1 /* Definitions of target machine for GNU compiler.
2    Motorola 68HC11 and 68HC12.
3    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
4    Free Software Foundation, Inc.
5    Contributed by Stephane Carrez (stcarrez@nerim.fr)
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13 
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING.  If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA.
23 
24 Note:
25    A first 68HC11 port was made by Otto Lind (otto@coactive.com)
26    on gcc 2.6.3.  I have used it as a starting point for this port.
27    However, this new port is a complete re-write.  Its internal
28    design is completely different.  The generated code is not
29    compatible with the gcc 2.6.3 port.
30 
31    The gcc 2.6.3 port is available at:
32 
33    ftp.unina.it/pub/electronics/motorola/68hc11/gcc/gcc-6811-fsf.tar.gz
34 
35 */
36 
37 /*****************************************************************************
38 **
39 ** Controlling the Compilation Driver, `gcc'
40 **
41 *****************************************************************************/
42 
43 #undef ENDFILE_SPEC
44 
45 /* Compile and assemble for a 68hc11 unless there is a -m68hc12 option.  */
46 #ifndef ASM_SPEC
47 #define ASM_SPEC                                                \
48 "%{m68hc12:-m68hc12}"                                           \
49 "%{m68hcs12:-m68hcs12}"                                         \
50 "%{!m68hc12:%{!m68hcs12:-m68hc11}} "                            \
51 "%{mshort:-mshort}%{!mshort:-mlong} "                           \
52 "%{fshort-double:-mshort-double}%{!fshort-double:-mlong-double}"
53 #endif
54 
55 /* We need to tell the linker the target elf format.  Just pass an
56    emulation option.  This can be overridden by -Wl option of gcc.  */
57 #ifndef LINK_SPEC
58 #define LINK_SPEC                                               \
59 "%{m68hc12:-m m68hc12elf}"                                      \
60 "%{m68hcs12:-m m68hc12elf}"                                     \
61 "%{!m68hc12:%{!m68hcs12:-m m68hc11elf}} "                       \
62 "%{!mnorelax:%{!m68hc12:%{!m68hcs12:-relax}}}"
63 #endif
64 
65 #ifndef LIB_SPEC
66 #define LIB_SPEC       ""
67 #endif
68 
69 #ifndef CC1_SPEC
70 #define CC1_SPEC       ""
71 #endif
72 
73 #ifndef CPP_SPEC
74 #define CPP_SPEC  \
75 "%{mshort:-D__HAVE_SHORT_INT__ -D__INT__=16}\
76  %{!mshort:-D__INT__=32}\
77  %{m68hc12:-Dmc6812 -DMC6812 -Dmc68hc12}\
78  %{m68hcs12:-Dmc6812 -DMC6812 -Dmc68hcs12}\
79  %{!m68hc12:%{!m68hcs12:-Dmc6811 -DMC6811 -Dmc68hc11}}\
80  %{fshort-double:-D__HAVE_SHORT_DOUBLE__}\
81  %{mlong-calls:-D__USE_RTC__}"
82 #endif
83 
84 #undef STARTFILE_SPEC
85 #define STARTFILE_SPEC "crt1%O%s"
86 
87 /* Names to predefine in the preprocessor for this target machine.  */
88 #define TARGET_CPU_CPP_BUILTINS()		\
89   do						\
90     {						\
91       builtin_define_std ("mc68hc1x");		\
92     }						\
93   while (0)
94 
95 /* As an embedded target, we have no libc.  */
96 #ifndef inhibit_libc
97 #  define inhibit_libc
98 #endif
99 
100 /* Forward type declaration for prototypes definitions.
101    rtx_ptr is equivalent to rtx. Can't use the same name.  */
102 struct rtx_def;
103 typedef struct rtx_def *rtx_ptr;
104 
105 union tree_node;
106 typedef union tree_node *tree_ptr;
107 
108 /* We can't declare enum machine_mode forward nor include 'machmode.h' here.
109    Prototypes defined here will use an int instead. It's better than no
110    prototype at all.  */
111 typedef int enum_machine_mode;
112 
113 /*****************************************************************************
114 **
115 ** Run-time Target Specification
116 **
117 *****************************************************************************/
118 
119 /* Run-time compilation parameters selecting different hardware subsets.  */
120 
121 extern int target_flags;
122 
123 extern short *reg_renumber;	/* def in local_alloc.c */
124 
125 /* Macros used in the machine description to test the flags.  */
126 
127 /* 6811 specific options
128  *
129  * For 68HC12, the auto inc/dec mode is disabled by default. The reason
130  * is that for most programs, the reload pass will fail because it needs
131  * more registers to save the value of the indexed register after the
132  * memory access.  For simple programs, you can enable this
133  * with -mauto-incdec.
134  */
135 
136 #define MASK_SHORT              0002	/* Compile with 16-bit `int' */
137 #define MASK_AUTO_INC_DEC       0004
138 #define MASK_M6811              0010
139 #define MASK_M6812              0020
140 #define MASK_M68S12             0040
141 #define MASK_NO_DIRECT_MODE     0100
142 #define MASK_MIN_MAX            0200
143 #define MASK_LONG_CALLS         0400
144 
145 #define TARGET_OP_TIME		(optimize && optimize_size == 0)
146 #define TARGET_SHORT            (target_flags & MASK_SHORT)
147 #define TARGET_M6811            (target_flags & MASK_M6811)
148 #define TARGET_M6812            (target_flags & MASK_M6812)
149 #define TARGET_M68S12           (target_flags & MASK_M68S12)
150 #define TARGET_AUTO_INC_DEC     (target_flags & MASK_AUTO_INC_DEC)
151 #define TARGET_MIN_MAX          (target_flags & MASK_MIN_MAX)
152 #define TARGET_NO_DIRECT_MODE   (target_flags & MASK_NO_DIRECT_MODE)
153 #define TARGET_RELAX            (TARGET_NO_DIRECT_MODE)
154 #define TARGET_LONG_CALLS       (target_flags & MASK_LONG_CALLS)
155 
156 /* Default target_flags if no switches specified.  */
157 #ifndef TARGET_DEFAULT
158 # define TARGET_DEFAULT		(MASK_M6811)
159 #endif
160 
161 /* Define this macro as a C expression for the initializer of an
162    array of string to tell the driver program which options are
163    defaults for this target and thus do not need to be handled
164    specially when using `MULTILIB_OPTIONS'.  */
165 #ifndef MULTILIB_DEFAULTS
166 # if TARGET_DEFAULT & MASK_M6811
167 #  define MULTILIB_DEFAULTS { "m68hc11" }
168 # else
169 #  define MULTILIB_DEFAULTS { "m68hc12" }
170 # endif
171 #endif
172 
173 /* Macro to define tables used to set the flags. This is a list in braces of
174    pairs in braces, each pair being { "NAME", VALUE } where VALUE is the bits
175    to set or minus the bits to clear. An empty string NAME is used to
176    identify the default VALUE.  */
177 
178 #define TARGET_SWITCHES						\
179 { { "short", MASK_SHORT,					\
180     N_("Compile with 16-bit integer mode")},			\
181   { "noshort", - MASK_SHORT,					\
182     N_("Compile with 32-bit integer mode")},			\
183   { "auto-incdec", MASK_AUTO_INC_DEC,				\
184     N_("Auto pre/post decrement increment allowed")},		\
185   { "noauto-incdec", - MASK_AUTO_INC_DEC,			\
186     N_("Auto pre/post decrement increment not allowed")},	\
187   { "inmax", MASK_MIN_MAX,                                      \
188     N_("Min/max instructions allowed")},                        \
189   { "nominmax", - MASK_MIN_MAX,                                 \
190     N_("Min/max instructions not allowed")},                    \
191   { "long-calls", MASK_LONG_CALLS,				\
192     N_("Use call and rtc for function calls and returns")},	\
193   { "nolong-calls", - MASK_LONG_CALLS,				\
194     N_("Use jsr and rts for function calls and returns")},	\
195   { "relax", MASK_NO_DIRECT_MODE,                               \
196     N_("Do not use direct addressing mode for soft registers")},\
197   { "norelax", -MASK_NO_DIRECT_MODE,                            \
198     N_("Use direct addressing mode for soft registers")},       \
199   { "68hc11", MASK_M6811,					\
200     N_("Compile for a 68HC11")},				\
201   { "68hc12", MASK_M6812,					\
202     N_("Compile for a 68HC12")},				\
203   { "68hcs12", MASK_M6812 | MASK_M68S12,			\
204     N_("Compile for a 68HCS12")},				\
205   { "6811",   MASK_M6811,					\
206     N_("Compile for a 68HC11")},				\
207   { "6812",   MASK_M6812,					\
208     N_("Compile for a 68HC12")},				\
209   { "68S12",  MASK_M6812 | MASK_M68S12,				\
210     N_("Compile for a 68HCS12")},				\
211   { "", TARGET_DEFAULT, 0 }}
212 
213 /* This macro is similar to `TARGET_SWITCHES' but defines names of
214    command options that have values.  Its definition is an
215    initializer with a subgrouping for each command option.
216 
217    Each subgrouping contains a string constant, that defines the
218    fixed part of the option name, and the address of a variable.  The
219    variable, type `char *', is set to the variable part of the given
220    option if the fixed part matches.  The actual option name is made
221    by appending `-m' to the specified name.  */
222 #define TARGET_OPTIONS							\
223 { { "reg-alloc=",	&m68hc11_reg_alloc_order,                       \
224     N_("Specify the register allocation order"), 0},			\
225   { "soft-reg-count=",	&m68hc11_soft_reg_count,                        \
226     N_("Indicate the number of soft registers available"), 0},		\
227   SUBTARGET_OPTIONS							\
228 }
229 
230 /* These are meant to be redefined in the host dependent files */
231 #define SUBTARGET_SWITCHES
232 #define SUBTARGET_OPTIONS
233 
234 extern const char *m68hc11_regparm_string;
235 extern const char *m68hc11_reg_alloc_order;
236 extern const char *m68hc11_soft_reg_count;
237 
238 #ifndef TARGET_M68HC12
239 # define TARGET_M68HC11 1
240 #endif
241 
242 /* Print subsidiary information on the compiler version in use.  */
243 #define TARGET_VERSION	fprintf (stderr, " (MC68HC11/MC68HC12/MC68HCS12)")
244 
245 /* Sometimes certain combinations of command options do not make
246    sense on a particular target machine.  You can define a macro
247    `OVERRIDE_OPTIONS' to take account of this.  This macro, if
248    defined, is executed once just after all the command options have
249    been parsed.
250 
251    Don't use this macro to turn on various extra optimizations for
252    `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
253 
254 #define OVERRIDE_OPTIONS	m68hc11_override_options ();
255 
256 
257 /* Define cost parameters for a given processor variant.  */
258 struct processor_costs {
259   const int add;		/* cost of an add instruction */
260   const int logical;          /* cost of a logical instruction */
261   const int shift_var;
262   const int shiftQI_const[8];
263   const int shiftHI_const[16];
264   const int multQI;
265   const int multHI;
266   const int multSI;
267   const int divQI;
268   const int divHI;
269   const int divSI;
270 };
271 
272 /* Costs for the current processor.  */
273 extern const struct processor_costs *m68hc11_cost;
274 
275 
276 /* target machine storage layout */
277 
278 /* Define this if most significant byte of a word is the lowest numbered.  */
279 #define BYTES_BIG_ENDIAN 	1
280 
281 /* Define this if most significant bit is lowest numbered
282    in instructions that operate on numbered bit-fields.  */
283 #define BITS_BIG_ENDIAN         0
284 
285 /* Define this if most significant word of a multiword number is numbered.  */
286 #define WORDS_BIG_ENDIAN 	1
287 
288 /* Width of a word, in units (bytes).  */
289 #define UNITS_PER_WORD		2
290 
291 /* Definition of size_t.  This is really an unsigned short as the
292    68hc11 only handles a 64K address space.  */
293 #define SIZE_TYPE               "short unsigned int"
294 
295 /* A C expression for a string describing the name of the data type
296    to use for the result of subtracting two pointers.  The typedef
297    name `ptrdiff_t' is defined using the contents of the string.
298    The 68hc11 only has a 64K address space.  */
299 #define PTRDIFF_TYPE            "short int"
300 
301 /* Allocation boundary (bits) for storing pointers in memory.  */
302 #define POINTER_BOUNDARY	8
303 
304 /* Normal alignment required for function parameters on the stack, in bits.
305    This can't be less than BITS_PER_WORD */
306 #define PARM_BOUNDARY		(BITS_PER_WORD)
307 
308 /* Boundary (bits) on which stack pointer should be aligned.  */
309 #define STACK_BOUNDARY		8
310 
311 /* Allocation boundary (bits) for the code of a function.  */
312 #define FUNCTION_BOUNDARY	8
313 
314 #define BIGGEST_ALIGNMENT	8
315 
316 /* Alignment of field after `int : 0' in a structure.  */
317 #define EMPTY_FIELD_BOUNDARY	8
318 
319 /* Every structure's size must be a multiple of this.  */
320 #define STRUCTURE_SIZE_BOUNDARY 8
321 
322 /* Define this if instructions will fail to work if given data not
323    on the nominal alignment.  If instructions will merely go slower
324    in that case, do not define this macro.  */
325 #define STRICT_ALIGNMENT	0
326 
327 /* An integer expression for the size in bits of the largest integer
328    machine mode that should actually be used.  All integer machine modes of
329    this size or smaller can be used for structures and unions with the
330    appropriate sizes.  */
331 #define MAX_FIXED_MODE_SIZE	64
332 
333 /* target machine storage layout */
334 
335 /* Size (bits) of the type "int" on target machine
336    (If undefined, default is BITS_PER_WORD).  */
337 #define INT_TYPE_SIZE           (TARGET_SHORT ? 16 : 32)
338 
339 /* Size (bits) of the type "short" on target machine */
340 #define SHORT_TYPE_SIZE		16
341 
342 /* Size (bits) of the type "long" on target machine */
343 #define LONG_TYPE_SIZE		32
344 
345 /* Size (bits) of the type "long long" on target machine */
346 #define LONG_LONG_TYPE_SIZE     64
347 
348 /* A C expression for the size in bits of the type `float' on the
349    target machine. If you don't define this, the default is one word.
350    Don't use default: a word is only 16.  */
351 #define FLOAT_TYPE_SIZE         32
352 
353 /* A C expression for the size in bits of the type double on the target
354    machine. If you don't define this, the default is two words.
355    Be IEEE compliant.  */
356 #define DOUBLE_TYPE_SIZE        64
357 
358 #define LONG_DOUBLE_TYPE_SIZE   64
359 
360 /* Define this as 1 if `char' should by default be signed; else as 0.  */
361 #define DEFAULT_SIGNED_CHAR	0
362 
363 /* Define these to avoid dependence on meaning of `int'.
364    Note that WCHAR_TYPE_SIZE is used in cexp.y,
365    where TARGET_SHORT is not available.  */
366 #define WCHAR_TYPE              "short int"
367 #define WCHAR_TYPE_SIZE         16
368 
369 
370 /* Standard register usage.  */
371 
372 #define HARD_REG_SIZE           (UNITS_PER_WORD)
373 
374 /* Assign names to real MC68HC11 registers.
375    A and B registers are not really used (A+B = D)
376    X register is first so that GCC allocates X+D for 32-bit integers and
377    the lowpart of that integer will be D.  Having the lower part in D is
378    better for 32<->16bit conversions and for many arithmetic operations.  */
379 #define HARD_X_REGNUM		0
380 #define HARD_D_REGNUM		1
381 #define HARD_Y_REGNUM		2
382 #define HARD_SP_REGNUM		3
383 #define HARD_PC_REGNUM		4
384 #define HARD_A_REGNUM		5
385 #define HARD_B_REGNUM		6
386 #define HARD_CCR_REGNUM		7
387 
388 /* The Z register does not really exist in the 68HC11.  This a fake register
389    for GCC.  It is treated exactly as an index register (X or Y).  It is only
390    in the A_REGS class, which is the BASE_REG_CLASS for GCC.  Defining this
391    register helps the reload pass of GCC.  Otherwise, the reload often aborts
392    with register spill failures.
393 
394    The Z register is replaced by either X or Y during the machine specific
395    reorg (m68hc11_reorg).  It is saved in the SOFT_Z_REGNUM soft-register
396    when this is necessary.
397 
398    It's possible to tell GCC not to use this register with -ffixed-z.  */
399 #define HARD_Z_REGNUM           8
400 
401 /* The frame pointer is a soft-register.  It's treated as such by GCC:
402    it is not and must not be part of the BASE_REG_CLASS.  */
403 #define DEFAULT_HARD_FP_REGNUM  (9)
404 #define HARD_FP_REGNUM		(9)
405 #define HARD_AP_REGNUM		(HARD_FP_REGNUM)
406 
407 /* Temporary soft-register used in some cases when an operand came
408    up into a bad register class (D, X, Y, SP) and gcc failed to
409    recognize this. This register is never allocated by GCC.  */
410 #define SOFT_TMP_REGNUM          10
411 
412 /* The soft-register which is used to save the Z register
413    (see Z register replacement notes in m68hc11.c).  */
414 #define SOFT_Z_REGNUM            11
415 
416 /* The soft-register which is used to save either X or Y.  */
417 #define SOFT_SAVED_XY_REGNUM     12
418 
419 /* A fake clobber register for 68HC12 patterns.  */
420 #define FAKE_CLOBBER_REGNUM     (13)
421 
422 /* Define 32 soft-registers of 16-bit each.  By default,
423    only 12 of them are enabled and can be used by GCC.  The
424    -msoft-reg-count=<n> option allows to control the number of valid
425    soft-registers. GCC can put 32-bit values in them
426    by allocating consecutive registers.  The first 3 soft-registers
427    are never allocated by GCC.  They are used in case the insn template needs
428    a temporary register, or for the Z register replacement.  */
429 
430 #define MAX_SOFT_REG_COUNT      (32)
431 #define SOFT_REG_FIXED          0, 0, 0, 0, 0, 0, 0, 0, \
432 				0, 0, 0, 0, 1, 1, 1, 1, \
433 				1, 1, 1, 1, 1, 1, 1, 1, \
434 				1, 1, 1, 1, 1, 1, 1, 1
435 #define SOFT_REG_USED           0, 0, 0, 0, 0, 0, 0, 0, \
436 				0, 0, 0, 0, 1, 1, 1, 1, \
437 				1, 1, 1, 1, 1, 1, 1, 1, \
438 				1, 1, 1, 1, 1, 1, 1, 1
439 #define SOFT_REG_ORDER		\
440 SOFT_REG_FIRST, SOFT_REG_FIRST+1,SOFT_REG_FIRST+2,SOFT_REG_FIRST+3,\
441 SOFT_REG_FIRST+4, SOFT_REG_FIRST+5,SOFT_REG_FIRST+6,SOFT_REG_FIRST+7,\
442 SOFT_REG_FIRST+8, SOFT_REG_FIRST+9,SOFT_REG_FIRST+10,SOFT_REG_FIRST+11,\
443 SOFT_REG_FIRST+12, SOFT_REG_FIRST+13,SOFT_REG_FIRST+14,SOFT_REG_FIRST+15,\
444 SOFT_REG_FIRST+16, SOFT_REG_FIRST+17,SOFT_REG_FIRST+18,SOFT_REG_FIRST+19,\
445 SOFT_REG_FIRST+20, SOFT_REG_FIRST+21,SOFT_REG_FIRST+22,SOFT_REG_FIRST+23,\
446 SOFT_REG_FIRST+24, SOFT_REG_FIRST+25,SOFT_REG_FIRST+26,SOFT_REG_FIRST+27,\
447 SOFT_REG_FIRST+28, SOFT_REG_FIRST+29,SOFT_REG_FIRST+30,SOFT_REG_FIRST+31
448 
449 #define SOFT_REG_NAMES							\
450 "*_.d1",  "*_.d2",  "*_.d3",  "*_.d4", \
451 "*_.d5",  "*_.d6",  "*_.d7",  "*_.d8",	\
452 "*_.d9",  "*_.d10", "*_.d11", "*_.d12", \
453 "*_.d13", "*_.d14", "*_.d15", "*_.d16",	\
454 "*_.d17", "*_.d18", "*_.d19", "*_.d20", \
455 "*_.d21", "*_.d22", "*_.d23", "*_.d24", \
456 "*_.d25", "*_.d26", "*_.d27", "*_.d28", \
457 "*_.d29", "*_.d30", "*_.d31", "*_.d32"
458 
459 /* First available soft-register for GCC.  */
460 #define SOFT_REG_FIRST          (SOFT_SAVED_XY_REGNUM+2)
461 
462 /* Last available soft-register for GCC.  */
463 #define SOFT_REG_LAST           (SOFT_REG_FIRST+MAX_SOFT_REG_COUNT)
464 #define SOFT_FP_REGNUM		(SOFT_REG_LAST)
465 #define SOFT_AP_REGNUM		(SOFT_FP_REGNUM+1)
466 
467 /* Number of actual hardware registers. The hardware registers are assigned
468    numbers for the compiler from 0 to just below FIRST_PSEUDO_REGISTER.
469    All registers that the compiler knows about must be given numbers, even
470    those that are not normally considered general registers.  */
471 #define FIRST_PSEUDO_REGISTER	(SOFT_REG_LAST+2)
472 
473 /* 1 for registers that have pervasive standard uses and are not available
474    for the register allocator.  */
475 #define FIXED_REGISTERS \
476   {0, 0, 0, 1, 1, 1, 1, 1,   0, 1,  1,   1,1, 1, SOFT_REG_FIXED, 1, 1}
477 /* X, D, Y, SP,PC,A, B, CCR, Z, FP,ZTMP,ZR,XYR, FK, D1 - D32, SOFT-FP, AP */
478 
479 /* 1 for registers not available across function calls. For our pseudo
480    registers, all are available.  */
481 #define CALL_USED_REGISTERS \
482   {1, 1, 1, 1, 1, 1, 1, 1,   1, 1,  1,   1,1, 1, SOFT_REG_USED, 1, 1}
483 /* X, D, Y, SP,PC,A, B, CCR, Z, FP, ZTMP,ZR,XYR, D1 - 32,     SOFT-FP, AP */
484 
485 
486 /* Define this macro to change register usage conditional on target flags.
487 
488    The soft-registers are disabled or enabled according to the
489   -msoft-reg-count=<n> option.  */
490 
491 
492 #define CONDITIONAL_REGISTER_USAGE (m68hc11_conditional_register_usage ())
493 
494 /* List the order in which to allocate registers.  Each register must be
495    listed once, even those in FIXED_REGISTERS.  */
496 #define REG_ALLOC_ORDER							\
497 { HARD_D_REGNUM, HARD_X_REGNUM, HARD_Y_REGNUM,				\
498   SOFT_REG_ORDER, HARD_Z_REGNUM, HARD_PC_REGNUM, HARD_A_REGNUM,		\
499   HARD_B_REGNUM, HARD_CCR_REGNUM, HARD_FP_REGNUM, SOFT_FP_REGNUM,	\
500   HARD_SP_REGNUM, SOFT_TMP_REGNUM, SOFT_Z_REGNUM, SOFT_SAVED_XY_REGNUM, \
501   SOFT_AP_REGNUM, FAKE_CLOBBER_REGNUM  }
502 
503 /* A C expression for the number of consecutive hard registers,
504    starting at register number REGNO, required to hold a value of
505    mode MODE.  */
506 #define HARD_REGNO_NREGS(REGNO, MODE) \
507 ((Q_REGNO_P (REGNO)) ? (GET_MODE_SIZE (MODE)) : \
508    ((GET_MODE_SIZE (MODE) + HARD_REG_SIZE - 1) / HARD_REG_SIZE))
509 
510 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
511     - 8 bit values are stored anywhere (except the SP register).
512     - 16 bit values can be stored in any register whose mode is 16
513     - 32 bit values can be stored in D, X registers or in a soft register
514       (except the last one because we need 2 soft registers)
515     - Values whose size is > 32 bit are not stored in real hard
516       registers.  They may be stored in soft registers if there are
517       enough of them.  */
518 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
519      hard_regno_mode_ok (REGNO,MODE)
520 
521 /* Value is 1 if it is a good idea to tie two pseudo registers when one has
522    mode MODE1 and one has mode MODE2.  If HARD_REGNO_MODE_OK could produce
523    different values for MODE1 and MODE2, for any hard reg, then this must be
524    0 for correct output.
525 
526    All modes are tieable except QImode.  */
527 #define MODES_TIEABLE_P(MODE1, MODE2)                   \
528      (((MODE1) == (MODE2))                              \
529       || ((MODE1) != QImode && (MODE2) != QImode))
530 
531 
532 /* Define the classes of registers for register constraints in the
533    machine description.  Also define ranges of constants.
534 
535    One of the classes must always be named ALL_REGS and include all hard regs.
536    If there is more than one class, another class must be named NO_REGS
537    and contain no registers.
538 
539    The name GENERAL_REGS must be the name of a class (or an alias for
540    another name such as ALL_REGS).  This is the class of registers
541    that is allowed by "g" or "r" in a register constraint.
542    Also, registers outside this class are allocated only when
543    instructions express preferences for them.
544 
545    The classes must be numbered in nondecreasing order; that is,
546    a larger-numbered class must never be contained completely
547    in a smaller-numbered class.
548 
549    For any two classes, it is very desirable that there be another
550    class that represents their union.  */
551 
552 /* The M68hc11 has so fiew registers that it's not possible for GCC to
553    do any register allocation without breaking. We extend the processor
554    registers by having soft registers. These registers are treated as
555    hard registers by GCC but they are located in memory and accessed by page0
556    accesses (IND mode).  */
557 enum reg_class
558 {
559   NO_REGS,
560   D_REGS,			/* 16-bit data register */
561   X_REGS,			/* 16-bit X register */
562   Y_REGS,			/* 16-bit Y register */
563   SP_REGS,			/* 16 bit stack pointer */
564   DA_REGS,			/* 8-bit A reg.  */
565   DB_REGS,			/* 8-bit B reg.  */
566   Z_REGS,			/* 16-bit fake Z register */
567   D8_REGS,			/* 8-bit A or B reg.  */
568   Q_REGS,			/* 8-bit (byte (QI)) data (A, B or D) */
569   D_OR_X_REGS,			/* D or X register */
570   D_OR_Y_REGS,			/* D or Y register */
571   D_OR_SP_REGS,			/* D or SP register */
572   X_OR_Y_REGS,			/* IX or Y register */
573   A_REGS,			/* 16-bit address register (X, Y, Z) */
574   X_OR_SP_REGS,			/* X or SP register */
575   Y_OR_SP_REGS,			/* Y or SP register */
576   X_OR_Y_OR_D_REGS,		/* X, Y or D */
577   A_OR_D_REGS,			/* X, Y, Z or D */
578   A_OR_SP_REGS,			/* X, Y, Z or SP */
579   H_REGS,			/* 16-bit hard register (D, X, Y, Z, SP) */
580   S_REGS,			/* 16-bit soft register */
581   D_OR_S_REGS,			/* 16-bit soft register or D register */
582   X_OR_S_REGS,			/* 16-bit soft register or X register */
583   Y_OR_S_REGS,			/* 16-bit soft register or Y register */
584   Z_OR_S_REGS,			/* 16-bit soft register or Z register */
585   SP_OR_S_REGS,			/* 16-bit soft register or SP register */
586   D_OR_X_OR_S_REGS,		/* 16-bit soft register or D or X register */
587   D_OR_Y_OR_S_REGS,		/* 16-bit soft register or D or Y register */
588   D_OR_SP_OR_S_REGS,		/* 16-bit soft register or D or SP register */
589   A_OR_S_REGS,			/* 16-bit soft register or X, Y registers */
590   D_OR_A_OR_S_REGS,		/* 16-bit soft register or D, X, Y registers */
591   TMP_REGS,			/* 16 bit fake scratch register */
592   D_OR_A_OR_TMP_REGS,		/* General scratch register */
593   G_REGS,			/* 16-bit general register
594                                    (H_REGS + soft registers) */
595   ALL_REGS,
596   LIM_REG_CLASSES
597 };
598 
599 /* alias GENERAL_REGS to G_REGS.  */
600 #define GENERAL_REGS	G_REGS
601 
602 #define N_REG_CLASSES	(int) LIM_REG_CLASSES
603 
604 /* Give names of register classes as strings for dump file.  */
605 #define REG_CLASS_NAMES \
606 { "NO_REGS",                                    \
607       "D_REGS",                                 \
608       "X_REGS",                                 \
609       "Y_REGS",                                 \
610       "SP_REGS",                                \
611       "DA_REGS",                                \
612       "DB_REGS",                                \
613       "D8_REGS",                                \
614       "Z_REGS",                                 \
615       "Q_REGS",                                 \
616       "D_OR_X_REGS",                            \
617       "D_OR_Y_REGS",                            \
618       "D_OR_SP_REGS",                           \
619       "X_OR_Y_REGS",                            \
620       "A_REGS",                                 \
621       "X_OR_SP_REGS",                           \
622       "Y_OR_SP_REGS",                           \
623       "X_OR_Y_OR_D_REGS",                       \
624       "A_OR_D_REGS",                            \
625       "A_OR_SP_REGS",                           \
626       "H_REGS",                                 \
627       "S_REGS",                                 \
628       "D_OR_S_REGS",                            \
629       "X_OR_S_REGS",                            \
630       "Y_OR_S_REGS",                            \
631       "Z_OR_S_REGS",                            \
632       "SP_OR_S_REGS",                           \
633       "D_OR_X_OR_S_REGS",                       \
634       "D_OR_Y_OR_S_REGS",                       \
635       "D_OR_SP_OR_S_REGS",                      \
636       "A_OR_S_REGS",                            \
637       "D_OR_A_OR_S_REGS",                       \
638       "TMP_REGS",				\
639       "D_OR_A_OR_TMP_REGS",			\
640       "G_REGS",                                 \
641       "ALL_REGS" }
642 
643 /* An initializer containing the contents of the register classes,
644    as integers which are bit masks.  The Nth integer specifies the
645    contents of class N.  The way the integer MASK is interpreted is
646    that register R is in the class if `MASK & (1 << R)' is 1.  */
647 
648 /*--------------------------------------------------------------
649    X		0x00000001
650    D		0x00000002
651    Y		0x00000004
652    SP		0x00000008
653    PC		0x00000010
654    A		0x00000020
655    B		0x00000040
656    CCR		0x00000080
657    Z		0x00000100
658    FRAME        0x00000200
659    ZTMP		0x00000400
660    ZREG		0x00000800
661    XYREG	0x00001000
662    FAKE         0x00002000
663    Di		0xFFFFc000, 0x03FFF
664    SFRAME       0x00000000, 0x04000
665    AP           0x00000000, 0x08000
666 
667    D_OR_X_REGS represents D+X. It is used for 32-bits numbers.
668    A_REGS      represents a valid base register for indexing. It represents
669 	       X,Y and the Z register.
670    S_REGS      represents the soft-registers. This includes the hard frame
671 	       and soft frame registers.
672 --------------------------------------------------------------*/
673 
674 #define REG_CLASS_CONTENTS \
675 /* NO_REGS */		{{ 0x00000000, 0x00000000 },			\
676 /* D_REGS  */		 { 0x00000002, 0x00000000 }, /* D */            \
677 /* X_REGS  */		 { 0x00000001, 0x00000000 }, /* X */            \
678 /* Y_REGS  */		 { 0x00000004, 0x00000000 }, /* Y */            \
679 /* SP_REGS */		 { 0x00000008, 0x00000000 }, /* SP */           \
680 /* DA_REGS */		 { 0x00000020, 0x00000000 }, /* A */            \
681 /* DB_REGS */		 { 0x00000040, 0x00000000 }, /* B */            \
682 /* Z_REGS  */		 { 0x00000100, 0x00000000 }, /* Z */            \
683 /* D8_REGS */		 { 0x00000060, 0x00000000 }, /* A B */          \
684 /* Q_REGS  */		 { 0x00000062, 0x00000000 }, /* A B D */        \
685 /* D_OR_X_REGS */        { 0x00000003, 0x00000000 }, /* D X */          \
686 /* D_OR_Y_REGS */        { 0x00000006, 0x00000000 }, /* D Y */          \
687 /* D_OR_SP_REGS */       { 0x0000000A, 0x00000000 }, /* D SP */         \
688 /* X_OR_Y_REGS  */	 { 0x00000005, 0x00000000 }, /* X Y */          \
689 /* A_REGS  */		 { 0x00000105, 0x00000000 }, /* X Y Z */        \
690 /* X_OR_SP_REGS */       { 0x00000009, 0x00000000 }, /* X SP */         \
691 /* Y_OR_SP_REGS */       { 0x0000000C, 0x00000000 }, /* Y SP */         \
692 /* X_OR_Y_OR_D_REGS */   { 0x00000007, 0x00000000 }, /* D X Y */        \
693 /* A_OR_D_REGS  */       { 0x00000107, 0x00000000 }, /* D X Y Z */      \
694 /* A_OR_SP_REGS */       { 0x0000010D, 0x00000000 }, /* X Y SP */       \
695 /* H_REGS  */		 { 0x0000010F, 0x00000000 }, /* D X Y SP */     \
696 /* S_REGS  */		 { 0xFFFFDE00, 0x00007FFF }, /* _.D,..,FP,Z*  */  \
697 /* D_OR_S_REGS */	 { 0xFFFFDE02, 0x00007FFF }, /* D _.D */        \
698 /* X_OR_S_REGS */	 { 0xFFFFDE01, 0x00007FFF }, /* X _.D */        \
699 /* Y_OR_S_REGS */	 { 0xFFFFDE04, 0x00007FFF }, /* Y _.D */        \
700 /* Z_OR_S_REGS */	 { 0xFFFFDF00, 0x00007FFF }, /* Z _.D */        \
701 /* SP_OR_S_REGS */	 { 0xFFFFDE08, 0x00007FFF }, /* SP _.D */	\
702 /* D_OR_X_OR_S_REGS */	 { 0xFFFFDE03, 0x00007FFF }, /* D X _.D */      \
703 /* D_OR_Y_OR_S_REGS */	 { 0xFFFFDE06, 0x00007FFF }, /* D Y _.D */      \
704 /* D_OR_SP_OR_S_REGS */	 { 0xFFFFDE0A, 0x00007FFF }, /* D SP _.D */     \
705 /* A_OR_S_REGS */	 { 0xFFFFDF05, 0x00007FFF }, /* X Y _.D */      \
706 /* D_OR_A_OR_S_REGS */	 { 0xFFFFDF07, 0x00007FFF }, /* D X Y _.D */    \
707 /* TMP_REGS  */	         { 0x00002000, 0x00000000 }, /* FAKE */		\
708 /* D_OR_A_OR_TMP_REGS*/  { 0x00002107, 0x00000000 }, /* D X Y Z Fake */  \
709 /* G_REGS  */		 { 0xFFFFFF1F, 0x00007FFF }, /* ? _.D D X Y */   \
710 /* ALL_REGS*/		 { 0xFFFFFFFF, 0x00007FFF }}
711 
712 
713 /* set up a C expression whose value is a register class containing hard
714    register REGNO */
715 #define Q_REGNO_P(REGNO)	((REGNO) == HARD_A_REGNUM \
716 				 || (REGNO) == HARD_B_REGNUM)
717 #define Q_REG_P(X)              (REG_P (X) && Q_REGNO_P (REGNO (X)))
718 
719 #define D_REGNO_P(REGNO)        ((REGNO) == HARD_D_REGNUM)
720 #define D_REG_P(X)              (REG_P (X) && D_REGNO_P (REGNO (X)))
721 
722 #define DB_REGNO_P(REGNO)       ((REGNO) == HARD_B_REGNUM)
723 #define DB_REG_P(X)             (REG_P (X) && DB_REGNO_P (REGNO (X)))
724 #define DA_REGNO_P(REGNO)       ((REGNO) == HARD_A_REGNUM)
725 #define DA_REG_P(X)             (REG_P (X) && DA_REGNO_P (REGNO (X)))
726 
727 #define X_REGNO_P(REGNO)        ((REGNO) == HARD_X_REGNUM)
728 #define X_REG_P(X)              (REG_P (X) && X_REGNO_P (REGNO (X)))
729 
730 #define Y_REGNO_P(REGNO)        ((REGNO) == HARD_Y_REGNUM)
731 #define Y_REG_P(X)              (REG_P (X) && Y_REGNO_P (REGNO (X)))
732 
733 #define Z_REGNO_P(REGNO)        ((REGNO) == HARD_Z_REGNUM)
734 #define Z_REG_P(X)              (REG_P (X) && Z_REGNO_P (REGNO (X)))
735 
736 #define SP_REGNO_P(REGNO)       ((REGNO) == HARD_SP_REGNUM)
737 #define SP_REG_P(X)             (REG_P (X) && SP_REGNO_P (REGNO (X)))
738 
739 /* Address register.  */
740 #define A_REGNO_P(REGNO)        ((REGNO) == HARD_X_REGNUM \
741                                  || (REGNO) == HARD_Y_REGNUM \
742                                  || (REGNO) == HARD_Z_REGNUM)
743 #define A_REG_P(X)              (REG_P (X) && A_REGNO_P (REGNO (X)))
744 
745 /* M68hc11 hard registers.  */
746 #define H_REGNO_P(REGNO)        (D_REGNO_P (REGNO) || A_REGNO_P (REGNO) \
747 				 || SP_REGNO_P (REGNO) || Q_REGNO_P (REGNO))
748 #define H_REG_P(X)              (REG_P (X) && H_REGNO_P (REGNO (X)))
749 
750 #define FAKE_REGNO_P(REGNO)     ((REGNO) == FAKE_CLOBBER_REGNUM)
751 #define FAKE_REG_P(X)           (REG_P (X) && FAKE_REGNO_P (REGNO (X)))
752 
753 /* Soft registers (or register emulation for gcc).  The temporary register
754    used by insn template must be part of the S_REGS class so that it
755    matches the 'u' constraint.  */
756 #define S_REGNO_P(REGNO)        ((REGNO) >= SOFT_TMP_REGNUM \
757                                  && (REGNO) <= SOFT_REG_LAST \
758                                  && (REGNO) != FAKE_CLOBBER_REGNUM)
759 #define S_REG_P(X)              (REG_P (X) && S_REGNO_P (REGNO (X)))
760 
761 #define Z_REGNO_P(REGNO)        ((REGNO) == HARD_Z_REGNUM)
762 #define Z_REG_P(X)              (REG_P (X) && Z_REGNO_P (REGNO (X)))
763 
764 /* General register.  */
765 #define G_REGNO_P(REGNO)        (H_REGNO_P (REGNO) || S_REGNO_P (REGNO) \
766                                  || ((REGNO) == HARD_PC_REGNUM) \
767 				 || ((REGNO) == HARD_FP_REGNUM) \
768 				 || ((REGNO) == SOFT_FP_REGNUM) \
769 				 || ((REGNO) == FAKE_CLOBBER_REGNUM) \
770 				 || ((REGNO) == SOFT_AP_REGNUM))
771 
772 #define G_REG_P(X)              (REG_P (X) && G_REGNO_P (REGNO (X)))
773 
774 #define REGNO_REG_CLASS(REGNO) \
775   (D_REGNO_P (REGNO) ? D_REGS : \
776    (X_REGNO_P (REGNO) ? X_REGS : \
777     (Y_REGNO_P (REGNO) ? Y_REGS : \
778      (SP_REGNO_P (REGNO) ? SP_REGS : \
779       (Z_REGNO_P (REGNO) ? Z_REGS : \
780        (H_REGNO_P (REGNO) ? H_REGS : \
781         (FAKE_REGNO_P (REGNO) ? TMP_REGS : \
782 	 (S_REGNO_P (REGNO) ? S_REGS : \
783 	  (DA_REGNO_P (REGNO) ? DA_REGS: \
784 	   (DB_REGNO_P (REGNO) ? DB_REGS: \
785             (G_REGNO_P (REGNO) ? G_REGS : ALL_REGS)))))))))))
786 
787 
788 /* Get reg_class from a letter in the machine description.  */
789 
790 extern enum reg_class m68hc11_tmp_regs_class;
791 #define REG_CLASS_FROM_LETTER(C) \
792    ((C) == 'a' ? DA_REGS : \
793     (C) == 'A' ? A_REGS : \
794     (C) == 'b' ? DB_REGS : \
795     (C) == 'B' ? X_OR_Y_REGS : \
796     (C) == 'd' ? D_REGS : \
797     (C) == 'D' ? D_OR_X_REGS : \
798     (C) == 'q' ? Q_REGS : \
799     (C) == 'h' ? H_REGS : \
800     (C) == 't' ? TMP_REGS : \
801     (C) == 'u' ? S_REGS : \
802     (C) == 'v' ? m68hc11_tmp_regs_class : \
803     (C) == 'w' ? SP_REGS : \
804     (C) == 'x' ? X_REGS : \
805     (C) == 'y' ? Y_REGS : \
806     (C) == 'z' ? Z_REGS : NO_REGS)
807 
808 #define PREFERRED_RELOAD_CLASS(X,CLASS)	preferred_reload_class(X,CLASS)
809 
810 #define SMALL_REGISTER_CLASSES 1
811 
812 /* A C expression that is nonzero if hard register number REGNO2 can be
813    considered for use as a rename register for REGNO1 */
814 
815 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
816   m68hc11_hard_regno_rename_ok ((REGNO1), (REGNO2))
817 
818 /* A C expression whose value is nonzero if pseudos that have been
819    assigned to registers of class CLASS would likely be spilled
820    because registers of CLASS are needed for spill registers.
821 
822    The default value of this macro returns 1 if CLASS has exactly one
823    register and zero otherwise.  On most machines, this default
824    should be used.  Only define this macro to some other expression
825    if pseudo allocated by `local-alloc.c' end up in memory because
826    their hard registers were needed for spill registers.  If this
827    macro returns nonzero for those classes, those pseudos will only
828    be allocated by `global.c', which knows how to reallocate the
829    pseudo to another register.  If there would not be another
830    register available for reallocation, you should not change the
831    definition of this macro since the only effect of such a
832    definition would be to slow down register allocation.  */
833 
834 #define CLASS_LIKELY_SPILLED_P(CLASS)					\
835   (((CLASS) == D_REGS)							\
836    || ((CLASS) == X_REGS)                                               \
837    || ((CLASS) == Y_REGS)                                               \
838    || ((CLASS) == A_REGS)                                               \
839    || ((CLASS) == SP_REGS)                                              \
840    || ((CLASS) == D_OR_X_REGS)                                          \
841    || ((CLASS) == D_OR_Y_REGS)                                          \
842    || ((CLASS) == X_OR_SP_REGS)                                         \
843    || ((CLASS) == Y_OR_SP_REGS)                                         \
844    || ((CLASS) == D_OR_SP_REGS))
845 
846 /* Return the maximum number of consecutive registers needed to represent
847    mode MODE in a register of class CLASS.  */
848 #define CLASS_MAX_NREGS(CLASS, MODE)		\
849 (((CLASS) == DA_REGS || (CLASS) == DB_REGS \
850    || (CLASS) == D8_REGS || (CLASS) == Q_REGS) ? GET_MODE_SIZE (MODE) \
851  : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
852 
853 /* The letters I, J, K, L and M in a register constraint string
854    can be used to stand for particular ranges of immediate operands.
855    This macro defines what the ranges are.
856    C is the letter, and VALUE is a constant value.
857    Return 1 if VALUE is in the range specified by C.
858 
859    `K' is for 0.
860    `L' is for range -65536 to 65536
861    `M' is for values whose 16-bit low part is 0
862    'N' is for +1 or -1.
863    'O' is for 16 (for rotate using swap).
864    'P' is for range -8 to 2 (used by addhi_sp)
865 
866    'I', 'J' are not used.  */
867 
868 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
869   ((C) == 'K' ? (VALUE) == 0 : \
870    (C) == 'L' ? ((VALUE) >= -65536 && (VALUE) <= 65535) : \
871    (C) == 'M' ? ((VALUE) & 0x0ffffL) == 0 : \
872    (C) == 'N' ? ((VALUE) == 1 || (VALUE) == -1) : \
873    (C) == 'I' ? ((VALUE) >= -2 && (VALUE) <= 2) : \
874    (C) == 'O' ? (VALUE) == 16 : \
875    (C) == 'P' ? ((VALUE) <= 2 && (VALUE) >= -8) : 0)
876 
877 /* Similar, but for floating constants, and defining letters G and H.
878 
879    `G' is for 0.0.  */
880 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
881   ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
882 		 && VALUE == CONST0_RTX (GET_MODE (VALUE))) : 0)
883 
884 /* 'U' represents certain kind of memory indexed operand for 68HC12.
885    and any memory operand for 68HC11.
886    'R' represents indexed addressing mode or access to page0 for 68HC11.
887    For 68HC12, it represents any memory operand.  */
888 #define EXTRA_CONSTRAINT(OP, C)                         \
889 ((C) == 'U' ? m68hc11_small_indexed_indirect_p (OP, GET_MODE (OP)) \
890  : (C) == 'Q' ? m68hc11_symbolic_p (OP, GET_MODE (OP)) \
891  : (C) == 'R' ? m68hc11_indirect_p (OP, GET_MODE (OP)) \
892  : (C) == 'S' ? (memory_operand (OP, GET_MODE (OP)) \
893 		 && non_push_operand (OP, GET_MODE (OP))) : 0)
894 
895 
896 /* Stack layout; function entry, exit and calling.  */
897 
898 /* Define this if pushing a word on the stack
899    makes the stack pointer a smaller address.  */
900 #define STACK_GROWS_DOWNWARD
901 
902 /* Define this if the nominal address of the stack frame
903    is at the high-address end of the local variables;
904    that is, each additional local variable allocated
905    goes at a more negative offset in the frame.
906 
907    Don't define for 68HC11, the frame pointer is the bottom
908    of local variables.  */
909 /* #define FRAME_GROWS_DOWNWARD */
910 
911 /* Define this if successive arguments to a function occupy decreasing
912    addresses in the stack.  */
913 /* #define ARGS_GROW_DOWNWARD */
914 
915 /* Offset within stack frame to start allocating local variables at.
916    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
917    first local allocated.  Otherwise, it is the offset to the BEGINNING
918    of the first local allocated.  */
919 #define STARTING_FRAME_OFFSET		0
920 
921 /* Offset of first parameter from the argument pointer register value.  */
922 
923 #define FIRST_PARM_OFFSET(FNDECL)	2
924 
925 /* After the prologue, RA is at 0(AP) in the current frame.  */
926 #define RETURN_ADDR_RTX(COUNT, FRAME)					\
927   ((COUNT) == 0								\
928    ? gen_rtx_MEM (Pmode, arg_pointer_rtx)                               \
929    : 0)
930 
931 /* Before the prologue, the top of the frame is at 2(sp).  */
932 #define INCOMING_FRAME_SP_OFFSET        2
933 
934 /* Define this if functions should assume that stack space has been
935    allocated for arguments even when their values are passed in
936    registers.
937 
938    The value of this macro is the size, in bytes, of the area reserved for
939    arguments passed in registers.
940 
941    This space can either be allocated by the caller or be a part of the
942    machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
943    says which.  */
944 /* #define REG_PARM_STACK_SPACE(FNDECL)	2 */
945 
946 /* Define this macro if REG_PARM_STACK_SPACE is defined but stack
947    parameters don't skip the area specified by REG_PARM_STACK_SPACE.
948    Normally, when a parameter is not passed in registers, it is placed on
949    the stack beyond the REG_PARM_STACK_SPACE area.  Defining this macro
950    suppresses this behavior and causes the parameter to be passed on the
951    stack in its natural location.  */
952 /* #define STACK_PARMS_IN_REG_PARM_AREA */
953 
954 /* Register to use for pushing function arguments.  */
955 #define STACK_POINTER_REGNUM		HARD_SP_REGNUM
956 
957 /* Base register for access to local variables of the function.  */
958 #define FRAME_POINTER_REGNUM		SOFT_FP_REGNUM
959 
960 #define HARD_FRAME_POINTER_REGNUM	HARD_FP_REGNUM
961 
962 /* Base register for access to arguments of the function.  */
963 #define ARG_POINTER_REGNUM		SOFT_AP_REGNUM
964 
965 /* Register in which static-chain is passed to a function.  */
966 #define STATIC_CHAIN_REGNUM	        SOFT_Z_REGNUM
967 
968 
969 /* Definitions for register eliminations.
970 
971    This is an array of structures.  Each structure initializes one pair
972    of eliminable registers.  The "from" register number is given first,
973    followed by "to".  Eliminations of the same "from" register are listed
974    in order of preference.
975 
976    We have two registers that are eliminated on the 6811. The pseudo arg
977    pointer and pseudo frame pointer registers can always be eliminated;
978    they are replaced with either the stack or the real frame pointer.  */
979 
980 #define ELIMINABLE_REGS					\
981 {{ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},		\
982  {ARG_POINTER_REGNUM,   HARD_FRAME_POINTER_REGNUM},	\
983  {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
984  {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
985 
986 /* Value should be nonzero if functions must have frame pointers.
987    Zero means the frame pointer need not be set up (and parms may be
988    accessed via the stack pointer) in functions that seem suitable.
989    This is computed in `reload', in reload1.c.  */
990 #define FRAME_POINTER_REQUIRED	0
991 
992 /* Given FROM and TO register numbers, say whether this elimination is allowed.
993    Frame pointer elimination is automatically handled.
994 
995    All other eliminations are valid.  */
996 
997 #define CAN_ELIMINATE(FROM, TO)					\
998  ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM	\
999   ? ! frame_pointer_needed					\
1000   : 1)
1001 
1002 
1003 /* Define the offset between two registers, one to be eliminated, and the other
1004    its replacement, at the start of a routine.  */
1005 
1006 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1007     { OFFSET = m68hc11_initial_elimination_offset (FROM, TO); }
1008 
1009 
1010 /* Passing Function Arguments on the Stack.  */
1011 
1012 /* When a prototype says `char' or `short', really pass an `int'.  */
1013 /* #define PROMOTE_PROTOTYPES */
1014 
1015 /* If we generate an insn to push BYTES bytes, this says how many the
1016    stack pointer really advances by. No rounding or alignment needed
1017    for MC6811.  */
1018 #define PUSH_ROUNDING(BYTES)	(BYTES)
1019 
1020 /* Value is 1 if returning from a function call automatically pops the
1021    arguments described by the number-of-args field in the call. FUNTYPE is
1022    the data type of the function (as a tree), or for a library call it is
1023    an identifier node for the subroutine name.
1024 
1025    The standard MC6811 call, with arg count word, includes popping the
1026    args as part of the call template.  */
1027 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE)	0
1028 
1029 /* Nonzero if type TYPE should be returned in memory.
1030    Blocks and data types largers than 4 bytes cannot be returned
1031    in the register (D + X = 4).  */
1032 #define RETURN_IN_MEMORY(TYPE)				\
1033     ((TYPE_MODE (TYPE) == BLKmode)			\
1034      ? (int_size_in_bytes (TYPE) > 4)			\
1035      : (GET_MODE_SIZE (TYPE_MODE (TYPE)) > 4))
1036 
1037 
1038 /* Passing Arguments in Registers.  */
1039 
1040 /* Define a data type for recording info about an argument list
1041    during the scan of that argument list.  This data type should
1042    hold all necessary information about the function itself
1043    and about the args processed so far, enough to enable macros
1044    such as FUNCTION_ARG to determine where the next arg should go.  */
1045 
1046 typedef struct m68hc11_args
1047 {
1048   int words;
1049   int nregs;
1050 } CUMULATIVE_ARGS;
1051 
1052 /* A C expression that indicates when an argument must be passed by reference.
1053    If nonzero for an argument, a copy of that argument is made in memory and a
1054    pointer to the argument is passed instead of the argument itself.
1055    The pointer is passed in whatever way is appropriate for passing a pointer
1056    to that type.
1057 
1058    64-bit numbers are passed by reference.  */
1059 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1060     m68hc11_function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED))
1061 
1062 
1063 /* If defined, a C expression which determines whether, and in which direction,
1064    to pad out an argument with extra space.  The value should be of type
1065    `enum direction': either `upward' to pad above the argument,
1066    `downward' to pad below, or `none' to inhibit padding.
1067 
1068    Structures are stored left shifted in their argument slot.  */
1069 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1070   m68hc11_function_arg_padding ((MODE), (TYPE))
1071 
1072 #undef PAD_VARARGS_DOWN
1073 #define PAD_VARARGS_DOWN \
1074   (m68hc11_function_arg_padding (TYPE_MODE (type), type) == downward)
1075 
1076 /* A C expression that indicates when it is the called function's
1077    responsibility to make a copy of arguments passed by invisible
1078    reference.  Normally, the caller makes a copy and passes the
1079    address of the copy to the routine being called.  When
1080    FUNCTION_ARG_CALLEE_COPIES is defined and is nonzero, the caller
1081    does not make a copy.  Instead, it passes a pointer to the "live"
1082    value.  The called function must not modify this value.  If it can
1083    be determined that the value won't be modified, it need not make a
1084    copy; otherwise a copy must be made.  */
1085 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED)		\
1086     ((NAMED) && FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED))
1087 
1088 /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a
1089    function whose data type is FNTYPE. For a library call, FNTYPE is 0.  */
1090 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1091     (m68hc11_init_cumulative_args (&CUM, FNTYPE, LIBNAME))
1092 
1093 /* Update the data in CUM to advance over an argument of mode MODE and data
1094    type TYPE. (TYPE is null for libcalls where that information may not be
1095    available.) */
1096 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1097     (m68hc11_function_arg_advance (&CUM, MODE, TYPE, NAMED))
1098 
1099 /* Define where to put the arguments to a function.
1100    Value is zero to push the argument on the stack,
1101    or a hard register in which to store the argument.
1102 
1103    MODE is the argument's machine mode.
1104    TYPE is the data type of the argument (as a tree).
1105     This is null for libcalls where that information may
1106     not be available.
1107    CUM is a variable of type CUMULATIVE_ARGS which gives info about
1108     the preceding args and about the function being called.
1109    NAMED is nonzero if this argument is a named parameter
1110     (otherwise it is an extra parameter matching an ellipsis).  */
1111 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1112   (m68hc11_function_arg (&CUM, MODE, TYPE, NAMED))
1113 
1114 /* Define the profitability of saving registers around calls.
1115 
1116    Disable this because the saving instructions generated by
1117    caller-save need a reload and the way it is implemented,
1118    it forbids all spill registers at that point.  Enabling
1119    caller saving results in spill failure.  */
1120 #define CALLER_SAVE_PROFITABLE(REFS,CALLS) 0
1121 
1122 /* For an arg passed partly in registers and partly in memory,
1123    this is the number of registers used.
1124    For args passed entirely in registers or entirely in memory, zero.
1125 
1126    Passing an arg partly in register and memory does not work at all.
1127    Don't do that.  */
1128 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) (0)
1129 
1130 /* 1 if N is a possible register number for function argument passing.
1131    D is for 16-bit values, X is for 32-bit (X+D).  */
1132 #define FUNCTION_ARG_REGNO_P(N)	\
1133      (((N) == HARD_D_REGNUM) || ((N) == HARD_X_REGNUM))
1134 
1135 /* All return values are in the D or X+D registers:
1136     - 8 and 16-bit values are returned in D.
1137       BLKmode are passed in D as pointer.
1138     - 32-bit values are returned in X + D.
1139       The high part is passed in X and the low part in D.
1140       For GCC, the register number must be HARD_X_REGNUM.  */
1141 #define FUNCTION_VALUE(VALTYPE, FUNC)					\
1142      gen_rtx (REG, TYPE_MODE (VALTYPE),					\
1143               ((TYPE_MODE (VALTYPE) == BLKmode				\
1144 	        || GET_MODE_SIZE (TYPE_MODE (VALTYPE)) <= 2)		\
1145 		   ? HARD_D_REGNUM : HARD_X_REGNUM))
1146 
1147 #define LIBCALL_VALUE(MODE)						\
1148      gen_rtx (REG, MODE,						\
1149               (((MODE) == BLKmode || GET_MODE_SIZE (MODE) <= 2)		\
1150                    ? HARD_D_REGNUM : HARD_X_REGNUM))
1151 
1152 /* 1 if N is a possible register number for a function value.  */
1153 #define FUNCTION_VALUE_REGNO_P(N) \
1154      ((N) == HARD_D_REGNUM || (N) == HARD_X_REGNUM)
1155 
1156 /* Register in which address to store a structure value is passed to a
1157    function.  */
1158 #define STRUCT_VALUE_REGNUM	HARD_D_REGNUM
1159 
1160 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1161    the stack pointer does not matter.  The value is tested only in functions
1162    that have frame pointers. No definition is equivalent to always zero.  */
1163 #define EXIT_IGNORE_STACK	0
1164 
1165 
1166 /* Generating Code for Profiling.  */
1167 
1168 /* Output assembler code to FILE to increment profiler label # LABELNO
1169    for profiling a function entry.  */
1170 #define FUNCTION_PROFILER(FILE, LABELNO)		\
1171     fprintf (FILE, "\tldy\t.LP%d\n\tjsr mcount\n", (LABELNO))
1172 /* Length in units of the trampoline for entering a nested function.  */
1173 #define TRAMPOLINE_SIZE		(TARGET_M6811 ? 11 : 9)
1174 
1175 /* A C statement to initialize the variable parts of a trampoline.
1176    ADDR is an RTX for the address of the trampoline; FNADDR is an
1177    RTX for the address of the nested function; STATIC_CHAIN is an
1178    RTX for the static chain value that should be passed to the
1179    function when it is called.  */
1180 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1181   m68hc11_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1182 
1183 
1184 /* Addressing modes, and classification of registers for them.  */
1185 
1186 /* The 68HC12 has all the post/pre increment/decrement modes.  */
1187 #define HAVE_POST_INCREMENT (TARGET_M6812 && TARGET_AUTO_INC_DEC)
1188 #define HAVE_PRE_INCREMENT  (TARGET_M6812 && TARGET_AUTO_INC_DEC)
1189 #define HAVE_POST_DECREMENT (TARGET_M6812 && TARGET_AUTO_INC_DEC)
1190 #define HAVE_PRE_DECREMENT  (TARGET_M6812 && TARGET_AUTO_INC_DEC)
1191 
1192 /* The class value for base registers.  This depends on the target:
1193    A_REGS for 68HC11 and A_OR_SP_REGS for 68HC12.  The class value
1194    is stored at init time.  */
1195 extern enum reg_class m68hc11_base_reg_class;
1196 #define BASE_REG_CLASS		m68hc11_base_reg_class
1197 
1198 /* The class value for index registers.  This is NO_REGS for 68HC11.  */
1199 
1200 extern enum reg_class m68hc11_index_reg_class;
1201 #define INDEX_REG_CLASS	        m68hc11_index_reg_class
1202 
1203 /* These assume that REGNO is a hard or pseudo reg number. They give nonzero
1204    only if REGNO is a hard reg of the suitable class or a pseudo reg currently
1205    allocated to a suitable hard reg.  Since they use reg_renumber, they are
1206    safe only once reg_renumber has been allocated, which happens in
1207    local-alloc.c.  */
1208 
1209 
1210 /* Internal macro, return 1 if REGNO is a valid base register.  */
1211 #define REG_VALID_P(REGNO) (1)	/* ? */
1212 
1213 extern unsigned char m68hc11_reg_valid_for_base[FIRST_PSEUDO_REGISTER];
1214 #define REG_VALID_FOR_BASE_P(REGNO) \
1215     (REG_VALID_P (REGNO) && (REGNO) < FIRST_PSEUDO_REGISTER \
1216      && m68hc11_reg_valid_for_base[REGNO])
1217 
1218 /* Internal macro, return 1 if REGNO is a valid index register.  */
1219 extern unsigned char m68hc11_reg_valid_for_index[FIRST_PSEUDO_REGISTER];
1220 #define REG_VALID_FOR_INDEX_P(REGNO) \
1221     (REG_VALID_P (REGNO) >= 0 && (REGNO) < FIRST_PSEUDO_REGISTER \
1222      && m68hc11_reg_valid_for_index[REGNO])
1223 
1224 /* Internal macro, the nonstrict definition for REGNO_OK_FOR_BASE_P.  */
1225 #define REGNO_OK_FOR_BASE_NONSTRICT_P(REGNO) \
1226     ((REGNO) >= FIRST_PSEUDO_REGISTER \
1227      || REG_VALID_FOR_BASE_P (REGNO) \
1228      || (REGNO) == FRAME_POINTER_REGNUM \
1229      || (REGNO) == HARD_FRAME_POINTER_REGNUM \
1230      || (REGNO) == ARG_POINTER_REGNUM \
1231      || (reg_renumber && REG_VALID_FOR_BASE_P (reg_renumber[REGNO])))
1232 
1233 /* Internal macro, the nonstrict definition for REGNO_OK_FOR_INDEX_P.  */
1234 #define REGNO_OK_FOR_INDEX_NONSTRICT_P(REGNO) \
1235     (TARGET_M6812 \
1236      && ((REGNO) >= FIRST_PSEUDO_REGISTER \
1237          || REG_VALID_FOR_INDEX_P (REGNO) \
1238          || (reg_renumber && REG_VALID_FOR_INDEX_P (reg_renumber[REGNO]))))
1239 
1240 /* Internal macro, the strict definition for REGNO_OK_FOR_BASE_P.  */
1241 #define REGNO_OK_FOR_BASE_STRICT_P(REGNO) \
1242     ((REGNO) < FIRST_PSEUDO_REGISTER ? REG_VALID_FOR_BASE_P (REGNO) \
1243      : (reg_renumber && REG_VALID_FOR_BASE_P (reg_renumber[REGNO])))
1244 
1245 /* Internal macro, the strict definition for REGNO_OK_FOR_INDEX_P.  */
1246 #define REGNO_OK_FOR_INDEX_STRICT_P(REGNO) \
1247     (TARGET_M6812 \
1248      && ((REGNO) < FIRST_PSEUDO_REGISTER ? REG_VALID_FOR_INDEX_P (REGNO) \
1249          : (reg_renumber && REG_VALID_FOR_INDEX_P (reg_renumber[REGNO]))))
1250 
1251 #define REGNO_OK_FOR_BASE_P2(REGNO,STRICT) \
1252     ((STRICT) ? (REGNO_OK_FOR_BASE_STRICT_P (REGNO)) \
1253               : (REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO)))
1254 
1255 #define REGNO_OK_FOR_INDEX_P2(REGNO,STRICT) \
1256     ((STRICT) ? (REGNO_OK_FOR_INDEX_STRICT_P (REGNO)) \
1257               : (REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO)))
1258 
1259 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_BASE_STRICT_P (REGNO)
1260 #define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_INDEX_STRICT_P (REGNO)
1261 
1262 #define REG_OK_FOR_BASE_STRICT_P(X)     REGNO_OK_FOR_BASE_STRICT_P (REGNO (X))
1263 #define REG_OK_FOR_BASE_NONSTRICT_P(X)  REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (X))
1264 #define REG_OK_FOR_INDEX_STRICT_P(X)    REGNO_OK_FOR_INDEX_STRICT_P (REGNO (X))
1265 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (X))
1266 
1267 /* see PUSH_POP_ADDRESS_P() below for an explanation of this.  */
1268 #define IS_STACK_PUSH(operand) \
1269     ((GET_CODE (operand) == MEM) \
1270      && (GET_CODE (XEXP (operand, 0)) == PRE_DEC) \
1271      && (SP_REG_P (XEXP (XEXP (operand, 0), 0))))
1272 
1273 #define IS_STACK_POP(operand) \
1274     ((GET_CODE (operand) == MEM) \
1275      && (GET_CODE (XEXP (operand, 0)) == POST_INC) \
1276      && (SP_REG_P (XEXP (XEXP (operand, 0), 0))))
1277 
1278 /* 1 if X is an rtx for a constant that is a valid address.  */
1279 #define CONSTANT_ADDRESS_P(X)	(CONSTANT_P (X))
1280 
1281 /* Maximum number of registers that can appear in a valid memory address */
1282 #define MAX_REGS_PER_ADDRESS	2
1283 
1284 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1285    valid memory address for an instruction. The MODE argument is the
1286    machine mode for the MEM expression that wants to use this address.  */
1287 
1288 /*--------------------------------------------------------------
1289    Valid addresses are either direct or indirect (MEM) versions
1290    of the following forms:
1291 	constant		N
1292 	register		,X
1293 	indexed			N,X
1294 --------------------------------------------------------------*/
1295 
1296 /* The range of index that is allowed by indirect addressing.  */
1297 
1298 #define VALID_MIN_OFFSET m68hc11_min_offset
1299 #define VALID_MAX_OFFSET m68hc11_max_offset
1300 
1301 /* The offset values which are allowed by the n,x and n,y addressing modes.
1302    Take into account the size of the mode because we may have to add
1303    a mode offset to access the lowest part of the data.
1304    (For example, for an SImode, the last valid offset is 252.) */
1305 #define VALID_CONSTANT_OFFSET_P(X,MODE)		\
1306 (((GET_CODE (X) == CONST_INT) &&			\
1307   ((INTVAL (X) >= VALID_MIN_OFFSET)		\
1308      && ((INTVAL (X) <= VALID_MAX_OFFSET		\
1309 		- (HOST_WIDE_INT) (GET_MODE_SIZE (MODE) + 1))))) \
1310 || (TARGET_M6812 \
1311     && ((GET_CODE (X) == SYMBOL_REF) \
1312         || GET_CODE (X) == LABEL_REF \
1313         || GET_CODE (X) == CONST)))
1314 
1315 /* This is included to allow stack push/pop operations. Special hacks in the
1316    md and m6811.c files exist to support this.  */
1317 #define PUSH_POP_ADDRESS_P(X) \
1318   (((GET_CODE (X) == PRE_DEC) || (GET_CODE (X) == POST_INC)) \
1319 	&& SP_REG_P (XEXP (X, 0)))
1320 
1321 /* Go to ADDR if X is a valid address.  */
1322 #ifndef REG_OK_STRICT
1323 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1324 { \
1325   if (m68hc11_go_if_legitimate_address ((X), (MODE), 0)) goto ADDR; \
1326 }
1327 #else
1328 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)		 \
1329 {							 \
1330   if (m68hc11_go_if_legitimate_address ((X), (MODE), 1)) goto ADDR; \
1331 }
1332 #endif
1333 
1334 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check its
1335    validity for a certain class.  We have two alternate definitions for each
1336    of them.  The usual definition accepts all pseudo regs; the other rejects
1337    them unless they have been allocated suitable hard regs.  The symbol
1338    REG_OK_STRICT causes the latter definition to be used.
1339 
1340    Most source files want to accept pseudo regs in the hope that they will
1341    get allocated to the class that the insn wants them to be in. Source files
1342    for reload pass need to be strict. After reload, it makes no difference,
1343    since pseudo regs have been eliminated by then.  */
1344 
1345 #ifndef REG_OK_STRICT
1346 /* Nonzero if X is a hard reg that can be used as a base reg.  */
1347 #define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P(X)
1348 
1349 /* Nonzero if X is a hard reg that can be used as an index.  */
1350 #define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P(X)
1351 #else
1352 #define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P(X)
1353 #define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P(X)
1354 #endif
1355 
1356 
1357 /* Try machine-dependent ways of modifying an illegitimate address
1358    to be legitimate.  If we find one, return the new, valid address.
1359    This macro is used in only one place: `memory_address' in explow.c.
1360 
1361    OLDX is the address as it was before break_out_memory_refs was called.
1362    In some cases it is useful to look at this to decide what needs to be done.
1363 
1364    MODE and WIN are passed so that this macro can use
1365    GO_IF_LEGITIMATE_ADDRESS.
1366 
1367    It is always safe for this macro to do nothing.
1368    It exists to recognize opportunities to optimize the output.  */
1369 
1370 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)                     \
1371 { rtx operand = (X);                                            \
1372   if (m68hc11_legitimize_address (&operand, (OLDX), (MODE)))	\
1373     {                                                           \
1374       (X) = operand;                                            \
1375       GO_IF_LEGITIMATE_ADDRESS (MODE,X,WIN);                    \
1376     }                                                           \
1377 }
1378 
1379 /* Go to LABEL if ADDR (a legitimate address expression)
1380    has an effect that depends on the machine mode it is used for.  */
1381 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)  \
1382 {									\
1383   if (GET_CODE (ADDR) == PRE_DEC || GET_CODE (ADDR) == POST_DEC		\
1384       || GET_CODE (ADDR) == PRE_INC || GET_CODE (ADDR) == POST_INC)	\
1385     goto LABEL;								\
1386 }
1387 
1388 /* Nonzero if the constant value X is a legitimate general operand.
1389    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1390 
1391 #define LEGITIMATE_CONSTANT_P(X)	1
1392 
1393 
1394 /* Tell final.c how to eliminate redundant test instructions.  */
1395 
1396 #define NOTICE_UPDATE_CC(EXP, INSN) \
1397 	m68hc11_notice_update_cc ((EXP), (INSN))
1398 
1399 /* Move costs between classes of registers */
1400 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)	\
1401     (m68hc11_register_move_cost (MODE, CLASS1, CLASS2))
1402 
1403 /* Move cost between register and memory.
1404     - Move to a 16-bit register is reasonable,
1405     - Move to a soft register can be expensive.  */
1406 #define MEMORY_MOVE_COST(MODE,CLASS,IN)		\
1407     m68hc11_memory_move_cost ((MODE),(CLASS),(IN))
1408 
1409 /* A C expression for the cost of a branch instruction.  A value of 1
1410    is the default; other values are interpreted relative to that.
1411 
1412    Pretend branches are cheap because GCC generates sub-optimal code
1413    for the default value.  */
1414 #define BRANCH_COST 0
1415 
1416 /* Nonzero if access to memory by bytes is slow and undesirable.  */
1417 #define SLOW_BYTE_ACCESS	0
1418 
1419 /* It is as good to call a constant function address as to call an address
1420    kept in a register.  */
1421 #define NO_FUNCTION_CSE
1422 
1423 /* Try a machine-dependent way of reloading an illegitimate address
1424    operand.  If we find one, push the reload and jump to WIN.  This
1425    macro is used in only one place: `find_reloads_address' in reload.c.
1426 
1427    For M68HC11, we handle large displacements of a base register
1428    by splitting the addend across an addhi3 insn.
1429 
1430    For M68HC12, the 64K offset range is available.
1431    */
1432 
1433 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)     \
1434 do {                                                                    \
1435   /* We must recognize output that we have already generated ourselves.  */ \
1436   if (GET_CODE (X) == PLUS						\
1437       && GET_CODE (XEXP (X, 0)) == PLUS					\
1438       && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG			\
1439       && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT			\
1440       && GET_CODE (XEXP (X, 1)) == CONST_INT)				\
1441     {									\
1442       push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL,           \
1443                    BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0,        \
1444                    OPNUM, TYPE);                                        \
1445       goto WIN;                                                         \
1446     }									\
1447   if (GET_CODE (X) == PLUS                                              \
1448       && GET_CODE (XEXP (X, 0)) == REG                                  \
1449       && GET_CODE (XEXP (X, 1)) == CONST_INT				\
1450       && !VALID_CONSTANT_OFFSET_P (XEXP (X, 1), MODE))                  \
1451     {                                                                   \
1452       HOST_WIDE_INT val = INTVAL (XEXP (X, 1));                         \
1453       HOST_WIDE_INT low, high;                                          \
1454       high = val & (~0x0FF);                                            \
1455       low  = val & 0x00FF;                                              \
1456       if (low >= 256-15) { high += 16; low -= 16; }                     \
1457       /* Reload the high part into a base reg; leave the low part       \
1458          in the mem directly.  */                                       \
1459                                                                         \
1460       X = gen_rtx_PLUS (Pmode,						\
1461                         gen_rtx_PLUS (Pmode, XEXP (X, 0),		\
1462                                       GEN_INT (high)),                  \
1463                         GEN_INT (low));                                 \
1464                                                                         \
1465       push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL,           \
1466                    BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0,        \
1467                    OPNUM, TYPE);                                        \
1468       goto WIN;                                                         \
1469     }                                                                   \
1470 } while (0)
1471 
1472 
1473 /* Defining the Output Assembler Language.  */
1474 
1475 /* A default list of other sections which we might be "in" at any given
1476    time.  For targets that use additional sections (e.g. .tdesc) you
1477    should override this definition in the target-specific file which
1478    includes this file.  */
1479 
1480 /* Output before read-only data.  */
1481 #define TEXT_SECTION_ASM_OP	("\t.sect\t.text")
1482 
1483 /* Output before writable data.  */
1484 #define DATA_SECTION_ASM_OP	("\t.sect\t.data")
1485 
1486 /* Output before uninitialized data.  */
1487 #define BSS_SECTION_ASM_OP 	("\t.sect\t.bss")
1488 
1489 /* Define the pseudo-ops used to switch to the .ctors and .dtors sections.
1490 
1491    Same as config/elfos.h but don't mark these section SHF_WRITE since
1492    there is no shared library problem.  */
1493 #undef CTORS_SECTION_ASM_OP
1494 #define CTORS_SECTION_ASM_OP	"\t.section\t.ctors,\"a\""
1495 
1496 #undef DTORS_SECTION_ASM_OP
1497 #define DTORS_SECTION_ASM_OP	"\t.section\t.dtors,\"a\""
1498 
1499 #define TARGET_ASM_CONSTRUCTOR  m68hc11_asm_out_constructor
1500 #define TARGET_ASM_DESTRUCTOR   m68hc11_asm_out_destructor
1501 
1502 /* Comment character */
1503 #define ASM_COMMENT_START	";"
1504 
1505 /* Output to assembler file text saying following lines
1506    may contain character constants, extra white space, comments, etc.  */
1507 #define ASM_APP_ON 		"; Begin inline assembler code\n#APP\n"
1508 
1509 /* Output to assembler file text saying following lines
1510    no longer contain unusual constructs.  */
1511 #define ASM_APP_OFF 		"; End of inline assembler code\n#NO_APP\n"
1512 
1513 /* Write the extra assembler code needed to declare a function properly.
1514    Some svr4 assemblers need to also have something extra said about the
1515    function's return value.  We allow for that here.
1516 
1517    For 68HC12 we mark functions that return with 'rtc'.  The linker
1518    will ensure that a 'call' is really made (instead of 'jsr').
1519    The debugger needs this information to correctly compute the stack frame.
1520 
1521    For 68HC11/68HC12 we also mark interrupt handlers for gdb to
1522    compute the correct stack frame.  */
1523 
1524 #undef ASM_DECLARE_FUNCTION_NAME
1525 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL)	\
1526   do							\
1527     {							\
1528       fprintf (FILE, "%s", TYPE_ASM_OP);		\
1529       assemble_name (FILE, NAME);			\
1530       putc (',', FILE);					\
1531       fprintf (FILE, TYPE_OPERAND_FMT, "function");	\
1532       putc ('\n', FILE);				\
1533       							\
1534       if (current_function_far)                         \
1535         {						\
1536           fprintf (FILE, "\t.far\t");			\
1537 	  assemble_name (FILE, NAME);			\
1538 	  putc ('\n', FILE);				\
1539 	}						\
1540       else if (current_function_interrupt		\
1541 	       || current_function_trap)		\
1542         {						\
1543 	  fprintf (FILE, "\t.interrupt\t");		\
1544 	  assemble_name (FILE, NAME);			\
1545 	  putc ('\n', FILE);				\
1546 	}						\
1547       ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL));	\
1548       ASM_OUTPUT_LABEL(FILE, NAME);			\
1549     }							\
1550   while (0)
1551 
1552 /* Output #ident as a .ident.  */
1553 
1554 /* output external reference */
1555 #define ASM_OUTPUT_EXTERNAL(FILE,DECL,NAME) \
1556   {fputs ("\t; extern\t", FILE); \
1557   assemble_name (FILE, NAME); \
1558   fputs ("\n", FILE);}
1559 
1560 /* How to refer to registers in assembler output.  This sequence is indexed
1561    by compiler's hard-register-number (see above).  */
1562 #define REGISTER_NAMES						\
1563 { "x", "d", "y", "sp", "pc", "a", "b", "ccr", "z",		\
1564   "*_.frame", "*_.tmp", "*_.z", "*_.xy", "*fake clobber",	\
1565   SOFT_REG_NAMES, "*sframe", "*ap"}
1566 
1567 /* Print an instruction operand X on file FILE. CODE is the code from the
1568    %-spec for printing this operand. If `%z3' was used to print operand
1569    3, then CODE is 'z'.  */
1570 
1571 #define PRINT_OPERAND(FILE, X, CODE) \
1572   print_operand (FILE, X, CODE)
1573 
1574 /* Print a memory operand whose address is X, on file FILE.  */
1575 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1576   print_operand_address (FILE, ADDR)
1577 
1578 /* This is how to output an insn to push/pop a register on the stack.
1579    It need not be very fast code.
1580 
1581    Don't define because we don't know how to handle that with
1582    the STATIC_CHAIN_REGNUM (soft register).  Saving the static
1583    chain must be made inside FUNCTION_PROFILER.  */
1584 
1585 #undef ASM_OUTPUT_REG_PUSH
1586 #undef ASM_OUTPUT_REG_POP
1587 
1588 /* This is how to output an element of a case-vector that is relative.  */
1589 
1590 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1591   fprintf (FILE, "\t%s\tL%d-L%d\n", integer_asm_op (2, TRUE), VALUE, REL)
1592 
1593 /* This is how to output an element of a case-vector that is absolute.  */
1594 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1595   fprintf (FILE, "\t%s\t.L%d\n", integer_asm_op (2, TRUE), VALUE)
1596 
1597 /* This is how to output an assembler line that says to advance the
1598    location counter to a multiple of 2**LOG bytes.  */
1599 #define ASM_OUTPUT_ALIGN(FILE,LOG)			\
1600   do {                                                  \
1601       if ((LOG) > 1)                                    \
1602           fprintf ((FILE), "%s\n", ALIGN_ASM_OP); \
1603   } while (0)
1604 
1605 
1606 /* Assembler Commands for Exception Regions.  */
1607 
1608 /* Default values provided by GCC should be ok. Assuming that DWARF-2
1609    frame unwind info is ok for this platform.  */
1610 
1611 #undef PREFERRED_DEBUGGING_TYPE
1612 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1613 
1614 /* For the support of memory banks we need addresses that indicate
1615    the page number.  */
1616 #define DWARF2_ADDR_SIZE 4
1617 
1618 /* SCz 2003-07-08: Don't use as dwarf2 .file/.loc directives because
1619    the linker is doing relaxation and it does not adjust the debug_line
1620    sections when it shrinks the code.  This results in invalid addresses
1621    when debugging.  This does not bless too much the HC11/HC12 as most
1622    applications are embedded and small, hence a reasonable debug info.
1623    This problem is known for binutils 2.13, 2.14 and mainline.   */
1624 #undef HAVE_AS_DWARF2_DEBUG_LINE
1625 
1626 /* The prefix for local labels.  You should be able to define this as
1627    an empty string, or any arbitrary string (such as ".", ".L%", etc)
1628    without having to make any other changes to account for the specific
1629    definition.  Note it is a string literal, not interpreted by printf
1630    and friends.  */
1631 #define LOCAL_LABEL_PREFIX "."
1632 
1633 /* The prefix for immediate operands.  */
1634 #define IMMEDIATE_PREFIX "#"
1635 #define GLOBAL_ASM_OP   "\t.globl\t"
1636 
1637 
1638 /* Miscellaneous Parameters.  */
1639 
1640 /* Define the codes that are matched by predicates in m68hc11.c.  */
1641 #define PREDICATE_CODES \
1642 {"stack_register_operand",   {SUBREG, REG}},				\
1643 {"d_register_operand",       {SUBREG, REG}},				\
1644 {"hard_addr_reg_operand",    {SUBREG, REG}},				\
1645 {"hard_reg_operand",         {SUBREG, REG}},				\
1646 {"m68hc11_logical_operator", {AND, IOR, XOR}},				\
1647 {"m68hc11_arith_operator",   {AND, IOR, XOR, PLUS, MINUS,		\
1648 			      ASHIFT, ASHIFTRT, LSHIFTRT,		\
1649 			      ROTATE, ROTATERT }},			\
1650 {"m68hc11_non_shift_operator", {AND, IOR, XOR, PLUS, MINUS}},		\
1651 {"m68hc11_unary_operator",   {NEG, NOT, SIGN_EXTEND, ZERO_EXTEND}},	\
1652 {"m68hc11_shift_operator",   {ASHIFT, ASHIFTRT, LSHIFTRT, ROTATE, ROTATERT}},\
1653 {"m68hc11_eq_compare_operator", {EQ, NE}},                              \
1654 {"non_push_operand",         {SUBREG, REG, MEM}},			\
1655 {"splitable_operand",        {SUBREG, REG, MEM}},			\
1656 {"reg_or_some_mem_operand",  {SUBREG, REG, MEM}},			\
1657 {"tst_operand",              {SUBREG, REG, MEM}},			\
1658 {"cmp_operand",              {SUBREG, REG, MEM, SYMBOL_REF, LABEL_REF,	\
1659 			     CONST_INT, CONST_DOUBLE}},
1660 
1661 /* Specify the machine mode that this machine uses
1662    for the index in the tablejump instruction.  */
1663 #define CASE_VECTOR_MODE	Pmode
1664 
1665 /* This flag, if defined, says the same insns that convert to a signed fixnum
1666    also convert validly to an unsigned one.  */
1667 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1668 
1669 /* Max number of bytes we can move from memory to memory in one
1670    reasonably fast instruction.  */
1671 #define MOVE_MAX 		2
1672 
1673 /* MOVE_RATIO is the number of move instructions that is better than a
1674    block move.  Make this small on 6811, since the code size grows very
1675    large with each move.  */
1676 #define MOVE_RATIO		3
1677 
1678 /* Define if shifts truncate the shift count which implies one can omit
1679    a sign-extension or zero-extension of a shift count.  */
1680 #define SHIFT_COUNT_TRUNCATED	1
1681 
1682 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1683    is done just by pretending it is already truncated.  */
1684 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC)	1
1685 
1686 /* Specify the machine mode that pointers have. After generation of rtl, the
1687    compiler makes no further distinction between pointers and any other
1688    objects of this machine mode.  */
1689 #define Pmode			HImode
1690 
1691 /* A function address in a call instruction is a byte address (for indexing
1692    purposes) so give the MEM rtx a byte's mode.  */
1693 #define FUNCTION_MODE		QImode
1694 
1695 extern int debug_m6811;
1696 extern int z_replacement_completed;
1697 extern int current_function_interrupt;
1698 extern int current_function_trap;
1699 extern int current_function_far;
1700 
1701 extern GTY(()) rtx m68hc11_compare_op0;
1702 extern GTY(()) rtx m68hc11_compare_op1;
1703 extern GTY(()) rtx m68hc11_soft_tmp_reg;
1704 extern GTY(()) rtx ix_reg;
1705 extern GTY(()) rtx iy_reg;
1706 extern GTY(()) rtx d_reg;
1707