.id)->op;
608     // Skip dependence with dstOp since it will be removed after fusion.
609     if (depNodeOp == dstNodeOp)
610       continue;
611 
612     // Only fusion within the same block is supported. Use domination analysis
613     // when needed.
614     if (depNodeOp->getBlock() != dstNodeOp->getBlock())
615       return false;
616 
617     // Check if the insertion point of the fused loop dominates the dependence.
618     // Otherwise, the src loop can't be removed.
619     if (fusedLoopInsPoint != depNodeOp &&
620         !fusedLoopInsPoint->isBeforeInBlock(depNodeOp)) {
621       LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: dst loop doesn't "
622                                  "dominate dependence\n");
623       return false;
624     }
625 
626     hasOutDepsAfterFusion = true;
627   }
628 
629   // If src loop has dependences after fusion or it writes to an live-out or
630   // escaping memref, we can only remove it if the fusion slice is maximal so
631   // that all the dependences are preserved.
632   if (hasOutDepsAfterFusion || !escapingMemRefs.empty()) {
633     Optional<bool> isMaximal = fusionSlice.isMaximal();
634     if (!isMaximal.hasValue()) {
635       LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: can't determine "
636                                  "if fusion is maximal\n");
637       return false;
638     }
639 
640     if (!isMaximal.getValue()) {
641       LLVM_DEBUG(llvm::dbgs()
642                  << "Src loop can't be removed: fusion is not maximal\n");
643       return false;
644     }
645   }
646 
647   return true;
648 }
649 
650 /// Returns in 'srcIdCandidates' the producer fusion candidates for consumer
651 /// 'dstId'. Candidates are sorted by node id order. This order corresponds to
652 /// the program order when the 'mdg' is created. However, program order is not
653 /// guaranteed and must not be required by the client. Program order won't be
654 /// held if the 'mdg' is reused from a previous fusion step or if the node
655 /// creation order changes in the future to support more advance cases.
656 // TODO: Move this to a loop fusion utility once 'mdg' is also moved.
getProducerCandidates(unsigned dstId,MemRefDependenceGraph * mdg,SmallVectorImpl<unsigned> & srcIdCandidates)657 static void getProducerCandidates(unsigned dstId, MemRefDependenceGraph *mdg,
658                                   SmallVectorImpl<unsigned> &srcIdCandidates) {
659   // Skip if no input edges along which to fuse.
660   if (mdg->inEdges.count(dstId) == 0)
661     return;
662 
663   // Gather memrefs from loads in 'dstId'.
664   auto *dstNode = mdg->getNode(dstId);
665   DenseSet<Value> consumedMemrefs;
666   for (Operation *load : dstNode->loads)
667     consumedMemrefs.insert(cast<AffineReadOpInterface>(load).getMemRef());
668 
669   // Traverse 'dstId' incoming edges and gather the nodes that contain a store
670   // to one of the consumed memrefs.
671   for (auto &srcEdge : mdg->inEdges[dstId]) {
672     auto *srcNode = mdg->getNode(srcEdge.id);
673     // Skip if 'srcNode' is not a loop nest.
674     if (!isa<AffineForOp>(srcNode->op))
675       continue;
676 
677     if (any_of(srcNode->stores, [&](Operation *op) {
678           auto storeOp = cast<AffineWriteOpInterface>(op);
679           return consumedMemrefs.count(storeOp.getMemRef()) > 0;
680         }))
681       srcIdCandidates.push_back(srcNode->id);
682   }
683 
684   std::sort(srcIdCandidates.begin(), srcIdCandidates.end());
685   srcIdCandidates.erase(
686       std::unique(srcIdCandidates.begin(), srcIdCandidates.end()),
687       srcIdCandidates.end());
688 }
689 
690 /// Returns in 'producerConsumerMemrefs' the memrefs involved in a
691 /// producer-consumer dependence between 'srcId' and 'dstId'.
692 static void
gatherProducerConsumerMemrefs(unsigned srcId,unsigned dstId,MemRefDependenceGraph * mdg,DenseSet<Value> & producerConsumerMemrefs)693 gatherProducerConsumerMemrefs(unsigned srcId, unsigned dstId,
694                               MemRefDependenceGraph *mdg,
695                               DenseSet<Value> &producerConsumerMemrefs) {
696   auto *dstNode = mdg->getNode(dstId);
697   auto *srcNode = mdg->getNode(srcId);
698   gatherProducerConsumerMemrefs(srcNode->stores, dstNode->loads,
699                                 producerConsumerMemrefs);
700 }
701 
702 /// Returns in 'escapingMemRefs' the memrefs from affine store ops in node 'id'
703 /// that escape the function. A memref escapes the function if either:
704 ///   1. It's a function argument, or
705 ///   2. It's used by a non-affine op (e.g., std load/store, std call, etc.)
gatherEscapingMemrefs(unsigned id,MemRefDependenceGraph * mdg,DenseSet<Value> & escapingMemRefs)706 void gatherEscapingMemrefs(unsigned id, MemRefDependenceGraph *mdg,
707                            DenseSet<Value> &escapingMemRefs) {
708   auto *node = mdg->getNode(id);
709   for (auto *storeOpInst : node->stores) {
710     auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
711     if (escapingMemRefs.count(memref))
712       continue;
713     // Check if 'memref' escapes because it's a block argument.
714     if (memref.isa<BlockArgument>()) {
715       escapingMemRefs.insert(memref);
716       continue;
717     }
718     // Check if 'memref' escapes through a non-affine op (e.g., std load/store,
719     // call op, etc.).
720     for (Operation *user : memref.getUsers())
721       if (!isa<AffineMapAccessInterface>(*user))
722         escapingMemRefs.insert(memref);
723   }
724 }
725 
726 } // end anonymous namespace
727 
728 // Initializes the data dependence graph by walking operations in 'f'.
729 // Assigns each node in the graph a node id based on program order in 'f'.
730 // TODO: Add support for taking a Block arg to construct the
731 // dependence graph at a different depth.
init(FuncOp f)732 bool MemRefDependenceGraph::init(FuncOp f) {
733   LLVM_DEBUG(llvm::dbgs() << "--- Initializing MDG ---\n");
734   DenseMap<Value, SetVector<unsigned>> memrefAccesses;
735 
736   // TODO: support multi-block functions.
737   if (!llvm::hasSingleElement(f))
738     return false;
739 
740   DenseMap<Operation *, unsigned> forToNodeMap;
741   for (auto &op : f.front()) {
742     if (auto forOp = dyn_cast<AffineForOp>(op)) {
743       // Create graph node 'id' to represent top-level 'forOp' and record
744       // all loads and store accesses it contains.
745       LoopNestStateCollector collector;
746       collector.collect(&op);
747       // Return false if a non 'affine.for' region was found (not currently
748       // supported).
749       if (collector.hasNonForRegion)
750         return false;
751       Node node(nextNodeId++, &op);
752       for (auto *opInst : collector.loadOpInsts) {
753         node.loads.push_back(opInst);
754         auto memref = cast<AffineReadOpInterface>(opInst).getMemRef();
755         memrefAccesses[memref].insert(node.id);
756       }
757       for (auto *opInst : collector.storeOpInsts) {
758         node.stores.push_back(opInst);
759         auto memref = cast<AffineWriteOpInterface>(opInst).getMemRef();
760         memrefAccesses[memref].insert(node.id);
761       }
762       forToNodeMap[&op] = node.id;
763       nodes.insert({node.id, node});
764     } else if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) {
765       // Create graph node for top-level load op.
766       Node node(nextNodeId++, &op);
767       node.loads.push_back(&op);
768       auto memref = cast<AffineReadOpInterface>(op).getMemRef();
769       memrefAccesses[memref].insert(node.id);
770       nodes.insert({node.id, node});
771     } else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
772       // Create graph node for top-level store op.
773       Node node(nextNodeId++, &op);
774       node.stores.push_back(&op);
775       auto memref = cast<AffineWriteOpInterface>(op).getMemRef();
776       memrefAccesses[memref].insert(node.id);
777       nodes.insert({node.id, node});
778     } else if (op.getNumRegions() != 0) {
779       // Return false if another region is found (not currently supported).
780       return false;
781     } else if (op.getNumResults() > 0 && !op.use_empty()) {
782       // Create graph node for top-level producer of SSA values, which
783       // could be used by loop nest nodes.
784       Node node(nextNodeId++, &op);
785       nodes.insert({node.id, node});
786     } else if (isa<CallOpInterface>(op)) {
787       // Create graph node for top-level Call Op that takes any argument of
788       // memref type. Call Op that returns one or more memref type results
789       // is already taken care of, by the previous conditions.
790       if (llvm::any_of(op.getOperandTypes(),
791                        [&](Type t) { return t.isa<MemRefType>(); })) {
792         Node node(nextNodeId++, &op);
793         nodes.insert({node.id, node});
794       }
795     } else if (auto effectInterface = dyn_cast<MemoryEffectOpInterface>(op)) {
796       // Create graph node for top-level op, which could have a memory write
797       // side effect.
798       SmallVector<MemoryEffects::EffectInstance, 1> effects;
799       effectInterface.getEffects(effects);
800       if (llvm::any_of(effects, [](const MemoryEffects::EffectInstance &it) {
801             return isa<MemoryEffects::Write, MemoryEffects::Free>(
802                 it.getEffect());
803           })) {
804         Node node(nextNodeId++, &op);
805         nodes.insert({node.id, node});
806       }
807     }
808   }
809 
810   for (auto &idAndNode : nodes) {
811     LLVM_DEBUG(llvm::dbgs() << "Create node " << idAndNode.first << " for:\n"
812                             << *(idAndNode.second.op) << "\n");
813     (void)idAndNode;
814   }
815 
816   // Add dependence edges between nodes which produce SSA values and their
817   // users. Load ops can be considered as the ones producing SSA values.
818   for (auto &idAndNode : nodes) {
819     const Node &node = idAndNode.second;
820     // Stores don't define SSA values, skip them.
821     if (!node.stores.empty())
822       continue;
823     auto *opInst = node.op;
824     for (auto value : opInst->getResults()) {
825       for (auto *user : value.getUsers()) {
826         SmallVector<AffineForOp, 4> loops;
827         getLoopIVs(*user, &loops);
828         if (loops.empty())
829           continue;
830         assert(forToNodeMap.count(loops[0].getOperation()) > 0);
831         unsigned userLoopNestId = forToNodeMap[loops[0].getOperation()];
832         addEdge(node.id, userLoopNestId, value);
833       }
834     }
835   }
836 
837   // Walk memref access lists and add graph edges between dependent nodes.
838   for (auto &memrefAndList : memrefAccesses) {
839     unsigned n = memrefAndList.second.size();
840     for (unsigned i = 0; i < n; ++i) {
841       unsigned srcId = memrefAndList.second[i];
842       bool srcHasStore =
843           getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0;
844       for (unsigned j = i + 1; j < n; ++j) {
845         unsigned dstId = memrefAndList.second[j];
846         bool dstHasStore =
847             getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0;
848         if (srcHasStore || dstHasStore)
849           addEdge(srcId, dstId, memrefAndList.first);
850       }
851     }
852   }
853   return true;
854 }
855 
856 // Sinks all sequential loops to the innermost levels (while preserving
857 // relative order among them) and moves all parallel loops to the
858 // outermost (while again preserving relative order among them).
859 // This can increase the loop depth at which we can fuse a slice, since we are
860 // pushing loop carried dependence to a greater depth in the loop nest.
sinkSequentialLoops(MemRefDependenceGraph::Node * node)861 static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) {
862   assert(isa<AffineForOp>(node->op));
863   AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op));
864   node->op = newRootForOp.getOperation();
865 }
866 
867 //  TODO: improve/complete this when we have target data.
getMemRefEltSizeInBytes(MemRefType memRefType)868 static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
869   auto elementType = memRefType.getElementType();
870 
871   unsigned sizeInBits;
872   if (elementType.isIntOrFloat()) {
873     sizeInBits = elementType.getIntOrFloatBitWidth();
874   } else {
875     auto vectorType = elementType.cast<VectorType>();
876     sizeInBits =
877         vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
878   }
879   return llvm::divideCeil(sizeInBits, 8);
880 }
881 
882 // Creates and returns a private (single-user) memref for fused loop rooted
883 // at 'forOp', with (potentially reduced) memref size based on the
884 // MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'.
885 // TODO: consider refactoring the common code from generateDma and
886 // this one.
createPrivateMemRef(AffineForOp forOp,Operation * srcStoreOpInst,unsigned dstLoopDepth,Optional<unsigned> fastMemorySpace,uint64_t localBufSizeThreshold)887 static Value createPrivateMemRef(AffineForOp forOp, Operation *srcStoreOpInst,
888                                  unsigned dstLoopDepth,
889                                  Optional<unsigned> fastMemorySpace,
890                                  uint64_t localBufSizeThreshold) {
891   auto *forInst = forOp.getOperation();
892 
893   // Create builder to insert alloc op just before 'forOp'.
894   OpBuilder b(forInst);
895   // Builder to create constants at the top level.
896   OpBuilder top(forInst->getParentOfType<FuncOp>().getBody());
897   // Create new memref type based on slice bounds.
898   auto oldMemRef = cast<AffineWriteOpInterface>(srcStoreOpInst).getMemRef();
899   auto oldMemRefType = oldMemRef.getType().cast<MemRefType>();
900   unsigned rank = oldMemRefType.getRank();
901 
902   // Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'.
903   MemRefRegion region(srcStoreOpInst->getLoc());
904   bool validRegion = succeeded(region.compute(srcStoreOpInst, dstLoopDepth));
905   (void)validRegion;
906   assert(validRegion && "unexpected memref region failure");
907   SmallVector<int64_t, 4> newShape;
908   std::vector<SmallVector<int64_t, 4>> lbs;
909   SmallVector<int64_t, 8> lbDivisors;
910   lbs.reserve(rank);
911   // Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed
912   // by 'srcStoreOpInst' at depth 'dstLoopDepth'.
913   Optional<int64_t> numElements =
914       region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors);
915   assert(numElements.hasValue() &&
916          "non-constant number of elts in local buffer");
917 
918   const FlatAffineConstraints *cst = region.getConstraints();
919   // 'outerIVs' holds the values that this memory region is symbolic/parametric
920   // on; this would correspond to loop IVs surrounding the level at which the
921   // slice is being materialized.
922   SmallVector<Value, 8> outerIVs;
923   cst->getIdValues(rank, cst->getNumIds(), &outerIVs);
924 
925   // Build 'rank' AffineExprs from MemRefRegion 'lbs'
926   SmallVector<AffineExpr, 4> offsets;
927   offsets.reserve(rank);
928   for (unsigned d = 0; d < rank; ++d) {
929     assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
930 
931     AffineExpr offset = top.getAffineConstantExpr(0);
932     for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
933       offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
934     }
935     assert(lbDivisors[d] > 0);
936     offset =
937         (offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
938     offsets.push_back(offset);
939   }
940 
941   // Create 'newMemRefType' using 'newShape' from MemRefRegion accessed
942   // by 'srcStoreOpInst'.
943   uint64_t bufSize =
944       getMemRefEltSizeInBytes(oldMemRefType) * numElements.getValue();
945   unsigned newMemSpace;
946   if (bufSize <= localBufSizeThreshold && fastMemorySpace.hasValue()) {
947     newMemSpace = fastMemorySpace.getValue();
948   } else {
949     newMemSpace = oldMemRefType.getMemorySpaceAsInt();
950   }
951   auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(),
952                                        {}, newMemSpace);
953 
954   // Create new private memref for fused loop 'forOp'. 'newShape' is always
955   // a constant shape.
956   // TODO: Create/move alloc ops for private memrefs closer to their
957   // consumer loop nests to reduce their live range. Currently they are added
958   // at the beginning of the function, because loop nests can be reordered
959   // during the fusion pass.
960   Value newMemRef = top.create<memref::AllocOp>(forOp.getLoc(), newMemRefType);
961 
962   // Build an AffineMap to remap access functions based on lower bound offsets.
963   SmallVector<AffineExpr, 4> remapExprs;
964   remapExprs.reserve(rank);
965   for (unsigned i = 0; i < rank; i++) {
966     auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i);
967 
968     auto remapExpr =
969         simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0);
970     remapExprs.push_back(remapExpr);
971   }
972 
973   auto indexRemap =
974       AffineMap::get(outerIVs.size() + rank, 0, remapExprs, forOp.getContext());
975 
976   // Replace all users of 'oldMemRef' with 'newMemRef'.
977   LogicalResult res =
978       replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap,
979                                /*extraOperands=*/outerIVs,
980                                /*symbolOperands=*/{},
981                                /*domInstFilter=*/&*forOp.getBody()->begin());
982   assert(succeeded(res) &&
983          "replaceAllMemrefUsesWith should always succeed here");
984   (void)res;
985   return newMemRef;
986 }
987 
988 /// Walking from node 'srcId' to node 'dstId' (exclusive of 'srcId' and
989 /// 'dstId'), if there is any non-affine operation accessing 'memref', return
990 /// true. Otherwise, return false.
hasNonAffineUsersOnThePath(unsigned srcId,unsigned dstId,Value memref,MemRefDependenceGraph * mdg)991 static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
992                                        Value memref,
993                                        MemRefDependenceGraph *mdg) {
994   auto *srcNode = mdg->getNode(srcId);
995   auto *dstNode = mdg->getNode(dstId);
996   Value::user_range users = memref.getUsers();
997   // For each MemRefDependenceGraph's node that is between 'srcNode' and
998   // 'dstNode' (exclusive of 'srcNodes' and 'dstNode'), check whether any
999   // non-affine operation in the node accesses the 'memref'.
1000   for (auto &idAndNode : mdg->nodes) {
1001     Operation *op = idAndNode.second.op;
1002     // Take care of operations between 'srcNode' and 'dstNode'.
1003     if (srcNode->op->isBeforeInBlock(op) && op->isBeforeInBlock(dstNode->op)) {
1004       // Walk inside the operation to find any use of the memref.
1005       // Interrupt the walk if found.
1006       auto walkResult = op->walk([&](Operation *user) {
1007         // Skip affine ops.
1008         if (isa<AffineMapAccessInterface>(*user))
1009           return WalkResult::advance();
1010         // Find a non-affine op that uses the memref.
1011         if (llvm::is_contained(users, user))
1012           return WalkResult::interrupt();
1013         return WalkResult::advance();
1014       });
1015       if (walkResult.wasInterrupted())
1016         return true;
1017     }
1018   }
1019   return false;
1020 }
1021 
1022 /// Check whether a memref value in node 'srcId' has a non-affine that
1023 /// is between node 'srcId' and node 'dstId' (exclusive of 'srcNode' and
1024 /// 'dstNode').
hasNonAffineUsersOnThePath(unsigned srcId,unsigned dstId,MemRefDependenceGraph * mdg)1025 static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
1026                                        MemRefDependenceGraph *mdg) {
1027   // Collect memref values in node 'srcId'.
1028   auto *srcNode = mdg->getNode(srcId);
1029   llvm::SmallDenseSet<Value, 2> memRefValues;
1030   srcNode->op->walk([&](Operation *op) {
1031     // Skip affine ops.
1032     if (isa<AffineForOp>(op))
1033       return WalkResult::advance();
1034     for (Value v : op->getOperands())
1035       // Collect memref values only.
1036       if (v.getType().isa<MemRefType>())
1037         memRefValues.insert(v);
1038     return WalkResult::advance();
1039   });
1040   // Looking for users between node 'srcId' and node 'dstId'.
1041   for (Value memref : memRefValues)
1042     if (hasNonAffineUsersOnThePath(srcId, dstId, memref, mdg))
1043       return true;
1044   return false;
1045 }
1046 
1047 // Checks the profitability of fusing a backwards slice of the loop nest
1048 // surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'.
1049 // The argument 'srcStoreOpInst' is used to calculate the storage reduction on
1050 // the memref being produced and consumed, which is an input to the cost model.
1051 // For producer-consumer fusion, 'srcStoreOpInst' will be the same as
1052 // 'srcOpInst', as we are slicing w.r.t to that producer. For input-reuse
1053 // fusion, 'srcOpInst' will be the src loop nest LoadOp which reads from the
1054 // same memref as dst loop nest load ops, and 'srcStoreOpInst' will be the
1055 // unique store op in the src node, which will be used to check that the write
1056 // region is the same after input-reuse fusion. Computation slices are provided
1057 // in 'depthSliceUnions' for each legal fusion depth. The maximal depth at which
1058 // fusion is legal is provided in 'maxLegalFusionDepth'. Returns true if it is
1059 // profitable to fuse the candidate loop nests. Returns false otherwise.
1060 // `dstLoopDepth` is set to the most profitable depth at which to materialize
1061 // the source loop nest slice.
1062 // The profitability model executes the following steps:
1063 // *) Computes the backward computation slice at 'srcOpInst'. This
1064 //    computation slice of the loop nest surrounding 'srcOpInst' is
1065 //    represented by modified src loop bounds in 'sliceState', which are
1066 //    functions of loop IVs in the loop nest surrounding 'srcOpInst'.
1067 // *) Computes the cost of unfused src/dst loop nests (currently the cost of a
1068 //    loop nest is the total number of dynamic operation instances in the loop
1069 //    nest).
1070 // *) Computes the cost of fusing a slice of the src loop nest into the dst
1071 //    loop nest at various values of dst loop depth, attempting to fuse
1072 //    the largest computation slice at the maximal dst loop depth (closest to
1073 //    the load) to minimize reuse distance and potentially enable subsequent
1074 //    load/store forwarding.
1075 //    NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop
1076 //    nest, at which the src computation slice is inserted/fused.
1077 //    NOTE: We attempt to maximize the dst loop depth, but there are cases
1078 //    where a particular setting for 'dstLoopNest' might fuse an unsliced
1079 //    loop (within the src computation slice) at a depth which results in
1080 //    excessive recomputation (see unit tests for examples).
1081 // *) Compares the total cost of the unfused loop nests to the min cost fused
1082 //    loop nest computed in the previous step, and returns true if the latter
1083 //    is lower.
1084 // TODO: Extend profitability analysis to support scenarios with multiple
1085 // stores.
isFusionProfitable(Operation * srcOpInst,Operation * srcStoreOpInst,AffineForOp dstForOp,ArrayRef<ComputationSliceState> depthSliceUnions,unsigned maxLegalFusionDepth,unsigned * dstLoopDepth,double computeToleranceThreshold)1086 static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst,
1087                                AffineForOp dstForOp,
1088                                ArrayRef<ComputationSliceState> depthSliceUnions,
1089                                unsigned maxLegalFusionDepth,
1090                                unsigned *dstLoopDepth,
1091                                double computeToleranceThreshold) {
1092   LLVM_DEBUG({
1093     llvm::dbgs() << "Checking whether fusion is profitable between src op:\n";
1094     llvm::dbgs() << ' ' << *srcOpInst << " and destination loop:\n";
1095     llvm::dbgs() << dstForOp << "\n";
1096   });
1097 
1098   if (maxLegalFusionDepth == 0) {
1099     LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxLegalFusionDepth == 0 .\n");
1100     return false;
1101   }
1102 
1103   // Compute cost of sliced and unsliced src loop nest.
1104   SmallVector<AffineForOp, 4> srcLoopIVs;
1105   getLoopIVs(*srcOpInst, &srcLoopIVs);
1106 
1107   // Walk src loop nest and collect stats.
1108   LoopNestStats srcLoopNestStats;
1109   if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats))
1110     return false;
1111 
1112   // Compute cost of dst loop nest.
1113   LoopNestStats dstLoopNestStats;
1114   if (!getLoopNestStats(dstForOp, &dstLoopNestStats))
1115     return false;
1116 
1117   // Search for min cost value for 'dstLoopDepth'. At each value of
1118   // 'dstLoopDepth' from 'maxLegalLoopDepth' to '1', compute computation slice
1119   // bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union
1120   // of these bounds). Next the union slice bounds are used to calculate
1121   // the cost of the slice and the cost of the slice inserted into the dst
1122   // loop nest at 'dstLoopDepth'.
1123   uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max();
1124   double maxStorageReduction = 0.0;
1125   Optional<uint64_t> sliceMemEstimate = None;
1126 
1127   // The best loop depth at which to materialize the slice.
1128   Optional<unsigned> bestDstLoopDepth = None;
1129 
1130   // Compute op instance count for the src loop nest without iteration slicing.
1131   uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats);
1132 
1133   // Compute src loop nest write region size.
1134   MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc());
1135   if (failed(srcWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0))) {
1136     LLVM_DEBUG(llvm::dbgs()
1137                << "Unable to compute MemRefRegion for source operation\n.");
1138     return false;
1139   }
1140 
1141   Optional<int64_t> maybeSrcWriteRegionSizeBytes =
1142       srcWriteRegion.getRegionSize();
1143   if (!maybeSrcWriteRegionSizeBytes.hasValue())
1144     return false;
1145   int64_t srcWriteRegionSizeBytes = maybeSrcWriteRegionSizeBytes.getValue();
1146 
1147   // Compute op instance count for the src loop nest.
1148   uint64_t dstLoopNestCost = getComputeCost(dstForOp, dstLoopNestStats);
1149 
1150   // Evaluate all depth choices for materializing the slice in the destination
1151   // loop nest.
1152   for (unsigned i = maxLegalFusionDepth; i >= 1; --i) {
1153     const ComputationSliceState &slice = depthSliceUnions[i - 1];
1154     // Skip slice union if it wasn't computed for this depth.
1155     if (slice.isEmpty())
1156       continue;
1157 
1158     int64_t fusedLoopNestComputeCost;
1159     if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstForOp,
1160                               dstLoopNestStats, slice,
1161                               &fusedLoopNestComputeCost)) {
1162       LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost.\n.");
1163       continue;
1164     }
1165 
1166     double additionalComputeFraction =
1167         fusedLoopNestComputeCost /
1168             (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1169         1;
1170 
1171     // Determine what the slice write MemRefRegion would be, if the src loop
1172     // nest slice 'slice' were to be inserted into the dst loop nest at loop
1173     // depth 'i'.
1174     MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc());
1175     if (failed(sliceWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0,
1176                                         &slice))) {
1177       LLVM_DEBUG(llvm::dbgs()
1178                  << "Failed to compute slice write region at loopDepth: " << i
1179                  << "\n");
1180       continue;
1181     }
1182 
1183     Optional<int64_t> maybeSliceWriteRegionSizeBytes =
1184         sliceWriteRegion.getRegionSize();
1185     if (!maybeSliceWriteRegionSizeBytes.hasValue() ||
1186         maybeSliceWriteRegionSizeBytes.getValue() == 0) {
1187       LLVM_DEBUG(llvm::dbgs()
1188                  << "Failed to get slice write region size at loopDepth: " << i
1189                  << "\n");
1190       continue;
1191     }
1192     int64_t sliceWriteRegionSizeBytes =
1193         maybeSliceWriteRegionSizeBytes.getValue();
1194 
1195     // If we are fusing for reuse, check that write regions remain the same.
1196     // TODO: Write region check should check sizes and offsets in
1197     // each dimension, so that we are sure they are covering the same memref
1198     // region. Also, move this out to a isMemRefRegionSuperSet helper function.
1199     if (srcOpInst != srcStoreOpInst &&
1200         sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes)
1201       continue;
1202 
1203     double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) /
1204                               static_cast<double>(sliceWriteRegionSizeBytes);
1205 
1206     LLVM_DEBUG({
1207       std::stringstream msg;
1208       msg << "  evaluating fusion profitability at depth : " << i << "\n"
1209           << std::fixed << std::setprecision(2)
1210           << "   additional compute fraction: "
1211           << 100.0 * additionalComputeFraction << "%\n"
1212           << "   storage reduction factor: " << storageReduction << "x\n"
1213           << "   fused nest cost: " << fusedLoopNestComputeCost << "\n"
1214           << "   src write region size: " << srcWriteRegionSizeBytes << "\n"
1215           << "   slice write region size: " << sliceWriteRegionSizeBytes
1216           << "\n";
1217       llvm::dbgs() << msg.str();
1218     });
1219 
1220     // TODO: This is a placeholder cost model.
1221     // Among all choices that add an acceptable amount of redundant computation
1222     // (as per computeToleranceThreshold), we will simply pick the one that
1223     // reduces the intermediary size the most.
1224     if ((storageReduction > maxStorageReduction) &&
1225         (additionalComputeFraction < computeToleranceThreshold)) {
1226       maxStorageReduction = storageReduction;
1227       bestDstLoopDepth = i;
1228       minFusedLoopNestComputeCost = fusedLoopNestComputeCost;
1229       sliceMemEstimate = sliceWriteRegionSizeBytes;
1230     }
1231   }
1232 
1233   // A simple cost model: fuse if it reduces the memory footprint.
1234 
1235   if (!bestDstLoopDepth.hasValue()) {
1236     LLVM_DEBUG(
1237         llvm::dbgs()
1238         << "All fusion choices involve more than the threshold amount of "
1239            "redundant computation; NOT fusing.\n");
1240     return false;
1241   }
1242 
1243   if (!bestDstLoopDepth.hasValue()) {
1244     LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n");
1245     return false;
1246   }
1247 
1248   // Set dstLoopDepth based on best values from search.
1249   *dstLoopDepth = bestDstLoopDepth.getValue();
1250 
1251   LLVM_DEBUG(
1252       llvm::dbgs() << " LoopFusion fusion stats:"
1253                    << "\n  best loop depth: " << bestDstLoopDepth
1254                    << "\n  src loop nest compute cost: " << srcLoopNestCost
1255                    << "\n  dst loop nest compute cost: " << dstLoopNestCost
1256                    << "\n  fused loop nest compute cost: "
1257                    << minFusedLoopNestComputeCost << "\n");
1258 
1259   auto dstMemSize = getMemoryFootprintBytes(dstForOp);
1260   auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]);
1261 
1262   Optional<double> storageReduction = None;
1263 
1264   if (!dstMemSize.hasValue() || !srcMemSize.hasValue()) {
1265     LLVM_DEBUG(llvm::dbgs()
1266                << "  fusion memory benefit cannot be evaluated; NOT fusing.\n");
1267     return false;
1268   }
1269 
1270   auto srcMemSizeVal = srcMemSize.getValue();
1271   auto dstMemSizeVal = dstMemSize.getValue();
1272 
1273   assert(sliceMemEstimate.hasValue() && "expected value");
1274   auto fusedMem = dstMemSizeVal + sliceMemEstimate.getValue();
1275 
1276   LLVM_DEBUG(llvm::dbgs() << "   src mem: " << srcMemSizeVal << "\n"
1277                           << "   dst mem: " << dstMemSizeVal << "\n"
1278                           << "   fused mem: " << fusedMem << "\n"
1279                           << "   slice mem: " << sliceMemEstimate << "\n");
1280 
1281   if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) {
1282     LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n");
1283     return false;
1284   }
1285   storageReduction =
1286       100.0 *
1287       (1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal));
1288 
1289   double additionalComputeFraction =
1290       100.0 * (minFusedLoopNestComputeCost /
1291                    (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1292                1);
1293   (void)additionalComputeFraction;
1294   LLVM_DEBUG({
1295     std::stringstream msg;
1296     msg << " fusion is most profitable at depth " << *dstLoopDepth << " with "
1297         << std::setprecision(2) << additionalComputeFraction
1298         << "% redundant computation and a ";
1299     msg << (storageReduction.hasValue()
1300                 ? std::to_string(storageReduction.getValue())
1301                 : "<unknown>");
1302     msg << "% storage reduction.\n";
1303     llvm::dbgs() << msg.str();
1304   });
1305 
1306   return true;
1307 }
1308 
1309 namespace {
1310 
1311 // GreedyFusion greedily fuses loop nests which have a producer/consumer or
1312 // input-reuse relationship on a memref, with the goal of improving locality.
1313 //
1314 // The steps of the producer-consumer fusion algorithm are as follows:
1315 //
1316 // *) A worklist is initialized with node ids from the dependence graph.
1317 // *) For each node id in the worklist:
1318 //   *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a
1319 //      candidate destination AffineForOp into which fusion will be attempted.
1320 //   *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'.
1321 //   *) For each LoadOp in 'dstLoadOps' do:
1322 //      *) Look up dependent loop nests which have a single store op to the same
1323 //         memref.
1324 //      *) Check if dependences would be violated by the fusion.
1325 //      *) Get a computation slice of 'srcLoopNest', which adjusts its loop
1326 //         bounds to be functions of 'dstLoopNest' IVs and symbols.
1327 //      *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest',
1328 //         at a loop depth determined by the cost model in 'isFusionProfitable'.
1329 //      *) Add the newly fused load/store operations to the state,
1330 //         and also add newly fused load ops to 'dstLoopOps' to be considered
1331 //         as fusion dst load ops in another iteration.
1332 //      *) Remove old src loop nest and its associated state.
1333 //
1334 // The steps of the input-reuse fusion algorithm are as follows:
1335 //
1336 // *) Initialize 'worklist' with node ids from the dependence graph.
1337 // *) For each 'dstNode' in the worklist:
1338 //   *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which
1339 //      loads from the same memref, but which has no dependence paths to/from.
1340 //   *) Get a computation slice of 'sibLoopNest', which adjusts its loop
1341 //      bounds to be functions of 'dstLoopNest' IVs and symbols.
1342 //   *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest',
1343 //      at a loop depth determined by the cost model in 'isFusionProfitable'.
1344 //      This function also checks that the memref write region of 'sibLoopNest',
1345 //      is preserved in the fused loop nest.
1346 //   *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'.
1347 //
1348 // Given a graph where top-level operations are vertices in the set 'V' and
1349 // edges in the set 'E' are dependences between vertices, this algorithm
1350 // takes O(V) time for initialization, and has runtime O(V + E).
1351 //
1352 // This greedy algorithm is not 'maximal' due to the current restriction of
1353 // fusing along single producer consumer edges, but there is a TODO: to fix
1354 // this.
1355 //
1356 // TODO: Experiment with other fusion policies.
1357 struct GreedyFusion {
1358 public:
1359   // The data dependence graph to traverse during fusion.
1360   MemRefDependenceGraph *mdg;
1361   // Worklist of graph nodes visited during the fusion pass.
1362   SmallVector<unsigned, 8> worklist;
1363   // Parameter for local buffer size threshold.
1364   unsigned localBufSizeThreshold;
1365   // Parameter for fast memory space.
1366   Optional<unsigned> fastMemorySpace;
1367   // If true, ignore any additional (redundant) computation tolerance threshold
1368   // that would have prevented fusion.
1369   bool maximalFusion;
1370   // The amount of additional computation that is tolerated while fusing
1371   // pair-wise as a fraction of the total computation.
1372   double computeToleranceThreshold;
1373 
1374   using Node = MemRefDependenceGraph::Node;
1375 
GreedyFusion__anon0903053b0c11::GreedyFusion1376   GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold,
1377                Optional<unsigned> fastMemorySpace, bool maximalFusion,
1378                double computeToleranceThreshold)
1379       : mdg(mdg), localBufSizeThreshold(localBufSizeThreshold),
1380         fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion),
1381         computeToleranceThreshold(computeToleranceThreshold) {}
1382 
1383   /// Initializes 'worklist' with nodes from 'mdg'.
init__anon0903053b0c11::GreedyFusion1384   void init() {
1385     // TODO: Add a priority queue for prioritizing nodes by different
1386     // metrics (e.g. arithmetic intensity/flops-to-bytes ratio).
1387     worklist.clear();
1388     for (auto &idAndNode : mdg->nodes) {
1389       const Node &node = idAndNode.second;
1390       worklist.push_back(node.id);
1391     }
1392   }
1393 
1394   // Run the GreedyFusion pass.
1395   // *) First pass through the nodes fuses single-use producer nodes into their
1396   //    unique consumer.
1397   // *) Second pass fuses sibling nodes which share no dependence edges.
1398   // *) Third pass fuses any remaining producer nodes into their users.
run__anon0903053b0c11::GreedyFusion1399   void run() {
1400     // TODO: Run this repeatedly until a fixed-point is reached.
1401     fuseProducerConsumerNodes(/*maxSrcUserCount=*/1);
1402     fuseSiblingNodes();
1403     fuseProducerConsumerNodes(
1404         /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max());
1405     eraseUnusedMemRefAllocations();
1406   }
1407 
fuseProducerConsumerNodes__anon0903053b0c11::GreedyFusion1408   void fuseProducerConsumerNodes(unsigned maxSrcUserCount) {
1409     LLVM_DEBUG(llvm::dbgs() << "--- Producer/Consumer Fusion ---\n");
1410     init();
1411     while (!worklist.empty()) {
1412       unsigned dstId = worklist.back();
1413       worklist.pop_back();
1414 
1415       // Skip if this node was removed (fused into another node).
1416       if (mdg->nodes.count(dstId) == 0)
1417         continue;
1418       // Get 'dstNode' into which to attempt fusion.
1419       auto *dstNode = mdg->getNode(dstId);
1420       // Skip if 'dstNode' is not a loop nest.
1421       if (!isa<AffineForOp>(dstNode->op))
1422         continue;
1423       // Skip if 'dstNode' is a loop nest returning values.
1424       // TODO: support loop nests that return values.
1425       if (dstNode->op->getNumResults() > 0)
1426         continue;
1427 
1428       LLVM_DEBUG(llvm::dbgs() << "Evaluating dst loop " << dstId << "\n");
1429 
1430       // Sink sequential loops in 'dstNode' (and thus raise parallel loops)
1431       // while preserving relative order. This can increase the maximum loop
1432       // depth at which we can fuse a slice of a producer loop nest into a
1433       // consumer loop nest.
1434       sinkSequentialLoops(dstNode);
1435       auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
1436 
1437       // Try to fuse 'dstNode' with candidate producer loops until a fixed point
1438       // is reached. Fusing two loops may expose new fusion opportunities.
1439       bool dstNodeChanged;
1440       do {
1441         // Gather src loop candidates for 'dstNode' and visit them in "quasi"
1442         // reverse program order to minimize the number of iterations needed to
1443         // reach the fixed point. Note that this is a best effort approach since
1444         // 'getProducerCandidates' does not always guarantee that program order
1445         // in 'srcIdCandidates'.
1446         dstNodeChanged = false;
1447         SmallVector<unsigned, 16> srcIdCandidates;
1448         getProducerCandidates(dstId, mdg, srcIdCandidates);
1449 
1450         for (unsigned srcId : llvm::reverse(srcIdCandidates)) {
1451           // Get 'srcNode' from which to attempt fusion into 'dstNode'.
1452           auto *srcNode = mdg->getNode(srcId);
1453           auto srcAffineForOp = cast<AffineForOp>(srcNode->op);
1454           LLVM_DEBUG(llvm::dbgs() << "Evaluating src loop " << srcId
1455                                   << " for dst loop " << dstId << "\n");
1456 
1457           // Skip if 'srcNode' is a loop nest returning values.
1458           // TODO: support loop nests that return values.
1459           if (isa<AffineForOp>(srcNode->op) && srcNode->op->getNumResults() > 0)
1460             continue;
1461 
1462           DenseSet<Value> producerConsumerMemrefs;
1463           gatherProducerConsumerMemrefs(srcId, dstId, mdg,
1464                                         producerConsumerMemrefs);
1465 
1466           // Skip if 'srcNode' out edge count on any memref is greater than
1467           // 'maxSrcUserCount'.
1468           if (any_of(producerConsumerMemrefs, [&](Value memref) {
1469                 return mdg->getOutEdgeCount(srcNode->id, memref) >
1470                        maxSrcUserCount;
1471               }))
1472             continue;
1473 
1474           // Gather memrefs in 'srcNode' that are written and escape to the
1475           // function (e.g., memref function arguments, returned memrefs,
1476           // memrefs passed to function calls, etc.).
1477           DenseSet<Value> srcEscapingMemRefs;
1478           gatherEscapingMemrefs(srcNode->id, mdg, srcEscapingMemRefs);
1479 
1480           // Skip if there are non-affine operations in between the 'srcNode'
1481           // and 'dstNode' using their memrefs. If so, we wouldn't be able to
1482           // compute a legal insertion point for now. 'srcNode' and 'dstNode'
1483           // memrefs with non-affine operation users would be considered
1484           // escaping memrefs so we can limit this check to only scenarios with
1485           // escaping memrefs.
1486           if (!srcEscapingMemRefs.empty() &&
1487               hasNonAffineUsersOnThePath(srcId, dstId, mdg)) {
1488             LLVM_DEBUG(
1489                 llvm::dbgs()
1490                 << "Can't fuse: non-affine users in between the loops\n.");
1491             continue;
1492           }
1493 
1494           // Compute an operation list insertion point for the fused loop
1495           // nest which preserves dependences.
1496           Operation *fusedLoopInsPoint =
1497               mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id);
1498           if (fusedLoopInsPoint == nullptr)
1499             continue;
1500 
1501           // Compute the innermost common loop depth for dstNode
1502           // producer-consumer loads/stores.
1503           SmallVector<Operation *, 2> dstMemrefOps;
1504           for (Operation *op : dstNode->loads)
1505             if (producerConsumerMemrefs.count(
1506                     cast<AffineReadOpInterface>(op).getMemRef()) > 0)
1507               dstMemrefOps.push_back(op);
1508           for (Operation *op : dstNode->stores)
1509             if (producerConsumerMemrefs.count(
1510                     cast<AffineWriteOpInterface>(op).getMemRef()))
1511               dstMemrefOps.push_back(op);
1512           unsigned dstLoopDepthTest = getInnermostCommonLoopDepth(dstMemrefOps);
1513 
1514           // Check the feasibility of fusing src loop nest into dst loop nest
1515           // at loop depths in range [1, dstLoopDepthTest].
1516           unsigned maxLegalFusionDepth = 0;
1517           SmallVector<ComputationSliceState, 8> depthSliceUnions;
1518           depthSliceUnions.resize(dstLoopDepthTest);
1519           FusionStrategy strategy(FusionStrategy::ProducerConsumer);
1520           for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
1521             FusionResult result = mlir::canFuseLoops(
1522                 srcAffineForOp, dstAffineForOp,
1523                 /*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy);
1524 
1525             if (result.value == FusionResult::Success)
1526               maxLegalFusionDepth = i;
1527           }
1528 
1529           if (maxLegalFusionDepth == 0) {
1530             LLVM_DEBUG(llvm::dbgs()
1531                        << "Can't fuse: fusion is not legal at any depth\n");
1532             continue;
1533           }
1534 
1535           // Check if fusion would be profitable. We skip profitability analysis
1536           // for maximal fusion since we already know the maximal legal depth to
1537           // fuse.
1538           unsigned bestDstLoopDepth = maxLegalFusionDepth;
1539           if (!maximalFusion) {
1540             // Retrieve producer stores from the src loop.
1541             SmallVector<Operation *, 2> producerStores;
1542             for (Operation *op : srcNode->stores)
1543               if (producerConsumerMemrefs.count(
1544                       cast<AffineWriteOpInterface>(op).getMemRef()))
1545                 producerStores.push_back(op);
1546 
1547             // TODO: Suppport multiple producer stores in profitability
1548             // analysis. We limit profitability analysis to only scenarios with
1549             // a single producer store for now. Note that some multi-store
1550             // producer scenarios will still go through profitability analysis
1551             // if only one of the stores is involved the producer-consumer
1552             // relationship of the candidate loops.
1553             assert(producerStores.size() > 0 && "Expected producer store");
1554             if (producerStores.size() > 1)
1555               LLVM_DEBUG(llvm::dbgs() << "Skipping profitability analysis. Not "
1556                                          "supported for this case\n");
1557             else if (!isFusionProfitable(producerStores[0], producerStores[0],
1558                                          dstAffineForOp, depthSliceUnions,
1559                                          maxLegalFusionDepth, &bestDstLoopDepth,
1560                                          computeToleranceThreshold))
1561               continue;
1562           }
1563 
1564           assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth");
1565           ComputationSliceState &bestSlice =
1566               depthSliceUnions[bestDstLoopDepth - 1];
1567           assert(!bestSlice.isEmpty() && "Missing slice union for depth");
1568 
1569           // Determine if 'srcId' can be removed after fusion, taking into
1570           // account remaining dependences, escaping memrefs and the fusion
1571           // insertion point.
1572           bool removeSrcNode = canRemoveSrcNodeAfterFusion(
1573               srcId, dstId, bestSlice, fusedLoopInsPoint, srcEscapingMemRefs,
1574               mdg);
1575 
1576           DenseSet<Value> privateMemrefs;
1577           for (Value memref : producerConsumerMemrefs) {
1578             // If `memref` is an escaping one, do not create a private memref
1579             // for the below scenarios, since doing so will leave the escaping
1580             // memref unmodified as all the writes originally meant for the
1581             // escaping memref would be performed on the private memref:
1582             // 1. The source is to be removed after fusion,
1583             // OR
1584             // 2. The destination writes to `memref`.
1585             if (srcEscapingMemRefs.count(memref) > 0 &&
1586                 (removeSrcNode || dstNode->getStoreOpCount(memref) > 0))
1587               continue;
1588 
1589             // Don't create a private memref if 'srcNode' has in edges on
1590             // 'memref' or 'dstNode' has out edges on 'memref'.
1591             if (mdg->getIncomingMemRefAccesses(srcId, memref) > 0 ||
1592                 mdg->getOutEdgeCount(dstId, memref) > 0)
1593               continue;
1594 
1595             // If 'srcNode' will be removed but it has out edges on 'memref' to
1596             // nodes other than 'dstNode', we have to preserve dependences and
1597             // cannot create a private memref.
1598             if (removeSrcNode &&
1599                 any_of(mdg->outEdges[srcId], [&](const auto &edge) {
1600                   return edge.value == memref && edge.id != dstId;
1601                 }))
1602               continue;
1603 
1604             // Create a private version of this memref.
1605             privateMemrefs.insert(memref);
1606           }
1607 
1608           // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'.
1609           fuseLoops(srcAffineForOp, dstAffineForOp, bestSlice);
1610           dstNodeChanged = true;
1611 
1612           LLVM_DEBUG(llvm::dbgs()
1613                      << "Fused src loop " << srcId << " into dst loop " << dstId
1614                      << " at depth " << bestDstLoopDepth << ":\n"
1615                      << dstAffineForOp << "\n");
1616 
1617           // Move 'dstAffineForOp' before 'insertPointInst' if needed.
1618           if (fusedLoopInsPoint != dstAffineForOp.getOperation())
1619             dstAffineForOp.getOperation()->moveBefore(fusedLoopInsPoint);
1620 
1621           // Update edges between 'srcNode' and 'dstNode'.
1622           mdg->updateEdges(srcNode->id, dstNode->id, privateMemrefs,
1623                            removeSrcNode);
1624 
1625           // Create private memrefs.
1626           if (!privateMemrefs.empty()) {
1627             // Gather stores for all the private-to-be memrefs.
1628             DenseMap<Value, SmallVector<Operation *, 4>> privateMemRefToStores;
1629             dstAffineForOp.walk([&](AffineWriteOpInterface storeOp) {
1630               Value storeMemRef = storeOp.getMemRef();
1631               if (privateMemrefs.count(storeMemRef) > 0)
1632                 privateMemRefToStores[storeMemRef].push_back(
1633                     storeOp.getOperation());
1634             });
1635 
1636             // Replace original memrefs with private memrefs. Note that all the
1637             // loads and stores on these memrefs will be replaced with a new
1638             // loads and stores. Any reference to the original ones becomes
1639             // invalid after this point.
1640             for (auto &memrefToStoresPair : privateMemRefToStores) {
1641               // TODO: Use union of memref write regions to compute
1642               // private memref footprint.
1643               SmallVector<Operation *, 4> &storesForMemref =
1644                   memrefToStoresPair.second;
1645               Value newMemRef = createPrivateMemRef(
1646                   dstAffineForOp, storesForMemref[0], bestDstLoopDepth,
1647                   fastMemorySpace, localBufSizeThreshold);
1648               // Create new node in dependence graph for 'newMemRef' alloc op.
1649               unsigned newMemRefNodeId =
1650                   mdg->addNode(newMemRef.getDefiningOp());
1651               // Add edge from 'newMemRef' node to dstNode.
1652               mdg->addEdge(newMemRefNodeId, dstId, newMemRef);
1653             }
1654             // One or more entries for 'newMemRef' alloc op are inserted into
1655             // the DenseMap mdg->nodes. Since an insertion may cause DenseMap to
1656             // reallocate, update dstNode.
1657             dstNode = mdg->getNode(dstId);
1658           }
1659 
1660           // Collect dst loop stats after memref privatization transformation.
1661           LoopNestStateCollector dstLoopCollector;
1662           dstLoopCollector.collect(dstAffineForOp.getOperation());
1663 
1664           // Clear and add back loads and stores.
1665           mdg->clearNodeLoadAndStores(dstNode->id);
1666           mdg->addToNode(dstId, dstLoopCollector.loadOpInsts,
1667                          dstLoopCollector.storeOpInsts);
1668 
1669           if (removeSrcNode) {
1670             LLVM_DEBUG(llvm::dbgs()
1671                        << "Removing src loop " << srcId << " after fusion\n");
1672             // srcNode is no longer valid after it is removed from mdg.
1673             srcAffineForOp.erase();
1674             mdg->removeNode(srcId);
1675             srcNode = nullptr;
1676           }
1677         }
1678       } while (dstNodeChanged);
1679     }
1680   }
1681 
1682   // Visits each node in the graph, and for each node, attempts to fuse it with
1683   // its sibling nodes (nodes which share a parent, but no dependence edges).
fuseSiblingNodes__anon0903053b0c11::GreedyFusion1684   void fuseSiblingNodes() {
1685     LLVM_DEBUG(llvm::dbgs() << "--- Sibling Fusion ---\n");
1686     init();
1687     while (!worklist.empty()) {
1688       unsigned dstId = worklist.back();
1689       worklist.pop_back();
1690 
1691       // Skip if this node was removed (fused into another node).
1692       if (mdg->nodes.count(dstId) == 0)
1693         continue;
1694       // Get 'dstNode' into which to attempt fusion.
1695       auto *dstNode = mdg->getNode(dstId);
1696       // Skip if 'dstNode' is not a loop nest.
1697       if (!isa<AffineForOp>(dstNode->op))
1698         continue;
1699       // Attempt to fuse 'dstNode' with its sibling nodes in the graph.
1700       fuseWithSiblingNodes(dstNode);
1701     }
1702   }
1703 
1704   // Attempt to fuse 'dstNode' with sibling nodes in the graph.
fuseWithSiblingNodes__anon0903053b0c11::GreedyFusion1705   void fuseWithSiblingNodes(Node *dstNode) {
1706     DenseSet<unsigned> visitedSibNodeIds;
1707     std::pair<unsigned, Value> idAndMemref;
1708     auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
1709 
1710     while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) {
1711       unsigned sibId = idAndMemref.first;
1712       Value memref = idAndMemref.second;
1713       // TODO: Check that 'sibStoreOpInst' post-dominates all other
1714       // stores to the same memref in 'sibNode' loop nest.
1715       auto *sibNode = mdg->getNode(sibId);
1716       // Compute an operation list insertion point for the fused loop
1717       // nest which preserves dependences.
1718       assert(sibNode->op->getBlock() == dstNode->op->getBlock());
1719       Operation *insertPointInst =
1720           sibNode->op->isBeforeInBlock(dstNode->op)
1721               ? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id)
1722               : mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id);
1723       if (insertPointInst == nullptr)
1724         continue;
1725 
1726       // Check if fusion would be profitable and at what depth.
1727 
1728       // Get unique 'sibNode' load op to 'memref'.
1729       SmallVector<Operation *, 2> sibLoadOpInsts;
1730       sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts);
1731       // Currently findSiblingNodeToFuse searches for siblings with one load.
1732       assert(sibLoadOpInsts.size() == 1);
1733       Operation *sibLoadOpInst = sibLoadOpInsts[0];
1734       assert(!sibNode->stores.empty());
1735       // TODO: Choose the store which postdominates all other stores.
1736       auto *sibStoreOpInst = sibNode->stores.back();
1737 
1738       // Gather 'dstNode' load ops to 'memref'.
1739       SmallVector<Operation *, 2> dstLoadOpInsts;
1740       dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts);
1741 
1742       SmallVector<AffineForOp, 4> dstLoopIVs;
1743       getLoopIVs(*dstLoadOpInsts[0], &dstLoopIVs);
1744       unsigned dstLoopDepthTest = dstLoopIVs.size();
1745       auto sibAffineForOp = cast<AffineForOp>(sibNode->op);
1746 
1747       // Compute loop depth and slice union for fusion.
1748       SmallVector<ComputationSliceState, 8> depthSliceUnions;
1749       depthSliceUnions.resize(dstLoopDepthTest);
1750       unsigned maxLegalFusionDepth = 0;
1751       FusionStrategy strategy(memref);
1752       for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
1753         FusionResult result = mlir::canFuseLoops(
1754             sibAffineForOp, dstAffineForOp,
1755             /*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy);
1756 
1757         if (result.value == FusionResult::Success)
1758           maxLegalFusionDepth = i;
1759       }
1760 
1761       // Skip if fusion is not feasible at any loop depths.
1762       if (maxLegalFusionDepth == 0)
1763         continue;
1764 
1765       unsigned bestDstLoopDepth = maxLegalFusionDepth;
1766       if (!maximalFusion) {
1767         // Check if fusion would be profitable.
1768         if (!isFusionProfitable(sibLoadOpInst, sibStoreOpInst, dstAffineForOp,
1769                                 depthSliceUnions, maxLegalFusionDepth,
1770                                 &bestDstLoopDepth, computeToleranceThreshold))
1771           continue;
1772       }
1773 
1774       assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth");
1775       assert(!depthSliceUnions[bestDstLoopDepth - 1].isEmpty() &&
1776              "Fusion depth has no computed slice union");
1777       // Check if source loop is being inserted in the innermost
1778       // destination loop. Based on this, the fused loop may be optimized
1779       // further inside `fuseLoops`.
1780       bool isInnermostInsertion = (bestDstLoopDepth == dstLoopDepthTest);
1781       // Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'.
1782       mlir::fuseLoops(sibAffineForOp, dstAffineForOp,
1783                       depthSliceUnions[bestDstLoopDepth - 1],
1784                       isInnermostInsertion);
1785 
1786       auto dstForInst = cast<AffineForOp>(dstNode->op);
1787       // Update operation position of fused loop nest (if needed).
1788       if (insertPointInst != dstForInst.getOperation()) {
1789         dstForInst->moveBefore(insertPointInst);
1790       }
1791       // Update data dependence graph state post fusion.
1792       updateStateAfterSiblingFusion(sibNode, dstNode);
1793     }
1794   }
1795 
1796   // Searches function argument uses and the graph from 'dstNode' looking for a
1797   // fusion candidate sibling node which shares no dependences with 'dstNode'
1798   // but which loads from the same memref. Returns true and sets
1799   // 'idAndMemrefToFuse' on success. Returns false otherwise.
findSiblingNodeToFuse__anon0903053b0c11::GreedyFusion1800   bool findSiblingNodeToFuse(Node *dstNode,
1801                              DenseSet<unsigned> *visitedSibNodeIds,
1802                              std::pair<unsigned, Value> *idAndMemrefToFuse) {
1803     // Returns true if 'sibNode' can be fused with 'dstNode' for input reuse
1804     // on 'memref'.
1805     auto canFuseWithSibNode = [&](Node *sibNode, Value memref) {
1806       // Skip if 'outEdge' is not a read-after-write dependence.
1807       // TODO: Remove restrict to single load op restriction.
1808       if (sibNode->getLoadOpCount(memref) != 1)
1809         return false;
1810       // Skip if there exists a path of dependent edges between
1811       // 'sibNode' and 'dstNode'.
1812       if (mdg->hasDependencePath(sibNode->id, dstNode->id) ||
1813           mdg->hasDependencePath(dstNode->id, sibNode->id))
1814         return false;
1815       // Skip sib node if it loads to (and stores from) the same memref on
1816       // which it also has an input dependence edge.
1817       DenseSet<Value> loadAndStoreMemrefSet;
1818       sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet);
1819       if (llvm::any_of(loadAndStoreMemrefSet, [=](Value memref) {
1820             return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0;
1821           }))
1822         return false;
1823 
1824       // Check that all stores are to the same memref.
1825       DenseSet<Value> storeMemrefs;
1826       for (auto *storeOpInst : sibNode->stores) {
1827         storeMemrefs.insert(
1828             cast<AffineWriteOpInterface>(storeOpInst).getMemRef());
1829       }
1830       if (storeMemrefs.size() != 1)
1831         return false;
1832 
1833       // Skip if a memref value in one node is used by a non-affine memref
1834       // access that lies between 'dstNode' and 'sibNode'.
1835       if (hasNonAffineUsersOnThePath(dstNode->id, sibNode->id, mdg) ||
1836           hasNonAffineUsersOnThePath(sibNode->id, dstNode->id, mdg))
1837         return false;
1838       return true;
1839     };
1840 
1841     // Search for siblings which load the same memref function argument.
1842     auto fn = dstNode->op->getParentOfType<FuncOp>();
1843     for (unsigned i = 0, e = fn.getNumArguments(); i != e; ++i) {
1844       for (auto *user : fn.getArgument(i).getUsers()) {
1845         if (auto loadOp = dyn_cast<AffineReadOpInterface>(user)) {
1846           // Gather loops surrounding 'use'.
1847           SmallVector<AffineForOp, 4> loops;
1848           getLoopIVs(*user, &loops);
1849           // Skip 'use' if it is not within a loop nest.
1850           if (loops.empty())
1851             continue;
1852           Node *sibNode = mdg->getForOpNode(loops[0]);
1853           assert(sibNode != nullptr);
1854           // Skip 'use' if it not a sibling to 'dstNode'.
1855           if (sibNode->id == dstNode->id)
1856             continue;
1857           // Skip 'use' if it has been visited.
1858           if (visitedSibNodeIds->count(sibNode->id) > 0)
1859             continue;
1860           // Skip 'use' if it does not load from the same memref as 'dstNode'.
1861           auto memref = loadOp.getMemRef();
1862           if (dstNode->getLoadOpCount(memref) == 0)
1863             continue;
1864           // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
1865           if (canFuseWithSibNode(sibNode, memref)) {
1866             visitedSibNodeIds->insert(sibNode->id);
1867             idAndMemrefToFuse->first = sibNode->id;
1868             idAndMemrefToFuse->second = memref;
1869             return true;
1870           }
1871         }
1872       }
1873     }
1874 
1875     // Search for siblings by following edges through an intermediate src node.
1876     // Collect candidate 'dstNode' input edges in 'inEdges'.
1877     SmallVector<MemRefDependenceGraph::Edge, 2> inEdges;
1878     mdg->forEachMemRefInputEdge(
1879         dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) {
1880           // Add 'inEdge' if it is a read-after-write dependence.
1881           if (dstNode->getLoadOpCount(inEdge.value) > 0 &&
1882               mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0)
1883             inEdges.push_back(inEdge);
1884         });
1885 
1886     // Search for sibling nodes to fuse by visiting output edges from each input
1887     // edge in 'inEdges'.
1888     for (auto &inEdge : inEdges) {
1889       // Collect candidate output edges from each node 'inEdge.id' in 'inEdges'.
1890       SmallVector<MemRefDependenceGraph::Edge, 2> outEdges;
1891       mdg->forEachMemRefOutputEdge(
1892           inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) {
1893             unsigned sibNodeId = outEdge.id;
1894             if (visitedSibNodeIds->count(sibNodeId) > 0)
1895               return;
1896             // Skip output edge if not a sibling using the same memref.
1897             if (outEdge.id == dstNode->id || outEdge.value != inEdge.value)
1898               return;
1899             auto *sibNode = mdg->getNode(sibNodeId);
1900             if (!isa<AffineForOp>(sibNode->op))
1901               return;
1902             // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
1903             if (canFuseWithSibNode(sibNode, outEdge.value)) {
1904               // Add candidate 'outEdge' to sibling node.
1905               outEdges.push_back(outEdge);
1906             }
1907           });
1908 
1909       // Add first candidate if any were returned.
1910       if (!outEdges.empty()) {
1911         visitedSibNodeIds->insert(outEdges[0].id);
1912         idAndMemrefToFuse->first = outEdges[0].id;
1913         idAndMemrefToFuse->second = outEdges[0].value;
1914         return true;
1915       }
1916     }
1917     return false;
1918   }
1919 
1920   /// Update data dependence graph state to reflect sibling fusion of 'sibNode'
1921   /// into 'dstNode'.
updateStateAfterSiblingFusion__anon0903053b0c11::GreedyFusion1922   void updateStateAfterSiblingFusion(Node *sibNode, Node *dstNode) {
1923     // Update 'sibNode' and 'dstNode' input/output edges to reflect fusion.
1924     mdg->updateEdges(sibNode->id, dstNode->id);
1925 
1926     // Collect dst loop stats after memref privatization transformation.
1927     auto dstForInst = cast<AffineForOp>(dstNode->op);
1928     LoopNestStateCollector dstLoopCollector;
1929     dstLoopCollector.collect(dstForInst.getOperation());
1930     // Clear and add back loads and stores
1931     mdg->clearNodeLoadAndStores(dstNode->id);
1932     mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts,
1933                    dstLoopCollector.storeOpInsts);
1934     // Remove old sibling loop nest if it no longer has outgoing dependence
1935     // edges, and it does not write to a memref which escapes the
1936     // function.
1937     if (mdg->getOutEdgeCount(sibNode->id) == 0) {
1938       mdg->removeNode(sibNode->id);
1939       sibNode->op->erase();
1940     }
1941   }
1942 
1943   // Clean up any allocs with no users.
eraseUnusedMemRefAllocations__anon0903053b0c11::GreedyFusion1944   void eraseUnusedMemRefAllocations() {
1945     for (auto &pair : mdg->memrefEdgeCount) {
1946       if (pair.second > 0)
1947         continue;
1948       auto memref = pair.first;
1949       // Skip if there exist other uses (return operation or function calls).
1950       if (!memref.use_empty())
1951         continue;
1952       // Use list expected to match the dep graph info.
1953       auto *op = memref.getDefiningOp();
1954       if (isa_and_nonnull<memref::AllocOp>(op))
1955         op->erase();
1956     }
1957   }
1958 };
1959 
1960 } // end anonymous namespace
1961 
runOnFunction()1962 void LoopFusion::runOnFunction() {
1963   MemRefDependenceGraph g;
1964   if (!g.init(getFunction()))
1965     return;
1966 
1967   Optional<unsigned> fastMemorySpaceOpt;
1968   if (fastMemorySpace.hasValue())
1969     fastMemorySpaceOpt = fastMemorySpace;
1970   unsigned localBufSizeThresholdBytes = localBufSizeThreshold * 1024;
1971   GreedyFusion fusion(&g, localBufSizeThresholdBytes, fastMemorySpaceOpt,
1972                       maximalFusion, computeToleranceThreshold);
1973   fusion.run();
1974 }
1975