1 /* linker.c -- BFD linker routines
2    Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3    2003, 2004 Free Software Foundation, Inc.
4    Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 2 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
21 
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27 
28 /*
create(t *testing.T, parent string)29 SECTION
30 	Linker Functions
31 
32 @cindex Linker
33 	The linker uses three special entry points in the BFD target
34 	vector.  It is not necessary to write special routines for
35 	these entry points when creating a new BFD back end, since
36 	generic versions are provided.  However, writing them can
37 	speed up linking and make it use significantly less runtime
38 	memory.
39 
40 	The first routine creates a hash table used by the other
41 	routines.  The second routine adds the symbols from an object
42 	file to the hash table.  The third routine takes all the
43 	object files and links them together to create the output
44 	file.  These routines are designed so that the linker proper
45 	does not need to know anything about the symbols in the object
46 	files that it is linking.  The linker merely arranges the
47 	sections as directed by the linker script and lets BFD handle
48 	the details of symbols and relocs.
49 
50 	The second routine and third routines are passed a pointer to
51 	a <<struct bfd_link_info>> structure (defined in
52 	<<bfdlink.h>>) which holds information relevant to the link,
53 	including the linker hash table (which was created by the
54 	first routine) and a set of callback functions to the linker
55 	proper.
56 
57 	The generic linker routines are in <<linker.c>>, and use the
58 	header file <<genlink.h>>.  As of this writing, the only back
59 	ends which have implemented versions of these routines are
60 	a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
61 	routines are used as examples throughout this section.
62 
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68 
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 	Creating a linker hash table
73 
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 	The linker routines must create a hash table, which must be
77 	derived from <<struct bfd_link_hash_table>> described in
78 	<<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
79 	create a derived hash table.  This entry point is called using
80 	the target vector of the linker output file.
81 
82 	The <<_bfd_link_hash_table_create>> entry point must allocate
83 	and initialize an instance of the desired hash table.  If the
84 	back end does not require any additional information to be
85 	stored with the entries in the hash table, the entry point may
86 	simply create a <<struct bfd_link_hash_table>>.  Most likely,
87 	however, some additional information will be needed.
88 
89 	For example, with each entry in the hash table the a.out
90 	linker keeps the index the symbol has in the final output file
91 	(this index number is used so that when doing a relocatable
92 	link the symbol index used in the output file can be quickly
93 	filled in when copying over a reloc).  The a.out linker code
94 	defines the required structures and functions for a hash table
95 	derived from <<struct bfd_link_hash_table>>.  The a.out linker
96 	hash table is created by the function
97 	<<NAME(aout,link_hash_table_create)>>; it simply allocates
98 	space for the hash table, initializes it, and returns a
99 	pointer to it.
100 
101 	When writing the linker routines for a new back end, you will
102 	generally not know exactly which fields will be required until
103 	you have finished.  You should simply create a new hash table
104 	which defines no additional fields, and then simply add fields
105 	as they become necessary.
106 
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 	Adding symbols to the hash table
111 
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 	The linker proper will call the <<_bfd_link_add_symbols>>
115 	entry point for each object file or archive which is to be
116 	linked (typically these are the files named on the command
117 	line, but some may also come from the linker script).  The
118 	entry point is responsible for examining the file.  For an
119 	object file, BFD must add any relevant symbol information to
120 	the hash table.  For an archive, BFD must determine which
121 	elements of the archive should be used and adding them to the
122 	link.
123 
124 	The a.out version of this entry point is
125 	<<NAME(aout,link_add_symbols)>>.
126 
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132 
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 	Differing file formats
137 
138 	Normally all the files involved in a link will be of the same
139 	format, but it is also possible to link together different
140 	format object files, and the back end must support that.  The
141 	<<_bfd_link_add_symbols>> entry point is called via the target
142 	vector of the file to be added.  This has an important
143 	consequence: the function may not assume that the hash table
144 	is the type created by the corresponding
145 	<<_bfd_link_hash_table_create>> vector.  All the
146 	<<_bfd_link_add_symbols>> function can assume about the hash
147 	table is that it is derived from <<struct
148 	bfd_link_hash_table>>.
149 
150 	Sometimes the <<_bfd_link_add_symbols>> function must store
151 	some information in the hash table entry to be used by the
152 	<<_bfd_final_link>> function.  In such a case the <<creator>>
153 	field of the hash table must be checked to make sure that the
154 	hash table was created by an object file of the same format.
155 
156 	The <<_bfd_final_link>> routine must be prepared to handle a
157 	hash entry without any extra information added by the
158 	<<_bfd_link_add_symbols>> function.  A hash entry without
159 	extra information will also occur when the linker script
160 	directs the linker to create a symbol.  Note that, regardless
161 	of how a hash table entry is added, all the fields will be
162 	initialized to some sort of null value by the hash table entry
163 	initialization function.
164 
165 	See <<ecoff_link_add_externals>> for an example of how to
166 	check the <<creator>> field before saving information (in this
167 	case, the ECOFF external symbol debugging information) in a
168 	hash table entry.
169 
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 	Adding symbols from an object file
174 
175 	When the <<_bfd_link_add_symbols>> routine is passed an object
176 	file, it must add all externally visible symbols in that
177 	object file to the hash table.  The actual work of adding the
178 	symbol to the hash table is normally handled by the function
179 	<<_bfd_generic_link_add_one_symbol>>.  The
180 	<<_bfd_link_add_symbols>> routine is responsible for reading
181 	all the symbols from the object file and passing the correct
182 	information to <<_bfd_generic_link_add_one_symbol>>.
183 
184 	The <<_bfd_link_add_symbols>> routine should not use
185 	<<bfd_canonicalize_symtab>> to read the symbols.  The point of
186 	providing this routine is to avoid the overhead of converting
187 	the symbols into generic <<asymbol>> structures.
188 
189 @findex _bfd_generic_link_add_one_symbol
190 	<<_bfd_generic_link_add_one_symbol>> handles the details of
191 	combining common symbols, warning about multiple definitions,
192 	and so forth.  It takes arguments which describe the symbol to
193 	add, notably symbol flags, a section, and an offset.  The
194 	symbol flags include such things as <<BSF_WEAK>> or
195 	<<BSF_INDIRECT>>.  The section is a section in the object
196 	file, or something like <<bfd_und_section_ptr>> for an undefined
197 	symbol or <<bfd_com_section_ptr>> for a common symbol.
198 
199 	If the <<_bfd_final_link>> routine is also going to need to
200 	read the symbol information, the <<_bfd_link_add_symbols>>
201 	routine should save it somewhere attached to the object file
202 	BFD.  However, the information should only be saved if the
203 	<<keep_memory>> field of the <<info>> argument is TRUE, so
204 	that the <<-no-keep-memory>> linker switch is effective.
205 
206 	The a.out function which adds symbols from an object file is
207 	<<aout_link_add_object_symbols>>, and most of the interesting
208 	work is in <<aout_link_add_symbols>>.  The latter saves
209 	pointers to the hash tables entries created by
210 	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 	so that the <<_bfd_final_link>> routine does not have to call
212 	the hash table lookup routine to locate the entry.
213 
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 	Adding symbols from an archive
218 
219 	When the <<_bfd_link_add_symbols>> routine is passed an
220 	archive, it must look through the symbols defined by the
221 	archive and decide which elements of the archive should be
222 	included in the link.  For each such element it must call the
223 	<<add_archive_element>> linker callback, and it must add the
224 	symbols from the object file to the linker hash table.
225 
226 @findex _bfd_generic_link_add_archive_symbols
227 	In most cases the work of looking through the symbols in the
228 	archive should be done by the
229 	<<_bfd_generic_link_add_archive_symbols>> function.  This
230 	function builds a hash table from the archive symbol table and
231 	looks through the list of undefined symbols to see which
232 	elements should be included.
233 	<<_bfd_generic_link_add_archive_symbols>> is passed a function
234 	to call to make the final decision about adding an archive
235 	element to the link and to do the actual work of adding the
236 	symbols to the linker hash table.
237 
238 	The function passed to
239 	<<_bfd_generic_link_add_archive_symbols>> must read the
240 	symbols of the archive element and decide whether the archive
241 	element should be included in the link.  If the element is to
242 	be included, the <<add_archive_element>> linker callback
243 	routine must be called with the element as an argument, and
244 	the elements symbols must be added to the linker hash table
245 	just as though the element had itself been passed to the
246 	<<_bfd_link_add_symbols>> function.
247 
248 	When the a.out <<_bfd_link_add_symbols>> function receives an
249 	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
250 	passing <<aout_link_check_archive_element>> as the function
251 	argument. <<aout_link_check_archive_element>> calls
252 	<<aout_link_check_ar_symbols>>.  If the latter decides to add
253 	the element (an element is only added if it provides a real,
254 	non-common, definition for a previously undefined or common
255 	symbol) it calls the <<add_archive_element>> callback and then
256 	<<aout_link_check_archive_element>> calls
257 	<<aout_link_add_symbols>> to actually add the symbols to the
258 	linker hash table.
259 
260 	The ECOFF back end is unusual in that it does not normally
261 	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
262 	archives already contain a hash table of symbols.  The ECOFF
263 	back end searches the archive itself to avoid the overhead of
264 	creating a new hash table.
265 
266 INODE
267 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
268 SUBSECTION
269 	Performing the final link
270 
271 @cindex _bfd_link_final_link in target vector
272 @cindex target vector (_bfd_final_link)
273 	When all the input files have been processed, the linker calls
274 	the <<_bfd_final_link>> entry point of the output BFD.  This
275 	routine is responsible for producing the final output file,
276 	which has several aspects.  It must relocate the contents of
277 	the input sections and copy the data into the output sections.
278 	It must build an output symbol table including any local
279 	symbols from the input files and the global symbols from the
280 	hash table.  When producing relocatable output, it must
281 	modify the input relocs and write them into the output file.
282 	There may also be object format dependent work to be done.
283 
284 	The linker will also call the <<write_object_contents>> entry
285 	point when the BFD is closed.  The two entry points must work
286 	together in order to produce the correct output file.
287 
288 	The details of how this works are inevitably dependent upon
289 	the specific object file format.  The a.out
290 	<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
291 
292 @menu
293 @* Information provided by the linker::
294 @* Relocating the section contents::
295 @* Writing the symbol table::
296 @end menu
297 
298 INODE
299 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
300 SUBSUBSECTION
301 	Information provided by the linker
302 
303 	Before the linker calls the <<_bfd_final_link>> entry point,
304 	it sets up some data structures for the function to use.
305 
306 	The <<input_bfds>> field of the <<bfd_link_info>> structure
307 	will point to a list of all the input files included in the
308 	link.  These files are linked through the <<link_next>> field
309 	of the <<bfd>> structure.
310 
311 	Each section in the output file will have a list of
312 	<<link_order>> structures attached to the <<link_order_head>>
313 	field (the <<link_order>> structure is defined in
314 	<<bfdlink.h>>).  These structures describe how to create the
315 	contents of the output section in terms of the contents of
316 	various input sections, fill constants, and, eventually, other
317 	types of information.  They also describe relocs that must be
318 	created by the BFD backend, but do not correspond to any input
319 	file; this is used to support -Ur, which builds constructors
320 	while generating a relocatable object file.
321 
322 INODE
323 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
324 SUBSUBSECTION
325 	Relocating the section contents
326 
327 	The <<_bfd_final_link>> function should look through the
328 	<<link_order>> structures attached to each section of the
329 	output file.  Each <<link_order>> structure should either be
330 	handled specially, or it should be passed to the function
331 	<<_bfd_default_link_order>> which will do the right thing
332 	(<<_bfd_default_link_order>> is defined in <<linker.c>>).
333 
334 	For efficiency, a <<link_order>> of type
335 	<<bfd_indirect_link_order>> whose associated section belongs
336 	to a BFD of the same format as the output BFD must be handled
337 	specially.  This type of <<link_order>> describes part of an
338 	output section in terms of a section belonging to one of the
339 	input files.  The <<_bfd_final_link>> function should read the
340 	contents of the section and any associated relocs, apply the
341 	relocs to the section contents, and write out the modified
342 	section contents.  If performing a relocatable link, the
343 	relocs themselves must also be modified and written out.
344 
345 @findex _bfd_relocate_contents
346 @findex _bfd_final_link_relocate
347 	The functions <<_bfd_relocate_contents>> and
348 	<<_bfd_final_link_relocate>> provide some general support for
349 	performing the actual relocations, notably overflow checking.
350 	Their arguments include information about the symbol the
351 	relocation is against and a <<reloc_howto_type>> argument
352 	which describes the relocation to perform.  These functions
353 	are defined in <<reloc.c>>.
354 
355 	The a.out function which handles reading, relocating, and
356 	writing section contents is <<aout_link_input_section>>.  The
357 	actual relocation is done in <<aout_link_input_section_std>>
358 	and <<aout_link_input_section_ext>>.
359 
360 INODE
361 Writing the symbol table, , Relocating the section contents, Performing the Final Link
362 SUBSUBSECTION
363 	Writing the symbol table
364 
365 	The <<_bfd_final_link>> function must gather all the symbols
366 	in the input files and write them out.  It must also write out
367 	all the symbols in the global hash table.  This must be
368 	controlled by the <<strip>> and <<discard>> fields of the
369 	<<bfd_link_info>> structure.
370 
371 	The local symbols of the input files will not have been
372 	entered into the linker hash table.  The <<_bfd_final_link>>
373 	routine must consider each input file and include the symbols
374 	in the output file.  It may be convenient to do this when
375 	looking through the <<link_order>> structures, or it may be
376 	done by stepping through the <<input_bfds>> list.
377 
378 	The <<_bfd_final_link>> routine must also traverse the global
379 	hash table to gather all the externally visible symbols.  It
380 	is possible that most of the externally visible symbols may be
381 	written out when considering the symbols of each input file,
382 	but it is still necessary to traverse the hash table since the
383 	linker script may have defined some symbols that are not in
384 	any of the input files.
385 
386 	The <<strip>> field of the <<bfd_link_info>> structure
387 	controls which symbols are written out.  The possible values
388 	are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
389 	then the <<keep_hash>> field of the <<bfd_link_info>>
390 	structure is a hash table of symbols to keep; each symbol
391 	should be looked up in this hash table, and only symbols which
392 	are present should be included in the output file.
393 
394 	If the <<strip>> field of the <<bfd_link_info>> structure
395 	permits local symbols to be written out, the <<discard>> field
396 	is used to further controls which local symbols are included
397 	in the output file.  If the value is <<discard_l>>, then all
398 	local symbols which begin with a certain prefix are discarded;
399 	this is controlled by the <<bfd_is_local_label_name>> entry point.
400 
401 	The a.out backend handles symbols by calling
402 	<<aout_link_write_symbols>> on each input BFD and then
403 	traversing the global hash table with the function
404 	<<aout_link_write_other_symbol>>.  It builds a string table
405 	while writing out the symbols, which is written to the output
406 	file at the end of <<NAME(aout,final_link)>>.
407 */
408 
409 static bfd_boolean generic_link_add_object_symbols
410   (bfd *, struct bfd_link_info *, bfd_boolean collect);
411 static bfd_boolean generic_link_add_symbols
412   (bfd *, struct bfd_link_info *, bfd_boolean);
413 static bfd_boolean generic_link_check_archive_element_no_collect
414   (bfd *, struct bfd_link_info *, bfd_boolean *);
415 static bfd_boolean generic_link_check_archive_element_collect
416   (bfd *, struct bfd_link_info *, bfd_boolean *);
417 static bfd_boolean generic_link_check_archive_element
418   (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
419 static bfd_boolean generic_link_add_symbol_list
420   (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
421    bfd_boolean);
422 static bfd_boolean generic_add_output_symbol
423   (bfd *, size_t *psymalloc, asymbol *);
424 static bfd_boolean default_data_link_order
425   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
426 static bfd_boolean default_indirect_link_order
427   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
428    bfd_boolean);
429 
430 /* The link hash table structure is defined in bfdlink.h.  It provides
431    a base hash table which the backend specific hash tables are built
432    upon.  */
433 
434 /* Routine to create an entry in the link hash table.  */
435 
436 struct bfd_hash_entry *
437 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
438 			struct bfd_hash_table *table,
439 			const char *string)
440 {
441   /* Allocate the structure if it has not already been allocated by a
442      subclass.  */
443   if (entry == NULL)
444     {
445       entry = bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
446       if (entry == NULL)
447 	return entry;
448     }
449 
450   /* Call the allocation method of the superclass.  */
451   entry = bfd_hash_newfunc (entry, table, string);
452   if (entry)
453     {
454       struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
455 
456       /* Initialize the local fields.  */
457       h->type = bfd_link_hash_new;
458       h->und_next = NULL;
459     }
460 
461   return entry;
462 }
463 
464 /* Initialize a link hash table.  The BFD argument is the one
465    responsible for creating this table.  */
466 
467 bfd_boolean
468 _bfd_link_hash_table_init
469   (struct bfd_link_hash_table *table,
470    bfd *abfd,
471    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
472 				      struct bfd_hash_table *,
473 				      const char *))
474 {
475   table->creator = abfd->xvec;
476   table->undefs = NULL;
477   table->undefs_tail = NULL;
478   table->type = bfd_link_generic_hash_table;
479 
480   return bfd_hash_table_init (&table->table, newfunc);
481 }
482 
483 /* Look up a symbol in a link hash table.  If follow is TRUE, we
484    follow bfd_link_hash_indirect and bfd_link_hash_warning links to
485    the real symbol.  */
486 
487 struct bfd_link_hash_entry *
488 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
489 		      const char *string,
490 		      bfd_boolean create,
491 		      bfd_boolean copy,
492 		      bfd_boolean follow)
493 {
494   struct bfd_link_hash_entry *ret;
495 
496   ret = ((struct bfd_link_hash_entry *)
497 	 bfd_hash_lookup (&table->table, string, create, copy));
498 
499   if (follow && ret != NULL)
500     {
501       while (ret->type == bfd_link_hash_indirect
502 	     || ret->type == bfd_link_hash_warning)
503 	ret = ret->u.i.link;
504     }
505 
506   return ret;
507 }
508 
509 /* Look up a symbol in the main linker hash table if the symbol might
510    be wrapped.  This should only be used for references to an
511    undefined symbol, not for definitions of a symbol.  */
512 
513 struct bfd_link_hash_entry *
514 bfd_wrapped_link_hash_lookup (bfd *abfd,
515 			      struct bfd_link_info *info,
516 			      const char *string,
517 			      bfd_boolean create,
518 			      bfd_boolean copy,
519 			      bfd_boolean follow)
520 {
521   bfd_size_type amt;
522 
523   if (info->wrap_hash != NULL)
524     {
525       const char *l;
526       char prefix = '\0';
527 
528       l = string;
529       if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
530 	{
531 	  prefix = *l;
532 	  ++l;
533 	}
534 
535 #undef WRAP
536 #define WRAP "__wrap_"
537 
538       if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
539 	{
540 	  char *n;
541 	  struct bfd_link_hash_entry *h;
542 
543 	  /* This symbol is being wrapped.  We want to replace all
544              references to SYM with references to __wrap_SYM.  */
545 
546 	  amt = strlen (l) + sizeof WRAP + 1;
547 	  n = bfd_malloc (amt);
548 	  if (n == NULL)
549 	    return NULL;
550 
551 	  n[0] = prefix;
552 	  n[1] = '\0';
553 	  strcat (n, WRAP);
554 	  strcat (n, l);
555 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
556 	  free (n);
557 	  return h;
558 	}
559 
560 #undef WRAP
561 
562 #undef REAL
563 #define REAL "__real_"
564 
565       if (*l == '_'
566 	  && strncmp (l, REAL, sizeof REAL - 1) == 0
567 	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
568 			      FALSE, FALSE) != NULL)
569 	{
570 	  char *n;
571 	  struct bfd_link_hash_entry *h;
572 
573 	  /* This is a reference to __real_SYM, where SYM is being
574              wrapped.  We want to replace all references to __real_SYM
575              with references to SYM.  */
576 
577 	  amt = strlen (l + sizeof REAL - 1) + 2;
578 	  n = bfd_malloc (amt);
579 	  if (n == NULL)
580 	    return NULL;
581 
582 	  n[0] = prefix;
583 	  n[1] = '\0';
584 	  strcat (n, l + sizeof REAL - 1);
585 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
586 	  free (n);
587 	  return h;
588 	}
589 
590 #undef REAL
591     }
592 
593   return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
594 }
595 
596 /* Traverse a generic link hash table.  The only reason this is not a
597    macro is to do better type checking.  This code presumes that an
598    argument passed as a struct bfd_hash_entry * may be caught as a
599    struct bfd_link_hash_entry * with no explicit cast required on the
600    call.  */
601 
602 void
603 bfd_link_hash_traverse
604   (struct bfd_link_hash_table *table,
605    bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
606    void *info)
607 {
608   bfd_hash_traverse (&table->table,
609 		     (bfd_boolean (*) (struct bfd_hash_entry *, void *)) func,
610 		     info);
611 }
612 
613 /* Add a symbol to the linker hash table undefs list.  */
614 
615 void
616 bfd_link_add_undef (struct bfd_link_hash_table *table,
617 		    struct bfd_link_hash_entry *h)
618 {
619   BFD_ASSERT (h->und_next == NULL);
620   if (table->undefs_tail != NULL)
621     table->undefs_tail->und_next = h;
622   if (table->undefs == NULL)
623     table->undefs = h;
624   table->undefs_tail = h;
625 }
626 
627 /* Routine to create an entry in a generic link hash table.  */
628 
629 struct bfd_hash_entry *
630 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
631 				struct bfd_hash_table *table,
632 				const char *string)
633 {
634   /* Allocate the structure if it has not already been allocated by a
635      subclass.  */
636   if (entry == NULL)
637     {
638       entry =
639 	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
640       if (entry == NULL)
641 	return entry;
642     }
643 
644   /* Call the allocation method of the superclass.  */
645   entry = _bfd_link_hash_newfunc (entry, table, string);
646   if (entry)
647     {
648       struct generic_link_hash_entry *ret;
649 
650       /* Set local fields.  */
651       ret = (struct generic_link_hash_entry *) entry;
652       ret->written = FALSE;
653       ret->sym = NULL;
654     }
655 
656   return entry;
657 }
658 
659 /* Create a generic link hash table.  */
660 
661 struct bfd_link_hash_table *
662 _bfd_generic_link_hash_table_create (bfd *abfd)
663 {
664   struct generic_link_hash_table *ret;
665   bfd_size_type amt = sizeof (struct generic_link_hash_table);
666 
667   ret = bfd_malloc (amt);
668   if (ret == NULL)
669     return NULL;
670   if (! _bfd_link_hash_table_init (&ret->root, abfd,
671 				   _bfd_generic_link_hash_newfunc))
672     {
673       free (ret);
674       return NULL;
675     }
676   return &ret->root;
677 }
678 
679 void
680 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
681 {
682   struct generic_link_hash_table *ret
683     = (struct generic_link_hash_table *) hash;
684 
685   bfd_hash_table_free (&ret->root.table);
686   free (ret);
687 }
688 
689 /* Grab the symbols for an object file when doing a generic link.  We
690    store the symbols in the outsymbols field.  We need to keep them
691    around for the entire link to ensure that we only read them once.
692    If we read them multiple times, we might wind up with relocs and
693    the hash table pointing to different instances of the symbol
694    structure.  */
695 
696 static bfd_boolean
697 generic_link_read_symbols (bfd *abfd)
698 {
699   if (bfd_get_outsymbols (abfd) == NULL)
700     {
701       long symsize;
702       long symcount;
703 
704       symsize = bfd_get_symtab_upper_bound (abfd);
705       if (symsize < 0)
706 	return FALSE;
707       bfd_get_outsymbols (abfd) = bfd_alloc (abfd, symsize);
708       if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
709 	return FALSE;
710       symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
711       if (symcount < 0)
712 	return FALSE;
713       bfd_get_symcount (abfd) = symcount;
714     }
715 
716   return TRUE;
717 }
718 
719 /* Generic function to add symbols to from an object file to the
720    global hash table.  This version does not automatically collect
721    constructors by name.  */
722 
723 bfd_boolean
724 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
725 {
726   return generic_link_add_symbols (abfd, info, FALSE);
727 }
728 
729 /* Generic function to add symbols from an object file to the global
730    hash table.  This version automatically collects constructors by
731    name, as the collect2 program does.  It should be used for any
732    target which does not provide some other mechanism for setting up
733    constructors and destructors; these are approximately those targets
734    for which gcc uses collect2 and do not support stabs.  */
735 
736 bfd_boolean
737 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
738 {
739   return generic_link_add_symbols (abfd, info, TRUE);
740 }
741 
742 /* Indicate that we are only retrieving symbol values from this
743    section.  We want the symbols to act as though the values in the
744    file are absolute.  */
745 
746 void
747 _bfd_generic_link_just_syms (asection *sec,
748 			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
749 {
750   sec->output_section = bfd_abs_section_ptr;
751   sec->output_offset = sec->vma;
752 }
753 
754 /* Add symbols from an object file to the global hash table.  */
755 
756 static bfd_boolean
757 generic_link_add_symbols (bfd *abfd,
758 			  struct bfd_link_info *info,
759 			  bfd_boolean collect)
760 {
761   bfd_boolean ret;
762 
763   switch (bfd_get_format (abfd))
764     {
765     case bfd_object:
766       ret = generic_link_add_object_symbols (abfd, info, collect);
767       break;
768     case bfd_archive:
769       ret = (_bfd_generic_link_add_archive_symbols
770 	     (abfd, info,
771 	      (collect
772 	       ? generic_link_check_archive_element_collect
773 	       : generic_link_check_archive_element_no_collect)));
774       break;
775     default:
776       bfd_set_error (bfd_error_wrong_format);
777       ret = FALSE;
778     }
779 
780   return ret;
781 }
782 
783 /* Add symbols from an object file to the global hash table.  */
784 
785 static bfd_boolean
786 generic_link_add_object_symbols (bfd *abfd,
787 				 struct bfd_link_info *info,
788 				 bfd_boolean collect)
789 {
790   bfd_size_type symcount;
791   struct bfd_symbol **outsyms;
792 
793   if (! generic_link_read_symbols (abfd))
794     return FALSE;
795   symcount = _bfd_generic_link_get_symcount (abfd);
796   outsyms = _bfd_generic_link_get_symbols (abfd);
797   return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
798 }
799 
800 /* We build a hash table of all symbols defined in an archive.  */
801 
802 /* An archive symbol may be defined by multiple archive elements.
803    This linked list is used to hold the elements.  */
804 
805 struct archive_list
806 {
807   struct archive_list *next;
808   unsigned int indx;
809 };
810 
811 /* An entry in an archive hash table.  */
812 
813 struct archive_hash_entry
814 {
815   struct bfd_hash_entry root;
816   /* Where the symbol is defined.  */
817   struct archive_list *defs;
818 };
819 
820 /* An archive hash table itself.  */
821 
822 struct archive_hash_table
823 {
824   struct bfd_hash_table table;
825 };
826 
827 /* Create a new entry for an archive hash table.  */
828 
829 static struct bfd_hash_entry *
830 archive_hash_newfunc (struct bfd_hash_entry *entry,
831 		      struct bfd_hash_table *table,
832 		      const char *string)
833 {
834   struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
835 
836   /* Allocate the structure if it has not already been allocated by a
837      subclass.  */
838   if (ret == NULL)
839     ret = bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
840   if (ret == NULL)
841     return NULL;
842 
843   /* Call the allocation method of the superclass.  */
844   ret = ((struct archive_hash_entry *)
845 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
846 
847   if (ret)
848     {
849       /* Initialize the local fields.  */
850       ret->defs = NULL;
851     }
852 
853   return &ret->root;
854 }
855 
856 /* Initialize an archive hash table.  */
857 
858 static bfd_boolean
859 archive_hash_table_init
860   (struct archive_hash_table *table,
861    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
862 				      struct bfd_hash_table *,
863 				      const char *))
864 {
865   return bfd_hash_table_init (&table->table, newfunc);
866 }
867 
868 /* Look up an entry in an archive hash table.  */
869 
870 #define archive_hash_lookup(t, string, create, copy) \
871   ((struct archive_hash_entry *) \
872    bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
873 
874 /* Allocate space in an archive hash table.  */
875 
876 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
877 
878 /* Free an archive hash table.  */
879 
880 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
881 
882 /* Generic function to add symbols from an archive file to the global
883    hash file.  This function presumes that the archive symbol table
884    has already been read in (this is normally done by the
885    bfd_check_format entry point).  It looks through the undefined and
886    common symbols and searches the archive symbol table for them.  If
887    it finds an entry, it includes the associated object file in the
888    link.
889 
890    The old linker looked through the archive symbol table for
891    undefined symbols.  We do it the other way around, looking through
892    undefined symbols for symbols defined in the archive.  The
893    advantage of the newer scheme is that we only have to look through
894    the list of undefined symbols once, whereas the old method had to
895    re-search the symbol table each time a new object file was added.
896 
897    The CHECKFN argument is used to see if an object file should be
898    included.  CHECKFN should set *PNEEDED to TRUE if the object file
899    should be included, and must also call the bfd_link_info
900    add_archive_element callback function and handle adding the symbols
901    to the global hash table.  CHECKFN should only return FALSE if some
902    sort of error occurs.
903 
904    For some formats, such as a.out, it is possible to look through an
905    object file but not actually include it in the link.  The
906    archive_pass field in a BFD is used to avoid checking the symbols
907    of an object files too many times.  When an object is included in
908    the link, archive_pass is set to -1.  If an object is scanned but
909    not included, archive_pass is set to the pass number.  The pass
910    number is incremented each time a new object file is included.  The
911    pass number is used because when a new object file is included it
912    may create new undefined symbols which cause a previously examined
913    object file to be included.  */
914 
915 bfd_boolean
916 _bfd_generic_link_add_archive_symbols
917   (bfd *abfd,
918    struct bfd_link_info *info,
919    bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
920 {
921   carsym *arsyms;
922   carsym *arsym_end;
923   register carsym *arsym;
924   int pass;
925   struct archive_hash_table arsym_hash;
926   unsigned int indx;
927   struct bfd_link_hash_entry **pundef;
928 
929   if (! bfd_has_map (abfd))
930     {
931       /* An empty archive is a special case.  */
932       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
933 	return TRUE;
934       bfd_set_error (bfd_error_no_armap);
935       return FALSE;
936     }
937 
938   arsyms = bfd_ardata (abfd)->symdefs;
939   arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
940 
941   /* In order to quickly determine whether an symbol is defined in
942      this archive, we build a hash table of the symbols.  */
943   if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
944     return FALSE;
945   for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
946     {
947       struct archive_hash_entry *arh;
948       struct archive_list *l, **pp;
949 
950       arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
951       if (arh == NULL)
952 	goto error_return;
953       l = ((struct archive_list *)
954 	   archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
955       if (l == NULL)
956 	goto error_return;
957       l->indx = indx;
958       for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
959 	;
960       *pp = l;
961       l->next = NULL;
962     }
963 
964   /* The archive_pass field in the archive itself is used to
965      initialize PASS, sine we may search the same archive multiple
966      times.  */
967   pass = abfd->archive_pass + 1;
968 
969   /* New undefined symbols are added to the end of the list, so we
970      only need to look through it once.  */
971   pundef = &info->hash->undefs;
972   while (*pundef != NULL)
973     {
974       struct bfd_link_hash_entry *h;
975       struct archive_hash_entry *arh;
976       struct archive_list *l;
977 
978       h = *pundef;
979 
980       /* When a symbol is defined, it is not necessarily removed from
981 	 the list.  */
982       if (h->type != bfd_link_hash_undefined
983 	  && h->type != bfd_link_hash_common)
984 	{
985 	  /* Remove this entry from the list, for general cleanliness
986 	     and because we are going to look through the list again
987 	     if we search any more libraries.  We can't remove the
988 	     entry if it is the tail, because that would lose any
989 	     entries we add to the list later on (it would also cause
990 	     us to lose track of whether the symbol has been
991 	     referenced).  */
992 	  if (*pundef != info->hash->undefs_tail)
993 	    *pundef = (*pundef)->und_next;
994 	  else
995 	    pundef = &(*pundef)->und_next;
996 	  continue;
997 	}
998 
999       /* Look for this symbol in the archive symbol map.  */
1000       arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1001       if (arh == NULL)
1002 	{
1003 	  /* If we haven't found the exact symbol we're looking for,
1004 	     let's look for its import thunk */
1005 	  if (info->pei386_auto_import)
1006 	    {
1007 	      bfd_size_type amt = strlen (h->root.string) + 10;
1008 	      char *buf = bfd_malloc (amt);
1009 	      if (buf == NULL)
1010 		return FALSE;
1011 
1012 	      sprintf (buf, "__imp_%s", h->root.string);
1013 	      arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1014 	      free(buf);
1015 	    }
1016 	  if (arh == NULL)
1017 	    {
1018 	      pundef = &(*pundef)->und_next;
1019 	      continue;
1020 	    }
1021 	}
1022       /* Look at all the objects which define this symbol.  */
1023       for (l = arh->defs; l != NULL; l = l->next)
1024 	{
1025 	  bfd *element;
1026 	  bfd_boolean needed;
1027 
1028 	  /* If the symbol has gotten defined along the way, quit.  */
1029 	  if (h->type != bfd_link_hash_undefined
1030 	      && h->type != bfd_link_hash_common)
1031 	    break;
1032 
1033 	  element = bfd_get_elt_at_index (abfd, l->indx);
1034 	  if (element == NULL)
1035 	    goto error_return;
1036 
1037 	  /* If we've already included this element, or if we've
1038 	     already checked it on this pass, continue.  */
1039 	  if (element->archive_pass == -1
1040 	      || element->archive_pass == pass)
1041 	    continue;
1042 
1043 	  /* If we can't figure this element out, just ignore it.  */
1044 	  if (! bfd_check_format (element, bfd_object))
1045 	    {
1046 	      element->archive_pass = -1;
1047 	      continue;
1048 	    }
1049 
1050 	  /* CHECKFN will see if this element should be included, and
1051 	     go ahead and include it if appropriate.  */
1052 	  if (! (*checkfn) (element, info, &needed))
1053 	    goto error_return;
1054 
1055 	  if (! needed)
1056 	    element->archive_pass = pass;
1057 	  else
1058 	    {
1059 	      element->archive_pass = -1;
1060 
1061 	      /* Increment the pass count to show that we may need to
1062 		 recheck object files which were already checked.  */
1063 	      ++pass;
1064 	    }
1065 	}
1066 
1067       pundef = &(*pundef)->und_next;
1068     }
1069 
1070   archive_hash_table_free (&arsym_hash);
1071 
1072   /* Save PASS in case we are called again.  */
1073   abfd->archive_pass = pass;
1074 
1075   return TRUE;
1076 
1077  error_return:
1078   archive_hash_table_free (&arsym_hash);
1079   return FALSE;
1080 }
1081 
1082 /* See if we should include an archive element.  This version is used
1083    when we do not want to automatically collect constructors based on
1084    the symbol name, presumably because we have some other mechanism
1085    for finding them.  */
1086 
1087 static bfd_boolean
1088 generic_link_check_archive_element_no_collect (
1089 					       bfd *abfd,
1090 					       struct bfd_link_info *info,
1091 					       bfd_boolean *pneeded)
1092 {
1093   return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1094 }
1095 
1096 /* See if we should include an archive element.  This version is used
1097    when we want to automatically collect constructors based on the
1098    symbol name, as collect2 does.  */
1099 
1100 static bfd_boolean
1101 generic_link_check_archive_element_collect (bfd *abfd,
1102 					    struct bfd_link_info *info,
1103 					    bfd_boolean *pneeded)
1104 {
1105   return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1106 }
1107 
1108 /* See if we should include an archive element.  Optionally collect
1109    constructors.  */
1110 
1111 static bfd_boolean
1112 generic_link_check_archive_element (bfd *abfd,
1113 				    struct bfd_link_info *info,
1114 				    bfd_boolean *pneeded,
1115 				    bfd_boolean collect)
1116 {
1117   asymbol **pp, **ppend;
1118 
1119   *pneeded = FALSE;
1120 
1121   if (! generic_link_read_symbols (abfd))
1122     return FALSE;
1123 
1124   pp = _bfd_generic_link_get_symbols (abfd);
1125   ppend = pp + _bfd_generic_link_get_symcount (abfd);
1126   for (; pp < ppend; pp++)
1127     {
1128       asymbol *p;
1129       struct bfd_link_hash_entry *h;
1130 
1131       p = *pp;
1132 
1133       /* We are only interested in globally visible symbols.  */
1134       if (! bfd_is_com_section (p->section)
1135 	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1136 	continue;
1137 
1138       /* We are only interested if we know something about this
1139 	 symbol, and it is undefined or common.  An undefined weak
1140 	 symbol (type bfd_link_hash_undefweak) is not considered to be
1141 	 a reference when pulling files out of an archive.  See the
1142 	 SVR4 ABI, p. 4-27.  */
1143       h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1144 				FALSE, TRUE);
1145       if (h == NULL
1146 	  || (h->type != bfd_link_hash_undefined
1147 	      && h->type != bfd_link_hash_common))
1148 	continue;
1149 
1150       /* P is a symbol we are looking for.  */
1151 
1152       if (! bfd_is_com_section (p->section))
1153 	{
1154 	  bfd_size_type symcount;
1155 	  asymbol **symbols;
1156 
1157 	  /* This object file defines this symbol, so pull it in.  */
1158 	  if (! (*info->callbacks->add_archive_element) (info, abfd,
1159 							 bfd_asymbol_name (p)))
1160 	    return FALSE;
1161 	  symcount = _bfd_generic_link_get_symcount (abfd);
1162 	  symbols = _bfd_generic_link_get_symbols (abfd);
1163 	  if (! generic_link_add_symbol_list (abfd, info, symcount,
1164 					      symbols, collect))
1165 	    return FALSE;
1166 	  *pneeded = TRUE;
1167 	  return TRUE;
1168 	}
1169 
1170       /* P is a common symbol.  */
1171 
1172       if (h->type == bfd_link_hash_undefined)
1173 	{
1174 	  bfd *symbfd;
1175 	  bfd_vma size;
1176 	  unsigned int power;
1177 
1178 	  symbfd = h->u.undef.abfd;
1179 	  if (symbfd == NULL)
1180 	    {
1181 	      /* This symbol was created as undefined from outside
1182 		 BFD.  We assume that we should link in the object
1183 		 file.  This is for the -u option in the linker.  */
1184 	      if (! (*info->callbacks->add_archive_element)
1185 		  (info, abfd, bfd_asymbol_name (p)))
1186 		return FALSE;
1187 	      *pneeded = TRUE;
1188 	      return TRUE;
1189 	    }
1190 
1191 	  /* Turn the symbol into a common symbol but do not link in
1192 	     the object file.  This is how a.out works.  Object
1193 	     formats that require different semantics must implement
1194 	     this function differently.  This symbol is already on the
1195 	     undefs list.  We add the section to a common section
1196 	     attached to symbfd to ensure that it is in a BFD which
1197 	     will be linked in.  */
1198 	  h->type = bfd_link_hash_common;
1199 	  h->u.c.p =
1200 	    bfd_hash_allocate (&info->hash->table,
1201 			       sizeof (struct bfd_link_hash_common_entry));
1202 	  if (h->u.c.p == NULL)
1203 	    return FALSE;
1204 
1205 	  size = bfd_asymbol_value (p);
1206 	  h->u.c.size = size;
1207 
1208 	  power = bfd_log2 (size);
1209 	  if (power > 4)
1210 	    power = 4;
1211 	  h->u.c.p->alignment_power = power;
1212 
1213 	  if (p->section == bfd_com_section_ptr)
1214 	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1215 	  else
1216 	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1217 							  p->section->name);
1218 	  h->u.c.p->section->flags = SEC_ALLOC;
1219 	}
1220       else
1221 	{
1222 	  /* Adjust the size of the common symbol if necessary.  This
1223 	     is how a.out works.  Object formats that require
1224 	     different semantics must implement this function
1225 	     differently.  */
1226 	  if (bfd_asymbol_value (p) > h->u.c.size)
1227 	    h->u.c.size = bfd_asymbol_value (p);
1228 	}
1229     }
1230 
1231   /* This archive element is not needed.  */
1232   return TRUE;
1233 }
1234 
1235 /* Add the symbols from an object file to the global hash table.  ABFD
1236    is the object file.  INFO is the linker information.  SYMBOL_COUNT
1237    is the number of symbols.  SYMBOLS is the list of symbols.  COLLECT
1238    is TRUE if constructors should be automatically collected by name
1239    as is done by collect2.  */
1240 
1241 static bfd_boolean
1242 generic_link_add_symbol_list (bfd *abfd,
1243 			      struct bfd_link_info *info,
1244 			      bfd_size_type symbol_count,
1245 			      asymbol **symbols,
1246 			      bfd_boolean collect)
1247 {
1248   asymbol **pp, **ppend;
1249 
1250   pp = symbols;
1251   ppend = symbols + symbol_count;
1252   for (; pp < ppend; pp++)
1253     {
1254       asymbol *p;
1255 
1256       p = *pp;
1257 
1258       if ((p->flags & (BSF_INDIRECT
1259 		       | BSF_WARNING
1260 		       | BSF_GLOBAL
1261 		       | BSF_CONSTRUCTOR
1262 		       | BSF_WEAK)) != 0
1263 	  || bfd_is_und_section (bfd_get_section (p))
1264 	  || bfd_is_com_section (bfd_get_section (p))
1265 	  || bfd_is_ind_section (bfd_get_section (p)))
1266 	{
1267 	  const char *name;
1268 	  const char *string;
1269 	  struct generic_link_hash_entry *h;
1270 	  struct bfd_link_hash_entry *bh;
1271 
1272 	  name = bfd_asymbol_name (p);
1273 	  if (((p->flags & BSF_INDIRECT) != 0
1274 	       || bfd_is_ind_section (p->section))
1275 	      && pp + 1 < ppend)
1276 	    {
1277 	      pp++;
1278 	      string = bfd_asymbol_name (*pp);
1279 	    }
1280 	  else if ((p->flags & BSF_WARNING) != 0
1281 		   && pp + 1 < ppend)
1282 	    {
1283 	      /* The name of P is actually the warning string, and the
1284 		 next symbol is the one to warn about.  */
1285 	      string = name;
1286 	      pp++;
1287 	      name = bfd_asymbol_name (*pp);
1288 	    }
1289 	  else
1290 	    string = NULL;
1291 
1292 	  bh = NULL;
1293 	  if (! (_bfd_generic_link_add_one_symbol
1294 		 (info, abfd, name, p->flags, bfd_get_section (p),
1295 		  p->value, string, FALSE, collect, &bh)))
1296 	    return FALSE;
1297 	  h = (struct generic_link_hash_entry *) bh;
1298 
1299 	  /* If this is a constructor symbol, and the linker didn't do
1300              anything with it, then we want to just pass the symbol
1301              through to the output file.  This will happen when
1302              linking with -r.  */
1303 	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1304 	      && (h == NULL || h->root.type == bfd_link_hash_new))
1305 	    {
1306 	      p->udata.p = NULL;
1307 	      continue;
1308 	    }
1309 
1310 	  /* Save the BFD symbol so that we don't lose any backend
1311 	     specific information that may be attached to it.  We only
1312 	     want this one if it gives more information than the
1313 	     existing one; we don't want to replace a defined symbol
1314 	     with an undefined one.  This routine may be called with a
1315 	     hash table other than the generic hash table, so we only
1316 	     do this if we are certain that the hash table is a
1317 	     generic one.  */
1318 	  if (info->hash->creator == abfd->xvec)
1319 	    {
1320 	      if (h->sym == NULL
1321 		  || (! bfd_is_und_section (bfd_get_section (p))
1322 		      && (! bfd_is_com_section (bfd_get_section (p))
1323 			  || bfd_is_und_section (bfd_get_section (h->sym)))))
1324 		{
1325 		  h->sym = p;
1326 		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1327 		     reading, and it should go away when the COFF
1328 		     linker is switched to the new version.  */
1329 		  if (bfd_is_com_section (bfd_get_section (p)))
1330 		    p->flags |= BSF_OLD_COMMON;
1331 		}
1332 	    }
1333 
1334 	  /* Store a back pointer from the symbol to the hash
1335 	     table entry for the benefit of relaxation code until
1336 	     it gets rewritten to not use asymbol structures.
1337 	     Setting this is also used to check whether these
1338 	     symbols were set up by the generic linker.  */
1339 	  p->udata.p = h;
1340 	}
1341     }
1342 
1343   return TRUE;
1344 }
1345 
1346 /* We use a state table to deal with adding symbols from an object
1347    file.  The first index into the state table describes the symbol
1348    from the object file.  The second index into the state table is the
1349    type of the symbol in the hash table.  */
1350 
1351 /* The symbol from the object file is turned into one of these row
1352    values.  */
1353 
1354 enum link_row
1355 {
1356   UNDEF_ROW,		/* Undefined.  */
1357   UNDEFW_ROW,		/* Weak undefined.  */
1358   DEF_ROW,		/* Defined.  */
1359   DEFW_ROW,		/* Weak defined.  */
1360   COMMON_ROW,		/* Common.  */
1361   INDR_ROW,		/* Indirect.  */
1362   WARN_ROW,		/* Warning.  */
1363   SET_ROW		/* Member of set.  */
1364 };
1365 
1366 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1367 #undef FAIL
1368 
1369 /* The actions to take in the state table.  */
1370 
1371 enum link_action
1372 {
1373   FAIL,		/* Abort.  */
1374   UND,		/* Mark symbol undefined.  */
1375   WEAK,		/* Mark symbol weak undefined.  */
1376   DEF,		/* Mark symbol defined.  */
1377   DEFW,		/* Mark symbol weak defined.  */
1378   COM,		/* Mark symbol common.  */
1379   REF,		/* Mark defined symbol referenced.  */
1380   CREF,		/* Possibly warn about common reference to defined symbol.  */
1381   CDEF,		/* Define existing common symbol.  */
1382   NOACT,	/* No action.  */
1383   BIG,		/* Mark symbol common using largest size.  */
1384   MDEF,		/* Multiple definition error.  */
1385   MIND,		/* Multiple indirect symbols.  */
1386   IND,		/* Make indirect symbol.  */
1387   CIND,		/* Make indirect symbol from existing common symbol.  */
1388   SET,		/* Add value to set.  */
1389   MWARN,	/* Make warning symbol.  */
1390   WARN,		/* Issue warning.  */
1391   CWARN,	/* Warn if referenced, else MWARN.  */
1392   CYCLE,	/* Repeat with symbol pointed to.  */
1393   REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1394   WARNC		/* Issue warning and then CYCLE.  */
1395 };
1396 
1397 /* The state table itself.  The first index is a link_row and the
1398    second index is a bfd_link_hash_type.  */
1399 
1400 static const enum link_action link_action[8][8] =
1401 {
1402   /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1403   /* UNDEF_ROW 	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1404   /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1405   /* DEF_ROW 	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1406   /* DEFW_ROW 	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1407   /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
1408   /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1409   /* WARN_ROW   */  {MWARN, WARN,  WARN,  CWARN, CWARN, WARN,  CWARN, NOACT },
1410   /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1411 };
1412 
1413 /* Most of the entries in the LINK_ACTION table are straightforward,
1414    but a few are somewhat subtle.
1415 
1416    A reference to an indirect symbol (UNDEF_ROW/indr or
1417    UNDEFW_ROW/indr) is counted as a reference both to the indirect
1418    symbol and to the symbol the indirect symbol points to.
1419 
1420    A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1421    causes the warning to be issued.
1422 
1423    A common definition of an indirect symbol (COMMON_ROW/indr) is
1424    treated as a multiple definition error.  Likewise for an indirect
1425    definition of a common symbol (INDR_ROW/com).
1426 
1427    An indirect definition of a warning (INDR_ROW/warn) does not cause
1428    the warning to be issued.
1429 
1430    If a warning is created for an indirect symbol (WARN_ROW/indr) no
1431    warning is created for the symbol the indirect symbol points to.
1432 
1433    Adding an entry to a set does not count as a reference to a set,
1434    and no warning is issued (SET_ROW/warn).  */
1435 
1436 /* Return the BFD in which a hash entry has been defined, if known.  */
1437 
1438 static bfd *
1439 hash_entry_bfd (struct bfd_link_hash_entry *h)
1440 {
1441   while (h->type == bfd_link_hash_warning)
1442     h = h->u.i.link;
1443   switch (h->type)
1444     {
1445     default:
1446       return NULL;
1447     case bfd_link_hash_undefined:
1448     case bfd_link_hash_undefweak:
1449       return h->u.undef.abfd;
1450     case bfd_link_hash_defined:
1451     case bfd_link_hash_defweak:
1452       return h->u.def.section->owner;
1453     case bfd_link_hash_common:
1454       return h->u.c.p->section->owner;
1455     }
1456   /*NOTREACHED*/
1457 }
1458 
1459 /* Add a symbol to the global hash table.
1460    ABFD is the BFD the symbol comes from.
1461    NAME is the name of the symbol.
1462    FLAGS is the BSF_* bits associated with the symbol.
1463    SECTION is the section in which the symbol is defined; this may be
1464      bfd_und_section_ptr or bfd_com_section_ptr.
1465    VALUE is the value of the symbol, relative to the section.
1466    STRING is used for either an indirect symbol, in which case it is
1467      the name of the symbol to indirect to, or a warning symbol, in
1468      which case it is the warning string.
1469    COPY is TRUE if NAME or STRING must be copied into locally
1470      allocated memory if they need to be saved.
1471    COLLECT is TRUE if we should automatically collect gcc constructor
1472      or destructor names as collect2 does.
1473    HASHP, if not NULL, is a place to store the created hash table
1474      entry; if *HASHP is not NULL, the caller has already looked up
1475      the hash table entry, and stored it in *HASHP.  */
1476 
1477 bfd_boolean
1478 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1479 				  bfd *abfd,
1480 				  const char *name,
1481 				  flagword flags,
1482 				  asection *section,
1483 				  bfd_vma value,
1484 				  const char *string,
1485 				  bfd_boolean copy,
1486 				  bfd_boolean collect,
1487 				  struct bfd_link_hash_entry **hashp)
1488 {
1489   enum link_row row;
1490   struct bfd_link_hash_entry *h;
1491   bfd_boolean cycle;
1492 
1493   if (bfd_is_ind_section (section)
1494       || (flags & BSF_INDIRECT) != 0)
1495     row = INDR_ROW;
1496   else if ((flags & BSF_WARNING) != 0)
1497     row = WARN_ROW;
1498   else if ((flags & BSF_CONSTRUCTOR) != 0)
1499     row = SET_ROW;
1500   else if (bfd_is_und_section (section))
1501     {
1502       if ((flags & BSF_WEAK) != 0)
1503 	row = UNDEFW_ROW;
1504       else
1505 	row = UNDEF_ROW;
1506     }
1507   else if ((flags & BSF_WEAK) != 0)
1508     row = DEFW_ROW;
1509   else if (bfd_is_com_section (section))
1510     row = COMMON_ROW;
1511   else
1512     row = DEF_ROW;
1513 
1514   if (hashp != NULL && *hashp != NULL)
1515     h = *hashp;
1516   else
1517     {
1518       if (row == UNDEF_ROW || row == UNDEFW_ROW)
1519 	h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1520       else
1521 	h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1522       if (h == NULL)
1523 	{
1524 	  if (hashp != NULL)
1525 	    *hashp = NULL;
1526 	  return FALSE;
1527 	}
1528     }
1529 
1530   if (info->notice_all
1531       || (info->notice_hash != NULL
1532 	  && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1533     {
1534       if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1535 					value))
1536 	return FALSE;
1537     }
1538 
1539   if (hashp != NULL)
1540     *hashp = h;
1541 
1542   do
1543     {
1544       enum link_action action;
1545 
1546       cycle = FALSE;
1547       action = link_action[(int) row][(int) h->type];
1548       switch (action)
1549 	{
1550 	case FAIL:
1551 	  abort ();
1552 
1553 	case NOACT:
1554 	  /* Do nothing.  */
1555 	  break;
1556 
1557 	case UND:
1558 	  /* Make a new undefined symbol.  */
1559 	  h->type = bfd_link_hash_undefined;
1560 	  h->u.undef.abfd = abfd;
1561 	  bfd_link_add_undef (info->hash, h);
1562 	  break;
1563 
1564 	case WEAK:
1565 	  /* Make a new weak undefined symbol.  */
1566 	  h->type = bfd_link_hash_undefweak;
1567 	  h->u.undef.abfd = abfd;
1568 	  break;
1569 
1570 	case CDEF:
1571 	  /* We have found a definition for a symbol which was
1572 	     previously common.  */
1573 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1574 	  if (! ((*info->callbacks->multiple_common)
1575 		 (info, h->root.string,
1576 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1577 		  abfd, bfd_link_hash_defined, 0)))
1578 	    return FALSE;
1579 	  /* Fall through.  */
1580 	case DEF:
1581 	case DEFW:
1582 	  {
1583 	    enum bfd_link_hash_type oldtype;
1584 
1585 	    /* Define a symbol.  */
1586 	    oldtype = h->type;
1587 	    if (action == DEFW)
1588 	      h->type = bfd_link_hash_defweak;
1589 	    else
1590 	      h->type = bfd_link_hash_defined;
1591 	    h->u.def.section = section;
1592 	    h->u.def.value = value;
1593 
1594 	    /* If we have been asked to, we act like collect2 and
1595 	       identify all functions that might be global
1596 	       constructors and destructors and pass them up in a
1597 	       callback.  We only do this for certain object file
1598 	       types, since many object file types can handle this
1599 	       automatically.  */
1600 	    if (collect && name[0] == '_')
1601 	      {
1602 		const char *s;
1603 
1604 		/* A constructor or destructor name starts like this:
1605 		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1606 		   the second are the same character (we accept any
1607 		   character there, in case a new object file format
1608 		   comes along with even worse naming restrictions).  */
1609 
1610 #define CONS_PREFIX "GLOBAL_"
1611 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1612 
1613 		s = name + 1;
1614 		while (*s == '_')
1615 		  ++s;
1616 		if (s[0] == 'G'
1617 		    && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1618 		  {
1619 		    char c;
1620 
1621 		    c = s[CONS_PREFIX_LEN + 1];
1622 		    if ((c == 'I' || c == 'D')
1623 			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1624 		      {
1625 			/* If this is a definition of a symbol which
1626                            was previously weakly defined, we are in
1627                            trouble.  We have already added a
1628                            constructor entry for the weak defined
1629                            symbol, and now we are trying to add one
1630                            for the new symbol.  Fortunately, this case
1631                            should never arise in practice.  */
1632 			if (oldtype == bfd_link_hash_defweak)
1633 			  abort ();
1634 
1635 			if (! ((*info->callbacks->constructor)
1636 			       (info, c == 'I',
1637 				h->root.string, abfd, section, value)))
1638 			  return FALSE;
1639 		      }
1640 		  }
1641 	      }
1642 	  }
1643 
1644 	  break;
1645 
1646 	case COM:
1647 	  /* We have found a common definition for a symbol.  */
1648 	  if (h->type == bfd_link_hash_new)
1649 	    bfd_link_add_undef (info->hash, h);
1650 	  h->type = bfd_link_hash_common;
1651 	  h->u.c.p =
1652 	    bfd_hash_allocate (&info->hash->table,
1653 			       sizeof (struct bfd_link_hash_common_entry));
1654 	  if (h->u.c.p == NULL)
1655 	    return FALSE;
1656 
1657 	  h->u.c.size = value;
1658 
1659 	  /* Select a default alignment based on the size.  This may
1660              be overridden by the caller.  */
1661 	  {
1662 	    unsigned int power;
1663 
1664 	    power = bfd_log2 (value);
1665 	    if (power > 4)
1666 	      power = 4;
1667 	    h->u.c.p->alignment_power = power;
1668 	  }
1669 
1670 	  /* The section of a common symbol is only used if the common
1671              symbol is actually allocated.  It basically provides a
1672              hook for the linker script to decide which output section
1673              the common symbols should be put in.  In most cases, the
1674              section of a common symbol will be bfd_com_section_ptr,
1675              the code here will choose a common symbol section named
1676              "COMMON", and the linker script will contain *(COMMON) in
1677              the appropriate place.  A few targets use separate common
1678              sections for small symbols, and they require special
1679              handling.  */
1680 	  if (section == bfd_com_section_ptr)
1681 	    {
1682 	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1683 	      h->u.c.p->section->flags = SEC_ALLOC;
1684 	    }
1685 	  else if (section->owner != abfd)
1686 	    {
1687 	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1688 							    section->name);
1689 	      h->u.c.p->section->flags = SEC_ALLOC;
1690 	    }
1691 	  else
1692 	    h->u.c.p->section = section;
1693 	  break;
1694 
1695 	case REF:
1696 	  /* A reference to a defined symbol.  */
1697 	  if (h->und_next == NULL && info->hash->undefs_tail != h)
1698 	    h->und_next = h;
1699 	  break;
1700 
1701 	case BIG:
1702 	  /* We have found a common definition for a symbol which
1703 	     already had a common definition.  Use the maximum of the
1704 	     two sizes, and use the section required by the larger symbol.  */
1705 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1706 	  if (! ((*info->callbacks->multiple_common)
1707 		 (info, h->root.string,
1708 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1709 		  abfd, bfd_link_hash_common, value)))
1710 	    return FALSE;
1711 	  if (value > h->u.c.size)
1712 	    {
1713 	      unsigned int power;
1714 
1715 	      h->u.c.size = value;
1716 
1717 	      /* Select a default alignment based on the size.  This may
1718 		 be overridden by the caller.  */
1719 	      power = bfd_log2 (value);
1720 	      if (power > 4)
1721 		power = 4;
1722 	      h->u.c.p->alignment_power = power;
1723 
1724 	      /* Some systems have special treatment for small commons,
1725 		 hence we want to select the section used by the larger
1726 		 symbol.  This makes sure the symbol does not go in a
1727 		 small common section if it is now too large.  */
1728 	      if (section == bfd_com_section_ptr)
1729 		{
1730 		  h->u.c.p->section
1731 		    = bfd_make_section_old_way (abfd, "COMMON");
1732 		  h->u.c.p->section->flags = SEC_ALLOC;
1733 		}
1734 	      else if (section->owner != abfd)
1735 		{
1736 		  h->u.c.p->section
1737 		    = bfd_make_section_old_way (abfd, section->name);
1738 		  h->u.c.p->section->flags = SEC_ALLOC;
1739 		}
1740 	      else
1741 		h->u.c.p->section = section;
1742 	    }
1743 	  break;
1744 
1745 	case CREF:
1746 	  {
1747 	    bfd *obfd;
1748 
1749 	    /* We have found a common definition for a symbol which
1750 	       was already defined.  FIXME: It would nice if we could
1751 	       report the BFD which defined an indirect symbol, but we
1752 	       don't have anywhere to store the information.  */
1753 	    if (h->type == bfd_link_hash_defined
1754 		|| h->type == bfd_link_hash_defweak)
1755 	      obfd = h->u.def.section->owner;
1756 	    else
1757 	      obfd = NULL;
1758 	    if (! ((*info->callbacks->multiple_common)
1759 		   (info, h->root.string, obfd, h->type, 0,
1760 		    abfd, bfd_link_hash_common, value)))
1761 	      return FALSE;
1762 	  }
1763 	  break;
1764 
1765 	case MIND:
1766 	  /* Multiple indirect symbols.  This is OK if they both point
1767 	     to the same symbol.  */
1768 	  if (strcmp (h->u.i.link->root.string, string) == 0)
1769 	    break;
1770 	  /* Fall through.  */
1771 	case MDEF:
1772 	  /* Handle a multiple definition.  */
1773 	  if (!info->allow_multiple_definition)
1774 	    {
1775 	      asection *msec = NULL;
1776 	      bfd_vma mval = 0;
1777 
1778 	      switch (h->type)
1779 		{
1780 		case bfd_link_hash_defined:
1781 		  msec = h->u.def.section;
1782 		  mval = h->u.def.value;
1783 		  break;
1784 	        case bfd_link_hash_indirect:
1785 		  msec = bfd_ind_section_ptr;
1786 		  mval = 0;
1787 		  break;
1788 		default:
1789 		  abort ();
1790 		}
1791 
1792 	      /* Ignore a redefinition of an absolute symbol to the
1793 		 same value; it's harmless.  */
1794 	      if (h->type == bfd_link_hash_defined
1795 		  && bfd_is_abs_section (msec)
1796 		  && bfd_is_abs_section (section)
1797 		  && value == mval)
1798 		break;
1799 
1800 	      if (! ((*info->callbacks->multiple_definition)
1801 		     (info, h->root.string, msec->owner, msec, mval,
1802 		      abfd, section, value)))
1803 		return FALSE;
1804 	    }
1805 	  break;
1806 
1807 	case CIND:
1808 	  /* Create an indirect symbol from an existing common symbol.  */
1809 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1810 	  if (! ((*info->callbacks->multiple_common)
1811 		 (info, h->root.string,
1812 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1813 		  abfd, bfd_link_hash_indirect, 0)))
1814 	    return FALSE;
1815 	  /* Fall through.  */
1816 	case IND:
1817 	  /* Create an indirect symbol.  */
1818 	  {
1819 	    struct bfd_link_hash_entry *inh;
1820 
1821 	    /* STRING is the name of the symbol we want to indirect
1822 	       to.  */
1823 	    inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1824 						copy, FALSE);
1825 	    if (inh == NULL)
1826 	      return FALSE;
1827 	    if (inh->type == bfd_link_hash_indirect
1828 		&& inh->u.i.link == h)
1829 	      {
1830 		(*_bfd_error_handler)
1831 		  (_("%s: indirect symbol `%s' to `%s' is a loop"),
1832 		   bfd_archive_filename (abfd), name, string);
1833 		bfd_set_error (bfd_error_invalid_operation);
1834 		return FALSE;
1835 	      }
1836 	    if (inh->type == bfd_link_hash_new)
1837 	      {
1838 		inh->type = bfd_link_hash_undefined;
1839 		inh->u.undef.abfd = abfd;
1840 		bfd_link_add_undef (info->hash, inh);
1841 	      }
1842 
1843 	    /* If the indirect symbol has been referenced, we need to
1844 	       push the reference down to the symbol we are
1845 	       referencing.  */
1846 	    if (h->type != bfd_link_hash_new)
1847 	      {
1848 		row = UNDEF_ROW;
1849 		cycle = TRUE;
1850 	      }
1851 
1852 	    h->type = bfd_link_hash_indirect;
1853 	    h->u.i.link = inh;
1854 	  }
1855 	  break;
1856 
1857 	case SET:
1858 	  /* Add an entry to a set.  */
1859 	  if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1860 						abfd, section, value))
1861 	    return FALSE;
1862 	  break;
1863 
1864 	case WARNC:
1865 	  /* Issue a warning and cycle.  */
1866 	  if (h->u.i.warning != NULL)
1867 	    {
1868 	      if (! (*info->callbacks->warning) (info, h->u.i.warning,
1869 						 h->root.string, abfd,
1870 						 NULL, 0))
1871 		return FALSE;
1872 	      /* Only issue a warning once.  */
1873 	      h->u.i.warning = NULL;
1874 	    }
1875 	  /* Fall through.  */
1876 	case CYCLE:
1877 	  /* Try again with the referenced symbol.  */
1878 	  h = h->u.i.link;
1879 	  cycle = TRUE;
1880 	  break;
1881 
1882 	case REFC:
1883 	  /* A reference to an indirect symbol.  */
1884 	  if (h->und_next == NULL && info->hash->undefs_tail != h)
1885 	    h->und_next = h;
1886 	  h = h->u.i.link;
1887 	  cycle = TRUE;
1888 	  break;
1889 
1890 	case WARN:
1891 	  /* Issue a warning.  */
1892 	  if (! (*info->callbacks->warning) (info, string, h->root.string,
1893 					     hash_entry_bfd (h), NULL, 0))
1894 	    return FALSE;
1895 	  break;
1896 
1897 	case CWARN:
1898 	  /* Warn if this symbol has been referenced already,
1899 	     otherwise add a warning.  A symbol has been referenced if
1900 	     the und_next field is not NULL, or it is the tail of the
1901 	     undefined symbol list.  The REF case above helps to
1902 	     ensure this.  */
1903 	  if (h->und_next != NULL || info->hash->undefs_tail == h)
1904 	    {
1905 	      if (! (*info->callbacks->warning) (info, string, h->root.string,
1906 						 hash_entry_bfd (h), NULL, 0))
1907 		return FALSE;
1908 	      break;
1909 	    }
1910 	  /* Fall through.  */
1911 	case MWARN:
1912 	  /* Make a warning symbol.  */
1913 	  {
1914 	    struct bfd_link_hash_entry *sub;
1915 
1916 	    /* STRING is the warning to give.  */
1917 	    sub = ((struct bfd_link_hash_entry *)
1918 		   ((*info->hash->table.newfunc)
1919 		    (NULL, &info->hash->table, h->root.string)));
1920 	    if (sub == NULL)
1921 	      return FALSE;
1922 	    *sub = *h;
1923 	    sub->type = bfd_link_hash_warning;
1924 	    sub->u.i.link = h;
1925 	    if (! copy)
1926 	      sub->u.i.warning = string;
1927 	    else
1928 	      {
1929 		char *w;
1930 		size_t len = strlen (string) + 1;
1931 
1932 		w = bfd_hash_allocate (&info->hash->table, len);
1933 		if (w == NULL)
1934 		  return FALSE;
1935 		memcpy (w, string, len);
1936 		sub->u.i.warning = w;
1937 	      }
1938 
1939 	    bfd_hash_replace (&info->hash->table,
1940 			      (struct bfd_hash_entry *) h,
1941 			      (struct bfd_hash_entry *) sub);
1942 	    if (hashp != NULL)
1943 	      *hashp = sub;
1944 	  }
1945 	  break;
1946 	}
1947     }
1948   while (cycle);
1949 
1950   return TRUE;
1951 }
1952 
1953 /* Generic final link routine.  */
1954 
1955 bfd_boolean
1956 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1957 {
1958   bfd *sub;
1959   asection *o;
1960   struct bfd_link_order *p;
1961   size_t outsymalloc;
1962   struct generic_write_global_symbol_info wginfo;
1963 
1964   bfd_get_outsymbols (abfd) = NULL;
1965   bfd_get_symcount (abfd) = 0;
1966   outsymalloc = 0;
1967 
1968   /* Mark all sections which will be included in the output file.  */
1969   for (o = abfd->sections; o != NULL; o = o->next)
1970     for (p = o->link_order_head; p != NULL; p = p->next)
1971       if (p->type == bfd_indirect_link_order)
1972 	p->u.indirect.section->linker_mark = TRUE;
1973 
1974   /* Build the output symbol table.  */
1975   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
1976     if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1977       return FALSE;
1978 
1979   /* Accumulate the global symbols.  */
1980   wginfo.info = info;
1981   wginfo.output_bfd = abfd;
1982   wginfo.psymalloc = &outsymalloc;
1983   _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1984 				   _bfd_generic_link_write_global_symbol,
1985 				   &wginfo);
1986 
1987   /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
1988      shouldn't really need one, since we have SYMCOUNT, but some old
1989      code still expects one.  */
1990   if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1991     return FALSE;
1992 
1993   if (info->relocatable)
1994     {
1995       /* Allocate space for the output relocs for each section.  */
1996       for (o = abfd->sections; o != NULL; o = o->next)
1997 	{
1998 	  o->reloc_count = 0;
1999 	  for (p = o->link_order_head; p != NULL; p = p->next)
2000 	    {
2001 	      if (p->type == bfd_section_reloc_link_order
2002 		  || p->type == bfd_symbol_reloc_link_order)
2003 		++o->reloc_count;
2004 	      else if (p->type == bfd_indirect_link_order)
2005 		{
2006 		  asection *input_section;
2007 		  bfd *input_bfd;
2008 		  long relsize;
2009 		  arelent **relocs;
2010 		  asymbol **symbols;
2011 		  long reloc_count;
2012 
2013 		  input_section = p->u.indirect.section;
2014 		  input_bfd = input_section->owner;
2015 		  relsize = bfd_get_reloc_upper_bound (input_bfd,
2016 						       input_section);
2017 		  if (relsize < 0)
2018 		    return FALSE;
2019 		  relocs = bfd_malloc (relsize);
2020 		  if (!relocs && relsize != 0)
2021 		    return FALSE;
2022 		  symbols = _bfd_generic_link_get_symbols (input_bfd);
2023 		  reloc_count = bfd_canonicalize_reloc (input_bfd,
2024 							input_section,
2025 							relocs,
2026 							symbols);
2027 		  free (relocs);
2028 		  if (reloc_count < 0)
2029 		    return FALSE;
2030 		  BFD_ASSERT ((unsigned long) reloc_count
2031 			      == input_section->reloc_count);
2032 		  o->reloc_count += reloc_count;
2033 		}
2034 	    }
2035 	  if (o->reloc_count > 0)
2036 	    {
2037 	      bfd_size_type amt;
2038 
2039 	      amt = o->reloc_count;
2040 	      amt *= sizeof (arelent *);
2041 	      o->orelocation = bfd_alloc (abfd, amt);
2042 	      if (!o->orelocation)
2043 		return FALSE;
2044 	      o->flags |= SEC_RELOC;
2045 	      /* Reset the count so that it can be used as an index
2046 		 when putting in the output relocs.  */
2047 	      o->reloc_count = 0;
2048 	    }
2049 	}
2050     }
2051 
2052   /* Handle all the link order information for the sections.  */
2053   for (o = abfd->sections; o != NULL; o = o->next)
2054     {
2055       for (p = o->link_order_head; p != NULL; p = p->next)
2056 	{
2057 	  switch (p->type)
2058 	    {
2059 	    case bfd_section_reloc_link_order:
2060 	    case bfd_symbol_reloc_link_order:
2061 	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2062 		return FALSE;
2063 	      break;
2064 	    case bfd_indirect_link_order:
2065 	      if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2066 		return FALSE;
2067 	      break;
2068 	    default:
2069 	      if (! _bfd_default_link_order (abfd, info, o, p))
2070 		return FALSE;
2071 	      break;
2072 	    }
2073 	}
2074     }
2075 
2076   return TRUE;
2077 }
2078 
2079 /* Add an output symbol to the output BFD.  */
2080 
2081 static bfd_boolean
2082 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2083 {
2084   if (bfd_get_symcount (output_bfd) >= *psymalloc)
2085     {
2086       asymbol **newsyms;
2087       bfd_size_type amt;
2088 
2089       if (*psymalloc == 0)
2090 	*psymalloc = 124;
2091       else
2092 	*psymalloc *= 2;
2093       amt = *psymalloc;
2094       amt *= sizeof (asymbol *);
2095       newsyms = bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2096       if (newsyms == NULL)
2097 	return FALSE;
2098       bfd_get_outsymbols (output_bfd) = newsyms;
2099     }
2100 
2101   bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2102   if (sym != NULL)
2103     ++ bfd_get_symcount (output_bfd);
2104 
2105   return TRUE;
2106 }
2107 
2108 /* Handle the symbols for an input BFD.  */
2109 
2110 bfd_boolean
2111 _bfd_generic_link_output_symbols (bfd *output_bfd,
2112 				  bfd *input_bfd,
2113 				  struct bfd_link_info *info,
2114 				  size_t *psymalloc)
2115 {
2116   asymbol **sym_ptr;
2117   asymbol **sym_end;
2118 
2119   if (! generic_link_read_symbols (input_bfd))
2120     return FALSE;
2121 
2122   /* Create a filename symbol if we are supposed to.  */
2123   if (info->create_object_symbols_section != NULL)
2124     {
2125       asection *sec;
2126 
2127       for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2128 	{
2129 	  if (sec->output_section == info->create_object_symbols_section)
2130 	    {
2131 	      asymbol *newsym;
2132 
2133 	      newsym = bfd_make_empty_symbol (input_bfd);
2134 	      if (!newsym)
2135 		return FALSE;
2136 	      newsym->name = input_bfd->filename;
2137 	      newsym->value = 0;
2138 	      newsym->flags = BSF_LOCAL | BSF_FILE;
2139 	      newsym->section = sec;
2140 
2141 	      if (! generic_add_output_symbol (output_bfd, psymalloc,
2142 					       newsym))
2143 		return FALSE;
2144 
2145 	      break;
2146 	    }
2147 	}
2148     }
2149 
2150   /* Adjust the values of the globally visible symbols, and write out
2151      local symbols.  */
2152   sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2153   sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2154   for (; sym_ptr < sym_end; sym_ptr++)
2155     {
2156       asymbol *sym;
2157       struct generic_link_hash_entry *h;
2158       bfd_boolean output;
2159 
2160       h = NULL;
2161       sym = *sym_ptr;
2162       if ((sym->flags & (BSF_INDIRECT
2163 			 | BSF_WARNING
2164 			 | BSF_GLOBAL
2165 			 | BSF_CONSTRUCTOR
2166 			 | BSF_WEAK)) != 0
2167 	  || bfd_is_und_section (bfd_get_section (sym))
2168 	  || bfd_is_com_section (bfd_get_section (sym))
2169 	  || bfd_is_ind_section (bfd_get_section (sym)))
2170 	{
2171 	  if (sym->udata.p != NULL)
2172 	    h = sym->udata.p;
2173 	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2174 	    {
2175 	      /* This case normally means that the main linker code
2176                  deliberately ignored this constructor symbol.  We
2177                  should just pass it through.  This will screw up if
2178                  the constructor symbol is from a different,
2179                  non-generic, object file format, but the case will
2180                  only arise when linking with -r, which will probably
2181                  fail anyhow, since there will be no way to represent
2182                  the relocs in the output format being used.  */
2183 	      h = NULL;
2184 	    }
2185 	  else if (bfd_is_und_section (bfd_get_section (sym)))
2186 	    h = ((struct generic_link_hash_entry *)
2187 		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2188 					       bfd_asymbol_name (sym),
2189 					       FALSE, FALSE, TRUE));
2190 	  else
2191 	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2192 					       bfd_asymbol_name (sym),
2193 					       FALSE, FALSE, TRUE);
2194 
2195 	  if (h != NULL)
2196 	    {
2197 	      /* Force all references to this symbol to point to
2198 		 the same area in memory.  It is possible that
2199 		 this routine will be called with a hash table
2200 		 other than a generic hash table, so we double
2201 		 check that.  */
2202 	      if (info->hash->creator == input_bfd->xvec)
2203 		{
2204 		  if (h->sym != NULL)
2205 		    *sym_ptr = sym = h->sym;
2206 		}
2207 
2208 	      switch (h->root.type)
2209 		{
2210 		default:
2211 		case bfd_link_hash_new:
2212 		  abort ();
2213 		case bfd_link_hash_undefined:
2214 		  break;
2215 		case bfd_link_hash_undefweak:
2216 		  sym->flags |= BSF_WEAK;
2217 		  break;
2218 		case bfd_link_hash_indirect:
2219 		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2220 		  /* fall through */
2221 		case bfd_link_hash_defined:
2222 		  sym->flags |= BSF_GLOBAL;
2223 		  sym->flags &=~ BSF_CONSTRUCTOR;
2224 		  sym->value = h->root.u.def.value;
2225 		  sym->section = h->root.u.def.section;
2226 		  break;
2227 		case bfd_link_hash_defweak:
2228 		  sym->flags |= BSF_WEAK;
2229 		  sym->flags &=~ BSF_CONSTRUCTOR;
2230 		  sym->value = h->root.u.def.value;
2231 		  sym->section = h->root.u.def.section;
2232 		  break;
2233 		case bfd_link_hash_common:
2234 		  sym->value = h->root.u.c.size;
2235 		  sym->flags |= BSF_GLOBAL;
2236 		  if (! bfd_is_com_section (sym->section))
2237 		    {
2238 		      BFD_ASSERT (bfd_is_und_section (sym->section));
2239 		      sym->section = bfd_com_section_ptr;
2240 		    }
2241 		  /* We do not set the section of the symbol to
2242 		     h->root.u.c.p->section.  That value was saved so
2243 		     that we would know where to allocate the symbol
2244 		     if it was defined.  In this case the type is
2245 		     still bfd_link_hash_common, so we did not define
2246 		     it, so we do not want to use that section.  */
2247 		  break;
2248 		}
2249 	    }
2250 	}
2251 
2252       /* This switch is straight from the old code in
2253 	 write_file_locals in ldsym.c.  */
2254       if (info->strip == strip_all
2255 	  || (info->strip == strip_some
2256 	      && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2257 				  FALSE, FALSE) == NULL))
2258 	output = FALSE;
2259       else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2260 	{
2261 	  /* If this symbol is marked as occurring now, rather
2262 	     than at the end, output it now.  This is used for
2263 	     COFF C_EXT FCN symbols.  FIXME: There must be a
2264 	     better way.  */
2265 	  if (bfd_asymbol_bfd (sym) == input_bfd
2266 	      && (sym->flags & BSF_NOT_AT_END) != 0)
2267 	    output = TRUE;
2268 	  else
2269 	    output = FALSE;
2270 	}
2271       else if (bfd_is_ind_section (sym->section))
2272 	output = FALSE;
2273       else if ((sym->flags & BSF_DEBUGGING) != 0)
2274 	{
2275 	  if (info->strip == strip_none)
2276 	    output = TRUE;
2277 	  else
2278 	    output = FALSE;
2279 	}
2280       else if (bfd_is_und_section (sym->section)
2281 	       || bfd_is_com_section (sym->section))
2282 	output = FALSE;
2283       else if ((sym->flags & BSF_LOCAL) != 0)
2284 	{
2285 	  if ((sym->flags & BSF_WARNING) != 0)
2286 	    output = FALSE;
2287 	  else
2288 	    {
2289 	      switch (info->discard)
2290 		{
2291 		default:
2292 		case discard_all:
2293 		  output = FALSE;
2294 		  break;
2295 		case discard_sec_merge:
2296 		  output = TRUE;
2297 		  if (info->relocatable
2298 		      || ! (sym->section->flags & SEC_MERGE))
2299 		    break;
2300 		  /* FALLTHROUGH */
2301 		case discard_l:
2302 		  if (bfd_is_local_label (input_bfd, sym))
2303 		    output = FALSE;
2304 		  else
2305 		    output = TRUE;
2306 		  break;
2307 		case discard_none:
2308 		  output = TRUE;
2309 		  break;
2310 		}
2311 	    }
2312 	}
2313       else if ((sym->flags & BSF_CONSTRUCTOR))
2314 	{
2315 	  if (info->strip != strip_all)
2316 	    output = TRUE;
2317 	  else
2318 	    output = FALSE;
2319 	}
2320       else
2321 	abort ();
2322 
2323       /* If this symbol is in a section which is not being included
2324 	 in the output file, then we don't want to output the symbol.
2325 
2326 	 Gross.  .bss and similar sections won't have the linker_mark
2327 	 field set.  */
2328       if ((sym->section->flags & SEC_HAS_CONTENTS) != 0
2329 	  && ! sym->section->linker_mark)
2330 	output = FALSE;
2331 
2332       if (output)
2333 	{
2334 	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2335 	    return FALSE;
2336 	  if (h != NULL)
2337 	    h->written = TRUE;
2338 	}
2339     }
2340 
2341   return TRUE;
2342 }
2343 
2344 /* Set the section and value of a generic BFD symbol based on a linker
2345    hash table entry.  */
2346 
2347 static void
2348 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2349 {
2350   switch (h->type)
2351     {
2352     default:
2353       abort ();
2354       break;
2355     case bfd_link_hash_new:
2356       /* This can happen when a constructor symbol is seen but we are
2357          not building constructors.  */
2358       if (sym->section != NULL)
2359 	{
2360 	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2361 	}
2362       else
2363 	{
2364 	  sym->flags |= BSF_CONSTRUCTOR;
2365 	  sym->section = bfd_abs_section_ptr;
2366 	  sym->value = 0;
2367 	}
2368       break;
2369     case bfd_link_hash_undefined:
2370       sym->section = bfd_und_section_ptr;
2371       sym->value = 0;
2372       break;
2373     case bfd_link_hash_undefweak:
2374       sym->section = bfd_und_section_ptr;
2375       sym->value = 0;
2376       sym->flags |= BSF_WEAK;
2377       break;
2378     case bfd_link_hash_defined:
2379       sym->section = h->u.def.section;
2380       sym->value = h->u.def.value;
2381       break;
2382     case bfd_link_hash_defweak:
2383       sym->flags |= BSF_WEAK;
2384       sym->section = h->u.def.section;
2385       sym->value = h->u.def.value;
2386       break;
2387     case bfd_link_hash_common:
2388       sym->value = h->u.c.size;
2389       if (sym->section == NULL)
2390 	sym->section = bfd_com_section_ptr;
2391       else if (! bfd_is_com_section (sym->section))
2392 	{
2393 	  BFD_ASSERT (bfd_is_und_section (sym->section));
2394 	  sym->section = bfd_com_section_ptr;
2395 	}
2396       /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2397       break;
2398     case bfd_link_hash_indirect:
2399     case bfd_link_hash_warning:
2400       /* FIXME: What should we do here?  */
2401       break;
2402     }
2403 }
2404 
2405 /* Write out a global symbol, if it hasn't already been written out.
2406    This is called for each symbol in the hash table.  */
2407 
2408 bfd_boolean
2409 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2410 				       void *data)
2411 {
2412   struct generic_write_global_symbol_info *wginfo = data;
2413   asymbol *sym;
2414 
2415   if (h->root.type == bfd_link_hash_warning)
2416     h = (struct generic_link_hash_entry *) h->root.u.i.link;
2417 
2418   if (h->written)
2419     return TRUE;
2420 
2421   h->written = TRUE;
2422 
2423   if (wginfo->info->strip == strip_all
2424       || (wginfo->info->strip == strip_some
2425 	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2426 			      FALSE, FALSE) == NULL))
2427     return TRUE;
2428 
2429   if (h->sym != NULL)
2430     sym = h->sym;
2431   else
2432     {
2433       sym = bfd_make_empty_symbol (wginfo->output_bfd);
2434       if (!sym)
2435 	return FALSE;
2436       sym->name = h->root.root.string;
2437       sym->flags = 0;
2438     }
2439 
2440   set_symbol_from_hash (sym, &h->root);
2441 
2442   sym->flags |= BSF_GLOBAL;
2443 
2444   if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2445 				   sym))
2446     {
2447       /* FIXME: No way to return failure.  */
2448       abort ();
2449     }
2450 
2451   return TRUE;
2452 }
2453 
2454 /* Create a relocation.  */
2455 
2456 bfd_boolean
2457 _bfd_generic_reloc_link_order (bfd *abfd,
2458 			       struct bfd_link_info *info,
2459 			       asection *sec,
2460 			       struct bfd_link_order *link_order)
2461 {
2462   arelent *r;
2463 
2464   if (! info->relocatable)
2465     abort ();
2466   if (sec->orelocation == NULL)
2467     abort ();
2468 
2469   r = bfd_alloc (abfd, sizeof (arelent));
2470   if (r == NULL)
2471     return FALSE;
2472 
2473   r->address = link_order->offset;
2474   r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2475   if (r->howto == 0)
2476     {
2477       bfd_set_error (bfd_error_bad_value);
2478       return FALSE;
2479     }
2480 
2481   /* Get the symbol to use for the relocation.  */
2482   if (link_order->type == bfd_section_reloc_link_order)
2483     r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2484   else
2485     {
2486       struct generic_link_hash_entry *h;
2487 
2488       h = ((struct generic_link_hash_entry *)
2489 	   bfd_wrapped_link_hash_lookup (abfd, info,
2490 					 link_order->u.reloc.p->u.name,
2491 					 FALSE, FALSE, TRUE));
2492       if (h == NULL
2493 	  || ! h->written)
2494 	{
2495 	  if (! ((*info->callbacks->unattached_reloc)
2496 		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2497 	    return FALSE;
2498 	  bfd_set_error (bfd_error_bad_value);
2499 	  return FALSE;
2500 	}
2501       r->sym_ptr_ptr = &h->sym;
2502     }
2503 
2504   /* If this is an inplace reloc, write the addend to the object file.
2505      Otherwise, store it in the reloc addend.  */
2506   if (! r->howto->partial_inplace)
2507     r->addend = link_order->u.reloc.p->addend;
2508   else
2509     {
2510       bfd_size_type size;
2511       bfd_reloc_status_type rstat;
2512       bfd_byte *buf;
2513       bfd_boolean ok;
2514       file_ptr loc;
2515 
2516       size = bfd_get_reloc_size (r->howto);
2517       buf = bfd_zmalloc (size);
2518       if (buf == NULL)
2519 	return FALSE;
2520       rstat = _bfd_relocate_contents (r->howto, abfd,
2521 				      (bfd_vma) link_order->u.reloc.p->addend,
2522 				      buf);
2523       switch (rstat)
2524 	{
2525 	case bfd_reloc_ok:
2526 	  break;
2527 	default:
2528 	case bfd_reloc_outofrange:
2529 	  abort ();
2530 	case bfd_reloc_overflow:
2531 	  if (! ((*info->callbacks->reloc_overflow)
2532 		 (info,
2533 		  (link_order->type == bfd_section_reloc_link_order
2534 		   ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2535 		   : link_order->u.reloc.p->u.name),
2536 		  r->howto->name, link_order->u.reloc.p->addend,
2537 		  NULL, NULL, 0)))
2538 	    {
2539 	      free (buf);
2540 	      return FALSE;
2541 	    }
2542 	  break;
2543 	}
2544       loc = link_order->offset * bfd_octets_per_byte (abfd);
2545       ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2546       free (buf);
2547       if (! ok)
2548 	return FALSE;
2549 
2550       r->addend = 0;
2551     }
2552 
2553   sec->orelocation[sec->reloc_count] = r;
2554   ++sec->reloc_count;
2555 
2556   return TRUE;
2557 }
2558 
2559 /* Allocate a new link_order for a section.  */
2560 
2561 struct bfd_link_order *
2562 bfd_new_link_order (bfd *abfd, asection *section)
2563 {
2564   bfd_size_type amt = sizeof (struct bfd_link_order);
2565   struct bfd_link_order *new;
2566 
2567   new = bfd_zalloc (abfd, amt);
2568   if (!new)
2569     return NULL;
2570 
2571   new->type = bfd_undefined_link_order;
2572 
2573   if (section->link_order_tail != NULL)
2574     section->link_order_tail->next = new;
2575   else
2576     section->link_order_head = new;
2577   section->link_order_tail = new;
2578 
2579   return new;
2580 }
2581 
2582 /* Default link order processing routine.  Note that we can not handle
2583    the reloc_link_order types here, since they depend upon the details
2584    of how the particular backends generates relocs.  */
2585 
2586 bfd_boolean
2587 _bfd_default_link_order (bfd *abfd,
2588 			 struct bfd_link_info *info,
2589 			 asection *sec,
2590 			 struct bfd_link_order *link_order)
2591 {
2592   switch (link_order->type)
2593     {
2594     case bfd_undefined_link_order:
2595     case bfd_section_reloc_link_order:
2596     case bfd_symbol_reloc_link_order:
2597     default:
2598       abort ();
2599     case bfd_indirect_link_order:
2600       return default_indirect_link_order (abfd, info, sec, link_order,
2601 					  FALSE);
2602     case bfd_data_link_order:
2603       return default_data_link_order (abfd, info, sec, link_order);
2604     }
2605 }
2606 
2607 /* Default routine to handle a bfd_data_link_order.  */
2608 
2609 static bfd_boolean
2610 default_data_link_order (bfd *abfd,
2611 			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2612 			 asection *sec,
2613 			 struct bfd_link_order *link_order)
2614 {
2615   bfd_size_type size;
2616   size_t fill_size;
2617   bfd_byte *fill;
2618   file_ptr loc;
2619   bfd_boolean result;
2620 
2621   BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2622 
2623   size = link_order->size;
2624   if (size == 0)
2625     return TRUE;
2626 
2627   fill = link_order->u.data.contents;
2628   fill_size = link_order->u.data.size;
2629   if (fill_size != 0 && fill_size < size)
2630     {
2631       bfd_byte *p;
2632       fill = bfd_malloc (size);
2633       if (fill == NULL)
2634 	return FALSE;
2635       p = fill;
2636       if (fill_size == 1)
2637 	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2638       else
2639 	{
2640 	  do
2641 	    {
2642 	      memcpy (p, link_order->u.data.contents, fill_size);
2643 	      p += fill_size;
2644 	      size -= fill_size;
2645 	    }
2646 	  while (size >= fill_size);
2647 	  if (size != 0)
2648 	    memcpy (p, link_order->u.data.contents, (size_t) size);
2649 	  size = link_order->size;
2650 	}
2651     }
2652 
2653   loc = link_order->offset * bfd_octets_per_byte (abfd);
2654   result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2655 
2656   if (fill != link_order->u.data.contents)
2657     free (fill);
2658   return result;
2659 }
2660 
2661 /* Default routine to handle a bfd_indirect_link_order.  */
2662 
2663 static bfd_boolean
2664 default_indirect_link_order (bfd *output_bfd,
2665 			     struct bfd_link_info *info,
2666 			     asection *output_section,
2667 			     struct bfd_link_order *link_order,
2668 			     bfd_boolean generic_linker)
2669 {
2670   asection *input_section;
2671   bfd *input_bfd;
2672   bfd_byte *contents = NULL;
2673   bfd_byte *new_contents;
2674   bfd_size_type sec_size;
2675   file_ptr loc;
2676 
2677   BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2678 
2679   if (link_order->size == 0)
2680     return TRUE;
2681 
2682   input_section = link_order->u.indirect.section;
2683   input_bfd = input_section->owner;
2684 
2685   BFD_ASSERT (input_section->output_section == output_section);
2686   BFD_ASSERT (input_section->output_offset == link_order->offset);
2687   BFD_ASSERT (input_section->_cooked_size == link_order->size);
2688 
2689   if (info->relocatable
2690       && input_section->reloc_count > 0
2691       && output_section->orelocation == NULL)
2692     {
2693       /* Space has not been allocated for the output relocations.
2694 	 This can happen when we are called by a specific backend
2695 	 because somebody is attempting to link together different
2696 	 types of object files.  Handling this case correctly is
2697 	 difficult, and sometimes impossible.  */
2698       (*_bfd_error_handler)
2699 	(_("Attempt to do relocatable link with %s input and %s output"),
2700 	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2701       bfd_set_error (bfd_error_wrong_format);
2702       return FALSE;
2703     }
2704 
2705   if (! generic_linker)
2706     {
2707       asymbol **sympp;
2708       asymbol **symppend;
2709 
2710       /* Get the canonical symbols.  The generic linker will always
2711 	 have retrieved them by this point, but we are being called by
2712 	 a specific linker, presumably because we are linking
2713 	 different types of object files together.  */
2714       if (! generic_link_read_symbols (input_bfd))
2715 	return FALSE;
2716 
2717       /* Since we have been called by a specific linker, rather than
2718 	 the generic linker, the values of the symbols will not be
2719 	 right.  They will be the values as seen in the input file,
2720 	 not the values of the final link.  We need to fix them up
2721 	 before we can relocate the section.  */
2722       sympp = _bfd_generic_link_get_symbols (input_bfd);
2723       symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2724       for (; sympp < symppend; sympp++)
2725 	{
2726 	  asymbol *sym;
2727 	  struct bfd_link_hash_entry *h;
2728 
2729 	  sym = *sympp;
2730 
2731 	  if ((sym->flags & (BSF_INDIRECT
2732 			     | BSF_WARNING
2733 			     | BSF_GLOBAL
2734 			     | BSF_CONSTRUCTOR
2735 			     | BSF_WEAK)) != 0
2736 	      || bfd_is_und_section (bfd_get_section (sym))
2737 	      || bfd_is_com_section (bfd_get_section (sym))
2738 	      || bfd_is_ind_section (bfd_get_section (sym)))
2739 	    {
2740 	      /* sym->udata may have been set by
2741 		 generic_link_add_symbol_list.  */
2742 	      if (sym->udata.p != NULL)
2743 		h = sym->udata.p;
2744 	      else if (bfd_is_und_section (bfd_get_section (sym)))
2745 		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2746 						  bfd_asymbol_name (sym),
2747 						  FALSE, FALSE, TRUE);
2748 	      else
2749 		h = bfd_link_hash_lookup (info->hash,
2750 					  bfd_asymbol_name (sym),
2751 					  FALSE, FALSE, TRUE);
2752 	      if (h != NULL)
2753 		set_symbol_from_hash (sym, h);
2754 	    }
2755 	}
2756     }
2757 
2758   /* Get and relocate the section contents.  */
2759   sec_size = bfd_section_size (input_bfd, input_section);
2760   contents = bfd_malloc (sec_size);
2761   if (contents == NULL && sec_size != 0)
2762     goto error_return;
2763   new_contents = (bfd_get_relocated_section_contents
2764 		  (output_bfd, info, link_order, contents, info->relocatable,
2765 		   _bfd_generic_link_get_symbols (input_bfd)));
2766   if (!new_contents)
2767     goto error_return;
2768 
2769   /* Output the section contents.  */
2770   loc = link_order->offset * bfd_octets_per_byte (output_bfd);
2771   if (! bfd_set_section_contents (output_bfd, output_section,
2772 				  new_contents, loc, link_order->size))
2773     goto error_return;
2774 
2775   if (contents != NULL)
2776     free (contents);
2777   return TRUE;
2778 
2779  error_return:
2780   if (contents != NULL)
2781     free (contents);
2782   return FALSE;
2783 }
2784 
2785 /* A little routine to count the number of relocs in a link_order
2786    list.  */
2787 
2788 unsigned int
2789 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2790 {
2791   register unsigned int c;
2792   register struct bfd_link_order *l;
2793 
2794   c = 0;
2795   for (l = link_order; l != NULL; l = l->next)
2796     {
2797       if (l->type == bfd_section_reloc_link_order
2798 	  || l->type == bfd_symbol_reloc_link_order)
2799 	++c;
2800     }
2801 
2802   return c;
2803 }
2804 
2805 /*
2806 FUNCTION
2807 	bfd_link_split_section
2808 
2809 SYNOPSIS
2810         bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2811 
2812 DESCRIPTION
2813 	Return nonzero if @var{sec} should be split during a
2814 	reloceatable or final link.
2815 
2816 .#define bfd_link_split_section(abfd, sec) \
2817 .       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2818 .
2819 
2820 */
2821 
2822 bfd_boolean
2823 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2824 				 asection *sec ATTRIBUTE_UNUSED)
2825 {
2826   return FALSE;
2827 }
2828