1 /*
2  * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3  * Copyright (c) 1991-1996 by Xerox Corporation.  All rights reserved.
4  * Copyright (c) 1998 by Silicon Graphics.  All rights reserved.
5  * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
6  *
7  * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8  * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
9  *
10  * Permission is hereby granted to use or copy this program
11  * for any purpose,  provided the above notices are retained on all copies.
12  * Permission to modify the code and to distribute modified code is granted,
13  * provided the above notices are retained, and a notice that the code was
14  * modified is included with the above copyright notice.
15  *
16  */
17 
18 
19 # include "private/gc_priv.h"
20 
21 # include <stdio.h>
22 # if !defined(MACOS) && !defined(MSWINCE)
23 #   include <signal.h>
24 #   include <sys/types.h>
25 # endif
26 
27 /*
28  * Separate free lists are maintained for different sized objects
29  * up to MAXOBJSZ.
30  * The call GC_allocobj(i,k) ensures that the freelist for
31  * kind k objects of size i points to a non-empty
32  * free list. It returns a pointer to the first entry on the free list.
33  * In a single-threaded world, GC_allocobj may be called to allocate
34  * an object of (small) size i as follows:
35  *
36  *            opp = &(GC_objfreelist[i]);
37  *            if (*opp == 0) GC_allocobj(i, NORMAL);
38  *            ptr = *opp;
39  *            *opp = obj_link(ptr);
40  *
41  * Note that this is very fast if the free list is non-empty; it should
42  * only involve the execution of 4 or 5 simple instructions.
43  * All composite objects on freelists are cleared, except for
44  * their first word.
45  */
46 
47 /*
48  *  The allocator uses GC_allochblk to allocate large chunks of objects.
49  * These chunks all start on addresses which are multiples of
50  * HBLKSZ.   Each allocated chunk has an associated header,
51  * which can be located quickly based on the address of the chunk.
52  * (See headers.c for details.)
53  * This makes it possible to check quickly whether an
54  * arbitrary address corresponds to an object administered by the
55  * allocator.
56  */
57 
58 word GC_non_gc_bytes = 0;  /* Number of bytes not intended to be collected */
59 
60 word GC_gc_no = 0;
61 
62 #ifndef SMALL_CONFIG
63   int GC_incremental = 0;  /* By default, stop the world.	*/
64 #endif
65 
66 int GC_parallel = FALSE;   /* By default, parallel GC is off.	*/
67 
68 int GC_full_freq = 19;	   /* Every 20th collection is a full	*/
69 			   /* collection, whether we need it 	*/
70 			   /* or not.			        */
71 
72 GC_bool GC_need_full_gc = FALSE;
73 			   /* Need full GC do to heap growth.	*/
74 
75 #ifdef THREADS
76   GC_bool GC_world_stopped = FALSE;
77 # define IF_THREADS(x) x
78 #else
79 # define IF_THREADS(x)
80 #endif
81 
82 word GC_used_heap_size_after_full = 0;
83 
84 char * GC_copyright[] =
85 {"Copyright 1988,1989 Hans-J. Boehm and Alan J. Demers ",
86 "Copyright (c) 1991-1995 by Xerox Corporation.  All rights reserved. ",
87 "Copyright (c) 1996-1998 by Silicon Graphics.  All rights reserved. ",
88 "Copyright (c) 1999-2001 by Hewlett-Packard Company.  All rights reserved. ",
89 "THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY",
90 " EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.",
91 "See source code for details." };
92 
93 # include "version.h"
94 
95 /* some more variables */
96 
97 extern signed_word GC_mem_found;  /* Number of reclaimed longwords	*/
98 				  /* after garbage collection      	*/
99 
100 GC_bool GC_dont_expand = 0;
101 
102 word GC_free_space_divisor = 3;
103 
104 extern GC_bool GC_collection_in_progress();
105 		/* Collection is in progress, or was abandoned.	*/
106 
107 extern GC_bool GC_print_back_height;
108 
GC_never_stop_func(void)109 int GC_never_stop_func GC_PROTO((void)) { return(0); }
110 
111 unsigned long GC_time_limit = TIME_LIMIT;
112 
113 CLOCK_TYPE GC_start_time;  	/* Time at which we stopped world.	*/
114 				/* used only in GC_timeout_stop_func.	*/
115 
116 int GC_n_attempts = 0;		/* Number of attempts at finishing	*/
117 				/* collection within GC_time_limit.	*/
118 
119 #if defined(SMALL_CONFIG) || defined(NO_CLOCK)
120 #   define GC_timeout_stop_func GC_never_stop_func
121 #else
GC_timeout_stop_func(void)122   int GC_timeout_stop_func GC_PROTO((void))
123   {
124     CLOCK_TYPE current_time;
125     static unsigned count = 0;
126     unsigned long time_diff;
127 
128     if ((count++ & 3) != 0) return(0);
129 #ifndef NO_CLOCK
130     GET_TIME(current_time);
131     time_diff = MS_TIME_DIFF(current_time,GC_start_time);
132     if (time_diff >= GC_time_limit) {
133 #   	ifdef CONDPRINT
134 	  if (GC_print_stats) {
135 	    GC_printf0("Abandoning stopped marking after ");
136 	    GC_printf1("%lu msecs", (unsigned long)time_diff);
137 	    GC_printf1("(attempt %d)\n", (unsigned long) GC_n_attempts);
138 	  }
139 #	endif
140     	return(1);
141     }
142 #endif
143     return(0);
144   }
145 #endif /* !SMALL_CONFIG */
146 
147 /* Return the minimum number of words that must be allocated between	*/
148 /* collections to amortize the collection cost.				*/
min_words_allocd()149 static word min_words_allocd()
150 {
151 #   ifdef THREADS
152  	/* We punt, for now. */
153  	register signed_word stack_size = 10000;
154 #   else
155         int dummy;
156         register signed_word stack_size = (ptr_t)(&dummy) - GC_stackbottom;
157 #   endif
158     word total_root_size;  	    /* includes double stack size,	*/
159     				    /* since the stack is expensive	*/
160     				    /* to scan.				*/
161     word scan_size;		/* Estimate of memory to be scanned 	*/
162 				/* during normal GC.			*/
163 
164     if (stack_size < 0) stack_size = -stack_size;
165     total_root_size = 2 * stack_size + GC_root_size;
166     scan_size = BYTES_TO_WORDS(GC_heapsize - GC_large_free_bytes
167 			       + (GC_large_free_bytes >> 2)
168 				   /* use a bit more of large empty heap */
169 			       + total_root_size);
170     if (TRUE_INCREMENTAL) {
171         return scan_size / (2 * GC_free_space_divisor);
172     } else {
173         return scan_size / GC_free_space_divisor;
174     }
175 }
176 
177 /* Return the number of words allocated, adjusted for explicit storage	*/
178 /* management, etc..  This number is used in deciding when to trigger	*/
179 /* collections.								*/
GC_adj_words_allocd()180 word GC_adj_words_allocd()
181 {
182     register signed_word result;
183     register signed_word expl_managed =
184     		BYTES_TO_WORDS((long)GC_non_gc_bytes
185     				- (long)GC_non_gc_bytes_at_gc);
186 
187     /* Don't count what was explicitly freed, or newly allocated for	*/
188     /* explicit management.  Note that deallocating an explicitly	*/
189     /* managed object should not alter result, assuming the client	*/
190     /* is playing by the rules.						*/
191     result = (signed_word)GC_words_allocd
192     	     - (signed_word)GC_mem_freed
193 	     + (signed_word)GC_finalizer_mem_freed - expl_managed;
194     if (result > (signed_word)GC_words_allocd) {
195         result = GC_words_allocd;
196     	/* probably client bug or unfortunate scheduling */
197     }
198     result += GC_words_finalized;
199     	/* We count objects enqueued for finalization as though they	*/
200     	/* had been reallocated this round. Finalization is user	*/
201     	/* visible progress.  And if we don't count this, we have	*/
202     	/* stability problems for programs that finalize all objects.	*/
203     result += GC_words_wasted;
204      	/* This doesn't reflect useful work.  But if there is lots of	*/
205      	/* new fragmentation, the same is probably true of the heap,	*/
206      	/* and the collection will be correspondingly cheaper.		*/
207     if (result < (signed_word)(GC_words_allocd >> 3)) {
208     	/* Always count at least 1/8 of the allocations.  We don't want	*/
209     	/* to collect too infrequently, since that would inhibit	*/
210     	/* coalescing of free storage blocks.				*/
211     	/* This also makes us partially robust against client bugs.	*/
212         return(GC_words_allocd >> 3);
213     } else {
214         return(result);
215     }
216 }
217 
218 
219 /* Clear up a few frames worth of garbage left at the top of the stack.	*/
220 /* This is used to prevent us from accidentally treating garbade left	*/
221 /* on the stack by other parts of the collector as roots.  This 	*/
222 /* differs from the code in misc.c, which actually tries to keep the	*/
223 /* stack clear of long-lived, client-generated garbage.			*/
GC_clear_a_few_frames()224 void GC_clear_a_few_frames()
225 {
226 #   define NWORDS 64
227     word frames[NWORDS];
228     register int i;
229 
230     for (i = 0; i < NWORDS; i++) frames[i] = 0;
231 }
232 
233 /* Have we allocated enough to amortize a collection? */
GC_should_collect()234 GC_bool GC_should_collect()
235 {
236     return(GC_adj_words_allocd() >= min_words_allocd());
237 }
238 
239 
GC_notify_full_gc()240 void GC_notify_full_gc()
241 {
242     if (GC_start_call_back != (void (*) GC_PROTO((void)))0) {
243 	(*GC_start_call_back)();
244     }
245 }
246 
247 GC_bool GC_is_full_gc = FALSE;
248 
249 /*
250  * Initiate a garbage collection if appropriate.
251  * Choose judiciously
252  * between partial, full, and stop-world collections.
253  * Assumes lock held, signals disabled.
254  */
GC_maybe_gc()255 void GC_maybe_gc()
256 {
257     static int n_partial_gcs = 0;
258 
259     if (GC_should_collect()) {
260         if (!GC_incremental) {
261             GC_gcollect_inner();
262             n_partial_gcs = 0;
263             return;
264         } else {
265 #   	  ifdef PARALLEL_MARK
266 	    GC_wait_for_reclaim();
267 #   	  endif
268 	  if (GC_need_full_gc || n_partial_gcs >= GC_full_freq) {
269 #   	    ifdef CONDPRINT
270 	      if (GC_print_stats) {
271 	        GC_printf2(
272 	          "***>Full mark for collection %lu after %ld allocd bytes\n",
273      		  (unsigned long) GC_gc_no+1,
274 	   	  (long)WORDS_TO_BYTES(GC_words_allocd));
275 	      }
276 #           endif
277 	    GC_promote_black_lists();
278 	    (void)GC_reclaim_all((GC_stop_func)0, TRUE);
279 	    GC_clear_marks();
280             n_partial_gcs = 0;
281 	    GC_notify_full_gc();
282  	    GC_is_full_gc = TRUE;
283           } else {
284             n_partial_gcs++;
285           }
286 	}
287         /* We try to mark with the world stopped.	*/
288         /* If we run out of time, this turns into	*/
289         /* incremental marking.			*/
290 #	ifndef NO_CLOCK
291           if (GC_time_limit != GC_TIME_UNLIMITED) { GET_TIME(GC_start_time); }
292 #	endif
293         if (GC_stopped_mark(GC_time_limit == GC_TIME_UNLIMITED?
294 			    GC_never_stop_func : GC_timeout_stop_func)) {
295 #           ifdef SAVE_CALL_CHAIN
296                 GC_save_callers(GC_last_stack);
297 #           endif
298             GC_finish_collection();
299         } else {
300 	    if (!GC_is_full_gc) {
301 		/* Count this as the first attempt */
302 	        GC_n_attempts++;
303 	    }
304 	}
305     }
306 }
307 
308 
309 /*
310  * Stop the world garbage collection.  Assumes lock held, signals disabled.
311  * If stop_func is not GC_never_stop_func, then abort if stop_func returns TRUE.
312  * Return TRUE if we successfully completed the collection.
313  */
GC_try_to_collect_inner(stop_func)314 GC_bool GC_try_to_collect_inner(stop_func)
315 GC_stop_func stop_func;
316 {
317 #   ifdef CONDPRINT
318         CLOCK_TYPE start_time, current_time;
319 #   endif
320     if (GC_dont_gc) return FALSE;
321     if (GC_incremental && GC_collection_in_progress()) {
322 #   ifdef CONDPRINT
323       if (GC_print_stats) {
324 	GC_printf0(
325 	    "GC_try_to_collect_inner: finishing collection in progress\n");
326       }
327 #   endif /* CONDPRINT */
328       /* Just finish collection already in progress.	*/
329     	while(GC_collection_in_progress()) {
330     	    if (stop_func()) return(FALSE);
331     	    GC_collect_a_little_inner(1);
332     	}
333     }
334     if (stop_func == GC_never_stop_func) GC_notify_full_gc();
335 #   ifdef CONDPRINT
336       if (GC_print_stats) {
337         if (GC_print_stats) GET_TIME(start_time);
338 	GC_printf2(
339 	   "Initiating full world-stop collection %lu after %ld allocd bytes\n",
340 	   (unsigned long) GC_gc_no+1,
341 	   (long)WORDS_TO_BYTES(GC_words_allocd));
342       }
343 #   endif
344     GC_promote_black_lists();
345     /* Make sure all blocks have been reclaimed, so sweep routines	*/
346     /* don't see cleared mark bits.					*/
347     /* If we're guaranteed to finish, then this is unnecessary.		*/
348     /* In the find_leak case, we have to finish to guarantee that 	*/
349     /* previously unmarked objects are not reported as leaks.		*/
350 #       ifdef PARALLEL_MARK
351 	    GC_wait_for_reclaim();
352 #       endif
353  	if ((GC_find_leak || stop_func != GC_never_stop_func)
354 	    && !GC_reclaim_all(stop_func, FALSE)) {
355 	    /* Aborted.  So far everything is still consistent.	*/
356 	    return(FALSE);
357 	}
358     GC_invalidate_mark_state();  /* Flush mark stack.	*/
359     GC_clear_marks();
360 #   ifdef SAVE_CALL_CHAIN
361         GC_save_callers(GC_last_stack);
362 #   endif
363     GC_is_full_gc = TRUE;
364     if (!GC_stopped_mark(stop_func)) {
365       if (!GC_incremental) {
366     	/* We're partially done and have no way to complete or use 	*/
367     	/* current work.  Reestablish invariants as cheaply as		*/
368     	/* possible.							*/
369     	GC_invalidate_mark_state();
370 	GC_unpromote_black_lists();
371       } /* else we claim the world is already still consistent.  We'll 	*/
372         /* finish incrementally.					*/
373       return(FALSE);
374     }
375     GC_finish_collection();
376 #   if defined(CONDPRINT)
377       if (GC_print_stats) {
378         GET_TIME(current_time);
379         GC_printf1("Complete collection took %lu msecs\n",
380                    MS_TIME_DIFF(current_time,start_time));
381       }
382 #   endif
383     return(TRUE);
384 }
385 
386 
387 
388 /*
389  * Perform n units of garbage collection work.  A unit is intended to touch
390  * roughly GC_RATE pages.  Every once in a while, we do more than that.
391  * This needa to be a fairly large number with our current incremental
392  * GC strategy, since otherwise we allocate too much during GC, and the
393  * cleanup gets expensive.
394  */
395 # define GC_RATE 10
396 # define MAX_PRIOR_ATTEMPTS 1
397  	/* Maximum number of prior attempts at world stop marking	*/
398  	/* A value of 1 means that we finish the second time, no matter */
399  	/* how long it takes.  Doesn't count the initial root scan	*/
400  	/* for a full GC.						*/
401 
402 int GC_deficit = 0;	/* The number of extra calls to GC_mark_some	*/
403 			/* that we have made.				*/
404 
GC_collect_a_little_inner(n)405 void GC_collect_a_little_inner(n)
406 int n;
407 {
408     register int i;
409 
410     if (GC_dont_gc) return;
411     if (GC_incremental && GC_collection_in_progress()) {
412     	for (i = GC_deficit; i < GC_RATE*n; i++) {
413     	    if (GC_mark_some((ptr_t)0)) {
414     	        /* Need to finish a collection */
415 #     		ifdef SAVE_CALL_CHAIN
416         	    GC_save_callers(GC_last_stack);
417 #     		endif
418 #		ifdef PARALLEL_MARK
419 		    GC_wait_for_reclaim();
420 #		endif
421 		if (GC_n_attempts < MAX_PRIOR_ATTEMPTS
422 		    && GC_time_limit != GC_TIME_UNLIMITED) {
423 		  GET_TIME(GC_start_time);
424 		  if (!GC_stopped_mark(GC_timeout_stop_func)) {
425 		    GC_n_attempts++;
426 		    break;
427 		  }
428 		} else {
429 		  (void)GC_stopped_mark(GC_never_stop_func);
430 		}
431     	        GC_finish_collection();
432     	        break;
433     	    }
434     	}
435     	if (GC_deficit > 0) GC_deficit -= GC_RATE*n;
436 	if (GC_deficit < 0) GC_deficit = 0;
437     } else {
438         GC_maybe_gc();
439     }
440 }
441 
GC_collect_a_little()442 int GC_collect_a_little GC_PROTO(())
443 {
444     int result;
445     DCL_LOCK_STATE;
446 
447     DISABLE_SIGNALS();
448     LOCK();
449     GC_collect_a_little_inner(1);
450     result = (int)GC_collection_in_progress();
451     UNLOCK();
452     ENABLE_SIGNALS();
453     if (!result && GC_debugging_started) GC_print_all_smashed();
454     return(result);
455 }
456 
457 /*
458  * Assumes lock is held, signals are disabled.
459  * We stop the world.
460  * If stop_func() ever returns TRUE, we may fail and return FALSE.
461  * Increment GC_gc_no if we succeed.
462  */
GC_stopped_mark(stop_func)463 GC_bool GC_stopped_mark(stop_func)
464 GC_stop_func stop_func;
465 {
466     register int i;
467     int dummy;
468 #   if defined(PRINTTIMES) || defined(CONDPRINT)
469 	CLOCK_TYPE start_time, current_time;
470 #   endif
471 
472 #   ifdef PRINTTIMES
473 	GET_TIME(start_time);
474 #   endif
475 #   if defined(CONDPRINT) && !defined(PRINTTIMES)
476 	if (GC_print_stats) GET_TIME(start_time);
477 #   endif
478 #   if defined(REGISTER_LIBRARIES_EARLY)
479         GC_cond_register_dynamic_libraries();
480 #   endif
481     STOP_WORLD();
482     IF_THREADS(GC_world_stopped = TRUE);
483 #   ifdef CONDPRINT
484       if (GC_print_stats) {
485 	GC_printf1("--> Marking for collection %lu ",
486 	           (unsigned long) GC_gc_no + 1);
487 	GC_printf2("after %lu allocd bytes + %lu wasted bytes\n",
488 	   	   (unsigned long) WORDS_TO_BYTES(GC_words_allocd),
489 	   	   (unsigned long) WORDS_TO_BYTES(GC_words_wasted));
490       }
491 #   endif
492 #   ifdef MAKE_BACK_GRAPH
493       if (GC_print_back_height) {
494         GC_build_back_graph();
495       }
496 #   endif
497 
498     /* Mark from all roots.  */
499         /* Minimize junk left in my registers and on the stack */
500             GC_clear_a_few_frames();
501             GC_noop(0,0,0,0,0,0);
502 	GC_initiate_gc();
503 	for(i = 0;;i++) {
504 	    if ((*stop_func)()) {
505 #   		    ifdef CONDPRINT
506 		      if (GC_print_stats) {
507 		    	GC_printf0("Abandoned stopped marking after ");
508 			GC_printf1("%lu iterations\n",
509 				   (unsigned long)i);
510 		      }
511 #		    endif
512 		    GC_deficit = i; /* Give the mutator a chance. */
513                     IF_THREADS(GC_world_stopped = FALSE);
514 	            START_WORLD();
515 	            return(FALSE);
516 	    }
517 	    if (GC_mark_some((ptr_t)(&dummy))) break;
518 	}
519 
520     GC_gc_no++;
521 #   ifdef PRINTSTATS
522       GC_printf2("Collection %lu reclaimed %ld bytes",
523 		  (unsigned long) GC_gc_no - 1,
524 	   	  (long)WORDS_TO_BYTES(GC_mem_found));
525 #   else
526 #     ifdef CONDPRINT
527         if (GC_print_stats) {
528 	  GC_printf1("Collection %lu finished", (unsigned long) GC_gc_no - 1);
529 	}
530 #     endif
531 #   endif /* !PRINTSTATS */
532 #   ifdef CONDPRINT
533       if (GC_print_stats) {
534         GC_printf1(" ---> heapsize = %lu bytes\n",
535       	           (unsigned long) GC_heapsize);
536         /* Printf arguments may be pushed in funny places.  Clear the	*/
537         /* space.							*/
538         GC_printf0("");
539       }
540 #   endif  /* CONDPRINT  */
541 
542     /* Check all debugged objects for consistency */
543         if (GC_debugging_started) {
544             (*GC_check_heap)();
545         }
546 
547     IF_THREADS(GC_world_stopped = FALSE);
548     START_WORLD();
549 #   ifdef PRINTTIMES
550 	GET_TIME(current_time);
551 	GC_printf1("World-stopped marking took %lu msecs\n",
552 	           MS_TIME_DIFF(current_time,start_time));
553 #   else
554 #     ifdef CONDPRINT
555 	if (GC_print_stats) {
556 	  GET_TIME(current_time);
557 	  GC_printf1("World-stopped marking took %lu msecs\n",
558 	             MS_TIME_DIFF(current_time,start_time));
559 	}
560 #     endif
561 #   endif
562     return(TRUE);
563 }
564 
565 /* Set all mark bits for the free list whose first entry is q	*/
566 #ifdef __STDC__
GC_set_fl_marks(ptr_t q)567   void GC_set_fl_marks(ptr_t q)
568 #else
569   void GC_set_fl_marks(q)
570   ptr_t q;
571 #endif
572 {
573    ptr_t p;
574    struct hblk * h, * last_h = 0;
575    hdr *hhdr;
576    int word_no;
577 
578    for (p = q; p != 0; p = obj_link(p)){
579 	h = HBLKPTR(p);
580 	if (h != last_h) {
581 	  last_h = h;
582 	  hhdr = HDR(h);
583 	}
584 	word_no = (((word *)p) - ((word *)h));
585 	set_mark_bit_from_hdr(hhdr, word_no);
586    }
587 }
588 
589 /* Clear all mark bits for the free list whose first entry is q	*/
590 /* Decrement GC_mem_found by number of words on free list.	*/
591 #ifdef __STDC__
GC_clear_fl_marks(ptr_t q)592   void GC_clear_fl_marks(ptr_t q)
593 #else
594   void GC_clear_fl_marks(q)
595   ptr_t q;
596 #endif
597 {
598    ptr_t p;
599    struct hblk * h, * last_h = 0;
600    hdr *hhdr;
601    int word_no;
602 
603    for (p = q; p != 0; p = obj_link(p)){
604 	h = HBLKPTR(p);
605 	if (h != last_h) {
606 	  last_h = h;
607 	  hhdr = HDR(h);
608 	}
609 	word_no = (((word *)p) - ((word *)h));
610 	clear_mark_bit_from_hdr(hhdr, word_no);
611 #	ifdef GATHERSTATS
612 	    GC_mem_found -= hhdr -> hb_sz;
613 #	endif
614    }
615 }
616 
617 /* Finish up a collection.  Assumes lock is held, signals are disabled,	*/
618 /* but the world is otherwise running.					*/
GC_finish_collection()619 void GC_finish_collection()
620 {
621 #   ifdef PRINTTIMES
622 	CLOCK_TYPE start_time;
623 	CLOCK_TYPE finalize_time;
624 	CLOCK_TYPE done_time;
625 
626 	GET_TIME(start_time);
627 	finalize_time = start_time;
628 #   endif
629 
630 #   ifdef GATHERSTATS
631         GC_mem_found = 0;
632 #   endif
633 #   if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
634 	if (getenv("GC_PRINT_ADDRESS_MAP") != 0) {
635 	  GC_print_address_map();
636 	}
637 #   endif
638     COND_DUMP;
639     if (GC_find_leak) {
640       /* Mark all objects on the free list.  All objects should be */
641       /* marked when we're done.				   */
642 	{
643 	  register word size;		/* current object size		*/
644 	  int kind;
645 	  ptr_t q;
646 
647 	  for (kind = 0; kind < GC_n_kinds; kind++) {
648 	    for (size = 1; size <= MAXOBJSZ; size++) {
649 	      q = GC_obj_kinds[kind].ok_freelist[size];
650 	      if (q != 0) GC_set_fl_marks(q);
651 	    }
652 	  }
653 	}
654 	GC_start_reclaim(TRUE);
655 	  /* The above just checks; it doesn't really reclaim anything. */
656     }
657 
658     GC_finalize();
659 #   ifdef STUBBORN_ALLOC
660       GC_clean_changing_list();
661 #   endif
662 
663 #   ifdef PRINTTIMES
664       GET_TIME(finalize_time);
665 #   endif
666 
667     if (GC_print_back_height) {
668 #     ifdef MAKE_BACK_GRAPH
669 	GC_traverse_back_graph();
670 #     else
671 #	ifndef SMALL_CONFIG
672 	  GC_err_printf0("Back height not available: "
673 		         "Rebuild collector with -DMAKE_BACK_GRAPH\n");
674 #  	endif
675 #     endif
676     }
677 
678     /* Clear free list mark bits, in case they got accidentally marked   */
679     /* (or GC_find_leak is set and they were intentionally marked).	 */
680     /* Also subtract memory remaining from GC_mem_found count.           */
681     /* Note that composite objects on free list are cleared.             */
682     /* Thus accidentally marking a free list is not a problem;  only     */
683     /* objects on the list itself will be marked, and that's fixed here. */
684       {
685 	register word size;		/* current object size		*/
686 	register ptr_t q;	/* pointer to current object	*/
687 	int kind;
688 
689 	for (kind = 0; kind < GC_n_kinds; kind++) {
690 	  for (size = 1; size <= MAXOBJSZ; size++) {
691 	    q = GC_obj_kinds[kind].ok_freelist[size];
692 	    if (q != 0) GC_clear_fl_marks(q);
693 	  }
694 	}
695       }
696 
697 
698 #   ifdef PRINTSTATS
699 	GC_printf1("Bytes recovered before sweep - f.l. count = %ld\n",
700 	          (long)WORDS_TO_BYTES(GC_mem_found));
701 #   endif
702     /* Reconstruct free lists to contain everything not marked */
703         GC_start_reclaim(FALSE);
704         if (GC_is_full_gc)  {
705 	    GC_used_heap_size_after_full = USED_HEAP_SIZE;
706 	    GC_need_full_gc = FALSE;
707 	} else {
708 	    GC_need_full_gc =
709 		 BYTES_TO_WORDS(USED_HEAP_SIZE - GC_used_heap_size_after_full)
710 		 > min_words_allocd();
711 	}
712 
713 #   ifdef PRINTSTATS
714 	GC_printf2(
715 		  "Immediately reclaimed %ld bytes in heap of size %lu bytes",
716 	          (long)WORDS_TO_BYTES(GC_mem_found),
717 	          (unsigned long)GC_heapsize);
718 #	ifdef USE_MUNMAP
719 	  GC_printf1("(%lu unmapped)", GC_unmapped_bytes);
720 #	endif
721 	GC_printf2(
722 		"\n%lu (atomic) + %lu (composite) collectable bytes in use\n",
723 	        (unsigned long)WORDS_TO_BYTES(GC_atomic_in_use),
724 	        (unsigned long)WORDS_TO_BYTES(GC_composite_in_use));
725 #   endif
726 
727       GC_n_attempts = 0;
728       GC_is_full_gc = FALSE;
729     /* Reset or increment counters for next cycle */
730       GC_words_allocd_before_gc += GC_words_allocd;
731       GC_non_gc_bytes_at_gc = GC_non_gc_bytes;
732       GC_words_allocd = 0;
733       GC_words_wasted = 0;
734       GC_mem_freed = 0;
735       GC_finalizer_mem_freed = 0;
736 
737 #   ifdef USE_MUNMAP
738       GC_unmap_old();
739 #   endif
740 #   ifdef PRINTTIMES
741 	GET_TIME(done_time);
742 	GC_printf2("Finalize + initiate sweep took %lu + %lu msecs\n",
743 	           MS_TIME_DIFF(finalize_time,start_time),
744 	           MS_TIME_DIFF(done_time,finalize_time));
745 #   endif
746 }
747 
748 /* Externally callable routine to invoke full, stop-world collection */
749 # if defined(__STDC__) || defined(__cplusplus)
GC_try_to_collect(GC_stop_func stop_func)750     int GC_try_to_collect(GC_stop_func stop_func)
751 # else
752     int GC_try_to_collect(stop_func)
753     GC_stop_func stop_func;
754 # endif
755 {
756     int result;
757     DCL_LOCK_STATE;
758 
759     if (GC_debugging_started) GC_print_all_smashed();
760     GC_INVOKE_FINALIZERS();
761     DISABLE_SIGNALS();
762     LOCK();
763     ENTER_GC();
764     if (!GC_is_initialized) GC_init_inner();
765     /* Minimize junk left in my registers */
766       GC_noop(0,0,0,0,0,0);
767     result = (int)GC_try_to_collect_inner(stop_func);
768     EXIT_GC();
769     UNLOCK();
770     ENABLE_SIGNALS();
771     if(result) {
772         if (GC_debugging_started) GC_print_all_smashed();
773         GC_INVOKE_FINALIZERS();
774     }
775     return(result);
776 }
777 
GC_gcollect()778 void GC_gcollect GC_PROTO(())
779 {
780     (void)GC_try_to_collect(GC_never_stop_func);
781     if (GC_have_errors) GC_print_all_errors();
782 }
783 
784 word GC_n_heap_sects = 0;	/* Number of sections currently in heap. */
785 
786 /*
787  * Use the chunk of memory starting at p of size bytes as part of the heap.
788  * Assumes p is HBLKSIZE aligned, and bytes is a multiple of HBLKSIZE.
789  */
GC_add_to_heap(p,bytes)790 void GC_add_to_heap(p, bytes)
791 struct hblk *p;
792 word bytes;
793 {
794     word words;
795     hdr * phdr;
796 
797     if (GC_n_heap_sects >= MAX_HEAP_SECTS) {
798     	ABORT("Too many heap sections: Increase MAXHINCR or MAX_HEAP_SECTS");
799     }
800     phdr = GC_install_header(p);
801     if (0 == phdr) {
802     	/* This is extremely unlikely. Can't add it.  This will		*/
803     	/* almost certainly result in a	0 return from the allocator,	*/
804     	/* which is entirely appropriate.				*/
805     	return;
806     }
807     GC_heap_sects[GC_n_heap_sects].hs_start = (ptr_t)p;
808     GC_heap_sects[GC_n_heap_sects].hs_bytes = bytes;
809     GC_n_heap_sects++;
810     words = BYTES_TO_WORDS(bytes);
811     phdr -> hb_sz = words;
812     phdr -> hb_map = (unsigned char *)1;   /* A value != GC_invalid_map	*/
813     phdr -> hb_flags = 0;
814     GC_freehblk(p);
815     GC_heapsize += bytes;
816     if ((ptr_t)p <= (ptr_t)GC_least_plausible_heap_addr
817         || GC_least_plausible_heap_addr == 0) {
818         GC_least_plausible_heap_addr = (GC_PTR)((ptr_t)p - sizeof(word));
819         	/* Making it a little smaller than necessary prevents	*/
820         	/* us from getting a false hit from the variable	*/
821         	/* itself.  There's some unintentional reflection	*/
822         	/* here.						*/
823     }
824     if ((ptr_t)p + bytes >= (ptr_t)GC_greatest_plausible_heap_addr) {
825         GC_greatest_plausible_heap_addr = (GC_PTR)((ptr_t)p + bytes);
826     }
827 }
828 
829 # if !defined(NO_DEBUGGING)
GC_print_heap_sects()830 void GC_print_heap_sects()
831 {
832     register unsigned i;
833 
834     GC_printf1("Total heap size: %lu\n", (unsigned long) GC_heapsize);
835     for (i = 0; i < GC_n_heap_sects; i++) {
836         unsigned long start = (unsigned long) GC_heap_sects[i].hs_start;
837         unsigned long len = (unsigned long) GC_heap_sects[i].hs_bytes;
838         struct hblk *h;
839         unsigned nbl = 0;
840 
841     	GC_printf3("Section %ld from 0x%lx to 0x%lx ", (unsigned long)i,
842     		   start, (unsigned long)(start + len));
843     	for (h = (struct hblk *)start; h < (struct hblk *)(start + len); h++) {
844     	    if (GC_is_black_listed(h, HBLKSIZE)) nbl++;
845     	}
846     	GC_printf2("%lu/%lu blacklisted\n", (unsigned long)nbl,
847     		   (unsigned long)(len/HBLKSIZE));
848     }
849 }
850 # endif
851 
852 GC_PTR GC_least_plausible_heap_addr = (GC_PTR)ONES;
853 GC_PTR GC_greatest_plausible_heap_addr = 0;
854 
GC_max(x,y)855 ptr_t GC_max(x,y)
856 ptr_t x, y;
857 {
858     return(x > y? x : y);
859 }
860 
GC_min(x,y)861 ptr_t GC_min(x,y)
862 ptr_t x, y;
863 {
864     return(x < y? x : y);
865 }
866 
867 # if defined(__STDC__) || defined(__cplusplus)
GC_set_max_heap_size(GC_word n)868     void GC_set_max_heap_size(GC_word n)
869 # else
870     void GC_set_max_heap_size(n)
871     GC_word n;
872 # endif
873 {
874     GC_max_heapsize = n;
875 }
876 
877 GC_word GC_max_retries = 0;
878 
879 /*
880  * this explicitly increases the size of the heap.  It is used
881  * internally, but may also be invoked from GC_expand_hp by the user.
882  * The argument is in units of HBLKSIZE.
883  * Tiny values of n are rounded up.
884  * Returns FALSE on failure.
885  */
GC_expand_hp_inner(n)886 GC_bool GC_expand_hp_inner(n)
887 word n;
888 {
889     word bytes;
890     struct hblk * space;
891     word expansion_slop;	/* Number of bytes by which we expect the */
892     				/* heap to expand soon.			  */
893 
894     if (n < MINHINCR) n = MINHINCR;
895     bytes = n * HBLKSIZE;
896     /* Make sure bytes is a multiple of GC_page_size */
897       {
898 	word mask = GC_page_size - 1;
899 	bytes += mask;
900 	bytes &= ~mask;
901       }
902 
903     if (GC_max_heapsize != 0 && GC_heapsize + bytes > GC_max_heapsize) {
904         /* Exceeded self-imposed limit */
905         return(FALSE);
906     }
907     space = GET_MEM(bytes);
908     if( space == 0 ) {
909 #	ifdef CONDPRINT
910 	  if (GC_print_stats) {
911 	    GC_printf1("Failed to expand heap by %ld bytes\n",
912 		       (unsigned long)bytes);
913 	  }
914 #       endif
915 	return(FALSE);
916     }
917 #   ifdef CONDPRINT
918       if (GC_print_stats) {
919 	GC_printf2("Increasing heap size by %lu after %lu allocated bytes\n",
920 	           (unsigned long)bytes,
921 	           (unsigned long)WORDS_TO_BYTES(GC_words_allocd));
922 # 	ifdef UNDEFINED
923 	  GC_printf1("Root size = %lu\n", GC_root_size);
924 	  GC_print_block_list(); GC_print_hblkfreelist();
925 	  GC_printf0("\n");
926 #	endif
927       }
928 #   endif
929     expansion_slop = 8 * WORDS_TO_BYTES(min_words_allocd());
930     if (5 * HBLKSIZE * MAXHINCR > expansion_slop) {
931         expansion_slop = 5 * HBLKSIZE * MAXHINCR;
932     }
933     if (GC_last_heap_addr == 0 && !((word)space & SIGNB)
934         || GC_last_heap_addr != 0 && GC_last_heap_addr < (ptr_t)space) {
935         /* Assume the heap is growing up */
936         GC_greatest_plausible_heap_addr =
937             GC_max(GC_greatest_plausible_heap_addr,
938                    (ptr_t)space + bytes + expansion_slop);
939     } else {
940         /* Heap is growing down */
941         GC_least_plausible_heap_addr =
942             GC_min(GC_least_plausible_heap_addr,
943                    (ptr_t)space - expansion_slop);
944     }
945     GC_prev_heap_addr = GC_last_heap_addr;
946     GC_last_heap_addr = (ptr_t)space;
947     GC_add_to_heap(space, bytes);
948     return(TRUE);
949 }
950 
951 /* Really returns a bool, but it's externally visible, so that's clumsy. */
952 /* Arguments is in bytes.						*/
953 # if defined(__STDC__) || defined(__cplusplus)
GC_expand_hp(size_t bytes)954   int GC_expand_hp(size_t bytes)
955 # else
956   int GC_expand_hp(bytes)
957   size_t bytes;
958 # endif
959 {
960     int result;
961     DCL_LOCK_STATE;
962 
963     DISABLE_SIGNALS();
964     LOCK();
965     if (!GC_is_initialized) GC_init_inner();
966     result = (int)GC_expand_hp_inner(divHBLKSZ((word)bytes));
967     if (result) GC_requested_heapsize += bytes;
968     UNLOCK();
969     ENABLE_SIGNALS();
970     return(result);
971 }
972 
973 unsigned GC_fail_count = 0;
974 			/* How many consecutive GC/expansion failures?	*/
975 			/* Reset by GC_allochblk.			*/
976 
GC_collect_or_expand(needed_blocks,ignore_off_page)977 GC_bool GC_collect_or_expand(needed_blocks, ignore_off_page)
978 word needed_blocks;
979 GC_bool ignore_off_page;
980 {
981     if (!GC_incremental && !GC_dont_gc &&
982 	(GC_dont_expand && GC_words_allocd > 0 || GC_should_collect())) {
983       GC_gcollect_inner();
984     } else {
985       word blocks_to_get = GC_heapsize/(HBLKSIZE*GC_free_space_divisor)
986       			   + needed_blocks;
987 
988       if (blocks_to_get > MAXHINCR) {
989           word slop;
990 
991           if (ignore_off_page) {
992               slop = 4;
993           } else {
994 	      slop = 2*divHBLKSZ(BL_LIMIT);
995 	      if (slop > needed_blocks) slop = needed_blocks;
996 	  }
997           if (needed_blocks + slop > MAXHINCR) {
998               blocks_to_get = needed_blocks + slop;
999           } else {
1000               blocks_to_get = MAXHINCR;
1001           }
1002       }
1003       if (!GC_expand_hp_inner(blocks_to_get)
1004         && !GC_expand_hp_inner(needed_blocks)) {
1005       	if (GC_fail_count++ < GC_max_retries) {
1006       	    WARN("Out of Memory!  Trying to continue ...\n", 0);
1007 	    GC_gcollect_inner();
1008 	} else {
1009 #	    if !defined(AMIGA) || !defined(GC_AMIGA_FASTALLOC)
1010 	      WARN("Out of Memory!  Returning NIL!\n", 0);
1011 #	    endif
1012 	    return(FALSE);
1013 	}
1014       } else {
1015 #	  ifdef CONDPRINT
1016             if (GC_fail_count && GC_print_stats) {
1017 	      GC_printf0("Memory available again ...\n");
1018 	    }
1019 #	  endif
1020       }
1021     }
1022     return(TRUE);
1023 }
1024 
1025 /*
1026  * Make sure the object free list for sz is not empty.
1027  * Return a pointer to the first object on the free list.
1028  * The object MUST BE REMOVED FROM THE FREE LIST BY THE CALLER.
1029  * Assumes we hold the allocator lock and signals are disabled.
1030  *
1031  */
GC_allocobj(sz,kind)1032 ptr_t GC_allocobj(sz, kind)
1033 word sz;
1034 int kind;
1035 {
1036     ptr_t * flh = &(GC_obj_kinds[kind].ok_freelist[sz]);
1037     GC_bool tried_minor = FALSE;
1038 
1039     if (sz == 0) return(0);
1040 
1041     while (*flh == 0) {
1042       ENTER_GC();
1043       /* Do our share of marking work */
1044         if(TRUE_INCREMENTAL) GC_collect_a_little_inner(1);
1045       /* Sweep blocks for objects of this size */
1046         GC_continue_reclaim(sz, kind);
1047       EXIT_GC();
1048       if (*flh == 0) {
1049         GC_new_hblk(sz, kind);
1050       }
1051       if (*flh == 0) {
1052         ENTER_GC();
1053 	if (GC_incremental && GC_time_limit == GC_TIME_UNLIMITED
1054 	    && ! tried_minor ) {
1055 	    GC_collect_a_little_inner(1);
1056 	    tried_minor = TRUE;
1057 	} else {
1058           if (!GC_collect_or_expand((word)1,FALSE)) {
1059 	    EXIT_GC();
1060 	    return(0);
1061 	  }
1062 	}
1063 	EXIT_GC();
1064       }
1065     }
1066     /* Successful allocation; reset failure count.	*/
1067     GC_fail_count = 0;
1068 
1069     return(*flh);
1070 }
1071