1------------------------------------------------------------------------------ 2-- -- 3-- GNAT COMPILER COMPONENTS -- 4-- -- 5-- S Y S T E M . F A T _ G E N -- 6-- -- 7-- B o d y -- 8-- -- 9-- Copyright (C) 1992-2003 Free Software Foundation, Inc. -- 10-- -- 11-- GNAT is free software; you can redistribute it and/or modify it under -- 12-- terms of the GNU General Public License as published by the Free Soft- -- 13-- ware Foundation; either version 2, or (at your option) any later ver- -- 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- 15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- 16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- 17-- for more details. You should have received a copy of the GNU General -- 18-- Public License distributed with GNAT; see file COPYING. If not, write -- 19-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- 20-- MA 02111-1307, USA. -- 21-- -- 22-- As a special exception, if other files instantiate generics from this -- 23-- unit, or you link this unit with other files to produce an executable, -- 24-- this unit does not by itself cause the resulting executable to be -- 25-- covered by the GNU General Public License. This exception does not -- 26-- however invalidate any other reasons why the executable file might be -- 27-- covered by the GNU Public License. -- 28-- -- 29-- GNAT was originally developed by the GNAT team at New York University. -- 30-- Extensive contributions were provided by Ada Core Technologies Inc. -- 31-- -- 32------------------------------------------------------------------------------ 33 34-- The implementation here is portable to any IEEE implementation. It does 35-- not handle non-binary radix, and also assumes that model numbers and 36-- machine numbers are basically identical, which is not true of all possible 37-- floating-point implementations. On a non-IEEE machine, this body must be 38-- specialized appropriately, or better still, its generic instantiations 39-- should be replaced by efficient machine-specific code. 40 41with Ada.Unchecked_Conversion; 42with System; 43package body System.Fat_Gen is 44 45 Float_Radix : constant T := T (T'Machine_Radix); 46 Radix_To_M_Minus_1 : constant T := Float_Radix ** (T'Machine_Mantissa - 1); 47 48 pragma Assert (T'Machine_Radix = 2); 49 -- This version does not handle radix 16 50 51 -- Constants for Decompose and Scaling 52 53 Rad : constant T := T (T'Machine_Radix); 54 Invrad : constant T := 1.0 / Rad; 55 56 subtype Expbits is Integer range 0 .. 6; 57 -- 2 ** (2 ** 7) might overflow. how big can radix-16 exponents get? 58 59 Log_Power : constant array (Expbits) of Integer := (1, 2, 4, 8, 16, 32, 64); 60 61 R_Power : constant array (Expbits) of T := 62 (Rad ** 1, 63 Rad ** 2, 64 Rad ** 4, 65 Rad ** 8, 66 Rad ** 16, 67 Rad ** 32, 68 Rad ** 64); 69 70 R_Neg_Power : constant array (Expbits) of T := 71 (Invrad ** 1, 72 Invrad ** 2, 73 Invrad ** 4, 74 Invrad ** 8, 75 Invrad ** 16, 76 Invrad ** 32, 77 Invrad ** 64); 78 79 ----------------------- 80 -- Local Subprograms -- 81 ----------------------- 82 83 procedure Decompose (XX : T; Frac : out T; Expo : out UI); 84 -- Decomposes a floating-point number into fraction and exponent parts 85 86 function Gradual_Scaling (Adjustment : UI) return T; 87 -- Like Scaling with a first argument of 1.0, but returns the smallest 88 -- denormal rather than zero when the adjustment is smaller than 89 -- Machine_Emin. Used for Succ and Pred. 90 91 -------------- 92 -- Adjacent -- 93 -------------- 94 95 function Adjacent (X, Towards : T) return T is 96 begin 97 if Towards = X then 98 return X; 99 100 elsif Towards > X then 101 return Succ (X); 102 103 else 104 return Pred (X); 105 end if; 106 end Adjacent; 107 108 ------------- 109 -- Ceiling -- 110 ------------- 111 112 function Ceiling (X : T) return T is 113 XT : constant T := Truncation (X); 114 115 begin 116 if X <= 0.0 then 117 return XT; 118 119 elsif X = XT then 120 return X; 121 122 else 123 return XT + 1.0; 124 end if; 125 end Ceiling; 126 127 ------------- 128 -- Compose -- 129 ------------- 130 131 function Compose (Fraction : T; Exponent : UI) return T is 132 Arg_Frac : T; 133 Arg_Exp : UI; 134 135 begin 136 Decompose (Fraction, Arg_Frac, Arg_Exp); 137 return Scaling (Arg_Frac, Exponent); 138 end Compose; 139 140 --------------- 141 -- Copy_Sign -- 142 --------------- 143 144 function Copy_Sign (Value, Sign : T) return T is 145 Result : T; 146 147 function Is_Negative (V : T) return Boolean; 148 pragma Import (Intrinsic, Is_Negative); 149 150 begin 151 Result := abs Value; 152 153 if Is_Negative (Sign) then 154 return -Result; 155 else 156 return Result; 157 end if; 158 end Copy_Sign; 159 160 --------------- 161 -- Decompose -- 162 --------------- 163 164 procedure Decompose (XX : T; Frac : out T; Expo : out UI) is 165 X : constant T := T'Machine (XX); 166 167 begin 168 if X = 0.0 then 169 Frac := X; 170 Expo := 0; 171 172 -- More useful would be defining Expo to be T'Machine_Emin - 1 or 173 -- T'Machine_Emin - T'Machine_Mantissa, which would preserve 174 -- monotonicity of the exponent function ??? 175 176 -- Check for infinities, transfinites, whatnot. 177 178 elsif X > T'Safe_Last then 179 Frac := Invrad; 180 Expo := T'Machine_Emax + 1; 181 182 elsif X < T'Safe_First then 183 Frac := -Invrad; 184 Expo := T'Machine_Emax + 2; -- how many extra negative values? 185 186 else 187 -- Case of nonzero finite x. Essentially, we just multiply 188 -- by Rad ** (+-2**N) to reduce the range. 189 190 declare 191 Ax : T := abs X; 192 Ex : UI := 0; 193 194 -- Ax * Rad ** Ex is invariant. 195 196 begin 197 if Ax >= 1.0 then 198 while Ax >= R_Power (Expbits'Last) loop 199 Ax := Ax * R_Neg_Power (Expbits'Last); 200 Ex := Ex + Log_Power (Expbits'Last); 201 end loop; 202 203 -- Ax < Rad ** 64 204 205 for N in reverse Expbits'First .. Expbits'Last - 1 loop 206 if Ax >= R_Power (N) then 207 Ax := Ax * R_Neg_Power (N); 208 Ex := Ex + Log_Power (N); 209 end if; 210 211 -- Ax < R_Power (N) 212 end loop; 213 214 -- 1 <= Ax < Rad 215 216 Ax := Ax * Invrad; 217 Ex := Ex + 1; 218 219 else 220 -- 0 < ax < 1 221 222 while Ax < R_Neg_Power (Expbits'Last) loop 223 Ax := Ax * R_Power (Expbits'Last); 224 Ex := Ex - Log_Power (Expbits'Last); 225 end loop; 226 227 -- Rad ** -64 <= Ax < 1 228 229 for N in reverse Expbits'First .. Expbits'Last - 1 loop 230 if Ax < R_Neg_Power (N) then 231 Ax := Ax * R_Power (N); 232 Ex := Ex - Log_Power (N); 233 end if; 234 235 -- R_Neg_Power (N) <= Ax < 1 236 end loop; 237 end if; 238 239 if X > 0.0 then 240 Frac := Ax; 241 else 242 Frac := -Ax; 243 end if; 244 245 Expo := Ex; 246 end; 247 end if; 248 end Decompose; 249 250 -------------- 251 -- Exponent -- 252 -------------- 253 254 function Exponent (X : T) return UI is 255 X_Frac : T; 256 X_Exp : UI; 257 258 begin 259 Decompose (X, X_Frac, X_Exp); 260 return X_Exp; 261 end Exponent; 262 263 ----------- 264 -- Floor -- 265 ----------- 266 267 function Floor (X : T) return T is 268 XT : constant T := Truncation (X); 269 270 begin 271 if X >= 0.0 then 272 return XT; 273 274 elsif XT = X then 275 return X; 276 277 else 278 return XT - 1.0; 279 end if; 280 end Floor; 281 282 -------------- 283 -- Fraction -- 284 -------------- 285 286 function Fraction (X : T) return T is 287 X_Frac : T; 288 X_Exp : UI; 289 290 begin 291 Decompose (X, X_Frac, X_Exp); 292 return X_Frac; 293 end Fraction; 294 295 --------------------- 296 -- Gradual_Scaling -- 297 --------------------- 298 299 function Gradual_Scaling (Adjustment : UI) return T is 300 Y : T; 301 Y1 : T; 302 Ex : UI := Adjustment; 303 304 begin 305 if Adjustment < T'Machine_Emin then 306 Y := 2.0 ** T'Machine_Emin; 307 Y1 := Y; 308 Ex := Ex - T'Machine_Emin; 309 310 while Ex <= 0 loop 311 Y := T'Machine (Y / 2.0); 312 313 if Y = 0.0 then 314 return Y1; 315 end if; 316 317 Ex := Ex + 1; 318 Y1 := Y; 319 end loop; 320 321 return Y1; 322 323 else 324 return Scaling (1.0, Adjustment); 325 end if; 326 end Gradual_Scaling; 327 328 ------------------ 329 -- Leading_Part -- 330 ------------------ 331 332 function Leading_Part (X : T; Radix_Digits : UI) return T is 333 L : UI; 334 Y, Z : T; 335 336 begin 337 if Radix_Digits >= T'Machine_Mantissa then 338 return X; 339 340 else 341 L := Exponent (X) - Radix_Digits; 342 Y := Truncation (Scaling (X, -L)); 343 Z := Scaling (Y, L); 344 return Z; 345 end if; 346 347 end Leading_Part; 348 349 ------------- 350 -- Machine -- 351 ------------- 352 353 -- The trick with Machine is to force the compiler to store the result 354 -- in memory so that we do not have extra precision used. The compiler 355 -- is clever, so we have to outwit its possible optimizations! We do 356 -- this by using an intermediate pragma Volatile location. 357 358 function Machine (X : T) return T is 359 Temp : T; 360 pragma Volatile (Temp); 361 362 begin 363 Temp := X; 364 return Temp; 365 end Machine; 366 367 ----------- 368 -- Model -- 369 ----------- 370 371 -- We treat Model as identical to Machine. This is true of IEEE and other 372 -- nice floating-point systems, but not necessarily true of all systems. 373 374 function Model (X : T) return T is 375 begin 376 return Machine (X); 377 end Model; 378 379 ---------- 380 -- Pred -- 381 ---------- 382 383 -- Subtract from the given number a number equivalent to the value of its 384 -- least significant bit. Given that the most significant bit represents 385 -- a value of 1.0 * radix ** (exp - 1), the value we want is obtained by 386 -- shifting this by (mantissa-1) bits to the right, i.e. decreasing the 387 -- exponent by that amount. 388 389 -- Zero has to be treated specially, since its exponent is zero 390 391 function Pred (X : T) return T is 392 X_Frac : T; 393 X_Exp : UI; 394 395 begin 396 if X = 0.0 then 397 return -Succ (X); 398 399 else 400 Decompose (X, X_Frac, X_Exp); 401 402 -- A special case, if the number we had was a positive power of 403 -- two, then we want to subtract half of what we would otherwise 404 -- subtract, since the exponent is going to be reduced. 405 406 if X_Frac = 0.5 and then X > 0.0 then 407 return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1); 408 409 -- Otherwise the exponent stays the same 410 411 else 412 return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa); 413 end if; 414 end if; 415 end Pred; 416 417 --------------- 418 -- Remainder -- 419 --------------- 420 421 function Remainder (X, Y : T) return T is 422 A : T; 423 B : T; 424 Arg : T; 425 P : T; 426 Arg_Frac : T; 427 P_Frac : T; 428 Sign_X : T; 429 IEEE_Rem : T; 430 Arg_Exp : UI; 431 P_Exp : UI; 432 K : UI; 433 P_Even : Boolean; 434 435 begin 436 if X > 0.0 then 437 Sign_X := 1.0; 438 Arg := X; 439 else 440 Sign_X := -1.0; 441 Arg := -X; 442 end if; 443 444 P := abs Y; 445 446 if Arg < P then 447 P_Even := True; 448 IEEE_Rem := Arg; 449 P_Exp := Exponent (P); 450 451 else 452 Decompose (Arg, Arg_Frac, Arg_Exp); 453 Decompose (P, P_Frac, P_Exp); 454 455 P := Compose (P_Frac, Arg_Exp); 456 K := Arg_Exp - P_Exp; 457 P_Even := True; 458 IEEE_Rem := Arg; 459 460 for Cnt in reverse 0 .. K loop 461 if IEEE_Rem >= P then 462 P_Even := False; 463 IEEE_Rem := IEEE_Rem - P; 464 else 465 P_Even := True; 466 end if; 467 468 P := P * 0.5; 469 end loop; 470 end if; 471 472 -- That completes the calculation of modulus remainder. The final 473 -- step is get the IEEE remainder. Here we need to compare Rem with 474 -- (abs Y) / 2. We must be careful of unrepresentable Y/2 value 475 -- caused by subnormal numbers 476 477 if P_Exp >= 0 then 478 A := IEEE_Rem; 479 B := abs Y * 0.5; 480 481 else 482 A := IEEE_Rem * 2.0; 483 B := abs Y; 484 end if; 485 486 if A > B or else (A = B and then not P_Even) then 487 IEEE_Rem := IEEE_Rem - abs Y; 488 end if; 489 490 return Sign_X * IEEE_Rem; 491 492 end Remainder; 493 494 -------------- 495 -- Rounding -- 496 -------------- 497 498 function Rounding (X : T) return T is 499 Result : T; 500 Tail : T; 501 502 begin 503 Result := Truncation (abs X); 504 Tail := abs X - Result; 505 506 if Tail >= 0.5 then 507 Result := Result + 1.0; 508 end if; 509 510 if X > 0.0 then 511 return Result; 512 513 elsif X < 0.0 then 514 return -Result; 515 516 -- For zero case, make sure sign of zero is preserved 517 518 else 519 return X; 520 end if; 521 522 end Rounding; 523 524 ------------- 525 -- Scaling -- 526 ------------- 527 528 -- Return x * rad ** adjustment quickly, 529 -- or quietly underflow to zero, or overflow naturally. 530 531 function Scaling (X : T; Adjustment : UI) return T is 532 begin 533 if X = 0.0 or else Adjustment = 0 then 534 return X; 535 end if; 536 537 -- Nonzero x. essentially, just multiply repeatedly by Rad ** (+-2**n). 538 539 declare 540 Y : T := X; 541 Ex : UI := Adjustment; 542 543 -- Y * Rad ** Ex is invariant 544 545 begin 546 if Ex < 0 then 547 while Ex <= -Log_Power (Expbits'Last) loop 548 Y := Y * R_Neg_Power (Expbits'Last); 549 Ex := Ex + Log_Power (Expbits'Last); 550 end loop; 551 552 -- -64 < Ex <= 0 553 554 for N in reverse Expbits'First .. Expbits'Last - 1 loop 555 if Ex <= -Log_Power (N) then 556 Y := Y * R_Neg_Power (N); 557 Ex := Ex + Log_Power (N); 558 end if; 559 560 -- -Log_Power (N) < Ex <= 0 561 end loop; 562 563 -- Ex = 0 564 565 else 566 -- Ex >= 0 567 568 while Ex >= Log_Power (Expbits'Last) loop 569 Y := Y * R_Power (Expbits'Last); 570 Ex := Ex - Log_Power (Expbits'Last); 571 end loop; 572 573 -- 0 <= Ex < 64 574 575 for N in reverse Expbits'First .. Expbits'Last - 1 loop 576 if Ex >= Log_Power (N) then 577 Y := Y * R_Power (N); 578 Ex := Ex - Log_Power (N); 579 end if; 580 581 -- 0 <= Ex < Log_Power (N) 582 end loop; 583 584 -- Ex = 0 585 end if; 586 return Y; 587 end; 588 end Scaling; 589 590 ---------- 591 -- Succ -- 592 ---------- 593 594 -- Similar computation to that of Pred: find value of least significant 595 -- bit of given number, and add. Zero has to be treated specially since 596 -- the exponent can be zero, and also we want the smallest denormal if 597 -- denormals are supported. 598 599 function Succ (X : T) return T is 600 X_Frac : T; 601 X_Exp : UI; 602 X1, X2 : T; 603 604 begin 605 if X = 0.0 then 606 X1 := 2.0 ** T'Machine_Emin; 607 608 -- Following loop generates smallest denormal 609 610 loop 611 X2 := T'Machine (X1 / 2.0); 612 exit when X2 = 0.0; 613 X1 := X2; 614 end loop; 615 616 return X1; 617 618 else 619 Decompose (X, X_Frac, X_Exp); 620 621 -- A special case, if the number we had was a negative power of 622 -- two, then we want to add half of what we would otherwise add, 623 -- since the exponent is going to be reduced. 624 625 if X_Frac = 0.5 and then X < 0.0 then 626 return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1); 627 628 -- Otherwise the exponent stays the same 629 630 else 631 return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa); 632 end if; 633 end if; 634 end Succ; 635 636 ---------------- 637 -- Truncation -- 638 ---------------- 639 640 -- The basic approach is to compute 641 642 -- T'Machine (RM1 + N) - RM1. 643 644 -- where N >= 0.0 and RM1 = radix ** (mantissa - 1) 645 646 -- This works provided that the intermediate result (RM1 + N) does not 647 -- have extra precision (which is why we call Machine). When we compute 648 -- RM1 + N, the exponent of N will be normalized and the mantissa shifted 649 -- shifted appropriately so the lower order bits, which cannot contribute 650 -- to the integer part of N, fall off on the right. When we subtract RM1 651 -- again, the significant bits of N are shifted to the left, and what we 652 -- have is an integer, because only the first e bits are different from 653 -- zero (assuming binary radix here). 654 655 function Truncation (X : T) return T is 656 Result : T; 657 658 begin 659 Result := abs X; 660 661 if Result >= Radix_To_M_Minus_1 then 662 return Machine (X); 663 664 else 665 Result := Machine (Radix_To_M_Minus_1 + Result) - Radix_To_M_Minus_1; 666 667 if Result > abs X then 668 Result := Result - 1.0; 669 end if; 670 671 if X > 0.0 then 672 return Result; 673 674 elsif X < 0.0 then 675 return -Result; 676 677 -- For zero case, make sure sign of zero is preserved 678 679 else 680 return X; 681 end if; 682 end if; 683 684 end Truncation; 685 686 ----------------------- 687 -- Unbiased_Rounding -- 688 ----------------------- 689 690 function Unbiased_Rounding (X : T) return T is 691 Abs_X : constant T := abs X; 692 Result : T; 693 Tail : T; 694 695 begin 696 Result := Truncation (Abs_X); 697 Tail := Abs_X - Result; 698 699 if Tail > 0.5 then 700 Result := Result + 1.0; 701 702 elsif Tail = 0.5 then 703 Result := 2.0 * Truncation ((Result / 2.0) + 0.5); 704 end if; 705 706 if X > 0.0 then 707 return Result; 708 709 elsif X < 0.0 then 710 return -Result; 711 712 -- For zero case, make sure sign of zero is preserved 713 714 else 715 return X; 716 end if; 717 718 end Unbiased_Rounding; 719 720 ----------- 721 -- Valid -- 722 ----------- 723 724 function Valid (X : access T) return Boolean is 725 726 IEEE_Emin : constant Integer := T'Machine_Emin - 1; 727 IEEE_Emax : constant Integer := T'Machine_Emax - 1; 728 729 IEEE_Bias : constant Integer := -(IEEE_Emin - 1); 730 731 subtype IEEE_Exponent_Range is 732 Integer range IEEE_Emin - 1 .. IEEE_Emax + 1; 733 734 -- The implementation of this floating point attribute uses 735 -- a representation type Float_Rep that allows direct access to 736 -- the exponent and mantissa parts of a floating point number. 737 738 -- The Float_Rep type is an array of Float_Word elements. This 739 -- representation is chosen to make it possible to size the 740 -- type based on a generic parameter. Since the array size is 741 -- known at compile-time, efficient code can still be generated. 742 -- The size of Float_Word elements should be large enough to allow 743 -- accessing the exponent in one read, but small enough so that all 744 -- floating point object sizes are a multiple of the Float_Word'Size. 745 746 -- The following conditions must be met for all possible 747 -- instantiations of the attributes package: 748 749 -- - T'Size is an integral multiple of Float_Word'Size 750 751 -- - The exponent and sign are completely contained in a single 752 -- component of Float_Rep, named Most_Significant_Word (MSW). 753 754 -- - The sign occupies the most significant bit of the MSW 755 -- and the exponent is in the following bits. 756 -- Unused bits (if any) are in the least significant part. 757 758 type Float_Word is mod 2**Positive'Min (System.Word_Size, 32); 759 type Rep_Index is range 0 .. 7; 760 761 Rep_Last : constant Rep_Index := (T'Size - 1) / Float_Word'Size; 762 763 type Float_Rep is array (Rep_Index range 0 .. Rep_Last) of Float_Word; 764 765 pragma Suppress_Initialization (Float_Rep); 766 -- This pragma supresses the generation of an initialization procedure 767 -- for type Float_Rep when operating in Initialize/Normalize_Scalars 768 -- mode. This is not just a matter of efficiency, but of functionality, 769 -- since Valid has a pragma Inline_Always, which is not permitted if 770 -- there are nested subprograms present. 771 772 Most_Significant_Word : constant Rep_Index := 773 Rep_Last * Standard'Default_Bit_Order; 774 -- Finding the location of the Exponent_Word is a bit tricky. 775 -- In general we assume Word_Order = Bit_Order. 776 -- This expression needs to be refined for VMS. 777 778 Exponent_Factor : constant Float_Word := 779 2**(Float_Word'Size - 1) / 780 Float_Word (IEEE_Emax - IEEE_Emin + 3) * 781 Boolean'Pos (T'Size /= 96) + 782 Boolean'Pos (T'Size = 96); 783 -- Factor that the extracted exponent needs to be divided by 784 -- to be in range 0 .. IEEE_Emax - IEEE_Emin + 2. 785 -- Special kludge: Exponent_Factor is 0 for x86 double extended 786 -- as GCC adds 16 unused bits to the type. 787 788 Exponent_Mask : constant Float_Word := 789 Float_Word (IEEE_Emax - IEEE_Emin + 2) * 790 Exponent_Factor; 791 -- Value needed to mask out the exponent field. 792 -- This assumes that the range IEEE_Emin - 1 .. IEEE_Emax + 1 793 -- contains 2**N values, for some N in Natural. 794 795 function To_Float is new Ada.Unchecked_Conversion (Float_Rep, T); 796 797 type Float_Access is access all T; 798 function To_Address is 799 new Ada.Unchecked_Conversion (Float_Access, System.Address); 800 801 XA : constant System.Address := To_Address (Float_Access (X)); 802 803 R : Float_Rep; 804 pragma Import (Ada, R); 805 for R'Address use XA; 806 -- R is a view of the input floating-point parameter. Note that we 807 -- must avoid copying the actual bits of this parameter in float 808 -- form (since it may be a signalling NaN. 809 810 E : constant IEEE_Exponent_Range := 811 Integer ((R (Most_Significant_Word) and Exponent_Mask) / 812 Exponent_Factor) 813 - IEEE_Bias; 814 -- Mask/Shift T to only get bits from the exponent 815 -- Then convert biased value to integer value. 816 817 SR : Float_Rep; 818 -- Float_Rep representation of significant of X.all 819 820 begin 821 if T'Denorm then 822 823 -- All denormalized numbers are valid, so only invalid numbers 824 -- are overflows and NaN's, both with exponent = Emax + 1. 825 826 return E /= IEEE_Emax + 1; 827 828 end if; 829 830 -- All denormalized numbers except 0.0 are invalid 831 832 -- Set exponent of X to zero, so we end up with the significand, which 833 -- definitely is a valid number and can be converted back to a float. 834 835 SR := R; 836 SR (Most_Significant_Word) := 837 (SR (Most_Significant_Word) 838 and not Exponent_Mask) + Float_Word (IEEE_Bias) * Exponent_Factor; 839 840 return (E in IEEE_Emin .. IEEE_Emax) or else 841 ((E = IEEE_Emin - 1) and then abs To_Float (SR) = 1.0); 842 end Valid; 843 844 --------------------- 845 -- Unaligned_Valid -- 846 --------------------- 847 848 function Unaligned_Valid (A : System.Address) return Boolean is 849 subtype FS is String (1 .. T'Size / Character'Size); 850 type FSP is access FS; 851 852 function To_FSP is new Ada.Unchecked_Conversion (Address, FSP); 853 854 Local_T : aliased T; 855 856 begin 857 To_FSP (Local_T'Address).all := To_FSP (A).all; 858 return Valid (Local_T'Access); 859 end Unaligned_Valid; 860 861end System.Fat_Gen; 862