1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                       S Y S T E M . F A T _ G E N                        --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2003 Free Software Foundation, Inc.          --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT;  see file COPYING.  If not, write --
19-- to  the Free Software Foundation,  59 Temple Place - Suite 330,  Boston, --
20-- MA 02111-1307, USA.                                                      --
21--                                                                          --
22-- As a special exception,  if other files  instantiate  generics from this --
23-- unit, or you link  this unit with other files  to produce an executable, --
24-- this  unit  does not  by itself cause  the resulting  executable  to  be --
25-- covered  by the  GNU  General  Public  License.  This exception does not --
26-- however invalidate  any other reasons why  the executable file  might be --
27-- covered by the  GNU Public License.                                      --
28--                                                                          --
29-- GNAT was originally developed  by the GNAT team at  New York University. --
30-- Extensive contributions were provided by Ada Core Technologies Inc.      --
31--                                                                          --
32------------------------------------------------------------------------------
33
34--  The implementation here is portable to any IEEE implementation. It does
35--  not handle non-binary radix, and also assumes that model numbers and
36--  machine numbers are basically identical, which is not true of all possible
37--  floating-point implementations. On a non-IEEE machine, this body must be
38--  specialized appropriately, or better still, its generic instantiations
39--  should be replaced by efficient machine-specific code.
40
41with Ada.Unchecked_Conversion;
42with System;
43package body System.Fat_Gen is
44
45   Float_Radix        : constant T := T (T'Machine_Radix);
46   Radix_To_M_Minus_1 : constant T := Float_Radix ** (T'Machine_Mantissa - 1);
47
48   pragma Assert (T'Machine_Radix = 2);
49   --  This version does not handle radix 16
50
51   --  Constants for Decompose and Scaling
52
53   Rad    : constant T := T (T'Machine_Radix);
54   Invrad : constant T := 1.0 / Rad;
55
56   subtype Expbits is Integer range 0 .. 6;
57   --  2 ** (2 ** 7) might overflow.  how big can radix-16 exponents get?
58
59   Log_Power : constant array (Expbits) of Integer := (1, 2, 4, 8, 16, 32, 64);
60
61   R_Power : constant array (Expbits) of T :=
62     (Rad **  1,
63      Rad **  2,
64      Rad **  4,
65      Rad **  8,
66      Rad ** 16,
67      Rad ** 32,
68      Rad ** 64);
69
70   R_Neg_Power : constant array (Expbits) of T :=
71     (Invrad **  1,
72      Invrad **  2,
73      Invrad **  4,
74      Invrad **  8,
75      Invrad ** 16,
76      Invrad ** 32,
77      Invrad ** 64);
78
79   -----------------------
80   -- Local Subprograms --
81   -----------------------
82
83   procedure Decompose (XX : T; Frac : out T; Expo : out UI);
84   --  Decomposes a floating-point number into fraction and exponent parts
85
86   function Gradual_Scaling  (Adjustment : UI) return T;
87   --  Like Scaling with a first argument of 1.0, but returns the smallest
88   --  denormal rather than zero when the adjustment is smaller than
89   --  Machine_Emin. Used for Succ and Pred.
90
91   --------------
92   -- Adjacent --
93   --------------
94
95   function Adjacent (X, Towards : T) return T is
96   begin
97      if Towards = X then
98         return X;
99
100      elsif Towards > X then
101         return Succ (X);
102
103      else
104         return Pred (X);
105      end if;
106   end Adjacent;
107
108   -------------
109   -- Ceiling --
110   -------------
111
112   function Ceiling (X : T) return T is
113      XT : constant T := Truncation (X);
114
115   begin
116      if X <= 0.0 then
117         return XT;
118
119      elsif X = XT then
120         return X;
121
122      else
123         return XT + 1.0;
124      end if;
125   end Ceiling;
126
127   -------------
128   -- Compose --
129   -------------
130
131   function Compose (Fraction : T; Exponent : UI) return T is
132      Arg_Frac : T;
133      Arg_Exp  : UI;
134
135   begin
136      Decompose (Fraction, Arg_Frac, Arg_Exp);
137      return Scaling (Arg_Frac, Exponent);
138   end Compose;
139
140   ---------------
141   -- Copy_Sign --
142   ---------------
143
144   function Copy_Sign (Value, Sign : T) return T is
145      Result : T;
146
147      function Is_Negative (V : T) return Boolean;
148      pragma Import (Intrinsic, Is_Negative);
149
150   begin
151      Result := abs Value;
152
153      if Is_Negative (Sign) then
154         return -Result;
155      else
156         return Result;
157      end if;
158   end Copy_Sign;
159
160   ---------------
161   -- Decompose --
162   ---------------
163
164   procedure Decompose (XX : T; Frac : out T; Expo : out UI) is
165      X : constant T := T'Machine (XX);
166
167   begin
168      if X = 0.0 then
169         Frac := X;
170         Expo := 0;
171
172         --  More useful would be defining Expo to be T'Machine_Emin - 1 or
173         --  T'Machine_Emin - T'Machine_Mantissa, which would preserve
174         --  monotonicity of the exponent function ???
175
176      --  Check for infinities, transfinites, whatnot.
177
178      elsif X > T'Safe_Last then
179         Frac := Invrad;
180         Expo := T'Machine_Emax + 1;
181
182      elsif X < T'Safe_First then
183         Frac := -Invrad;
184         Expo := T'Machine_Emax + 2;    -- how many extra negative values?
185
186      else
187         --  Case of nonzero finite x. Essentially, we just multiply
188         --  by Rad ** (+-2**N) to reduce the range.
189
190         declare
191            Ax : T  := abs X;
192            Ex : UI := 0;
193
194         --  Ax * Rad ** Ex is invariant.
195
196         begin
197            if Ax >= 1.0 then
198               while Ax >= R_Power (Expbits'Last) loop
199                  Ax := Ax * R_Neg_Power (Expbits'Last);
200                  Ex := Ex + Log_Power (Expbits'Last);
201               end loop;
202
203               --  Ax < Rad ** 64
204
205               for N in reverse Expbits'First .. Expbits'Last - 1 loop
206                  if Ax >= R_Power (N) then
207                     Ax := Ax * R_Neg_Power (N);
208                     Ex := Ex + Log_Power (N);
209                  end if;
210
211                  --  Ax < R_Power (N)
212               end loop;
213
214               --  1 <= Ax < Rad
215
216               Ax := Ax * Invrad;
217               Ex := Ex + 1;
218
219            else
220               --  0 < ax < 1
221
222               while Ax < R_Neg_Power (Expbits'Last) loop
223                  Ax := Ax * R_Power (Expbits'Last);
224                  Ex := Ex - Log_Power (Expbits'Last);
225               end loop;
226
227               --  Rad ** -64 <= Ax < 1
228
229               for N in reverse Expbits'First .. Expbits'Last - 1 loop
230                  if Ax < R_Neg_Power (N) then
231                     Ax := Ax * R_Power (N);
232                     Ex := Ex - Log_Power (N);
233                  end if;
234
235                  --  R_Neg_Power (N) <= Ax < 1
236               end loop;
237            end if;
238
239            if X > 0.0 then
240               Frac := Ax;
241            else
242               Frac := -Ax;
243            end if;
244
245            Expo := Ex;
246         end;
247      end if;
248   end Decompose;
249
250   --------------
251   -- Exponent --
252   --------------
253
254   function Exponent (X : T) return UI is
255      X_Frac : T;
256      X_Exp  : UI;
257
258   begin
259      Decompose (X, X_Frac, X_Exp);
260      return X_Exp;
261   end Exponent;
262
263   -----------
264   -- Floor --
265   -----------
266
267   function Floor (X : T) return T is
268      XT : constant T := Truncation (X);
269
270   begin
271      if X >= 0.0 then
272         return XT;
273
274      elsif XT = X then
275         return X;
276
277      else
278         return XT - 1.0;
279      end if;
280   end Floor;
281
282   --------------
283   -- Fraction --
284   --------------
285
286   function Fraction (X : T) return T is
287      X_Frac : T;
288      X_Exp  : UI;
289
290   begin
291      Decompose (X, X_Frac, X_Exp);
292      return X_Frac;
293   end Fraction;
294
295   ---------------------
296   -- Gradual_Scaling --
297   ---------------------
298
299   function Gradual_Scaling  (Adjustment : UI) return T is
300      Y  : T;
301      Y1 : T;
302      Ex : UI := Adjustment;
303
304   begin
305      if Adjustment < T'Machine_Emin then
306         Y  := 2.0 ** T'Machine_Emin;
307         Y1 := Y;
308         Ex := Ex - T'Machine_Emin;
309
310         while Ex <= 0 loop
311            Y := T'Machine (Y / 2.0);
312
313            if Y = 0.0 then
314               return Y1;
315            end if;
316
317            Ex := Ex + 1;
318            Y1 := Y;
319         end loop;
320
321         return Y1;
322
323      else
324         return Scaling (1.0, Adjustment);
325      end if;
326   end Gradual_Scaling;
327
328   ------------------
329   -- Leading_Part --
330   ------------------
331
332   function Leading_Part (X : T; Radix_Digits : UI) return T is
333      L    : UI;
334      Y, Z : T;
335
336   begin
337      if Radix_Digits >= T'Machine_Mantissa then
338         return X;
339
340      else
341         L := Exponent (X) - Radix_Digits;
342         Y := Truncation (Scaling (X, -L));
343         Z := Scaling (Y, L);
344         return Z;
345      end if;
346
347   end Leading_Part;
348
349   -------------
350   -- Machine --
351   -------------
352
353   --  The trick with Machine is to force the compiler to store the result
354   --  in memory so that we do not have extra precision used. The compiler
355   --  is clever, so we have to outwit its possible optimizations! We do
356   --  this by using an intermediate pragma Volatile location.
357
358   function Machine (X : T) return T is
359      Temp : T;
360      pragma Volatile (Temp);
361
362   begin
363      Temp := X;
364      return Temp;
365   end Machine;
366
367   -----------
368   -- Model --
369   -----------
370
371   --  We treat Model as identical to Machine. This is true of IEEE and other
372   --  nice floating-point systems, but not necessarily true of all systems.
373
374   function Model (X : T) return T is
375   begin
376      return Machine (X);
377   end Model;
378
379   ----------
380   -- Pred --
381   ----------
382
383   --  Subtract from the given number a number equivalent to the value of its
384   --  least significant bit. Given that the most significant bit represents
385   --  a value of 1.0 * radix ** (exp - 1), the value we want is obtained by
386   --  shifting this by (mantissa-1) bits to the right, i.e. decreasing the
387   --  exponent by that amount.
388
389   --  Zero has to be treated specially, since its exponent is zero
390
391   function Pred (X : T) return T is
392      X_Frac : T;
393      X_Exp  : UI;
394
395   begin
396      if X = 0.0 then
397         return -Succ (X);
398
399      else
400         Decompose (X, X_Frac, X_Exp);
401
402         --  A special case, if the number we had was a positive power of
403         --  two, then we want to subtract half of what we would otherwise
404         --  subtract, since the exponent is going to be reduced.
405
406         if X_Frac = 0.5 and then X > 0.0 then
407            return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1);
408
409         --  Otherwise the exponent stays the same
410
411         else
412            return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa);
413         end if;
414      end if;
415   end Pred;
416
417   ---------------
418   -- Remainder --
419   ---------------
420
421   function Remainder (X, Y : T) return T is
422      A        : T;
423      B        : T;
424      Arg      : T;
425      P        : T;
426      Arg_Frac : T;
427      P_Frac   : T;
428      Sign_X   : T;
429      IEEE_Rem : T;
430      Arg_Exp  : UI;
431      P_Exp    : UI;
432      K        : UI;
433      P_Even   : Boolean;
434
435   begin
436      if X > 0.0 then
437         Sign_X :=  1.0;
438         Arg := X;
439      else
440         Sign_X := -1.0;
441         Arg := -X;
442      end if;
443
444      P := abs Y;
445
446      if Arg < P then
447         P_Even := True;
448         IEEE_Rem := Arg;
449         P_Exp := Exponent (P);
450
451      else
452         Decompose (Arg, Arg_Frac, Arg_Exp);
453         Decompose (P,   P_Frac,   P_Exp);
454
455         P := Compose (P_Frac, Arg_Exp);
456         K := Arg_Exp - P_Exp;
457         P_Even := True;
458         IEEE_Rem := Arg;
459
460         for Cnt in reverse 0 .. K loop
461            if IEEE_Rem >= P then
462               P_Even := False;
463               IEEE_Rem := IEEE_Rem - P;
464            else
465               P_Even := True;
466            end if;
467
468            P := P * 0.5;
469         end loop;
470      end if;
471
472      --  That completes the calculation of modulus remainder. The final
473      --  step is get the IEEE remainder. Here we need to compare Rem with
474      --  (abs Y) / 2. We must be careful of unrepresentable Y/2 value
475      --  caused by subnormal numbers
476
477      if P_Exp >= 0 then
478         A := IEEE_Rem;
479         B := abs Y * 0.5;
480
481      else
482         A := IEEE_Rem * 2.0;
483         B := abs Y;
484      end if;
485
486      if A > B or else (A = B and then not P_Even) then
487         IEEE_Rem := IEEE_Rem - abs Y;
488      end if;
489
490      return Sign_X * IEEE_Rem;
491
492   end Remainder;
493
494   --------------
495   -- Rounding --
496   --------------
497
498   function Rounding (X : T) return T is
499      Result : T;
500      Tail   : T;
501
502   begin
503      Result := Truncation (abs X);
504      Tail   := abs X - Result;
505
506      if Tail >= 0.5  then
507         Result := Result + 1.0;
508      end if;
509
510      if X > 0.0 then
511         return Result;
512
513      elsif X < 0.0 then
514         return -Result;
515
516      --  For zero case, make sure sign of zero is preserved
517
518      else
519         return X;
520      end if;
521
522   end Rounding;
523
524   -------------
525   -- Scaling --
526   -------------
527
528   --  Return x * rad ** adjustment quickly,
529   --  or quietly underflow to zero, or overflow naturally.
530
531   function Scaling (X : T; Adjustment : UI) return T is
532   begin
533      if X = 0.0 or else Adjustment = 0 then
534         return X;
535      end if;
536
537      --  Nonzero x. essentially, just multiply repeatedly by Rad ** (+-2**n).
538
539      declare
540         Y  : T  := X;
541         Ex : UI := Adjustment;
542
543      --  Y * Rad ** Ex is invariant
544
545      begin
546         if Ex < 0 then
547            while Ex <= -Log_Power (Expbits'Last) loop
548               Y := Y * R_Neg_Power (Expbits'Last);
549               Ex := Ex + Log_Power (Expbits'Last);
550            end loop;
551
552            --  -64 < Ex <= 0
553
554            for N in reverse Expbits'First .. Expbits'Last - 1 loop
555               if Ex <= -Log_Power (N) then
556                  Y := Y * R_Neg_Power (N);
557                  Ex := Ex + Log_Power (N);
558               end if;
559
560               --  -Log_Power (N) < Ex <= 0
561            end loop;
562
563            --  Ex = 0
564
565         else
566            --  Ex >= 0
567
568            while Ex >= Log_Power (Expbits'Last) loop
569               Y := Y * R_Power (Expbits'Last);
570               Ex := Ex - Log_Power (Expbits'Last);
571            end loop;
572
573            --  0 <= Ex < 64
574
575            for N in reverse Expbits'First .. Expbits'Last - 1 loop
576               if Ex >= Log_Power (N) then
577                  Y := Y * R_Power (N);
578                  Ex := Ex - Log_Power (N);
579               end if;
580
581               --  0 <= Ex < Log_Power (N)
582            end loop;
583
584            --  Ex = 0
585         end if;
586         return Y;
587      end;
588   end Scaling;
589
590   ----------
591   -- Succ --
592   ----------
593
594   --  Similar computation to that of Pred: find value of least significant
595   --  bit of given number, and add. Zero has to be treated specially since
596   --  the exponent can be zero, and also we want the smallest denormal if
597   --  denormals are supported.
598
599   function Succ (X : T) return T is
600      X_Frac : T;
601      X_Exp  : UI;
602      X1, X2 : T;
603
604   begin
605      if X = 0.0 then
606         X1 := 2.0 ** T'Machine_Emin;
607
608         --  Following loop generates smallest denormal
609
610         loop
611            X2 := T'Machine (X1 / 2.0);
612            exit when X2 = 0.0;
613            X1 := X2;
614         end loop;
615
616         return X1;
617
618      else
619         Decompose (X, X_Frac, X_Exp);
620
621         --  A special case, if the number we had was a negative power of
622         --  two, then we want to add half of what we would otherwise add,
623         --  since the exponent is going to be reduced.
624
625         if X_Frac = 0.5 and then X < 0.0 then
626            return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1);
627
628         --  Otherwise the exponent stays the same
629
630         else
631            return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa);
632         end if;
633      end if;
634   end Succ;
635
636   ----------------
637   -- Truncation --
638   ----------------
639
640   --  The basic approach is to compute
641
642   --    T'Machine (RM1 + N) - RM1.
643
644   --  where N >= 0.0 and RM1 = radix ** (mantissa - 1)
645
646   --  This works provided that the intermediate result (RM1 + N) does not
647   --  have extra precision (which is why we call Machine). When we compute
648   --  RM1 + N, the exponent of N will be normalized and the mantissa shifted
649   --  shifted appropriately so the lower order bits, which cannot contribute
650   --  to the integer part of N, fall off on the right. When we subtract RM1
651   --  again, the significant bits of N are shifted to the left, and what we
652   --  have is an integer, because only the first e bits are different from
653   --  zero (assuming binary radix here).
654
655   function Truncation (X : T) return T is
656      Result : T;
657
658   begin
659      Result := abs X;
660
661      if Result >= Radix_To_M_Minus_1 then
662         return Machine (X);
663
664      else
665         Result := Machine (Radix_To_M_Minus_1 + Result) - Radix_To_M_Minus_1;
666
667         if Result > abs X  then
668            Result := Result - 1.0;
669         end if;
670
671         if X > 0.0 then
672            return  Result;
673
674         elsif X < 0.0 then
675            return -Result;
676
677         --  For zero case, make sure sign of zero is preserved
678
679         else
680            return X;
681         end if;
682      end if;
683
684   end Truncation;
685
686   -----------------------
687   -- Unbiased_Rounding --
688   -----------------------
689
690   function Unbiased_Rounding (X : T) return T is
691      Abs_X  : constant T := abs X;
692      Result : T;
693      Tail   : T;
694
695   begin
696      Result := Truncation (Abs_X);
697      Tail   := Abs_X - Result;
698
699      if Tail > 0.5  then
700         Result := Result + 1.0;
701
702      elsif Tail = 0.5 then
703         Result := 2.0 * Truncation ((Result / 2.0) + 0.5);
704      end if;
705
706      if X > 0.0 then
707         return Result;
708
709      elsif X < 0.0 then
710         return -Result;
711
712      --  For zero case, make sure sign of zero is preserved
713
714      else
715         return X;
716      end if;
717
718   end Unbiased_Rounding;
719
720   -----------
721   -- Valid --
722   -----------
723
724   function Valid (X : access T) return Boolean is
725
726      IEEE_Emin : constant Integer := T'Machine_Emin - 1;
727      IEEE_Emax : constant Integer := T'Machine_Emax - 1;
728
729      IEEE_Bias : constant Integer := -(IEEE_Emin - 1);
730
731      subtype IEEE_Exponent_Range is
732        Integer range IEEE_Emin - 1 .. IEEE_Emax + 1;
733
734      --  The implementation of this floating point attribute uses
735      --  a representation type Float_Rep that allows direct access to
736      --  the exponent and mantissa parts of a floating point number.
737
738      --  The Float_Rep type is an array of Float_Word elements. This
739      --  representation is chosen to make it possible to size the
740      --  type based on a generic parameter. Since the array size is
741      --  known at compile-time, efficient code can still be generated.
742      --  The size of Float_Word elements should be large enough to allow
743      --  accessing the exponent in one read, but small enough so that all
744      --  floating point object sizes are a multiple of the Float_Word'Size.
745
746      --  The following conditions must be met for all possible
747      --  instantiations of the attributes package:
748
749      --    - T'Size is an integral multiple of Float_Word'Size
750
751      --    - The exponent and sign are completely contained in a single
752      --      component of Float_Rep, named Most_Significant_Word (MSW).
753
754      --    - The sign occupies the most significant bit of the MSW
755      --      and the exponent is in the following bits.
756      --      Unused bits (if any) are in the least significant part.
757
758      type Float_Word is mod 2**Positive'Min (System.Word_Size, 32);
759      type Rep_Index is range 0 .. 7;
760
761      Rep_Last : constant Rep_Index := (T'Size - 1) / Float_Word'Size;
762
763      type Float_Rep is array (Rep_Index range 0 .. Rep_Last) of Float_Word;
764
765      pragma Suppress_Initialization (Float_Rep);
766      --  This pragma supresses the generation of an initialization procedure
767      --  for type Float_Rep when operating in Initialize/Normalize_Scalars
768      --  mode. This is not just a matter of efficiency, but of functionality,
769      --  since Valid has a pragma Inline_Always, which is not permitted if
770      --  there are nested subprograms present.
771
772      Most_Significant_Word : constant Rep_Index :=
773                                Rep_Last * Standard'Default_Bit_Order;
774      --  Finding the location of the Exponent_Word is a bit tricky.
775      --  In general we assume Word_Order = Bit_Order.
776      --  This expression needs to be refined for VMS.
777
778      Exponent_Factor : constant Float_Word :=
779                          2**(Float_Word'Size - 1) /
780                            Float_Word (IEEE_Emax - IEEE_Emin + 3) *
781                              Boolean'Pos (T'Size /= 96) +
782                                Boolean'Pos (T'Size = 96);
783      --  Factor that the extracted exponent needs to be divided by
784      --  to be in range 0 .. IEEE_Emax - IEEE_Emin + 2.
785      --  Special kludge: Exponent_Factor is 0 for x86 double extended
786      --  as GCC adds 16 unused bits to the type.
787
788      Exponent_Mask : constant Float_Word :=
789                        Float_Word (IEEE_Emax - IEEE_Emin + 2) *
790                          Exponent_Factor;
791      --  Value needed to mask out the exponent field.
792      --  This assumes that the range IEEE_Emin - 1 .. IEEE_Emax + 1
793      --  contains 2**N values, for some N in Natural.
794
795      function To_Float is new Ada.Unchecked_Conversion (Float_Rep, T);
796
797      type Float_Access is access all T;
798      function To_Address is
799         new Ada.Unchecked_Conversion (Float_Access, System.Address);
800
801      XA : constant System.Address := To_Address (Float_Access (X));
802
803      R : Float_Rep;
804      pragma Import (Ada, R);
805      for R'Address use XA;
806      --  R is a view of the input floating-point parameter. Note that we
807      --  must avoid copying the actual bits of this parameter in float
808      --  form (since it may be a signalling NaN.
809
810      E  : constant IEEE_Exponent_Range :=
811             Integer ((R (Most_Significant_Word) and Exponent_Mask) /
812                                                        Exponent_Factor)
813               - IEEE_Bias;
814      --  Mask/Shift T to only get bits from the exponent
815      --  Then convert biased value to integer value.
816
817      SR : Float_Rep;
818      --  Float_Rep representation of significant of X.all
819
820   begin
821      if T'Denorm then
822
823         --  All denormalized numbers are valid, so only invalid numbers
824         --  are overflows and NaN's, both with exponent = Emax + 1.
825
826         return E /= IEEE_Emax + 1;
827
828      end if;
829
830      --  All denormalized numbers except 0.0 are invalid
831
832      --  Set exponent of X to zero, so we end up with the significand, which
833      --  definitely is a valid number and can be converted back to a float.
834
835      SR := R;
836      SR (Most_Significant_Word) :=
837           (SR (Most_Significant_Word)
838             and not Exponent_Mask) + Float_Word (IEEE_Bias) * Exponent_Factor;
839
840      return (E in IEEE_Emin .. IEEE_Emax) or else
841         ((E = IEEE_Emin - 1) and then abs To_Float (SR) = 1.0);
842   end Valid;
843
844   ---------------------
845   -- Unaligned_Valid --
846   ---------------------
847
848   function Unaligned_Valid (A : System.Address) return Boolean is
849      subtype FS is String (1 .. T'Size / Character'Size);
850      type FSP is access FS;
851
852      function To_FSP is new Ada.Unchecked_Conversion (Address, FSP);
853
854      Local_T : aliased T;
855
856   begin
857      To_FSP (Local_T'Address).all := To_FSP (A).all;
858      return Valid (Local_T'Access);
859   end Unaligned_Valid;
860
861end System.Fat_Gen;
862