1 /*
2  * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3  * Copyright (c) 1991-1995 by Xerox Corporation.  All rights reserved.
4  * Copyright 1996-1999 by Silicon Graphics.  All rights reserved.
5  * Copyright 1999 by Hewlett-Packard Company.  All rights reserved.
6  *
7  * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8  * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
9  *
10  * Permission is hereby granted to use or copy this program
11  * for any purpose,  provided the above notices are retained on all copies.
12  * Permission to modify the code and to distribute modified code is granted,
13  * provided the above notices are retained, and a notice that the code was
14  * modified is included with the above copyright notice.
15  */
16 
17 /*
18  * Note that this defines a large number of tuning hooks, which can
19  * safely be ignored in nearly all cases.  For normal use it suffices
20  * to call only GC_MALLOC and perhaps GC_REALLOC.
21  * For better performance, also look at GC_MALLOC_ATOMIC, and
22  * GC_enable_incremental.  If you need an action to be performed
23  * immediately before an object is collected, look at GC_register_finalizer.
24  * If you are using Solaris threads, look at the end of this file.
25  * Everything else is best ignored unless you encounter performance
26  * problems.
27  */
28 
29 #ifndef _GC_H
30 
31 # define _GC_H
32 
33 # include "gc_config_macros.h"
34 
35 # if defined(__STDC__) || defined(__cplusplus)
36 #   define GC_PROTO(args) args
37     typedef void * GC_PTR;
38 #   define GC_CONST const
39 # else
40 #   define GC_PROTO(args) ()
41     typedef char * GC_PTR;
42 #   define GC_CONST
43 #  endif
44 
45 # ifdef __cplusplus
46     extern "C" {
47 # endif
48 
49 
50 /* Define word and signed_word to be unsigned and signed types of the 	*/
51 /* size as char * or void *.  There seems to be no way to do this	*/
52 /* even semi-portably.  The following is probably no better/worse 	*/
53 /* than almost anything else.						*/
54 /* The ANSI standard suggests that size_t and ptr_diff_t might be 	*/
55 /* better choices.  But those appear to have incorrect definitions	*/
56 /* on may systems.  Notably "typedef int size_t" seems to be both	*/
57 /* frequent and WRONG.							*/
58 typedef unsigned long GC_word;
59 typedef long GC_signed_word;
60 
61 /* Public read-only variables */
62 
63 GC_API GC_word GC_gc_no;/* Counter incremented per collection.  	*/
64 			/* Includes empty GCs at startup.		*/
65 
66 GC_API int GC_parallel;	/* GC is parallelized for performance on	*/
67 			/* multiprocessors.  Currently set only		*/
68 			/* implicitly if collector is built with	*/
69 			/* -DPARALLEL_MARK and if either:		*/
70 			/*  Env variable GC_NPROC is set to > 1, or	*/
71 			/*  GC_NPROC is not set and this is an MP.	*/
72 			/* If GC_parallel is set, incremental		*/
73 			/* collection is only partially functional,	*/
74 			/* and may not be desirable.			*/
75 
76 
77 /* Public R/W variables */
78 
79 GC_API GC_PTR (*GC_oom_fn) GC_PROTO((size_t bytes_requested));
80 			/* When there is insufficient memory to satisfy */
81 			/* an allocation request, we return		*/
82 			/* (*GC_oom_fn)().  By default this just	*/
83 			/* returns 0.					*/
84 			/* If it returns, it must return 0 or a valid	*/
85 			/* pointer to a previously allocated heap 	*/
86 			/* object.					*/
87 
88 GC_API int GC_find_leak;
89 			/* Do not actually garbage collect, but simply	*/
90 			/* report inaccessible memory that was not	*/
91 			/* deallocated with GC_free.  Initial value	*/
92 			/* is determined by FIND_LEAK macro.		*/
93 
94 GC_API int GC_all_interior_pointers;
95 			/* Arrange for pointers to object interiors to	*/
96 			/* be recognized as valid.  May not be changed	*/
97 			/* after GC initialization.			*/
98 			/* Initial value is determined by 		*/
99 			/* -DALL_INTERIOR_POINTERS.			*/
100 			/* Unless DONT_ADD_BYTE_AT_END is defined, this	*/
101 			/* also affects whether sizes are increased by	*/
102 			/* at least a byte to allow "off the end"	*/
103 			/* pointer recognition.				*/
104 			/* MUST BE 0 or 1.				*/
105 
106 GC_API int GC_quiet;	/* Disable statistics output.  Only matters if	*/
107 			/* collector has been compiled with statistics	*/
108 			/* enabled.  This involves a performance cost,	*/
109 			/* and is thus not the default.			*/
110 
111 GC_API int GC_finalize_on_demand;
112 			/* If nonzero, finalizers will only be run in 	*/
113 			/* response to an explicit GC_invoke_finalizers	*/
114 			/* call.  The default is determined by whether	*/
115 			/* the FINALIZE_ON_DEMAND macro is defined	*/
116 			/* when the collector is built.			*/
117 
118 GC_API int GC_java_finalization;
119 			/* Mark objects reachable from finalizable 	*/
120 			/* objects in a separate postpass.  This makes	*/
121 			/* it a bit safer to use non-topologically-	*/
122 			/* ordered finalization.  Default value is	*/
123 			/* determined by JAVA_FINALIZATION macro.	*/
124 
125 GC_API void (* GC_finalizer_notifier)();
126 			/* Invoked by the collector when there are 	*/
127 			/* objects to be finalized.  Invoked at most	*/
128 			/* once per GC cycle.  Never invoked unless 	*/
129 			/* GC_finalize_on_demand is set.		*/
130 			/* Typically this will notify a finalization	*/
131 			/* thread, which will call GC_invoke_finalizers */
132 			/* in response.					*/
133 
134 GC_API int GC_dont_gc;	/* != 0 ==> Dont collect.  In versions 6.2a1+,	*/
135 			/* this overrides explicit GC_gcollect() calls.	*/
136 			/* Used as a counter, so that nested enabling	*/
137 			/* and disabling work correctly.  Should	*/
138 			/* normally be updated with GC_enable() and	*/
139 			/* GC_disable() calls.				*/
140 			/* Direct assignment to GC_dont_gc is 		*/
141 			/* deprecated.					*/
142 
143 GC_API int GC_dont_expand;
144 			/* Dont expand heap unless explicitly requested */
145 			/* or forced to.				*/
146 
147 GC_API int GC_use_entire_heap;
148 		/* Causes the nonincremental collector to use the	*/
149 		/* entire heap before collecting.  This was the only 	*/
150 		/* option for GC versions < 5.0.  This sometimes	*/
151 		/* results in more large block fragmentation, since	*/
152 		/* very larg blocks will tend to get broken up		*/
153 		/* during each GC cycle.  It is likely to result in a	*/
154 		/* larger working set, but lower collection		*/
155 		/* frequencies, and hence fewer instructions executed	*/
156 		/* in the collector.					*/
157 
158 GC_API int GC_full_freq;    /* Number of partial collections between	*/
159 			    /* full collections.  Matters only if	*/
160 			    /* GC_incremental is set.			*/
161 			    /* Full collections are also triggered if	*/
162 			    /* the collector detects a substantial	*/
163 			    /* increase in the number of in-use heap	*/
164 			    /* blocks.  Values in the tens are now	*/
165 			    /* perfectly reasonable, unlike for		*/
166 			    /* earlier GC versions.			*/
167 
168 GC_API GC_word GC_non_gc_bytes;
169 			/* Bytes not considered candidates for collection. */
170 			/* Used only to control scheduling of collections. */
171 			/* Updated by GC_malloc_uncollectable and GC_free. */
172 			/* Wizards only.				   */
173 
174 GC_API int GC_no_dls;
175 			/* Don't register dynamic library data segments. */
176 			/* Wizards only.  Should be used only if the	 */
177 			/* application explicitly registers all roots.	 */
178 			/* In Microsoft Windows environments, this will	 */
179 			/* usually also prevent registration of the	 */
180 			/* main data segment as part of the root set.	 */
181 
182 GC_API GC_word GC_free_space_divisor;
183 			/* We try to make sure that we allocate at 	*/
184 			/* least N/GC_free_space_divisor bytes between	*/
185 			/* collections, where N is the heap size plus	*/
186 			/* a rough estimate of the root set size.	*/
187 			/* Initially, GC_free_space_divisor = 4.	*/
188 			/* Increasing its value will use less space	*/
189 			/* but more collection time.  Decreasing it	*/
190 			/* will appreciably decrease collection time	*/
191 			/* at the expense of space.			*/
192 			/* GC_free_space_divisor = 1 will effectively	*/
193 			/* disable collections.				*/
194 
195 GC_API GC_word GC_max_retries;
196 			/* The maximum number of GCs attempted before	*/
197 			/* reporting out of memory after heap		*/
198 			/* expansion fails.  Initially 0.		*/
199 
200 
201 GC_API char *GC_stackbottom;	/* Cool end of user stack.		*/
202 				/* May be set in the client prior to	*/
203 				/* calling any GC_ routines.  This	*/
204 				/* avoids some overhead, and 		*/
205 				/* potentially some signals that can 	*/
206 				/* confuse debuggers.  Otherwise the	*/
207 				/* collector attempts to set it 	*/
208 				/* automatically.			*/
209 				/* For multithreaded code, this is the	*/
210 				/* cold end of the stack for the	*/
211 				/* primordial thread.			*/
212 
213 GC_API int GC_dont_precollect;  /* Don't collect as part of 		*/
214 				/* initialization.  Should be set only	*/
215 				/* if the client wants a chance to	*/
216 				/* manually initialize the root set	*/
217 				/* before the first collection.		*/
218 				/* Interferes with blacklisting.	*/
219 				/* Wizards only.			*/
220 
221 /* Public procedures */
222 
223 /* Initialize the collector.  This is only required when using thread-local
224  * allocation, since unlike the regular allocation routines, GC_local_malloc
225  * is not self-initializing.  If you use GC_local_malloc you should arrange
226  * to call this somehow (e.g. from a constructor) before doing any allocation.
227  */
228 GC_API void GC_init GC_PROTO((void));
229 
230 GC_API unsigned long GC_time_limit;
231 				/* If incremental collection is enabled, */
232 				/* We try to terminate collections	 */
233 				/* after this many milliseconds.  Not a	 */
234 				/* hard time bound.  Setting this to 	 */
235 				/* GC_TIME_UNLIMITED will essentially	 */
236 				/* disable incremental collection while  */
237 				/* leaving generational collection	 */
238 				/* enabled.	 			 */
239 #	define GC_TIME_UNLIMITED 999999
240 				/* Setting GC_time_limit to this value	 */
241 				/* will disable the "pause time exceeded"*/
242 				/* tests.				 */
243 
244 /* Public procedures */
245 
246 /* Initialize the collector.  This is only required when using thread-local
247  * allocation, since unlike the regular allocation routines, GC_local_malloc
248  * is not self-initializing.  If you use GC_local_malloc you should arrange
249  * to call this somehow (e.g. from a constructor) before doing any allocation.
250  */
251 GC_API void GC_init GC_PROTO((void));
252 
253 /*
254  * general purpose allocation routines, with roughly malloc calling conv.
255  * The atomic versions promise that no relevant pointers are contained
256  * in the object.  The nonatomic versions guarantee that the new object
257  * is cleared.  GC_malloc_stubborn promises that no changes to the object
258  * will occur after GC_end_stubborn_change has been called on the
259  * result of GC_malloc_stubborn. GC_malloc_uncollectable allocates an object
260  * that is scanned for pointers to collectable objects, but is not itself
261  * collectable.  The object is scanned even if it does not appear to
262  * be reachable.  GC_malloc_uncollectable and GC_free called on the resulting
263  * object implicitly update GC_non_gc_bytes appropriately.
264  *
265  * Note that the GC_malloc_stubborn support is stubbed out by default
266  * starting in 6.0.  GC_malloc_stubborn is an alias for GC_malloc unless
267  * the collector is built with STUBBORN_ALLOC defined.
268  */
269 GC_API GC_PTR GC_malloc GC_PROTO((size_t size_in_bytes));
270 GC_API GC_PTR GC_malloc_atomic GC_PROTO((size_t size_in_bytes));
271 GC_API GC_PTR GC_malloc_uncollectable GC_PROTO((size_t size_in_bytes));
272 GC_API GC_PTR GC_malloc_stubborn GC_PROTO((size_t size_in_bytes));
273 
274 /* The following is only defined if the library has been suitably	*/
275 /* compiled:								*/
276 GC_API GC_PTR GC_malloc_atomic_uncollectable GC_PROTO((size_t size_in_bytes));
277 
278 /* Explicitly deallocate an object.  Dangerous if used incorrectly.     */
279 /* Requires a pointer to the base of an object.				*/
280 /* If the argument is stubborn, it should not be changeable when freed. */
281 /* An object should not be enable for finalization when it is 		*/
282 /* explicitly deallocated.						*/
283 /* GC_free(0) is a no-op, as required by ANSI C for free.		*/
284 GC_API void GC_free GC_PROTO((GC_PTR object_addr));
285 
286 /*
287  * Stubborn objects may be changed only if the collector is explicitly informed.
288  * The collector is implicitly informed of coming change when such
289  * an object is first allocated.  The following routines inform the
290  * collector that an object will no longer be changed, or that it will
291  * once again be changed.  Only nonNIL pointer stores into the object
292  * are considered to be changes.  The argument to GC_end_stubborn_change
293  * must be exacly the value returned by GC_malloc_stubborn or passed to
294  * GC_change_stubborn.  (In the second case it may be an interior pointer
295  * within 512 bytes of the beginning of the objects.)
296  * There is a performance penalty for allowing more than
297  * one stubborn object to be changed at once, but it is acceptable to
298  * do so.  The same applies to dropping stubborn objects that are still
299  * changeable.
300  */
301 GC_API void GC_change_stubborn GC_PROTO((GC_PTR));
302 GC_API void GC_end_stubborn_change GC_PROTO((GC_PTR));
303 
304 /* Return a pointer to the base (lowest address) of an object given	*/
305 /* a pointer to a location within the object.				*/
306 /* I.e. map an interior pointer to the corresponding bas pointer.	*/
307 /* Note that with debugging allocation, this returns a pointer to the	*/
308 /* actual base of the object, i.e. the debug information, not to	*/
309 /* the base of the user object.						*/
310 /* Return 0 if displaced_pointer doesn't point to within a valid	*/
311 /* object.								*/
312 GC_API GC_PTR GC_base GC_PROTO((GC_PTR displaced_pointer));
313 
314 /* Given a pointer to the base of an object, return its size in bytes.	*/
315 /* The returned size may be slightly larger than what was originally	*/
316 /* requested.								*/
317 GC_API size_t GC_size GC_PROTO((GC_PTR object_addr));
318 
319 /* For compatibility with C library.  This is occasionally faster than	*/
320 /* a malloc followed by a bcopy.  But if you rely on that, either here	*/
321 /* or with the standard C library, your code is broken.  In my		*/
322 /* opinion, it shouldn't have been invented, but now we're stuck. -HB	*/
323 /* The resulting object has the same kind as the original.		*/
324 /* If the argument is stubborn, the result will have changes enabled.	*/
325 /* It is an error to have changes enabled for the original object.	*/
326 /* Follows ANSI comventions for NULL old_object.			*/
327 GC_API GC_PTR GC_realloc
328 	GC_PROTO((GC_PTR old_object, size_t new_size_in_bytes));
329 
330 /* Explicitly increase the heap size.	*/
331 /* Returns 0 on failure, 1 on success.  */
332 GC_API int GC_expand_hp GC_PROTO((size_t number_of_bytes));
333 
334 /* Limit the heap size to n bytes.  Useful when you're debugging, 	*/
335 /* especially on systems that don't handle running out of memory well.	*/
336 /* n == 0 ==> unbounded.  This is the default.				*/
337 GC_API void GC_set_max_heap_size GC_PROTO((GC_word n));
338 
339 /* Inform the collector that a certain section of statically allocated	*/
340 /* memory contains no pointers to garbage collected memory.  Thus it 	*/
341 /* need not be scanned.  This is sometimes important if the application */
342 /* maps large read/write files into the address space, which could be	*/
343 /* mistaken for dynamic library data segments on some systems.		*/
344 GC_API void GC_exclude_static_roots GC_PROTO((GC_PTR start, GC_PTR finish));
345 
346 /* Clear the set of root segments.  Wizards only. */
347 GC_API void GC_clear_roots GC_PROTO((void));
348 
349 /* Add a root segment.  Wizards only. */
350 GC_API void GC_add_roots GC_PROTO((char * low_address,
351 				   char * high_address_plus_1));
352 
353 /* Remove a root segment.  Wizards only. */
354 GC_API void GC_remove_roots GC_PROTO((char * low_address,
355     char * high_address_plus_1));
356 
357 /* Add a displacement to the set of those considered valid by the	*/
358 /* collector.  GC_register_displacement(n) means that if p was returned */
359 /* by GC_malloc, then (char *)p + n will be considered to be a valid	*/
360 /* pointer to p.  N must be small and less than the size of p.		*/
361 /* (All pointers to the interior of objects from the stack are		*/
362 /* considered valid in any case.  This applies to heap objects and	*/
363 /* static data.)							*/
364 /* Preferably, this should be called before any other GC procedures.	*/
365 /* Calling it later adds to the probability of excess memory		*/
366 /* retention.								*/
367 /* This is a no-op if the collector has recognition of			*/
368 /* arbitrary interior pointers enabled, which is now the default.	*/
369 GC_API void GC_register_displacement GC_PROTO((GC_word n));
370 
371 /* The following version should be used if any debugging allocation is	*/
372 /* being done.								*/
373 GC_API void GC_debug_register_displacement GC_PROTO((GC_word n));
374 
375 /* Explicitly trigger a full, world-stop collection. 	*/
376 GC_API void GC_gcollect GC_PROTO((void));
377 
378 /* Trigger a full world-stopped collection.  Abort the collection if 	*/
379 /* and when stop_func returns a nonzero value.  Stop_func will be 	*/
380 /* called frequently, and should be reasonably fast.  This works even	*/
381 /* if virtual dirty bits, and hence incremental collection is not 	*/
382 /* available for this architecture.  Collections can be aborted faster	*/
383 /* than normal pause times for incremental collection.  However,	*/
384 /* aborted collections do no useful work; the next collection needs	*/
385 /* to start from the beginning.						*/
386 /* Return 0 if the collection was aborted, 1 if it succeeded.		*/
387 typedef int (* GC_stop_func) GC_PROTO((void));
388 GC_API int GC_try_to_collect GC_PROTO((GC_stop_func stop_func));
389 
390 /* Return the number of bytes in the heap.  Excludes collector private	*/
391 /* data structures.  Includes empty blocks and fragmentation loss.	*/
392 /* Includes some pages that were allocated but never written.		*/
393 GC_API size_t GC_get_heap_size GC_PROTO((void));
394 
395 /* Return a lower bound on the number of free bytes in the heap.	*/
396 GC_API size_t GC_get_free_bytes GC_PROTO((void));
397 
398 /* Return the number of bytes allocated since the last collection.	*/
399 GC_API size_t GC_get_bytes_since_gc GC_PROTO((void));
400 
401 /* Return the total number of bytes allocated in this process.		*/
402 /* Never decreases, except due to wrapping.				*/
403 GC_API size_t GC_get_total_bytes GC_PROTO((void));
404 
405 /* Disable garbage collection.  Even GC_gcollect calls will be 		*/
406 /* ineffective.								*/
407 GC_API void GC_disable GC_PROTO((void));
408 
409 /* Reenable garbage collection.  GC_disable() and GC_enable() calls 	*/
410 /* nest.  Garbage collection is enabled if the number of calls to both	*/
411 /* both functions is equal.						*/
412 GC_API void GC_enable GC_PROTO((void));
413 
414 /* Enable incremental/generational collection.	*/
415 /* Not advisable unless dirty bits are 		*/
416 /* available or most heap objects are		*/
417 /* pointerfree(atomic) or immutable.		*/
418 /* Don't use in leak finding mode.		*/
419 /* Ignored if GC_dont_gc is true.		*/
420 /* Only the generational piece of this is	*/
421 /* functional if GC_parallel is TRUE		*/
422 /* or if GC_time_limit is GC_TIME_UNLIMITED.	*/
423 /* Causes GC_local_gcj_malloc() to revert to	*/
424 /* locked allocation.  Must be called 		*/
425 /* before any GC_local_gcj_malloc() calls.	*/
426 GC_API void GC_enable_incremental GC_PROTO((void));
427 
428 /* Does incremental mode write-protect pages?  Returns zero or	*/
429 /* more of the following, or'ed together:			*/
430 #define GC_PROTECTS_POINTER_HEAP  1 /* May protect non-atomic objs.	*/
431 #define GC_PROTECTS_PTRFREE_HEAP  2
432 #define GC_PROTECTS_STATIC_DATA   4 /* Curently never.			*/
433 #define GC_PROTECTS_STACK	  8 /* Probably impractical.		*/
434 
435 #define GC_PROTECTS_NONE 0
436 GC_API int GC_incremental_protection_needs GC_PROTO((void));
437 
438 /* Perform some garbage collection work, if appropriate.	*/
439 /* Return 0 if there is no more work to be done.		*/
440 /* Typically performs an amount of work corresponding roughly	*/
441 /* to marking from one page.  May do more work if further	*/
442 /* progress requires it, e.g. if incremental collection is	*/
443 /* disabled.  It is reasonable to call this in a wait loop	*/
444 /* until it returns 0.						*/
445 GC_API int GC_collect_a_little GC_PROTO((void));
446 
447 /* Allocate an object of size lb bytes.  The client guarantees that	*/
448 /* as long as the object is live, it will be referenced by a pointer	*/
449 /* that points to somewhere within the first 256 bytes of the object.	*/
450 /* (This should normally be declared volatile to prevent the compiler	*/
451 /* from invalidating this assertion.)  This routine is only useful	*/
452 /* if a large array is being allocated.  It reduces the chance of 	*/
453 /* accidentally retaining such an array as a result of scanning an	*/
454 /* integer that happens to be an address inside the array.  (Actually,	*/
455 /* it reduces the chance of the allocator not finding space for such	*/
456 /* an array, since it will try hard to avoid introducing such a false	*/
457 /* reference.)  On a SunOS 4.X or MS Windows system this is recommended */
458 /* for arrays likely to be larger than 100K or so.  For other systems,	*/
459 /* or if the collector is not configured to recognize all interior	*/
460 /* pointers, the threshold is normally much higher.			*/
461 GC_API GC_PTR GC_malloc_ignore_off_page GC_PROTO((size_t lb));
462 GC_API GC_PTR GC_malloc_atomic_ignore_off_page GC_PROTO((size_t lb));
463 
464 #if defined(__sgi) && !defined(__GNUC__) && _COMPILER_VERSION >= 720
465 #   define GC_ADD_CALLER
466 #   define GC_RETURN_ADDR (GC_word)__return_address
467 #endif
468 
469 #ifdef __linux__
470 # include <features.h>
471 # if (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 1 || __GLIBC__ > 2) \
472      && !defined(__ia64__)
473 #   define GC_HAVE_BUILTIN_BACKTRACE
474 #   define GC_CAN_SAVE_CALL_STACKS
475 # endif
476 # if defined(__i386__) || defined(__x86_64__)
477 #   define GC_CAN_SAVE_CALL_STACKS
478 # endif
479 #endif
480 
481 #if defined(__sparc__)
482 #   define GC_CAN_SAVE_CALL_STACKS
483 #endif
484 
485 /* If we're on an a platform on which we can't save call stacks, but	*/
486 /* gcc is normally used, we go ahead and define GC_ADD_CALLER.  	*/
487 /* We make this decision independent of whether gcc is actually being	*/
488 /* used, in order to keep the interface consistent, and allow mixing	*/
489 /* of compilers.							*/
490 /* This may also be desirable if it is possible but expensive to	*/
491 /* retrieve the call chain.						*/
492 #if (defined(__linux__) || defined(__NetBSD__) || defined(__OpenBSD__) \
493      || defined(__FreeBSD__)) & !defined(GC_CAN_SAVE_CALL_STACKS)
494 # define GC_ADD_CALLER
495 # if __GNUC__ >= 3 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 95)
496     /* gcc knows how to retrieve return address, but we don't know */
497     /* how to generate call stacks.				   */
498 #   define GC_RETURN_ADDR (GC_word)__builtin_return_address(0)
499 # else
500     /* Just pass 0 for gcc compatibility. */
501 #   define GC_RETURN_ADDR 0
502 # endif
503 #endif
504 
505 #ifdef GC_ADD_CALLER
506 #  define GC_EXTRAS GC_RETURN_ADDR, __FILE__, __LINE__
507 #  define GC_EXTRA_PARAMS GC_word ra, GC_CONST char * s, int i
508 #else
509 #  define GC_EXTRAS __FILE__, __LINE__
510 #  define GC_EXTRA_PARAMS GC_CONST char * s, int i
511 #endif
512 
513 /* Debugging (annotated) allocation.  GC_gcollect will check 		*/
514 /* objects allocated in this way for overwrites, etc.			*/
515 GC_API GC_PTR GC_debug_malloc
516 	GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
517 GC_API GC_PTR GC_debug_malloc_atomic
518 	GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
519 GC_API GC_PTR GC_debug_malloc_uncollectable
520 	GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
521 GC_API GC_PTR GC_debug_malloc_stubborn
522 	GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
523 GC_API GC_PTR GC_debug_malloc_ignore_off_page
524 	GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
525 GC_API GC_PTR GC_debug_malloc_atomic_ignore_off_page
526 	GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
527 GC_API void GC_debug_free GC_PROTO((GC_PTR object_addr));
528 GC_API GC_PTR GC_debug_realloc
529 	GC_PROTO((GC_PTR old_object, size_t new_size_in_bytes,
530   		  GC_EXTRA_PARAMS));
531 GC_API void GC_debug_change_stubborn GC_PROTO((GC_PTR));
532 GC_API void GC_debug_end_stubborn_change GC_PROTO((GC_PTR));
533 
534 /* Routines that allocate objects with debug information (like the 	*/
535 /* above), but just fill in dummy file and line number information.	*/
536 /* Thus they can serve as drop-in malloc/realloc replacements.  This	*/
537 /* can be useful for two reasons:  					*/
538 /* 1) It allows the collector to be built with DBG_HDRS_ALL defined	*/
539 /*    even if some allocation calls come from 3rd party libraries	*/
540 /*    that can't be recompiled.						*/
541 /* 2) On some platforms, the file and line information is redundant,	*/
542 /*    since it can be reconstructed from a stack trace.  On such	*/
543 /*    platforms it may be more convenient not to recompile, e.g. for	*/
544 /*    leak detection.  This can be accomplished by instructing the	*/
545 /*    linker to replace malloc/realloc with these.			*/
546 GC_API GC_PTR GC_debug_malloc_replacement GC_PROTO((size_t size_in_bytes));
547 GC_API GC_PTR GC_debug_realloc_replacement
548 	      GC_PROTO((GC_PTR object_addr, size_t size_in_bytes));
549 
550 # ifdef GC_DEBUG
551 #   define GC_MALLOC(sz) GC_debug_malloc(sz, GC_EXTRAS)
552 #   define GC_MALLOC_ATOMIC(sz) GC_debug_malloc_atomic(sz, GC_EXTRAS)
553 #   define GC_MALLOC_UNCOLLECTABLE(sz) \
554 			GC_debug_malloc_uncollectable(sz, GC_EXTRAS)
555 #   define GC_MALLOC_IGNORE_OFF_PAGE(sz) \
556 			GC_debug_malloc_ignore_off_page(sz, GC_EXTRAS)
557 #   define GC_MALLOC_ATOMIC_IGNORE_OFF_PAGE(sz) \
558 			GC_debug_malloc_atomic_ignore_off_page(sz, GC_EXTRAS)
559 #   define GC_REALLOC(old, sz) GC_debug_realloc(old, sz, GC_EXTRAS)
560 #   define GC_FREE(p) GC_debug_free(p)
561 #   define GC_REGISTER_FINALIZER(p, f, d, of, od) \
562 	GC_debug_register_finalizer(p, f, d, of, od)
563 #   define GC_REGISTER_FINALIZER_IGNORE_SELF(p, f, d, of, od) \
564 	GC_debug_register_finalizer_ignore_self(p, f, d, of, od)
565 #   define GC_REGISTER_FINALIZER_NO_ORDER(p, f, d, of, od) \
566 	GC_debug_register_finalizer_no_order(p, f, d, of, od)
567 #   define GC_MALLOC_STUBBORN(sz) GC_debug_malloc_stubborn(sz, GC_EXTRAS);
568 #   define GC_CHANGE_STUBBORN(p) GC_debug_change_stubborn(p)
569 #   define GC_END_STUBBORN_CHANGE(p) GC_debug_end_stubborn_change(p)
570 #   define GC_GENERAL_REGISTER_DISAPPEARING_LINK(link, obj) \
571 	GC_general_register_disappearing_link(link, GC_base(obj))
572 #   define GC_REGISTER_DISPLACEMENT(n) GC_debug_register_displacement(n)
573 # else
574 #   define GC_MALLOC(sz) GC_malloc(sz)
575 #   define GC_MALLOC_ATOMIC(sz) GC_malloc_atomic(sz)
576 #   define GC_MALLOC_UNCOLLECTABLE(sz) GC_malloc_uncollectable(sz)
577 #   define GC_MALLOC_IGNORE_OFF_PAGE(sz) \
578 			GC_malloc_ignore_off_page(sz)
579 #   define GC_MALLOC_ATOMIC_IGNORE_OFF_PAGE(sz) \
580 			GC_malloc_atomic_ignore_off_page(sz)
581 #   define GC_REALLOC(old, sz) GC_realloc(old, sz)
582 #   define GC_FREE(p) GC_free(p)
583 #   define GC_REGISTER_FINALIZER(p, f, d, of, od) \
584 	GC_register_finalizer(p, f, d, of, od)
585 #   define GC_REGISTER_FINALIZER_IGNORE_SELF(p, f, d, of, od) \
586 	GC_register_finalizer_ignore_self(p, f, d, of, od)
587 #   define GC_REGISTER_FINALIZER_NO_ORDER(p, f, d, of, od) \
588 	GC_register_finalizer_no_order(p, f, d, of, od)
589 #   define GC_MALLOC_STUBBORN(sz) GC_malloc_stubborn(sz)
590 #   define GC_CHANGE_STUBBORN(p) GC_change_stubborn(p)
591 #   define GC_END_STUBBORN_CHANGE(p) GC_end_stubborn_change(p)
592 #   define GC_GENERAL_REGISTER_DISAPPEARING_LINK(link, obj) \
593 	GC_general_register_disappearing_link(link, obj)
594 #   define GC_REGISTER_DISPLACEMENT(n) GC_register_displacement(n)
595 # endif
596 /* The following are included because they are often convenient, and	*/
597 /* reduce the chance for a misspecifed size argument.  But calls may	*/
598 /* expand to something syntactically incorrect if t is a complicated	*/
599 /* type expression.  							*/
600 # define GC_NEW(t) (t *)GC_MALLOC(sizeof (t))
601 # define GC_NEW_ATOMIC(t) (t *)GC_MALLOC_ATOMIC(sizeof (t))
602 # define GC_NEW_STUBBORN(t) (t *)GC_MALLOC_STUBBORN(sizeof (t))
603 # define GC_NEW_UNCOLLECTABLE(t) (t *)GC_MALLOC_UNCOLLECTABLE(sizeof (t))
604 
605 /* Finalization.  Some of these primitives are grossly unsafe.		*/
606 /* The idea is to make them both cheap, and sufficient to build		*/
607 /* a safer layer, closer to PCedar finalization.			*/
608 /* The interface represents my conclusions from a long discussion	*/
609 /* with Alan Demers, Dan Greene, Carl Hauser, Barry Hayes, 		*/
610 /* Christian Jacobi, and Russ Atkinson.  It's not perfect, and		*/
611 /* probably nobody else agrees with it.	    Hans-J. Boehm  3/13/92	*/
612 typedef void (*GC_finalization_proc)
613   	GC_PROTO((GC_PTR obj, GC_PTR client_data));
614 
615 GC_API void GC_register_finalizer
616     	GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
617 		  GC_finalization_proc *ofn, GC_PTR *ocd));
618 GC_API void GC_debug_register_finalizer
619     	GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
620 		  GC_finalization_proc *ofn, GC_PTR *ocd));
621 	/* When obj is no longer accessible, invoke		*/
622 	/* (*fn)(obj, cd).  If a and b are inaccessible, and	*/
623 	/* a points to b (after disappearing links have been	*/
624 	/* made to disappear), then only a will be		*/
625 	/* finalized.  (If this does not create any new		*/
626 	/* pointers to b, then b will be finalized after the	*/
627 	/* next collection.)  Any finalizable object that	*/
628 	/* is reachable from itself by following one or more	*/
629 	/* pointers will not be finalized (or collected).	*/
630 	/* Thus cycles involving finalizable objects should	*/
631 	/* be avoided, or broken by disappearing links.		*/
632 	/* All but the last finalizer registered for an object  */
633 	/* is ignored.						*/
634 	/* Finalization may be removed by passing 0 as fn.	*/
635 	/* Finalizers are implicitly unregistered just before   */
636 	/* they are invoked.					*/
637 	/* The old finalizer and client data are stored in	*/
638 	/* *ofn and *ocd.					*/
639 	/* Fn is never invoked on an accessible object,		*/
640 	/* provided hidden pointers are converted to real 	*/
641 	/* pointers only if the allocation lock is held, and	*/
642 	/* such conversions are not performed by finalization	*/
643 	/* routines.						*/
644 	/* If GC_register_finalizer is aborted as a result of	*/
645 	/* a signal, the object may be left with no		*/
646 	/* finalization, even if neither the old nor new	*/
647 	/* finalizer were NULL.					*/
648 	/* Obj should be the nonNULL starting address of an 	*/
649 	/* object allocated by GC_malloc or friends.		*/
650 	/* Note that any garbage collectable object referenced	*/
651 	/* by cd will be considered accessible until the	*/
652 	/* finalizer is invoked.				*/
653 
654 /* Another versions of the above follow.  It ignores		*/
655 /* self-cycles, i.e. pointers from a finalizable object to	*/
656 /* itself.  There is a stylistic argument that this is wrong,	*/
657 /* but it's unavoidable for C++, since the compiler may		*/
658 /* silently introduce these.  It's also benign in that specific	*/
659 /* case.  And it helps if finalizable objects are split to	*/
660 /* avoid cycles.						*/
661 /* Note that cd will still be viewed as accessible, even if it	*/
662 /* refers to the object itself.					*/
663 GC_API void GC_register_finalizer_ignore_self
664 	GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
665 		  GC_finalization_proc *ofn, GC_PTR *ocd));
666 GC_API void GC_debug_register_finalizer_ignore_self
667 	GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
668 		  GC_finalization_proc *ofn, GC_PTR *ocd));
669 
670 /* Another version of the above.  It ignores all cycles.        */
671 /* It should probably only be used by Java implementations.     */
672 /* Note that cd will still be viewed as accessible, even if it	*/
673 /* refers to the object itself.					*/
674 GC_API void GC_register_finalizer_no_order
675 	GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
676 		  GC_finalization_proc *ofn, GC_PTR *ocd));
677 GC_API void GC_debug_register_finalizer_no_order
678 	GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
679 		  GC_finalization_proc *ofn, GC_PTR *ocd));
680 
681 
682 /* The following routine may be used to break cycles between	*/
683 /* finalizable objects, thus causing cyclic finalizable		*/
684 /* objects to be finalized in the correct order.  Standard	*/
685 /* use involves calling GC_register_disappearing_link(&p),	*/
686 /* where p is a pointer that is not followed by finalization	*/
687 /* code, and should not be considered in determining 		*/
688 /* finalization order.						*/
689 GC_API int GC_register_disappearing_link GC_PROTO((GC_PTR * /* link */));
690 	/* Link should point to a field of a heap allocated 	*/
691 	/* object obj.  *link will be cleared when obj is	*/
692 	/* found to be inaccessible.  This happens BEFORE any	*/
693 	/* finalization code is invoked, and BEFORE any		*/
694 	/* decisions about finalization order are made.		*/
695 	/* This is useful in telling the finalizer that 	*/
696 	/* some pointers are not essential for proper		*/
697 	/* finalization.  This may avoid finalization cycles.	*/
698 	/* Note that obj may be resurrected by another		*/
699 	/* finalizer, and thus the clearing of *link may	*/
700 	/* be visible to non-finalization code.  		*/
701 	/* There's an argument that an arbitrary action should  */
702 	/* be allowed here, instead of just clearing a pointer. */
703 	/* But this causes problems if that action alters, or 	*/
704 	/* examines connectivity.				*/
705 	/* Returns 1 if link was already registered, 0		*/
706 	/* otherwise.						*/
707 	/* Only exists for backward compatibility.  See below:	*/
708 
709 GC_API int GC_general_register_disappearing_link
710 	GC_PROTO((GC_PTR * /* link */, GC_PTR obj));
711 	/* A slight generalization of the above. *link is	*/
712 	/* cleared when obj first becomes inaccessible.  This	*/
713 	/* can be used to implement weak pointers easily and	*/
714 	/* safely. Typically link will point to a location	*/
715 	/* holding a disguised pointer to obj.  (A pointer 	*/
716 	/* inside an "atomic" object is effectively  		*/
717 	/* disguised.)   In this way soft			*/
718 	/* pointers are broken before any object		*/
719 	/* reachable from them are finalized.  Each link	*/
720 	/* May be registered only once, i.e. with one obj	*/
721 	/* value.  This was added after a long email discussion */
722 	/* with John Ellis.					*/
723 	/* Obj must be a pointer to the first word of an object */
724 	/* we allocated.  It is unsafe to explicitly deallocate */
725 	/* the object containing link.  Explicitly deallocating */
726 	/* obj may or may not cause link to eventually be	*/
727 	/* cleared.						*/
728 GC_API int GC_unregister_disappearing_link GC_PROTO((GC_PTR * /* link */));
729 	/* Returns 0 if link was not actually registered.	*/
730 	/* Undoes a registration by either of the above two	*/
731 	/* routines.						*/
732 
733 /* Returns !=0  if GC_invoke_finalizers has something to do. 		*/
734 GC_API int GC_should_invoke_finalizers GC_PROTO((void));
735 
736 GC_API int GC_invoke_finalizers GC_PROTO((void));
737 	/* Run finalizers for all objects that are ready to	*/
738 	/* be finalized.  Return the number of finalizers	*/
739 	/* that were run.  Normally this is also called		*/
740 	/* implicitly during some allocations.	If		*/
741 	/* GC-finalize_on_demand is nonzero, it must be called	*/
742 	/* explicitly.						*/
743 
744 /* GC_set_warn_proc can be used to redirect or filter warning messages.	*/
745 /* p may not be a NULL pointer.						*/
746 typedef void (*GC_warn_proc) GC_PROTO((char *msg, GC_word arg));
747 GC_API GC_warn_proc GC_set_warn_proc GC_PROTO((GC_warn_proc p));
748     /* Returns old warning procedure.	*/
749 
750 GC_API GC_word GC_set_free_space_divisor GC_PROTO((GC_word value));
751     /* Set free_space_divisor.  See above for definition.	*/
752     /* Returns old value.					*/
753 
754 /* The following is intended to be used by a higher level	*/
755 /* (e.g. Java-like) finalization facility.  It is expected	*/
756 /* that finalization code will arrange for hidden pointers to	*/
757 /* disappear.  Otherwise objects can be accessed after they	*/
758 /* have been collected.						*/
759 /* Note that putting pointers in atomic objects or in 		*/
760 /* nonpointer slots of "typed" objects is equivalent to 	*/
761 /* disguising them in this way, and may have other advantages.	*/
762 # if defined(I_HIDE_POINTERS) || defined(GC_I_HIDE_POINTERS)
763     typedef GC_word GC_hidden_pointer;
764 #   define HIDE_POINTER(p) (~(GC_hidden_pointer)(p))
765 #   define REVEAL_POINTER(p) ((GC_PTR)(HIDE_POINTER(p)))
766     /* Converting a hidden pointer to a real pointer requires verifying	*/
767     /* that the object still exists.  This involves acquiring the  	*/
768     /* allocator lock to avoid a race with the collector.		*/
769 # endif /* I_HIDE_POINTERS */
770 
771 typedef GC_PTR (*GC_fn_type) GC_PROTO((GC_PTR client_data));
772 GC_API GC_PTR GC_call_with_alloc_lock
773         	GC_PROTO((GC_fn_type fn, GC_PTR client_data));
774 
775 /* The following routines are primarily intended for use with a 	*/
776 /* preprocessor which inserts calls to check C pointer arithmetic.	*/
777 
778 /* Check that p and q point to the same object.  		*/
779 /* Fail conspicuously if they don't.				*/
780 /* Returns the first argument.  				*/
781 /* Succeeds if neither p nor q points to the heap.		*/
782 /* May succeed if both p and q point to between heap objects.	*/
783 GC_API GC_PTR GC_same_obj GC_PROTO((GC_PTR p, GC_PTR q));
784 
785 /* Checked pointer pre- and post- increment operations.  Note that	*/
786 /* the second argument is in units of bytes, not multiples of the	*/
787 /* object size.  This should either be invoked from a macro, or the	*/
788 /* call should be automatically generated.				*/
789 GC_API GC_PTR GC_pre_incr GC_PROTO((GC_PTR *p, size_t how_much));
790 GC_API GC_PTR GC_post_incr GC_PROTO((GC_PTR *p, size_t how_much));
791 
792 /* Check that p is visible						*/
793 /* to the collector as a possibly pointer containing location.		*/
794 /* If it isn't fail conspicuously.					*/
795 /* Returns the argument in all cases.  May erroneously succeed		*/
796 /* in hard cases.  (This is intended for debugging use with		*/
797 /* untyped allocations.  The idea is that it should be possible, though	*/
798 /* slow, to add such a call to all indirect pointer stores.)		*/
799 /* Currently useless for multithreaded worlds.				*/
800 GC_API GC_PTR GC_is_visible GC_PROTO((GC_PTR p));
801 
802 /* Check that if p is a pointer to a heap page, then it points to	*/
803 /* a valid displacement within a heap object.				*/
804 /* Fail conspicuously if this property does not hold.			*/
805 /* Uninteresting with GC_all_interior_pointers.				*/
806 /* Always returns its argument.						*/
807 GC_API GC_PTR GC_is_valid_displacement GC_PROTO((GC_PTR	p));
808 
809 /* Safer, but slow, pointer addition.  Probably useful mainly with 	*/
810 /* a preprocessor.  Useful only for heap pointers.			*/
811 #ifdef GC_DEBUG
812 #   define GC_PTR_ADD3(x, n, type_of_result) \
813 	((type_of_result)GC_same_obj((x)+(n), (x)))
814 #   define GC_PRE_INCR3(x, n, type_of_result) \
815 	((type_of_result)GC_pre_incr(&(x), (n)*sizeof(*x))
816 #   define GC_POST_INCR2(x, type_of_result) \
817 	((type_of_result)GC_post_incr(&(x), sizeof(*x))
818 #   ifdef __GNUC__
819 #       define GC_PTR_ADD(x, n) \
820 	    GC_PTR_ADD3(x, n, typeof(x))
821 #       define GC_PRE_INCR(x, n) \
822 	    GC_PRE_INCR3(x, n, typeof(x))
823 #       define GC_POST_INCR(x, n) \
824 	    GC_POST_INCR3(x, typeof(x))
825 #   else
826 	/* We can't do this right without typeof, which ANSI	*/
827 	/* decided was not sufficiently useful.  Repeatedly	*/
828 	/* mentioning the arguments seems too dangerous to be	*/
829 	/* useful.  So does not casting the result.		*/
830 #   	define GC_PTR_ADD(x, n) ((x)+(n))
831 #   endif
832 #else	/* !GC_DEBUG */
833 #   define GC_PTR_ADD3(x, n, type_of_result) ((x)+(n))
834 #   define GC_PTR_ADD(x, n) ((x)+(n))
835 #   define GC_PRE_INCR3(x, n, type_of_result) ((x) += (n))
836 #   define GC_PRE_INCR(x, n) ((x) += (n))
837 #   define GC_POST_INCR2(x, n, type_of_result) ((x)++)
838 #   define GC_POST_INCR(x, n) ((x)++)
839 #endif
840 
841 /* Safer assignment of a pointer to a nonstack location.	*/
842 #ifdef GC_DEBUG
843 # ifdef __STDC__
844 #   define GC_PTR_STORE(p, q) \
845 	(*(void **)GC_is_visible(p) = GC_is_valid_displacement(q))
846 # else
847 #   define GC_PTR_STORE(p, q) \
848 	(*(char **)GC_is_visible(p) = GC_is_valid_displacement(q))
849 # endif
850 #else /* !GC_DEBUG */
851 #   define GC_PTR_STORE(p, q) *((p) = (q))
852 #endif
853 
854 /* Fynctions called to report pointer checking errors */
855 GC_API void (*GC_same_obj_print_proc) GC_PROTO((GC_PTR p, GC_PTR q));
856 
857 GC_API void (*GC_is_valid_displacement_print_proc)
858 	GC_PROTO((GC_PTR p));
859 
860 GC_API void (*GC_is_visible_print_proc)
861 	GC_PROTO((GC_PTR p));
862 
863 
864 /* For pthread support, we generally need to intercept a number of 	*/
865 /* thread library calls.  We do that here by macro defining them.	*/
866 
867 #if !defined(GC_USE_LD_WRAP) && \
868     (defined(GC_PTHREADS) || defined(GC_SOLARIS_THREADS))
869 # include "gc_pthread_redirects.h"
870 #endif
871 
872 # if defined(PCR) || defined(GC_SOLARIS_THREADS) || \
873      defined(GC_PTHREADS) || defined(GC_WIN32_THREADS)
874    	/* Any flavor of threads except SRC_M3.	*/
875 /* This returns a list of objects, linked through their first		*/
876 /* word.  Its use can greatly reduce lock contention problems, since	*/
877 /* the allocation lock can be acquired and released many fewer times.	*/
878 /* lb must be large enough to hold the pointer field.			*/
879 /* It is used internally by gc_local_alloc.h, which provides a simpler	*/
880 /* programming interface on Linux.					*/
881 GC_PTR GC_malloc_many(size_t lb);
882 #define GC_NEXT(p) (*(GC_PTR *)(p)) 	/* Retrieve the next element	*/
883 					/* in returned list.		*/
884 extern void GC_thr_init();	/* Needed for Solaris/X86	*/
885 
886 #endif /* THREADS && !SRC_M3 */
887 
888 #if defined(GC_WIN32_THREADS) && !defined(__CYGWIN32__) && !defined(__CYGWIN__)
889 # include <windows.h>
890 
891   /*
892    * All threads must be created using GC_CreateThread, so that they will be
893    * recorded in the thread table.  For backwards compatibility, this is not
894    * technically true if the GC is built as a dynamic library, since it can
895    * and does then use DllMain to keep track of thread creations.  But new code
896    * should be built to call GC_CreateThread.
897    */
898    GC_API HANDLE WINAPI GC_CreateThread(
899       LPSECURITY_ATTRIBUTES lpThreadAttributes,
900       DWORD dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress,
901       LPVOID lpParameter, DWORD dwCreationFlags, LPDWORD lpThreadId );
902 
903 # if defined(_WIN32_WCE)
904   /*
905    * win32_threads.c implements the real WinMain, which will start a new thread
906    * to call GC_WinMain after initializing the garbage collector.
907    */
908   int WINAPI GC_WinMain(
909       HINSTANCE hInstance,
910       HINSTANCE hPrevInstance,
911       LPWSTR lpCmdLine,
912       int nCmdShow );
913 
914 #  ifndef GC_BUILD
915 #    define WinMain GC_WinMain
916 #    define CreateThread GC_CreateThread
917 #  endif
918 # endif /* defined(_WIN32_WCE) */
919 
920 #endif /* defined(GC_WIN32_THREADS)  && !cygwin */
921 
922 /*
923  * If you are planning on putting
924  * the collector in a SunOS 5 dynamic library, you need to call GC_INIT()
925  * from the statically loaded program section.
926  * This circumvents a Solaris 2.X (X<=4) linker bug.
927  */
928 #if defined(sparc) || defined(__sparc)
929 #   define GC_INIT() { extern end, etext; \
930 		       GC_noop(&end, &etext); }
931 #else
932 # if defined(__CYGWIN32__) && defined(GC_DLL) || defined (_AIX)
933     /*
934      * Similarly gnu-win32 DLLs need explicit initialization from
935      * the main program, as does AIX.
936      */
937 #   define GC_INIT() { GC_add_roots(DATASTART, DATAEND); }
938 # else
939 #  if defined(__APPLE__) && defined(__MACH__)
940 #   define GC_INIT() { GC_init(); }
941 #  else
942 #   define GC_INIT()
943 #  endif
944 # endif
945 #endif
946 
947 #if !defined(_WIN32_WCE) \
948     && ((defined(_MSDOS) || defined(_MSC_VER)) && (_M_IX86 >= 300) \
949         || defined(_WIN32) && !defined(__CYGWIN32__) && !defined(__CYGWIN__))
950   /* win32S may not free all resources on process exit.  */
951   /* This explicitly deallocates the heap.		 */
952     GC_API void GC_win32_free_heap ();
953 #endif
954 
955 #if ( defined(_AMIGA) && !defined(GC_AMIGA_MAKINGLIB) )
956   /* Allocation really goes through GC_amiga_allocwrapper_do */
957 # include "gc_amiga_redirects.h"
958 #endif
959 
960 #if defined(GC_REDIRECT_TO_LOCAL) && !defined(GC_LOCAL_ALLOC_H)
961 #  include  "gc_local_alloc.h"
962 #endif
963 
964 #ifdef __cplusplus
965     }  /* end of extern "C" */
966 #endif
967 
968 #endif /* _GC_H */
969