1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                               L A Y O U T                                --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 2001-2003 Free Software Foundation, Inc.          --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT;  see file COPYING.  If not, write --
19-- to  the Free Software Foundation,  59 Temple Place - Suite 330,  Boston, --
20-- MA 02111-1307, USA.                                                      --
21--                                                                          --
22-- GNAT was originally developed  by the GNAT team at  New York University. --
23-- Extensive contributions were provided by Ada Core Technologies Inc.      --
24--                                                                          --
25------------------------------------------------------------------------------
26
27with Atree;    use Atree;
28with Checks;   use Checks;
29with Debug;    use Debug;
30with Einfo;    use Einfo;
31with Errout;   use Errout;
32with Exp_Ch3;  use Exp_Ch3;
33with Exp_Util; use Exp_Util;
34with Nlists;   use Nlists;
35with Nmake;    use Nmake;
36with Opt;      use Opt;
37with Repinfo;  use Repinfo;
38with Sem;      use Sem;
39with Sem_Ch13; use Sem_Ch13;
40with Sem_Eval; use Sem_Eval;
41with Sem_Util; use Sem_Util;
42with Sinfo;    use Sinfo;
43with Snames;   use Snames;
44with Stand;    use Stand;
45with Targparm; use Targparm;
46with Tbuild;   use Tbuild;
47with Ttypes;   use Ttypes;
48with Uintp;    use Uintp;
49
50package body Layout is
51
52   ------------------------
53   -- Local Declarations --
54   ------------------------
55
56   SSU : constant Int := Ttypes.System_Storage_Unit;
57   --  Short hand for System_Storage_Unit
58
59   Vname : constant Name_Id := Name_uV;
60   --  Formal parameter name used for functions generated for size offset
61   --  values that depend on the discriminant. All such functions have the
62   --  following form:
63   --
64   --     function xxx (V : vtyp) return Unsigned is
65   --     begin
66   --        return ... expression involving V.discrim
67   --     end xxx;
68
69   -----------------------
70   -- Local Subprograms --
71   -----------------------
72
73   procedure Adjust_Esize_Alignment (E : Entity_Id);
74   --  E is the entity for a type or object. This procedure checks that the
75   --  size and alignment are compatible, and if not either gives an error
76   --  message if they cannot be adjusted or else adjusts them appropriately.
77
78   function Assoc_Add
79     (Loc        : Source_Ptr;
80      Left_Opnd  : Node_Id;
81      Right_Opnd : Node_Id)
82      return       Node_Id;
83   --  This is like Make_Op_Add except that it optimizes some cases knowing
84   --  that associative rearrangement is allowed for constant folding if one
85   --  of the operands is a compile time known value.
86
87   function Assoc_Multiply
88     (Loc        : Source_Ptr;
89      Left_Opnd  : Node_Id;
90      Right_Opnd : Node_Id)
91      return       Node_Id;
92   --  This is like Make_Op_Multiply except that it optimizes some cases
93   --  knowing that associative rearrangement is allowed for constant
94   --  folding if one of the operands is a compile time known value
95
96   function Assoc_Subtract
97     (Loc        : Source_Ptr;
98      Left_Opnd  : Node_Id;
99      Right_Opnd : Node_Id)
100      return       Node_Id;
101   --  This is like Make_Op_Subtract except that it optimizes some cases
102   --  knowing that associative rearrangement is allowed for constant
103   --  folding if one of the operands is a compile time known value
104
105   function Bits_To_SU (N : Node_Id) return Node_Id;
106   --  This is used when we cross the boundary from static sizes in bits to
107   --  dynamic sizes in storage units. If the argument N is anything other
108   --  than an integer literal, it is returned unchanged, but if it is an
109   --  integer literal, then it is taken as a size in bits, and is replaced
110   --  by the corresponding size in bytes.
111
112   function Compute_Length (Lo : Node_Id; Hi : Node_Id) return Node_Id;
113   --  Given expressions for the low bound (Lo) and the high bound (Hi),
114   --  Build an expression for the value hi-lo+1, converted to type
115   --  Standard.Unsigned. Takes care of the case where the operands
116   --  are of an enumeration type (so that the subtraction cannot be
117   --  done directly) by applying the Pos operator to Hi/Lo first.
118
119   function Expr_From_SO_Ref
120     (Loc  : Source_Ptr;
121      D    : SO_Ref;
122      Comp : Entity_Id := Empty)
123      return Node_Id;
124   --  Given a value D from a size or offset field, return an expression
125   --  representing the value stored. If the value is known at compile time,
126   --  then an N_Integer_Literal is returned with the appropriate value. If
127   --  the value references a constant entity, then an N_Identifier node
128   --  referencing this entity is returned. If the value denotes a size
129   --  function, then returns a call node denoting the given function, with
130   --  a single actual parameter that either refers to the parameter V of
131   --  an enclosing size function (if Comp is Empty or its type doesn't match
132   --  the function's formal), or else is a selected component V.c when Comp
133   --  denotes a component c whose type matches that of the function formal.
134   --  The Loc value is used for the Sloc value of constructed notes.
135
136   function SO_Ref_From_Expr
137     (Expr      : Node_Id;
138      Ins_Type  : Entity_Id;
139      Vtype     : Entity_Id := Empty;
140      Make_Func : Boolean   := False)
141      return      Dynamic_SO_Ref;
142   --  This routine is used in the case where a size/offset value is dynamic
143   --  and is represented by the expression Expr. SO_Ref_From_Expr checks if
144   --  the Expr contains a reference to the identifier V, and if so builds
145   --  a function depending on discriminants of the formal parameter V which
146   --  is of type Vtype. Otherwise, if the parameter Make_Func is True, then
147   --  Expr will be encapsulated in a parameterless function; if Make_Func is
148   --  False, then a constant entity with the value Expr is built. The result
149   --  is a Dynamic_SO_Ref to the created entity. Note that Vtype can be
150   --  omitted if Expr does not contain any reference to V, the created entity.
151   --  The declaration created is inserted in the freeze actions of Ins_Type,
152   --  which also supplies the Sloc for created nodes. This function also takes
153   --  care of making sure that the expression is properly analyzed and
154   --  resolved (which may not be the case yet if we build the expression
155   --  in this unit).
156
157   function Get_Max_Size (E : Entity_Id) return Node_Id;
158   --  E is an array type or subtype that has at least one index bound that
159   --  is the value of a record discriminant. For such an array, the function
160   --  computes an expression that yields the maximum possible size of the
161   --  array in storage units. The result is not defined for any other type,
162   --  or for arrays that do not depend on discriminants, and it is a fatal
163   --  error to call this unless Size_Depends_On_Discriminant (E) is True.
164
165   procedure Layout_Array_Type (E : Entity_Id);
166   --  Front-end layout of non-bit-packed array type or subtype
167
168   procedure Layout_Record_Type (E : Entity_Id);
169   --  Front-end layout of record type
170
171   procedure Rewrite_Integer (N : Node_Id; V : Uint);
172   --  Rewrite node N with an integer literal whose value is V. The Sloc
173   --  for the new node is taken from N, and the type of the literal is
174   --  set to a copy of the type of N on entry.
175
176   procedure Set_And_Check_Static_Size
177     (E      : Entity_Id;
178      Esiz   : SO_Ref;
179      RM_Siz : SO_Ref);
180   --  This procedure is called to check explicit given sizes (possibly
181   --  stored in the Esize and RM_Size fields of E) against computed
182   --  Object_Size (Esiz) and Value_Size (RM_Siz) values. Appropriate
183   --  errors and warnings are posted if specified sizes are inconsistent
184   --  with specified sizes. On return, the Esize and RM_Size fields of
185   --  E are set (either from previously given values, or from the newly
186   --  computed values, as appropriate).
187
188   procedure Set_Composite_Alignment (E : Entity_Id);
189   --  This procedure is called for record types and subtypes, and also for
190   --  atomic array types and subtypes. If no alignment is set, and the size
191   --  is 2 or 4 (or 8 if the word size is 8), then the alignment is set to
192   --  match the size.
193
194   ----------------------------
195   -- Adjust_Esize_Alignment --
196   ----------------------------
197
198   procedure Adjust_Esize_Alignment (E : Entity_Id) is
199      Abits     : Int;
200      Esize_Set : Boolean;
201
202   begin
203      --  Nothing to do if size unknown
204
205      if Unknown_Esize (E) then
206         return;
207      end if;
208
209      --  Determine if size is constrained by an attribute definition clause
210      --  which must be obeyed. If so, we cannot increase the size in this
211      --  routine.
212
213      --  For a type, the issue is whether an object size clause has been
214      --  set. A normal size clause constrains only the value size (RM_Size)
215
216      if Is_Type (E) then
217         Esize_Set := Has_Object_Size_Clause (E);
218
219      --  For an object, the issue is whether a size clause is present
220
221      else
222         Esize_Set := Has_Size_Clause (E);
223      end if;
224
225      --  If size is known it must be a multiple of the byte size
226
227      if Esize (E) mod SSU /= 0 then
228
229         --  If not, and size specified, then give error
230
231         if Esize_Set then
232            Error_Msg_NE
233              ("size for& not a multiple of byte size", Size_Clause (E), E);
234            return;
235
236         --  Otherwise bump up size to a byte boundary
237
238         else
239            Set_Esize (E, (Esize (E) + SSU - 1) / SSU * SSU);
240         end if;
241      end if;
242
243      --  Now we have the size set, it must be a multiple of the alignment
244      --  nothing more we can do here if the alignment is unknown here.
245
246      if Unknown_Alignment (E) then
247         return;
248      end if;
249
250      --  At this point both the Esize and Alignment are known, so we need
251      --  to make sure they are consistent.
252
253      Abits := UI_To_Int (Alignment (E)) * SSU;
254
255      if Esize (E) mod Abits = 0 then
256         return;
257      end if;
258
259      --  Here we have a situation where the Esize is not a multiple of
260      --  the alignment. We must either increase Esize or reduce the
261      --  alignment to correct this situation.
262
263      --  The case in which we can decrease the alignment is where the
264      --  alignment was not set by an alignment clause, and the type in
265      --  question is a discrete type, where it is definitely safe to
266      --  reduce the alignment. For example:
267
268      --    t : integer range 1 .. 2;
269      --    for t'size use 8;
270
271      --  In this situation, the initial alignment of t is 4, copied from
272      --  the Integer base type, but it is safe to reduce it to 1 at this
273      --  stage, since we will only be loading a single byte.
274
275      if Is_Discrete_Type (Etype (E))
276        and then not Has_Alignment_Clause (E)
277      then
278         loop
279            Abits := Abits / 2;
280            exit when Esize (E) mod Abits = 0;
281         end loop;
282
283         Init_Alignment (E, Abits / SSU);
284         return;
285      end if;
286
287      --  Now the only possible approach left is to increase the Esize
288      --  but we can't do that if the size was set by a specific clause.
289
290      if Esize_Set then
291         Error_Msg_NE
292           ("size for& is not a multiple of alignment",
293            Size_Clause (E), E);
294
295      --  Otherwise we can indeed increase the size to a multiple of alignment
296
297      else
298         Set_Esize (E, ((Esize (E) + (Abits - 1)) / Abits) * Abits);
299      end if;
300   end Adjust_Esize_Alignment;
301
302   ---------------
303   -- Assoc_Add --
304   ---------------
305
306   function Assoc_Add
307     (Loc        : Source_Ptr;
308      Left_Opnd  : Node_Id;
309      Right_Opnd : Node_Id)
310      return       Node_Id
311   is
312      L : Node_Id;
313      R : Uint;
314
315   begin
316      --  Case of right operand is a constant
317
318      if Compile_Time_Known_Value (Right_Opnd) then
319         L := Left_Opnd;
320         R := Expr_Value (Right_Opnd);
321
322      --  Case of left operand is a constant
323
324      elsif Compile_Time_Known_Value (Left_Opnd) then
325         L := Right_Opnd;
326         R := Expr_Value (Left_Opnd);
327
328      --  Neither operand is a constant, do the addition with no optimization
329
330      else
331         return Make_Op_Add (Loc, Left_Opnd, Right_Opnd);
332      end if;
333
334      --  Case of left operand is an addition
335
336      if Nkind (L) = N_Op_Add then
337
338         --  (C1 + E) + C2 = (C1 + C2) + E
339
340         if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
341            Rewrite_Integer
342              (Sinfo.Left_Opnd (L),
343               Expr_Value (Sinfo.Left_Opnd (L)) + R);
344            return L;
345
346         --  (E + C1) + C2 = E + (C1 + C2)
347
348         elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
349            Rewrite_Integer
350              (Sinfo.Right_Opnd (L),
351               Expr_Value (Sinfo.Right_Opnd (L)) + R);
352            return L;
353         end if;
354
355      --  Case of left operand is a subtraction
356
357      elsif Nkind (L) = N_Op_Subtract then
358
359         --  (C1 - E) + C2 = (C1 + C2) + E
360
361         if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
362            Rewrite_Integer
363              (Sinfo.Left_Opnd (L),
364               Expr_Value (Sinfo.Left_Opnd (L)) + R);
365            return L;
366
367         --  (E - C1) + C2 = E - (C1 - C2)
368
369         elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
370            Rewrite_Integer
371              (Sinfo.Right_Opnd (L),
372               Expr_Value (Sinfo.Right_Opnd (L)) - R);
373            return L;
374         end if;
375      end if;
376
377      --  Not optimizable, do the addition
378
379      return Make_Op_Add (Loc, Left_Opnd, Right_Opnd);
380   end Assoc_Add;
381
382   --------------------
383   -- Assoc_Multiply --
384   --------------------
385
386   function Assoc_Multiply
387     (Loc        : Source_Ptr;
388      Left_Opnd  : Node_Id;
389      Right_Opnd : Node_Id)
390      return       Node_Id
391   is
392      L : Node_Id;
393      R : Uint;
394
395   begin
396      --  Case of right operand is a constant
397
398      if Compile_Time_Known_Value (Right_Opnd) then
399         L := Left_Opnd;
400         R := Expr_Value (Right_Opnd);
401
402      --  Case of left operand is a constant
403
404      elsif Compile_Time_Known_Value (Left_Opnd) then
405         L := Right_Opnd;
406         R := Expr_Value (Left_Opnd);
407
408      --  Neither operand is a constant, do the multiply with no optimization
409
410      else
411         return Make_Op_Multiply (Loc, Left_Opnd, Right_Opnd);
412      end if;
413
414      --  Case of left operand is an multiplication
415
416      if Nkind (L) = N_Op_Multiply then
417
418         --  (C1 * E) * C2 = (C1 * C2) + E
419
420         if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
421            Rewrite_Integer
422              (Sinfo.Left_Opnd (L),
423               Expr_Value (Sinfo.Left_Opnd (L)) * R);
424            return L;
425
426         --  (E * C1) * C2 = E * (C1 * C2)
427
428         elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
429            Rewrite_Integer
430              (Sinfo.Right_Opnd (L),
431               Expr_Value (Sinfo.Right_Opnd (L)) * R);
432            return L;
433         end if;
434      end if;
435
436      --  Not optimizable, do the multiplication
437
438      return Make_Op_Multiply (Loc, Left_Opnd, Right_Opnd);
439   end Assoc_Multiply;
440
441   --------------------
442   -- Assoc_Subtract --
443   --------------------
444
445   function Assoc_Subtract
446     (Loc        : Source_Ptr;
447      Left_Opnd  : Node_Id;
448      Right_Opnd : Node_Id)
449      return       Node_Id
450   is
451      L : Node_Id;
452      R : Uint;
453
454   begin
455      --  Case of right operand is a constant
456
457      if Compile_Time_Known_Value (Right_Opnd) then
458         L := Left_Opnd;
459         R := Expr_Value (Right_Opnd);
460
461      --  Right operand is a constant, do the subtract with no optimization
462
463      else
464         return Make_Op_Subtract (Loc, Left_Opnd, Right_Opnd);
465      end if;
466
467      --  Case of left operand is an addition
468
469      if Nkind (L) = N_Op_Add then
470
471         --  (C1 + E) - C2 = (C1 - C2) + E
472
473         if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
474            Rewrite_Integer
475              (Sinfo.Left_Opnd (L),
476               Expr_Value (Sinfo.Left_Opnd (L)) - R);
477            return L;
478
479         --  (E + C1) - C2 = E + (C1 - C2)
480
481         elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
482            Rewrite_Integer
483              (Sinfo.Right_Opnd (L),
484               Expr_Value (Sinfo.Right_Opnd (L)) - R);
485            return L;
486         end if;
487
488      --  Case of left operand is a subtraction
489
490      elsif Nkind (L) = N_Op_Subtract then
491
492         --  (C1 - E) - C2 = (C1 - C2) + E
493
494         if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
495            Rewrite_Integer
496              (Sinfo.Left_Opnd (L),
497               Expr_Value (Sinfo.Left_Opnd (L)) + R);
498            return L;
499
500         --  (E - C1) - C2 = E - (C1 + C2)
501
502         elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
503            Rewrite_Integer
504              (Sinfo.Right_Opnd (L),
505               Expr_Value (Sinfo.Right_Opnd (L)) + R);
506            return L;
507         end if;
508      end if;
509
510      --  Not optimizable, do the subtraction
511
512      return Make_Op_Subtract (Loc, Left_Opnd, Right_Opnd);
513   end Assoc_Subtract;
514
515   ----------------
516   -- Bits_To_SU --
517   ----------------
518
519   function Bits_To_SU (N : Node_Id) return Node_Id is
520   begin
521      if Nkind (N) = N_Integer_Literal then
522         Set_Intval (N, (Intval (N) + (SSU - 1)) / SSU);
523      end if;
524
525      return N;
526   end Bits_To_SU;
527
528   --------------------
529   -- Compute_Length --
530   --------------------
531
532   function Compute_Length (Lo : Node_Id; Hi : Node_Id) return Node_Id is
533      Loc    : constant Source_Ptr := Sloc (Lo);
534      Typ    : constant Entity_Id  := Etype (Lo);
535      Lo_Op  : Node_Id;
536      Hi_Op  : Node_Id;
537      Lo_Dim : Uint;
538      Hi_Dim : Uint;
539
540   begin
541      --  If the bounds are First and Last attributes for the same dimension
542      --  and both have prefixes that denotes the same entity, then we create
543      --  and return a Length attribute. This may allow the back end to
544      --  generate better code in cases where it already has the length.
545
546      if Nkind (Lo) = N_Attribute_Reference
547        and then Attribute_Name (Lo) = Name_First
548        and then Nkind (Hi) = N_Attribute_Reference
549        and then Attribute_Name (Hi) = Name_Last
550        and then Is_Entity_Name (Prefix (Lo))
551        and then Is_Entity_Name (Prefix (Hi))
552        and then Entity (Prefix (Lo)) = Entity (Prefix (Hi))
553      then
554         Lo_Dim := Uint_1;
555         Hi_Dim := Uint_1;
556
557         if Present (First (Expressions (Lo))) then
558            Lo_Dim := Expr_Value (First (Expressions (Lo)));
559         end if;
560
561         if Present (First (Expressions (Hi))) then
562            Hi_Dim := Expr_Value (First (Expressions (Hi)));
563         end if;
564
565         if Lo_Dim = Hi_Dim then
566            return
567              Make_Attribute_Reference (Loc,
568                Prefix         => New_Occurrence_Of
569                                    (Entity (Prefix (Lo)), Loc),
570                Attribute_Name => Name_Length,
571                Expressions    => New_List
572                                    (Make_Integer_Literal (Loc, Lo_Dim)));
573         end if;
574      end if;
575
576      Lo_Op := New_Copy_Tree (Lo);
577      Hi_Op := New_Copy_Tree (Hi);
578
579      --  If type is enumeration type, then use Pos attribute to convert
580      --  to integer type for which subtraction is a permitted operation.
581
582      if Is_Enumeration_Type (Typ) then
583         Lo_Op :=
584           Make_Attribute_Reference (Loc,
585             Prefix         => New_Occurrence_Of (Typ, Loc),
586             Attribute_Name => Name_Pos,
587             Expressions    => New_List (Lo_Op));
588
589         Hi_Op :=
590           Make_Attribute_Reference (Loc,
591             Prefix         => New_Occurrence_Of (Typ, Loc),
592             Attribute_Name => Name_Pos,
593             Expressions    => New_List (Hi_Op));
594      end if;
595
596      return
597        Assoc_Add (Loc,
598          Left_Opnd =>
599            Assoc_Subtract (Loc,
600              Left_Opnd  => Hi_Op,
601              Right_Opnd => Lo_Op),
602          Right_Opnd => Make_Integer_Literal (Loc, 1));
603   end Compute_Length;
604
605   ----------------------
606   -- Expr_From_SO_Ref --
607   ----------------------
608
609   function Expr_From_SO_Ref
610     (Loc  : Source_Ptr;
611      D    : SO_Ref;
612      Comp : Entity_Id := Empty)
613      return Node_Id
614   is
615      Ent : Entity_Id;
616
617   begin
618      if Is_Dynamic_SO_Ref (D) then
619         Ent := Get_Dynamic_SO_Entity (D);
620
621         if Is_Discrim_SO_Function (Ent) then
622            --  If a component is passed in whose type matches the type
623            --  of the function formal, then select that component from
624            --  the "V" parameter rather than passing "V" directly.
625
626            if Present (Comp)
627               and then Base_Type (Etype (Comp))
628                          = Base_Type (Etype (First_Formal (Ent)))
629            then
630               return
631                 Make_Function_Call (Loc,
632                   Name                   => New_Occurrence_Of (Ent, Loc),
633                   Parameter_Associations => New_List (
634                     Make_Selected_Component (Loc,
635                       Prefix        => Make_Identifier (Loc, Chars => Vname),
636                       Selector_Name => New_Occurrence_Of (Comp, Loc))));
637
638            else
639               return
640                 Make_Function_Call (Loc,
641                   Name                   => New_Occurrence_Of (Ent, Loc),
642                   Parameter_Associations => New_List (
643                     Make_Identifier (Loc, Chars => Vname)));
644            end if;
645
646         else
647            return New_Occurrence_Of (Ent, Loc);
648         end if;
649
650      else
651         return Make_Integer_Literal (Loc, D);
652      end if;
653   end Expr_From_SO_Ref;
654
655   ------------------
656   -- Get_Max_Size --
657   ------------------
658
659   function Get_Max_Size (E : Entity_Id) return Node_Id is
660      Loc  : constant Source_Ptr := Sloc (E);
661      Indx : Node_Id;
662      Ityp : Entity_Id;
663      Lo   : Node_Id;
664      Hi   : Node_Id;
665      S    : Uint;
666      Len  : Node_Id;
667
668      type Val_Status_Type is (Const, Dynamic);
669
670      type Val_Type (Status : Val_Status_Type := Const) is
671         record
672            case Status is
673               when Const   => Val : Uint;
674               when Dynamic => Nod : Node_Id;
675            end case;
676         end record;
677      --  Shows the status of the value so far. Const means that the value
678      --  is constant, and Val is the current constant value. Dynamic means
679      --  that the value is dynamic, and in this case Nod is the Node_Id of
680      --  the expression to compute the value.
681
682      Size : Val_Type;
683      --  Calculated value so far if Size.Status = Const,
684      --  or expression value so far if Size.Status = Dynamic.
685
686      SU_Convert_Required : Boolean := False;
687      --  This is set to True if the final result must be converted from
688      --  bits to storage units (rounding up to a storage unit boundary).
689
690      -----------------------
691      -- Local Subprograms --
692      -----------------------
693
694      procedure Max_Discrim (N : in out Node_Id);
695      --  If the node N represents a discriminant, replace it by the maximum
696      --  value of the discriminant.
697
698      procedure Min_Discrim (N : in out Node_Id);
699      --  If the node N represents a discriminant, replace it by the minimum
700      --  value of the discriminant.
701
702      -----------------
703      -- Max_Discrim --
704      -----------------
705
706      procedure Max_Discrim (N : in out Node_Id) is
707      begin
708         if Nkind (N) = N_Identifier
709           and then Ekind (Entity (N)) = E_Discriminant
710         then
711            N := Type_High_Bound (Etype (N));
712         end if;
713      end Max_Discrim;
714
715      -----------------
716      -- Min_Discrim --
717      -----------------
718
719      procedure Min_Discrim (N : in out Node_Id) is
720      begin
721         if Nkind (N) = N_Identifier
722           and then Ekind (Entity (N)) = E_Discriminant
723         then
724            N := Type_Low_Bound (Etype (N));
725         end if;
726      end Min_Discrim;
727
728   --  Start of processing for Get_Max_Size
729
730   begin
731      pragma Assert (Size_Depends_On_Discriminant (E));
732
733      --  Initialize status from component size
734
735      if Known_Static_Component_Size (E) then
736         Size := (Const, Component_Size (E));
737
738      else
739         Size := (Dynamic, Expr_From_SO_Ref (Loc, Component_Size (E)));
740      end if;
741
742      --  Loop through indices
743
744      Indx := First_Index (E);
745      while Present (Indx) loop
746         Ityp := Etype (Indx);
747         Lo := Type_Low_Bound (Ityp);
748         Hi := Type_High_Bound (Ityp);
749
750         Min_Discrim (Lo);
751         Max_Discrim (Hi);
752
753         --  Value of the current subscript range is statically known
754
755         if Compile_Time_Known_Value (Lo)
756           and then Compile_Time_Known_Value (Hi)
757         then
758            S := Expr_Value (Hi) - Expr_Value (Lo) + 1;
759
760            --  If known flat bound, entire size of array is zero!
761
762            if S <= 0 then
763               return Make_Integer_Literal (Loc, 0);
764            end if;
765
766            --  Current value is constant, evolve value
767
768            if Size.Status = Const then
769               Size.Val := Size.Val * S;
770
771            --  Current value is dynamic
772
773            else
774               --  An interesting little optimization, if we have a pending
775               --  conversion from bits to storage units, and the current
776               --  length is a multiple of the storage unit size, then we
777               --  can take the factor out here statically, avoiding some
778               --  extra dynamic computations at the end.
779
780               if SU_Convert_Required and then S mod SSU = 0 then
781                  S := S / SSU;
782                  SU_Convert_Required := False;
783               end if;
784
785               Size.Nod :=
786                 Assoc_Multiply (Loc,
787                   Left_Opnd  => Size.Nod,
788                   Right_Opnd =>
789                     Make_Integer_Literal (Loc, Intval => S));
790            end if;
791
792         --  Value of the current subscript range is dynamic
793
794         else
795            --  If the current size value is constant, then here is where we
796            --  make a transition to dynamic values, which are always stored
797            --  in storage units, However, we do not want to convert to SU's
798            --  too soon, consider the case of a packed array of single bits,
799            --  we want to do the SU conversion after computing the size in
800            --  this case.
801
802            if Size.Status = Const then
803
804               --  If the current value is a multiple of the storage unit,
805               --  then most certainly we can do the conversion now, simply
806               --  by dividing the current value by the storage unit value.
807               --  If this works, we set SU_Convert_Required to False.
808
809               if Size.Val mod SSU = 0 then
810
811                  Size :=
812                    (Dynamic, Make_Integer_Literal (Loc, Size.Val / SSU));
813                  SU_Convert_Required := False;
814
815               --  Otherwise, we go ahead and convert the value in bits,
816               --  and set SU_Convert_Required to True to ensure that the
817               --  final value is indeed properly converted.
818
819               else
820                  Size := (Dynamic, Make_Integer_Literal (Loc, Size.Val));
821                  SU_Convert_Required := True;
822               end if;
823            end if;
824
825            --  Length is hi-lo+1
826
827            Len := Compute_Length (Lo, Hi);
828
829            --  Check possible range of Len
830
831            declare
832               OK  : Boolean;
833               LLo : Uint;
834               LHi : Uint;
835
836            begin
837               Set_Parent (Len, E);
838               Determine_Range (Len, OK, LLo, LHi);
839
840               Len := Convert_To (Standard_Unsigned, Len);
841
842               --  If we cannot verify that range cannot be super-flat,
843               --  we need a max with zero, since length must be non-neg.
844
845               if not OK or else LLo < 0 then
846                  Len :=
847                    Make_Attribute_Reference (Loc,
848                      Prefix         =>
849                        New_Occurrence_Of (Standard_Unsigned, Loc),
850                      Attribute_Name => Name_Max,
851                      Expressions    => New_List (
852                        Make_Integer_Literal (Loc, 0),
853                        Len));
854               end if;
855            end;
856         end if;
857
858         Next_Index (Indx);
859      end loop;
860
861      --  Here after processing all bounds to set sizes. If the value is
862      --  a constant, then it is bits, and we just return the value.
863
864      if Size.Status = Const then
865         return Make_Integer_Literal (Loc, Size.Val);
866
867      --  Case where the value is dynamic
868
869      else
870         --  Do convert from bits to SU's if needed
871
872         if SU_Convert_Required then
873
874            --  The expression required is (Size.Nod + SU - 1) / SU
875
876            Size.Nod :=
877              Make_Op_Divide (Loc,
878                Left_Opnd =>
879                  Make_Op_Add (Loc,
880                    Left_Opnd  => Size.Nod,
881                    Right_Opnd => Make_Integer_Literal (Loc, SSU - 1)),
882                Right_Opnd => Make_Integer_Literal (Loc, SSU));
883         end if;
884
885         return Size.Nod;
886      end if;
887   end Get_Max_Size;
888
889   -----------------------
890   -- Layout_Array_Type --
891   -----------------------
892
893   procedure Layout_Array_Type (E : Entity_Id) is
894      Loc  : constant Source_Ptr := Sloc (E);
895      Ctyp : constant Entity_Id  := Component_Type (E);
896      Indx : Node_Id;
897      Ityp : Entity_Id;
898      Lo   : Node_Id;
899      Hi   : Node_Id;
900      S    : Uint;
901      Len  : Node_Id;
902
903      Insert_Typ : Entity_Id;
904      --  This is the type with which any generated constants or functions
905      --  will be associated (i.e. inserted into the freeze actions). This
906      --  is normally the type being laid out. The exception occurs when
907      --  we are laying out Itype's which are local to a record type, and
908      --  whose scope is this record type. Such types do not have freeze
909      --  nodes (because we have no place to put them).
910
911      ------------------------------------
912      -- How An Array Type is Laid Out --
913      ------------------------------------
914
915      --  Here is what goes on. We need to multiply the component size of
916      --  the array (which has already been set) by the length of each of
917      --  the indexes. If all these values are known at compile time, then
918      --  the resulting size of the array is the appropriate constant value.
919
920      --  If the component size or at least one bound is dynamic (but no
921      --  discriminants are present), then the size will be computed as an
922      --  expression that calculates the proper size.
923
924      --  If there is at least one discriminant bound, then the size is also
925      --  computed as an expression, but this expression contains discriminant
926      --  values which are obtained by selecting from a function parameter, and
927      --  the size is given by a function that is passed the variant record in
928      --  question, and whose body is the expression.
929
930      type Val_Status_Type is (Const, Dynamic, Discrim);
931
932      type Val_Type (Status : Val_Status_Type := Const) is
933         record
934            case Status is
935               when Const =>
936                  Val : Uint;
937                  --  Calculated value so far if Val_Status = Const
938
939               when Dynamic | Discrim =>
940                  Nod : Node_Id;
941                  --  Expression value so far if Val_Status /= Const
942
943            end case;
944         end record;
945      --  Records the value or expression computed so far. Const means that
946      --  the value is constant, and Val is the current constant value.
947      --  Dynamic means that the value is dynamic, and in this case Nod is
948      --  the Node_Id of the expression to compute the value, and Discrim
949      --  means that at least one bound is a discriminant, in which case Nod
950      --  is the expression so far (which will be the body of the function).
951
952      Size : Val_Type;
953      --  Value of size computed so far. See comments above.
954
955      Vtyp : Entity_Id := Empty;
956      --  Variant record type for the formal parameter of the
957      --  discriminant function V if Status = Discrim.
958
959      SU_Convert_Required : Boolean := False;
960      --  This is set to True if the final result must be converted from
961      --  bits to storage units (rounding up to a storage unit boundary).
962
963      Storage_Divisor : Uint := UI_From_Int (SSU);
964      --  This is the amount that a nonstatic computed size will be divided
965      --  by to convert it from bits to storage units. This is normally
966      --  equal to SSU, but can be reduced in the case of packed components
967      --  that fit evenly into a storage unit.
968
969      Make_Size_Function : Boolean := False;
970      --  Indicates whether to request that SO_Ref_From_Expr should
971      --  encapsulate the array size expresion in a function.
972
973      procedure Discrimify (N : in out Node_Id);
974      --  If N represents a discriminant, then the Size.Status is set to
975      --  Discrim, and Vtyp is set. The parameter N is replaced with the
976      --  proper expression to extract the discriminant value from V.
977
978      ----------------
979      -- Discrimify --
980      ----------------
981
982      procedure Discrimify (N : in out Node_Id) is
983         Decl : Node_Id;
984         Typ  : Entity_Id;
985
986      begin
987         if Nkind (N) = N_Identifier
988           and then Ekind (Entity (N)) = E_Discriminant
989         then
990            Set_Size_Depends_On_Discriminant (E);
991
992            if Size.Status /= Discrim then
993               Decl := Parent (Parent (Entity (N)));
994               Size := (Discrim, Size.Nod);
995               Vtyp := Defining_Identifier (Decl);
996            end if;
997
998            Typ := Etype (N);
999
1000            N :=
1001              Make_Selected_Component (Loc,
1002                Prefix        => Make_Identifier (Loc, Chars => Vname),
1003                Selector_Name => New_Occurrence_Of (Entity (N), Loc));
1004
1005            --  Set the Etype attributes of the selected name and its prefix.
1006            --  Analyze_And_Resolve can't be called here because the Vname
1007            --  entity denoted by the prefix will not yet exist (it's created
1008            --  by SO_Ref_From_Expr, called at the end of Layout_Array_Type).
1009
1010            Set_Etype (Prefix (N), Vtyp);
1011            Set_Etype (N, Typ);
1012         end if;
1013      end Discrimify;
1014
1015   --  Start of processing for Layout_Array_Type
1016
1017   begin
1018      --  Default alignment is component alignment
1019
1020      if Unknown_Alignment (E) then
1021         Set_Alignment (E, Alignment (Ctyp));
1022      end if;
1023
1024      --  Calculate proper type for insertions
1025
1026      if Is_Record_Type (Scope (E)) then
1027         Insert_Typ := Scope (E);
1028      else
1029         Insert_Typ := E;
1030      end if;
1031
1032      --  If the component type is a generic formal type then there's no point
1033      --  in determining a size for the array type.
1034
1035      if Is_Generic_Type (Ctyp) then
1036         return;
1037      end if;
1038
1039      --  Deal with component size if base type
1040
1041      if Ekind (E) = E_Array_Type then
1042
1043         --  Cannot do anything if Esize of component type unknown
1044
1045         if Unknown_Esize (Ctyp) then
1046            return;
1047         end if;
1048
1049         --  Set component size if not set already
1050
1051         if Unknown_Component_Size (E) then
1052            Set_Component_Size (E, Esize (Ctyp));
1053         end if;
1054      end if;
1055
1056      --  (RM 13.3 (48)) says that the size of an unconstrained array
1057      --  is implementation defined. We choose to leave it as Unknown
1058      --  here, and the actual behavior is determined by the back end.
1059
1060      if not Is_Constrained (E) then
1061         return;
1062      end if;
1063
1064      --  Initialize status from component size
1065
1066      if Known_Static_Component_Size (E) then
1067         Size := (Const, Component_Size (E));
1068
1069      else
1070         Size := (Dynamic, Expr_From_SO_Ref (Loc, Component_Size (E)));
1071      end if;
1072
1073      --  Loop to process array indices
1074
1075      Indx := First_Index (E);
1076      while Present (Indx) loop
1077         Ityp := Etype (Indx);
1078
1079         --  If an index of the array is a generic formal type then there's
1080         --  no point in determining a size for the array type.
1081
1082         if Is_Generic_Type (Ityp) then
1083            return;
1084         end if;
1085
1086         Lo := Type_Low_Bound (Ityp);
1087         Hi := Type_High_Bound (Ityp);
1088
1089         --  Value of the current subscript range is statically known
1090
1091         if Compile_Time_Known_Value (Lo)
1092           and then Compile_Time_Known_Value (Hi)
1093         then
1094            S := Expr_Value (Hi) - Expr_Value (Lo) + 1;
1095
1096            --  If known flat bound, entire size of array is zero!
1097
1098            if S <= 0 then
1099               Set_Esize (E, Uint_0);
1100               Set_RM_Size (E, Uint_0);
1101               return;
1102            end if;
1103
1104            --  If constant, evolve value
1105
1106            if Size.Status = Const then
1107               Size.Val := Size.Val * S;
1108
1109            --  Current value is dynamic
1110
1111            else
1112               --  An interesting little optimization, if we have a pending
1113               --  conversion from bits to storage units, and the current
1114               --  length is a multiple of the storage unit size, then we
1115               --  can take the factor out here statically, avoiding some
1116               --  extra dynamic computations at the end.
1117
1118               if SU_Convert_Required and then S mod SSU = 0 then
1119                  S := S / SSU;
1120                  SU_Convert_Required := False;
1121               end if;
1122
1123               --  Now go ahead and evolve the expression
1124
1125               Size.Nod :=
1126                 Assoc_Multiply (Loc,
1127                   Left_Opnd  => Size.Nod,
1128                   Right_Opnd =>
1129                     Make_Integer_Literal (Loc, Intval => S));
1130            end if;
1131
1132         --  Value of the current subscript range is dynamic
1133
1134         else
1135            --  If the current size value is constant, then here is where we
1136            --  make a transition to dynamic values, which are always stored
1137            --  in storage units, However, we do not want to convert to SU's
1138            --  too soon, consider the case of a packed array of single bits,
1139            --  we want to do the SU conversion after computing the size in
1140            --  this case.
1141
1142            if Size.Status = Const then
1143
1144               --  If the current value is a multiple of the storage unit,
1145               --  then most certainly we can do the conversion now, simply
1146               --  by dividing the current value by the storage unit value.
1147               --  If this works, we set SU_Convert_Required to False.
1148
1149               if Size.Val mod SSU = 0 then
1150                  Size :=
1151                    (Dynamic, Make_Integer_Literal (Loc, Size.Val / SSU));
1152                  SU_Convert_Required := False;
1153
1154               --  If the current value is a factor of the storage unit,
1155               --  then we can use a value of one for the size and reduce
1156               --  the strength of the later division.
1157
1158               elsif SSU mod Size.Val = 0 then
1159                  Storage_Divisor := SSU / Size.Val;
1160                  Size := (Dynamic, Make_Integer_Literal (Loc, Uint_1));
1161                  SU_Convert_Required := True;
1162
1163               --  Otherwise, we go ahead and convert the value in bits,
1164               --  and set SU_Convert_Required to True to ensure that the
1165               --  final value is indeed properly converted.
1166
1167               else
1168                  Size := (Dynamic, Make_Integer_Literal (Loc, Size.Val));
1169                  SU_Convert_Required := True;
1170               end if;
1171            end if;
1172
1173            Discrimify (Lo);
1174            Discrimify (Hi);
1175
1176            --  Length is hi-lo+1
1177
1178            Len := Compute_Length (Lo, Hi);
1179
1180            --  If Len isn't a Length attribute, then its range needs to
1181            --  be checked a possible Max with zero needs to be computed.
1182
1183            if Nkind (Len) /= N_Attribute_Reference
1184              or else Attribute_Name (Len) /= Name_Length
1185            then
1186               declare
1187                  OK  : Boolean;
1188                  LLo : Uint;
1189                  LHi : Uint;
1190
1191               begin
1192                  --  Check possible range of Len
1193
1194                  Set_Parent (Len, E);
1195                  Determine_Range (Len, OK, LLo, LHi);
1196
1197                  Len := Convert_To (Standard_Unsigned, Len);
1198
1199                  --  If range definitely flat or superflat,
1200                  --  result size is zero
1201
1202                  if OK and then LHi <= 0 then
1203                     Set_Esize (E, Uint_0);
1204                     Set_RM_Size (E, Uint_0);
1205                     return;
1206                  end if;
1207
1208                  --  If we cannot verify that range cannot be super-flat,
1209                  --  we need a maximum with zero, since length cannot be
1210                  --  negative.
1211
1212                  if not OK or else LLo < 0 then
1213                     Len :=
1214                       Make_Attribute_Reference (Loc,
1215                         Prefix         =>
1216                           New_Occurrence_Of (Standard_Unsigned, Loc),
1217                         Attribute_Name => Name_Max,
1218                         Expressions    => New_List (
1219                           Make_Integer_Literal (Loc, 0),
1220                           Len));
1221                  end if;
1222               end;
1223            end if;
1224
1225            --  At this stage, Len has the expression for the length
1226
1227            Size.Nod :=
1228              Assoc_Multiply (Loc,
1229                Left_Opnd  => Size.Nod,
1230                Right_Opnd => Len);
1231         end if;
1232
1233         Next_Index (Indx);
1234      end loop;
1235
1236      --  Here after processing all bounds to set sizes. If the value is
1237      --  a constant, then it is bits, and the only thing we need to do
1238      --  is to check against explicit given size and do alignment adjust.
1239
1240      if Size.Status = Const then
1241         Set_And_Check_Static_Size (E, Size.Val, Size.Val);
1242         Adjust_Esize_Alignment (E);
1243
1244      --  Case where the value is dynamic
1245
1246      else
1247         --  Do convert from bits to SU's if needed
1248
1249         if SU_Convert_Required then
1250
1251            --  The expression required is:
1252            --    (Size.Nod + Storage_Divisor - 1) / Storage_Divisor
1253
1254            Size.Nod :=
1255              Make_Op_Divide (Loc,
1256                Left_Opnd =>
1257                  Make_Op_Add (Loc,
1258                    Left_Opnd  => Size.Nod,
1259                    Right_Opnd => Make_Integer_Literal
1260                                    (Loc, Storage_Divisor - 1)),
1261                Right_Opnd => Make_Integer_Literal (Loc, Storage_Divisor));
1262         end if;
1263
1264         --  If the array entity is not declared at the library level and its
1265         --  not nested within a subprogram that is marked for inlining, then
1266         --  we request that the size expression be encapsulated in a function.
1267         --  Since this expression is not needed in most cases, we prefer not
1268         --  to incur the overhead of the computation on calls to the enclosing
1269         --  subprogram except for subprograms that require the size.
1270
1271         if not Is_Library_Level_Entity (E) then
1272            Make_Size_Function := True;
1273
1274            declare
1275               Parent_Subp : Entity_Id := Enclosing_Subprogram (E);
1276
1277            begin
1278               while Present (Parent_Subp) loop
1279                  if Is_Inlined (Parent_Subp) then
1280                     Make_Size_Function := False;
1281                     exit;
1282                  end if;
1283
1284                  Parent_Subp := Enclosing_Subprogram (Parent_Subp);
1285               end loop;
1286            end;
1287         end if;
1288
1289         --  Now set the dynamic size (the Value_Size is always the same
1290         --  as the Object_Size for arrays whose length is dynamic).
1291
1292         --  ??? If Size.Status = Dynamic, Vtyp will not have been set.
1293         --  The added initialization sets it to Empty now, but is this
1294         --  correct?
1295
1296         Set_Esize
1297           (E,
1298            SO_Ref_From_Expr
1299              (Size.Nod, Insert_Typ, Vtyp, Make_Func => Make_Size_Function));
1300         Set_RM_Size (E, Esize (E));
1301      end if;
1302   end Layout_Array_Type;
1303
1304   -------------------
1305   -- Layout_Object --
1306   -------------------
1307
1308   procedure Layout_Object (E : Entity_Id) is
1309      T : constant Entity_Id := Etype (E);
1310
1311   begin
1312      --  Nothing to do if backend does layout
1313
1314      if not Frontend_Layout_On_Target then
1315         return;
1316      end if;
1317
1318      --  Set size if not set for object and known for type. Use the
1319      --  RM_Size if that is known for the type and Esize is not.
1320
1321      if Unknown_Esize (E) then
1322         if Known_Esize (T) then
1323            Set_Esize (E, Esize (T));
1324
1325         elsif Known_RM_Size (T) then
1326            Set_Esize (E, RM_Size (T));
1327         end if;
1328      end if;
1329
1330      --  Set alignment from type if unknown and type alignment known
1331
1332      if Unknown_Alignment (E) and then Known_Alignment (T) then
1333         Set_Alignment (E, Alignment (T));
1334      end if;
1335
1336      --  Make sure size and alignment are consistent
1337
1338      Adjust_Esize_Alignment (E);
1339
1340      --  Final adjustment, if we don't know the alignment, and the Esize
1341      --  was not set by an explicit Object_Size attribute clause, then
1342      --  we reset the Esize to unknown, since we really don't know it.
1343
1344      if Unknown_Alignment (E)
1345        and then not Has_Size_Clause (E)
1346      then
1347         Set_Esize (E, Uint_0);
1348      end if;
1349   end Layout_Object;
1350
1351   ------------------------
1352   -- Layout_Record_Type --
1353   ------------------------
1354
1355   procedure Layout_Record_Type (E : Entity_Id) is
1356      Loc  : constant Source_Ptr := Sloc (E);
1357      Decl : Node_Id;
1358
1359      Comp : Entity_Id;
1360      --  Current component being laid out
1361
1362      Prev_Comp : Entity_Id;
1363      --  Previous laid out component
1364
1365      procedure Get_Next_Component_Location
1366        (Prev_Comp  : Entity_Id;
1367         Align      : Uint;
1368         New_Npos   : out SO_Ref;
1369         New_Fbit   : out SO_Ref;
1370         New_NPMax  : out SO_Ref;
1371         Force_SU   : Boolean);
1372      --  Given the previous component in Prev_Comp, which is already laid
1373      --  out, and the alignment of the following component, lays out the
1374      --  following component, and returns its starting position in New_Npos
1375      --  (Normalized_Position value), New_Fbit (Normalized_First_Bit value),
1376      --  and New_NPMax (Normalized_Position_Max value). If Prev_Comp is empty
1377      --  (no previous component is present), then New_Npos, New_Fbit and
1378      --  New_NPMax are all set to zero on return. This procedure is also
1379      --  used to compute the size of a record or variant by giving it the
1380      --  last component, and the record alignment. Force_SU is used to force
1381      --  the new component location to be aligned on a storage unit boundary,
1382      --  even in a packed record, False means that the new position does not
1383      --  need to be bumped to a storage unit boundary, True means a storage
1384      --  unit boundary is always required.
1385
1386      procedure Layout_Component (Comp : Entity_Id; Prev_Comp : Entity_Id);
1387      --  Lays out component Comp, given Prev_Comp, the previously laid-out
1388      --  component (Prev_Comp = Empty if no components laid out yet). The
1389      --  alignment of the record itself is also updated if needed. Both
1390      --  Comp and Prev_Comp can be either components or discriminants.
1391
1392      procedure Layout_Components
1393        (From   : Entity_Id;
1394         To     : Entity_Id;
1395         Esiz   : out SO_Ref;
1396         RM_Siz : out SO_Ref);
1397      --  This procedure lays out the components of the given component list
1398      --  which contains the components starting with From and ending with To.
1399      --  The Next_Entity chain is used to traverse the components. On entry,
1400      --  Prev_Comp is set to the component preceding the list, so that the
1401      --  list is laid out after this component. Prev_Comp is set to Empty if
1402      --  the component list is to be laid out starting at the start of the
1403      --  record. On return, the components are all laid out, and Prev_Comp is
1404      --  set to the last laid out component. On return, Esiz is set to the
1405      --  resulting Object_Size value, which is the length of the record up
1406      --  to and including the last laid out entity. For Esiz, the value is
1407      --  adjusted to match the alignment of the record. RM_Siz is similarly
1408      --  set to the resulting Value_Size value, which is the same length, but
1409      --  not adjusted to meet the alignment. Note that in the case of variant
1410      --  records, Esiz represents the maximum size.
1411
1412      procedure Layout_Non_Variant_Record;
1413      --  Procedure called to lay out a non-variant record type or subtype
1414
1415      procedure Layout_Variant_Record;
1416      --  Procedure called to lay out a variant record type. Decl is set to the
1417      --  full type declaration for the variant record.
1418
1419      ---------------------------------
1420      -- Get_Next_Component_Location --
1421      ---------------------------------
1422
1423      procedure Get_Next_Component_Location
1424        (Prev_Comp  : Entity_Id;
1425         Align      : Uint;
1426         New_Npos   : out SO_Ref;
1427         New_Fbit   : out SO_Ref;
1428         New_NPMax  : out SO_Ref;
1429         Force_SU   : Boolean)
1430      is
1431      begin
1432         --  No previous component, return zero position
1433
1434         if No (Prev_Comp) then
1435            New_Npos  := Uint_0;
1436            New_Fbit  := Uint_0;
1437            New_NPMax := Uint_0;
1438            return;
1439         end if;
1440
1441         --  Here we have a previous component
1442
1443         declare
1444            Loc       : constant Source_Ptr := Sloc (Prev_Comp);
1445
1446            Old_Npos  : constant SO_Ref := Normalized_Position     (Prev_Comp);
1447            Old_Fbit  : constant SO_Ref := Normalized_First_Bit    (Prev_Comp);
1448            Old_NPMax : constant SO_Ref := Normalized_Position_Max (Prev_Comp);
1449            Old_Esiz  : constant SO_Ref := Esize                   (Prev_Comp);
1450
1451            Old_Maxsz : Node_Id;
1452            --  Expression representing maximum size of previous component
1453
1454         begin
1455            --  Case where previous field had a dynamic size
1456
1457            if Is_Dynamic_SO_Ref (Esize (Prev_Comp)) then
1458
1459               --  If the previous field had a dynamic length, then it is
1460               --  required to occupy an integral number of storage units,
1461               --  and start on a storage unit boundary. This means that
1462               --  the Normalized_First_Bit value is zero in the previous
1463               --  component, and the new value is also set to zero.
1464
1465               New_Fbit := Uint_0;
1466
1467               --  In this case, the new position is given by an expression
1468               --  that is the sum of old normalized position and old size.
1469
1470               New_Npos :=
1471                 SO_Ref_From_Expr
1472                   (Assoc_Add (Loc,
1473                      Left_Opnd  =>
1474                        Expr_From_SO_Ref (Loc, Old_Npos),
1475                      Right_Opnd =>
1476                        Expr_From_SO_Ref (Loc, Old_Esiz, Prev_Comp)),
1477                    Ins_Type => E,
1478                    Vtype    => E);
1479
1480               --  Get maximum size of previous component
1481
1482               if Size_Depends_On_Discriminant (Etype (Prev_Comp)) then
1483                  Old_Maxsz := Get_Max_Size (Etype (Prev_Comp));
1484               else
1485                  Old_Maxsz := Expr_From_SO_Ref (Loc, Old_Esiz, Prev_Comp);
1486               end if;
1487
1488               --  Now we can compute the new max position. If the max size
1489               --  is static and the old position is static, then we can
1490               --  compute the new position statically.
1491
1492               if Nkind (Old_Maxsz) = N_Integer_Literal
1493                 and then Known_Static_Normalized_Position_Max (Prev_Comp)
1494               then
1495                  New_NPMax := Old_NPMax + Intval (Old_Maxsz);
1496
1497               --  Otherwise new max position is dynamic
1498
1499               else
1500                  New_NPMax :=
1501                    SO_Ref_From_Expr
1502                      (Assoc_Add (Loc,
1503                         Left_Opnd  => Expr_From_SO_Ref (Loc, Old_NPMax),
1504                         Right_Opnd => Old_Maxsz),
1505                       Ins_Type => E,
1506                       Vtype    => E);
1507               end if;
1508
1509            --  Previous field has known static Esize
1510
1511            else
1512               New_Fbit := Old_Fbit + Old_Esiz;
1513
1514               --  Bump New_Fbit to storage unit boundary if required
1515
1516               if New_Fbit /= 0 and then Force_SU then
1517                  New_Fbit := (New_Fbit + SSU - 1) / SSU * SSU;
1518               end if;
1519
1520               --  If old normalized position is static, we can go ahead
1521               --  and compute the new normalized position directly.
1522
1523               if Known_Static_Normalized_Position (Prev_Comp) then
1524                  New_Npos := Old_Npos;
1525
1526                  if New_Fbit >= SSU then
1527                     New_Npos := New_Npos + New_Fbit / SSU;
1528                     New_Fbit := New_Fbit mod SSU;
1529                  end if;
1530
1531                  --  Bump alignment if stricter than prev
1532
1533                  if Align > Alignment (Etype (Prev_Comp)) then
1534                     New_Npos := (New_Npos + Align - 1) / Align * Align;
1535                  end if;
1536
1537                  --  The max position is always equal to the position if
1538                  --  the latter is static, since arrays depending on the
1539                  --  values of discriminants never have static sizes.
1540
1541                  New_NPMax := New_Npos;
1542                  return;
1543
1544               --  Case of old normalized position is dynamic
1545
1546               else
1547                  --  If new bit position is within the current storage unit,
1548                  --  we can just copy the old position as the result position
1549                  --  (we have already set the new first bit value).
1550
1551                  if New_Fbit < SSU then
1552                     New_Npos  := Old_Npos;
1553                     New_NPMax := Old_NPMax;
1554
1555                  --  If new bit position is past the current storage unit, we
1556                  --  need to generate a new dynamic value for the position
1557                  --  ??? need to deal with alignment
1558
1559                  else
1560                     New_Npos :=
1561                       SO_Ref_From_Expr
1562                         (Assoc_Add (Loc,
1563                            Left_Opnd  => Expr_From_SO_Ref (Loc, Old_Npos),
1564                            Right_Opnd =>
1565                              Make_Integer_Literal (Loc,
1566                                Intval => New_Fbit / SSU)),
1567                          Ins_Type => E,
1568                          Vtype    => E);
1569
1570                     New_NPMax :=
1571                       SO_Ref_From_Expr
1572                         (Assoc_Add (Loc,
1573                            Left_Opnd  => Expr_From_SO_Ref (Loc, Old_NPMax),
1574                            Right_Opnd =>
1575                              Make_Integer_Literal (Loc,
1576                                Intval => New_Fbit / SSU)),
1577                            Ins_Type => E,
1578                            Vtype    => E);
1579                     New_Fbit := New_Fbit mod SSU;
1580                  end if;
1581               end if;
1582            end if;
1583         end;
1584      end Get_Next_Component_Location;
1585
1586      ----------------------
1587      -- Layout_Component --
1588      ----------------------
1589
1590      procedure Layout_Component (Comp : Entity_Id; Prev_Comp : Entity_Id) is
1591         Ctyp  : constant Entity_Id := Etype (Comp);
1592         Npos  : SO_Ref;
1593         Fbit  : SO_Ref;
1594         NPMax : SO_Ref;
1595         Forc  : Boolean;
1596
1597      begin
1598         --  Parent field is always at start of record, this will overlap
1599         --  the actual fields that are part of the parent, and that's fine
1600
1601         if Chars (Comp) = Name_uParent then
1602            Set_Normalized_Position     (Comp, Uint_0);
1603            Set_Normalized_First_Bit    (Comp, Uint_0);
1604            Set_Normalized_Position_Max (Comp, Uint_0);
1605            Set_Component_Bit_Offset    (Comp, Uint_0);
1606            Set_Esize                   (Comp, Esize (Ctyp));
1607            return;
1608         end if;
1609
1610         --  Check case of type of component has a scope of the record we
1611         --  are laying out. When this happens, the type in question is an
1612         --  Itype that has not yet been laid out (that's because such
1613         --  types do not get frozen in the normal manner, because there
1614         --  is no place for the freeze nodes).
1615
1616         if Scope (Ctyp) = E then
1617            Layout_Type (Ctyp);
1618         end if;
1619
1620         --  Increase alignment of record if necessary. Note that we do not
1621         --  do this for packed records, which have an alignment of one by
1622         --  default, or for records for which an explicit alignment was
1623         --  specified with an alignment clause.
1624
1625         if not Is_Packed (E)
1626           and then not Has_Alignment_Clause (E)
1627           and then Alignment (Ctyp) > Alignment (E)
1628         then
1629            Set_Alignment (E, Alignment (Ctyp));
1630         end if;
1631
1632         --  If component already laid out, then we are done
1633
1634         if Known_Normalized_Position (Comp) then
1635            return;
1636         end if;
1637
1638         --  Set size of component from type. We use the Esize except in a
1639         --  packed record, where we use the RM_Size (since that is exactly
1640         --  what the RM_Size value, as distinct from the Object_Size is
1641         --  useful for!)
1642
1643         if Is_Packed (E) then
1644            Set_Esize (Comp, RM_Size (Ctyp));
1645         else
1646            Set_Esize (Comp, Esize (Ctyp));
1647         end if;
1648
1649         --  Compute the component position from the previous one. See if
1650         --  current component requires being on a storage unit boundary.
1651
1652         --  If record is not packed, we always go to a storage unit boundary
1653
1654         if not Is_Packed (E) then
1655            Forc := True;
1656
1657         --  Packed cases
1658
1659         else
1660            --  Elementary types do not need SU boundary in packed record
1661
1662            if Is_Elementary_Type (Ctyp) then
1663               Forc := False;
1664
1665            --  Packed array types with a modular packed array type do not
1666            --  force a storage unit boundary (since the code generation
1667            --  treats these as equivalent to the underlying modular type),
1668
1669            elsif Is_Array_Type (Ctyp)
1670              and then Is_Bit_Packed_Array (Ctyp)
1671              and then Is_Modular_Integer_Type (Packed_Array_Type (Ctyp))
1672            then
1673               Forc := False;
1674
1675            --  Record types with known length less than or equal to the length
1676            --  of long long integer can also be unaligned, since they can be
1677            --  treated as scalars.
1678
1679            elsif Is_Record_Type (Ctyp)
1680              and then not Is_Dynamic_SO_Ref (Esize (Ctyp))
1681              and then Esize (Ctyp) <= Esize (Standard_Long_Long_Integer)
1682            then
1683               Forc := False;
1684
1685            --  All other cases force a storage unit boundary, even when packed
1686
1687            else
1688               Forc := True;
1689            end if;
1690         end if;
1691
1692         --  Now get the next component location
1693
1694         Get_Next_Component_Location
1695           (Prev_Comp, Alignment (Ctyp), Npos, Fbit, NPMax, Forc);
1696         Set_Normalized_Position     (Comp, Npos);
1697         Set_Normalized_First_Bit    (Comp, Fbit);
1698         Set_Normalized_Position_Max (Comp, NPMax);
1699
1700         --  Set Component_Bit_Offset in the static case
1701
1702         if Known_Static_Normalized_Position (Comp)
1703           and then Known_Normalized_First_Bit (Comp)
1704         then
1705            Set_Component_Bit_Offset (Comp, SSU * Npos + Fbit);
1706         end if;
1707      end Layout_Component;
1708
1709      -----------------------
1710      -- Layout_Components --
1711      -----------------------
1712
1713      procedure Layout_Components
1714        (From   : Entity_Id;
1715         To     : Entity_Id;
1716         Esiz   : out SO_Ref;
1717         RM_Siz : out SO_Ref)
1718      is
1719         End_Npos  : SO_Ref;
1720         End_Fbit  : SO_Ref;
1721         End_NPMax : SO_Ref;
1722
1723      begin
1724         --  Only lay out components if there are some to lay out!
1725
1726         if Present (From) then
1727
1728            --  Lay out components with no component clauses
1729
1730            Comp := From;
1731            loop
1732               if Ekind (Comp) = E_Component
1733                 or else Ekind (Comp) = E_Discriminant
1734               then
1735                  --  The compatibility of component clauses with composite
1736                  --  types isn't checked in Sem_Ch13, so we check it here.
1737
1738                  if Present (Component_Clause (Comp)) then
1739                     if Is_Composite_Type (Etype (Comp))
1740                       and then Esize (Comp) < RM_Size (Etype (Comp))
1741                     then
1742                        Error_Msg_Uint_1 := RM_Size (Etype (Comp));
1743                        Error_Msg_NE
1744                          ("size for & too small, minimum allowed is ^",
1745                           Component_Clause (Comp),
1746                           Comp);
1747                     end if;
1748
1749                  else
1750                     Layout_Component (Comp, Prev_Comp);
1751                     Prev_Comp := Comp;
1752                  end if;
1753               end if;
1754
1755               exit when Comp = To;
1756               Next_Entity (Comp);
1757            end loop;
1758         end if;
1759
1760         --  Set size fields, both are zero if no components
1761
1762         if No (Prev_Comp) then
1763            Esiz := Uint_0;
1764            RM_Siz := Uint_0;
1765
1766         else
1767            --  First the object size, for which we align past the last
1768            --  field to the alignment of the record (the object size
1769            --  is required to be a multiple of the alignment).
1770
1771            Get_Next_Component_Location
1772              (Prev_Comp,
1773               Alignment (E),
1774               End_Npos,
1775               End_Fbit,
1776               End_NPMax,
1777               Force_SU => True);
1778
1779            --  If the resulting normalized position is a dynamic reference,
1780            --  then the size is dynamic, and is stored in storage units.
1781            --  In this case, we set the RM_Size to the same value, it is
1782            --  simply not worth distinguishing Esize and RM_Size values in
1783            --  the dynamic case, since the RM has nothing to say about them.
1784
1785            --  Note that a size cannot have been given in this case, since
1786            --  size specifications cannot be given for variable length types.
1787
1788            declare
1789               Align : constant Uint := Alignment (E);
1790
1791            begin
1792               if Is_Dynamic_SO_Ref (End_Npos) then
1793                  RM_Siz := End_Npos;
1794
1795                  --  Set the Object_Size allowing for alignment. In the
1796                  --  dynamic case, we have to actually do the runtime
1797                  --  computation. We can skip this in the non-packed
1798                  --  record case if the last component has a smaller
1799                  --  alignment than the overall record alignment.
1800
1801                  if Is_Dynamic_SO_Ref (End_NPMax) then
1802                     Esiz := End_NPMax;
1803
1804                     if Is_Packed (E)
1805                       or else Alignment (Etype (Prev_Comp)) < Align
1806                     then
1807                        --  The expression we build is
1808                        --  (expr + align - 1) / align * align
1809
1810                        Esiz :=
1811                          SO_Ref_From_Expr
1812                            (Expr =>
1813                               Make_Op_Multiply (Loc,
1814                                 Left_Opnd =>
1815                                   Make_Op_Divide (Loc,
1816                                     Left_Opnd =>
1817                                       Make_Op_Add (Loc,
1818                                         Left_Opnd =>
1819                                           Expr_From_SO_Ref (Loc, Esiz),
1820                                         Right_Opnd =>
1821                                           Make_Integer_Literal (Loc,
1822                                             Intval => Align - 1)),
1823                                     Right_Opnd =>
1824                                       Make_Integer_Literal (Loc, Align)),
1825                                 Right_Opnd =>
1826                                   Make_Integer_Literal (Loc, Align)),
1827                            Ins_Type => E,
1828                            Vtype    => E);
1829                     end if;
1830
1831                  --  Here Esiz is static, so we can adjust the alignment
1832                  --  directly go give the required aligned value.
1833
1834                  else
1835                     Esiz := (End_NPMax + Align - 1) / Align * Align * SSU;
1836                  end if;
1837
1838               --  Case where computed size is static
1839
1840               else
1841                  --  The ending size was computed in Npos in storage units,
1842                  --  but the actual size is stored in bits, so adjust
1843                  --  accordingly. We also adjust the size to match the
1844                  --  alignment here.
1845
1846                  Esiz  := (End_NPMax + Align - 1) / Align * Align * SSU;
1847
1848                  --  Compute the resulting Value_Size (RM_Size). For this
1849                  --  purpose we do not force alignment of the record or
1850                  --  storage size alignment of the result.
1851
1852                  Get_Next_Component_Location
1853                    (Prev_Comp,
1854                     Uint_0,
1855                     End_Npos,
1856                     End_Fbit,
1857                     End_NPMax,
1858                     Force_SU => False);
1859
1860                  RM_Siz := End_Npos * SSU + End_Fbit;
1861                  Set_And_Check_Static_Size (E, Esiz, RM_Siz);
1862               end if;
1863            end;
1864         end if;
1865      end Layout_Components;
1866
1867      -------------------------------
1868      -- Layout_Non_Variant_Record --
1869      -------------------------------
1870
1871      procedure Layout_Non_Variant_Record is
1872         Esiz   : SO_Ref;
1873         RM_Siz : SO_Ref;
1874
1875      begin
1876         Layout_Components (First_Entity (E), Last_Entity (E), Esiz, RM_Siz);
1877         Set_Esize   (E, Esiz);
1878         Set_RM_Size (E, RM_Siz);
1879      end Layout_Non_Variant_Record;
1880
1881      ---------------------------
1882      -- Layout_Variant_Record --
1883      ---------------------------
1884
1885      procedure Layout_Variant_Record is
1886         Tdef   : constant Node_Id := Type_Definition (Decl);
1887         Dlist  : constant List_Id := Discriminant_Specifications (Decl);
1888         Esiz   : SO_Ref;
1889         RM_Siz : SO_Ref;
1890
1891         RM_Siz_Expr : Node_Id := Empty;
1892         --  Expression for the evolving RM_Siz value. This is typically a
1893         --  conditional expression which involves tests of discriminant
1894         --  values that are formed as references to the entity V. At
1895         --  the end of scanning all the components, a suitable function
1896         --  is constructed in which V is the parameter.
1897
1898         -----------------------
1899         -- Local Subprograms --
1900         -----------------------
1901
1902         procedure Layout_Component_List
1903           (Clist       : Node_Id;
1904            Esiz        : out SO_Ref;
1905            RM_Siz_Expr : out Node_Id);
1906         --  Recursive procedure, called to lay out one component list
1907         --  Esiz and RM_Siz_Expr are set to the Object_Size and Value_Size
1908         --  values respectively representing the record size up to and
1909         --  including the last component in the component list (including
1910         --  any variants in this component list). RM_Siz_Expr is returned
1911         --  as an expression which may in the general case involve some
1912         --  references to the discriminants of the current record value,
1913         --  referenced by selecting from the entity V.
1914
1915         ---------------------------
1916         -- Layout_Component_List --
1917         ---------------------------
1918
1919         procedure Layout_Component_List
1920           (Clist       : Node_Id;
1921            Esiz        : out SO_Ref;
1922            RM_Siz_Expr : out Node_Id)
1923         is
1924            Citems  : constant List_Id := Component_Items (Clist);
1925            Vpart   : constant Node_Id := Variant_Part (Clist);
1926            Prv     : Node_Id;
1927            Var     : Node_Id;
1928            RM_Siz  : Uint;
1929            RMS_Ent : Entity_Id;
1930
1931         begin
1932            if Is_Non_Empty_List (Citems) then
1933               Layout_Components
1934                 (From   => Defining_Identifier (First (Citems)),
1935                  To     => Defining_Identifier (Last  (Citems)),
1936                  Esiz   => Esiz,
1937                  RM_Siz => RM_Siz);
1938            else
1939               Layout_Components (Empty, Empty, Esiz, RM_Siz);
1940            end if;
1941
1942            --  Case where no variants are present in the component list
1943
1944            if No (Vpart) then
1945
1946               --  The Esiz value has been correctly set by the call to
1947               --  Layout_Components, so there is nothing more to be done.
1948
1949               --  For RM_Siz, we have an SO_Ref value, which we must convert
1950               --  to an appropriate expression.
1951
1952               if Is_Static_SO_Ref (RM_Siz) then
1953                  RM_Siz_Expr :=
1954                    Make_Integer_Literal (Loc,
1955                      Intval => RM_Siz);
1956
1957               else
1958                  RMS_Ent := Get_Dynamic_SO_Entity (RM_Siz);
1959
1960                  --  If the size is represented by a function, then we
1961                  --  create an appropriate function call using V as
1962                  --  the parameter to the call.
1963
1964                  if Is_Discrim_SO_Function (RMS_Ent) then
1965                     RM_Siz_Expr :=
1966                       Make_Function_Call (Loc,
1967                         Name => New_Occurrence_Of (RMS_Ent, Loc),
1968                         Parameter_Associations => New_List (
1969                           Make_Identifier (Loc, Chars => Vname)));
1970
1971                  --  If the size is represented by a constant, then the
1972                  --  expression we want is a reference to this constant
1973
1974                  else
1975                     RM_Siz_Expr := New_Occurrence_Of (RMS_Ent, Loc);
1976                  end if;
1977               end if;
1978
1979            --  Case where variants are present in this component list
1980
1981            else
1982               declare
1983                  EsizV   : SO_Ref;
1984                  RM_SizV : Node_Id;
1985                  Dchoice : Node_Id;
1986                  Discrim : Node_Id;
1987                  Dtest   : Node_Id;
1988
1989               begin
1990                  RM_Siz_Expr := Empty;
1991                  Prv := Prev_Comp;
1992
1993                  Var := Last (Variants (Vpart));
1994                  while Present (Var) loop
1995                     Prev_Comp := Prv;
1996                     Layout_Component_List
1997                       (Component_List (Var), EsizV, RM_SizV);
1998
1999                     --  Set the Object_Size. If this is the first variant,
2000                     --  we just set the size of this first variant.
2001
2002                     if Var = Last (Variants (Vpart)) then
2003                        Esiz := EsizV;
2004
2005                     --  Otherwise the Object_Size is formed as a maximum
2006                     --  of Esiz so far from previous variants, and the new
2007                     --  Esiz value from the variant we just processed.
2008
2009                     --  If both values are static, we can just compute the
2010                     --  maximum directly to save building junk nodes.
2011
2012                     elsif not Is_Dynamic_SO_Ref (Esiz)
2013                       and then not Is_Dynamic_SO_Ref (EsizV)
2014                     then
2015                        Esiz := UI_Max (Esiz, EsizV);
2016
2017                     --  If either value is dynamic, then we have to generate
2018                     --  an appropriate Standard_Unsigned'Max attribute call.
2019
2020                     else
2021                        Esiz :=
2022                          SO_Ref_From_Expr
2023                            (Make_Attribute_Reference (Loc,
2024                               Attribute_Name => Name_Max,
2025                               Prefix         =>
2026                                 New_Occurrence_Of (Standard_Unsigned, Loc),
2027                               Expressions => New_List (
2028                                 Expr_From_SO_Ref (Loc, Esiz),
2029                                 Expr_From_SO_Ref (Loc, EsizV))),
2030                             Ins_Type => E,
2031                             Vtype    => E);
2032                     end if;
2033
2034                     --  Now deal with Value_Size (RM_Siz). We are aiming at
2035                     --  an expression that looks like:
2036
2037                     --    if      xxDx (V.disc) then rmsiz1
2038                     --    else if xxDx (V.disc) then rmsiz2
2039                     --    else ...
2040
2041                     --  Where rmsiz1, rmsiz2... are the RM_Siz values for the
2042                     --  individual variants, and xxDx are the discriminant
2043                     --  checking functions generated for the variant type.
2044
2045                     --  If this is the first variant, we simply set the
2046                     --  result as the expression. Note that this takes
2047                     --  care of the others case.
2048
2049                     if No (RM_Siz_Expr) then
2050                        RM_Siz_Expr := Bits_To_SU (RM_SizV);
2051
2052                     --  Otherwise construct the appropriate test
2053
2054                     else
2055                        --  Discriminant to be tested
2056
2057                        Discrim :=
2058                          Make_Selected_Component (Loc,
2059                            Prefix        =>
2060                              Make_Identifier (Loc, Chars => Vname),
2061                            Selector_Name =>
2062                              New_Occurrence_Of
2063                                (Entity (Name (Vpart)), Loc));
2064
2065                        --  The test to be used in general is a call to the
2066                        --  discriminant checking function. However, it is
2067                        --  definitely worth special casing the very common
2068                        --  case where a single value is involved.
2069
2070                        Dchoice := First (Discrete_Choices (Var));
2071
2072                        if No (Next (Dchoice))
2073                          and then Nkind (Dchoice) /= N_Range
2074                        then
2075                           Dtest :=
2076                             Make_Op_Eq (Loc,
2077                               Left_Opnd  => Discrim,
2078                               Right_Opnd => New_Copy (Dchoice));
2079
2080                        --  Generate a call to the discriminant-checking
2081                        --  function for the variant. Note that the result
2082                        --  has to be complemented since the function returns
2083                        --  False when the passed discriminant value matches.
2084
2085                        else
2086                           Dtest :=
2087                             Make_Op_Not (Loc,
2088                               Right_Opnd =>
2089                                 Make_Function_Call (Loc,
2090                                   Name =>
2091                                     New_Occurrence_Of
2092                                       (Dcheck_Function (Var), Loc),
2093                                   Parameter_Associations =>
2094                                     New_List (Discrim)));
2095                        end if;
2096
2097                        RM_Siz_Expr :=
2098                          Make_Conditional_Expression (Loc,
2099                            Expressions =>
2100                              New_List
2101                                (Dtest, Bits_To_SU (RM_SizV), RM_Siz_Expr));
2102                     end if;
2103
2104                     Prev (Var);
2105                  end loop;
2106               end;
2107            end if;
2108         end Layout_Component_List;
2109
2110      --  Start of processing for Layout_Variant_Record
2111
2112      begin
2113         --  We need the discriminant checking functions, since we generate
2114         --  calls to these functions for the RM_Size expression, so make
2115         --  sure that these functions have been constructed in time.
2116
2117         Build_Discr_Checking_Funcs (Decl);
2118
2119         --  Lay out the discriminants
2120
2121         Layout_Components
2122           (From   => Defining_Identifier (First (Dlist)),
2123            To     => Defining_Identifier (Last  (Dlist)),
2124            Esiz   => Esiz,
2125            RM_Siz => RM_Siz);
2126
2127         --  Lay out the main component list (this will make recursive calls
2128         --  to lay out all component lists nested within variants).
2129
2130         Layout_Component_List (Component_List (Tdef), Esiz, RM_Siz_Expr);
2131         Set_Esize   (E, Esiz);
2132
2133         --  If the RM_Size is a literal, set its value
2134
2135         if Nkind (RM_Siz_Expr) = N_Integer_Literal then
2136            Set_RM_Size (E, Intval (RM_Siz_Expr));
2137
2138         --  Otherwise we construct a dynamic SO_Ref
2139
2140         else
2141            Set_RM_Size (E,
2142              SO_Ref_From_Expr
2143                (RM_Siz_Expr,
2144                 Ins_Type => E,
2145                 Vtype    => E));
2146         end if;
2147      end Layout_Variant_Record;
2148
2149   --  Start of processing for Layout_Record_Type
2150
2151   begin
2152      --  If this is a cloned subtype, just copy the size fields from the
2153      --  original, nothing else needs to be done in this case, since the
2154      --  components themselves are all shared.
2155
2156      if (Ekind (E) = E_Record_Subtype
2157           or else Ekind (E) = E_Class_Wide_Subtype)
2158        and then Present (Cloned_Subtype (E))
2159      then
2160         Set_Esize     (E, Esize     (Cloned_Subtype (E)));
2161         Set_RM_Size   (E, RM_Size   (Cloned_Subtype (E)));
2162         Set_Alignment (E, Alignment (Cloned_Subtype (E)));
2163
2164      --  Another special case, class-wide types. The RM says that the size
2165      --  of such types is implementation defined (RM 13.3(48)). What we do
2166      --  here is to leave the fields set as unknown values, and the backend
2167      --  determines the actual behavior.
2168
2169      elsif Ekind (E) = E_Class_Wide_Type then
2170         null;
2171
2172      --  All other cases
2173
2174      else
2175         --  Initialize alignment conservatively to 1. This value will
2176         --  be increased as necessary during processing of the record.
2177
2178         if Unknown_Alignment (E) then
2179            Set_Alignment (E, Uint_1);
2180         end if;
2181
2182         --  Initialize previous component. This is Empty unless there
2183         --  are components which have already been laid out by component
2184         --  clauses. If there are such components, we start our lay out of
2185         --  the remaining components following the last such component.
2186
2187         Prev_Comp := Empty;
2188
2189         Comp := First_Entity (E);
2190         while Present (Comp) loop
2191            if (Ekind (Comp) = E_Component
2192                 or else Ekind (Comp) = E_Discriminant)
2193              and then Present (Component_Clause (Comp))
2194            then
2195               if No (Prev_Comp)
2196                 or else
2197                   Component_Bit_Offset (Comp) >
2198                   Component_Bit_Offset (Prev_Comp)
2199               then
2200                  Prev_Comp := Comp;
2201               end if;
2202            end if;
2203
2204            Next_Entity (Comp);
2205         end loop;
2206
2207         --  We have two separate circuits, one for non-variant records and
2208         --  one for variant records. For non-variant records, we simply go
2209         --  through the list of components. This handles all the non-variant
2210         --  cases including those cases of subtypes where there is no full
2211         --  type declaration, so the tree cannot be used to drive the layout.
2212         --  For variant records, we have to drive the layout from the tree
2213         --  since we need to understand the variant structure in this case.
2214
2215         if Present (Full_View (E)) then
2216            Decl := Declaration_Node (Full_View (E));
2217         else
2218            Decl := Declaration_Node (E);
2219         end if;
2220
2221         --  Scan all the components
2222
2223         if Nkind (Decl) = N_Full_Type_Declaration
2224           and then Has_Discriminants (E)
2225           and then Nkind (Type_Definition (Decl)) = N_Record_Definition
2226           and then Present (Component_List (Type_Definition (Decl)))
2227           and then
2228             Present (Variant_Part (Component_List (Type_Definition (Decl))))
2229         then
2230            Layout_Variant_Record;
2231         else
2232            Layout_Non_Variant_Record;
2233         end if;
2234      end if;
2235   end Layout_Record_Type;
2236
2237   -----------------
2238   -- Layout_Type --
2239   -----------------
2240
2241   procedure Layout_Type (E : Entity_Id) is
2242   begin
2243      --  For string literal types, for now, kill the size always, this
2244      --  is because gigi does not like or need the size to be set ???
2245
2246      if Ekind (E) = E_String_Literal_Subtype then
2247         Set_Esize (E, Uint_0);
2248         Set_RM_Size (E, Uint_0);
2249         return;
2250      end if;
2251
2252      --  For access types, set size/alignment. This is system address
2253      --  size, except for fat pointers (unconstrained array access types),
2254      --  where the size is two times the address size, to accommodate the
2255      --  two pointers that are required for a fat pointer (data and
2256      --  template). Note that E_Access_Protected_Subprogram_Type is not
2257      --  an access type for this purpose since it is not a pointer but is
2258      --  equivalent to a record. For access subtypes, copy the size from
2259      --  the base type since Gigi represents them the same way.
2260
2261      if Is_Access_Type (E) then
2262
2263         --  If Esize already set (e.g. by a size clause), then nothing
2264         --  further to be done here.
2265
2266         if Known_Esize (E) then
2267            null;
2268
2269         --  Access to subprogram is a strange beast, and we let the
2270         --  backend figure out what is needed (it may be some kind
2271         --  of fat pointer, including the static link for example.
2272
2273         elsif Ekind (E) = E_Access_Protected_Subprogram_Type then
2274            null;
2275
2276         --  For access subtypes, copy the size information from base type
2277
2278         elsif Ekind (E) = E_Access_Subtype then
2279            Set_Size_Info (E, Base_Type (E));
2280            Set_RM_Size   (E, RM_Size (Base_Type (E)));
2281
2282         --  For other access types, we use either address size, or, if
2283         --  a fat pointer is used (pointer-to-unconstrained array case),
2284         --  twice the address size to accommodate a fat pointer.
2285
2286         else
2287            declare
2288               Desig : Entity_Id := Designated_Type (E);
2289
2290            begin
2291               if Is_Private_Type (Desig)
2292                 and then Present (Full_View (Desig))
2293               then
2294                  Desig := Full_View (Desig);
2295               end if;
2296
2297               if Is_Array_Type (Desig)
2298                 and then not Is_Constrained (Desig)
2299                 and then not Has_Completion_In_Body (Desig)
2300                 and then not Debug_Flag_6
2301               then
2302                  Init_Size (E, 2 * System_Address_Size);
2303
2304                  --  Check for bad convention set
2305
2306                  if Warn_On_Export_Import
2307                    and then
2308                      (Convention (E) = Convention_C
2309                         or else
2310                       Convention (E) = Convention_CPP)
2311                  then
2312                     Error_Msg_N
2313                       ("?this access type does not " &
2314                        "correspond to C pointer", E);
2315                  end if;
2316
2317               else
2318                  Init_Size (E, System_Address_Size);
2319               end if;
2320            end;
2321         end if;
2322
2323         Set_Prim_Alignment (E);
2324
2325      --  Scalar types: set size and alignment
2326
2327      elsif Is_Scalar_Type (E) then
2328
2329         --  For discrete types, the RM_Size and Esize must be set
2330         --  already, since this is part of the earlier processing
2331         --  and the front end is always required to lay out the
2332         --  sizes of such types (since they are available as static
2333         --  attributes). All we do is to check that this rule is
2334         --  indeed obeyed!
2335
2336         if Is_Discrete_Type (E) then
2337
2338            --  If the RM_Size is not set, then here is where we set it.
2339
2340            --  Note: an RM_Size of zero looks like not set here, but this
2341            --  is a rare case, and we can simply reset it without any harm.
2342
2343            if not Known_RM_Size (E) then
2344               Set_Discrete_RM_Size (E);
2345            end if;
2346
2347            --  If Esize for a discrete type is not set then set it
2348
2349            if not Known_Esize (E) then
2350               declare
2351                  S : Int := 8;
2352
2353               begin
2354                  loop
2355                     --  If size is big enough, set it and exit
2356
2357                     if S >= RM_Size (E) then
2358                        Init_Esize (E, S);
2359                        exit;
2360
2361                     --  If the RM_Size is greater than 64 (happens only
2362                     --  when strange values are specified by the user,
2363                     --  then Esize is simply a copy of RM_Size, it will
2364                     --  be further refined later on)
2365
2366                     elsif S = 64 then
2367                        Set_Esize (E, RM_Size (E));
2368                        exit;
2369
2370                     --  Otherwise double possible size and keep trying
2371
2372                     else
2373                        S := S * 2;
2374                     end if;
2375                  end loop;
2376               end;
2377            end if;
2378
2379         --  For non-discrete sclar types, if the RM_Size is not set,
2380         --  then set it now to a copy of the Esize if the Esize is set.
2381
2382         else
2383            if Known_Esize (E) and then Unknown_RM_Size (E) then
2384               Set_RM_Size (E, Esize (E));
2385            end if;
2386         end if;
2387
2388         Set_Prim_Alignment (E);
2389
2390      --  Non-primitive types
2391
2392      else
2393         --  If RM_Size is known, set Esize if not known
2394
2395         if Known_RM_Size (E) and then Unknown_Esize (E) then
2396
2397            --  If the alignment is known, we bump the Esize up to the
2398            --  next alignment boundary if it is not already on one.
2399
2400            if Known_Alignment (E) then
2401               declare
2402                  A : constant Uint   := Alignment_In_Bits (E);
2403                  S : constant SO_Ref := RM_Size (E);
2404
2405               begin
2406                  Set_Esize (E, (S * A + A - 1) / A);
2407               end;
2408            end if;
2409
2410         --  If Esize is set, and RM_Size is not, RM_Size is copied from
2411         --  Esize at least for now this seems reasonable, and is in any
2412         --  case needed for compatibility with old versions of gigi.
2413         --  look to be unknown.
2414
2415         elsif Known_Esize (E) and then Unknown_RM_Size (E) then
2416            Set_RM_Size (E, Esize (E));
2417         end if;
2418
2419         --  For array base types, set component size if object size of
2420         --  the component type is known and is a small power of 2 (8,
2421         --  16, 32, 64), since this is what will always be used.
2422
2423         if Ekind (E) = E_Array_Type
2424           and then Unknown_Component_Size (E)
2425         then
2426            declare
2427               CT : constant Entity_Id := Component_Type (E);
2428
2429            begin
2430               --  For some reasons, access types can cause trouble,
2431               --  So let's just do this for discrete types ???
2432
2433               if Present (CT)
2434                 and then Is_Discrete_Type (CT)
2435                 and then Known_Static_Esize (CT)
2436               then
2437                  declare
2438                     S : constant Uint := Esize (CT);
2439
2440                  begin
2441                     if S = 8  or else
2442                        S = 16 or else
2443                        S = 32 or else
2444                        S = 64
2445                     then
2446                        Set_Component_Size (E, Esize (CT));
2447                     end if;
2448                  end;
2449               end if;
2450            end;
2451         end if;
2452      end if;
2453
2454      --  Lay out array and record types if front end layout set
2455
2456      if Frontend_Layout_On_Target then
2457         if Is_Array_Type (E) and then not Is_Bit_Packed_Array (E) then
2458            Layout_Array_Type (E);
2459         elsif Is_Record_Type (E) then
2460            Layout_Record_Type (E);
2461         end if;
2462
2463      --  Case of backend layout, we still do a little in the front end
2464
2465      else
2466         --  Processing for record types
2467
2468         if Is_Record_Type (E) then
2469
2470            --  Special remaining processing for record types with a known
2471            --  size of 16, 32, or 64 bits whose alignment is not yet set.
2472            --  For these types, we set a corresponding alignment matching
2473            --  the size if possible, or as large as possible if not.
2474
2475            if Convention (E) = Convention_Ada
2476               and then not Debug_Flag_Q
2477            then
2478               Set_Composite_Alignment (E);
2479            end if;
2480
2481         --  Procressing for array types
2482
2483         elsif Is_Array_Type (E) then
2484
2485            --  For arrays that are required to be atomic, we do the same
2486            --  processing as described above for short records, since we
2487            --  really need to have the alignment set for the whole array.
2488
2489            if Is_Atomic (E) and then not Debug_Flag_Q then
2490               Set_Composite_Alignment (E);
2491            end if;
2492
2493            --  For unpacked array types, set an alignment of 1 if we know
2494            --  that the component alignment is not greater than 1. The reason
2495            --  we do this is to avoid unnecessary copying of slices of such
2496            --  arrays when passed to subprogram parameters (see special test
2497            --  in Exp_Ch6.Expand_Actuals).
2498
2499            if not Is_Packed (E)
2500              and then Unknown_Alignment (E)
2501            then
2502               if Known_Static_Component_Size (E)
2503                 and then Component_Size (E) = 1
2504               then
2505                  Set_Alignment (E, Uint_1);
2506               end if;
2507            end if;
2508         end if;
2509      end if;
2510
2511      --  Final step is to check that Esize and RM_Size are compatible
2512
2513      if Known_Static_Esize (E) and then Known_Static_RM_Size (E) then
2514         if Esize (E) < RM_Size (E) then
2515
2516            --  Esize is less than RM_Size. That's not good. First we test
2517            --  whether this was set deliberately with an Object_Size clause
2518            --  and if so, object to the clause.
2519
2520            if Has_Object_Size_Clause (E) then
2521               Error_Msg_Uint_1 := RM_Size (E);
2522               Error_Msg_F
2523                 ("object size is too small, minimum is ^",
2524                  Expression (Get_Attribute_Definition_Clause
2525                                             (E, Attribute_Object_Size)));
2526            end if;
2527
2528            --  Adjust Esize up to RM_Size value
2529
2530            declare
2531               Size : constant Uint := RM_Size (E);
2532
2533            begin
2534               Set_Esize (E, RM_Size (E));
2535
2536               --  For scalar types, increase Object_Size to power of 2,
2537               --  but not less than a storage unit in any case (i.e.,
2538               --  normally this means it will be byte addressable).
2539
2540               if Is_Scalar_Type (E) then
2541                  if Size <= System_Storage_Unit then
2542                     Init_Esize (E, System_Storage_Unit);
2543                  elsif Size <= 16 then
2544                     Init_Esize (E, 16);
2545                  elsif Size <= 32 then
2546                     Init_Esize (E, 32);
2547                  else
2548                     Set_Esize  (E, (Size + 63) / 64 * 64);
2549                  end if;
2550
2551                  --  Finally, make sure that alignment is consistent with
2552                  --  the newly assigned size.
2553
2554                  while Alignment (E) * System_Storage_Unit < Esize (E)
2555                    and then Alignment (E) < Maximum_Alignment
2556                  loop
2557                     Set_Alignment (E, 2 * Alignment (E));
2558                  end loop;
2559               end if;
2560            end;
2561         end if;
2562      end if;
2563   end Layout_Type;
2564
2565   ---------------------
2566   -- Rewrite_Integer --
2567   ---------------------
2568
2569   procedure Rewrite_Integer (N : Node_Id; V : Uint) is
2570      Loc : constant Source_Ptr := Sloc (N);
2571      Typ : constant Entity_Id  := Etype (N);
2572
2573   begin
2574      Rewrite (N, Make_Integer_Literal (Loc, Intval => V));
2575      Set_Etype (N, Typ);
2576   end Rewrite_Integer;
2577
2578   -------------------------------
2579   -- Set_And_Check_Static_Size --
2580   -------------------------------
2581
2582   procedure Set_And_Check_Static_Size
2583     (E      : Entity_Id;
2584      Esiz   : SO_Ref;
2585      RM_Siz : SO_Ref)
2586   is
2587      SC : Node_Id;
2588
2589      procedure Check_Size_Too_Small (Spec : Uint; Min : Uint);
2590      --  Spec is the number of bit specified in the size clause, and
2591      --  Min is the minimum computed size. An error is given that the
2592      --  specified size is too small if Spec < Min, and in this case
2593      --  both Esize and RM_Size are set to unknown in E. The error
2594      --  message is posted on node SC.
2595
2596      procedure Check_Unused_Bits (Spec : Uint; Max : Uint);
2597      --  Spec is the number of bits specified in the size clause, and
2598      --  Max is the maximum computed size. A warning is given about
2599      --  unused bits if Spec > Max. This warning is posted on node SC.
2600
2601      --------------------------
2602      -- Check_Size_Too_Small --
2603      --------------------------
2604
2605      procedure Check_Size_Too_Small (Spec : Uint; Min : Uint) is
2606      begin
2607         if Spec < Min then
2608            Error_Msg_Uint_1 := Min;
2609            Error_Msg_NE
2610              ("size for & too small, minimum allowed is ^", SC, E);
2611            Init_Esize   (E);
2612            Init_RM_Size (E);
2613         end if;
2614      end Check_Size_Too_Small;
2615
2616      -----------------------
2617      -- Check_Unused_Bits --
2618      -----------------------
2619
2620      procedure Check_Unused_Bits (Spec : Uint; Max : Uint) is
2621      begin
2622         if Spec > Max then
2623            Error_Msg_Uint_1 := Spec - Max;
2624            Error_Msg_NE ("?^ bits of & unused", SC, E);
2625         end if;
2626      end Check_Unused_Bits;
2627
2628   --  Start of processing for Set_And_Check_Static_Size
2629
2630   begin
2631      --  Case where Object_Size (Esize) is already set by a size clause
2632
2633      if Known_Static_Esize (E) then
2634         SC := Size_Clause (E);
2635
2636         if No (SC) then
2637            SC := Get_Attribute_Definition_Clause (E, Attribute_Object_Size);
2638         end if;
2639
2640         --  Perform checks on specified size against computed sizes
2641
2642         if Present (SC) then
2643            Check_Unused_Bits    (Esize (E), Esiz);
2644            Check_Size_Too_Small (Esize (E), RM_Siz);
2645         end if;
2646      end if;
2647
2648      --  Case where Value_Size (RM_Size) is set by specific Value_Size
2649      --  clause (we do not need to worry about Value_Size being set by
2650      --  a Size clause, since that will have set Esize as well, and we
2651      --  already took care of that case).
2652
2653      if Known_Static_RM_Size (E) then
2654         SC := Get_Attribute_Definition_Clause (E, Attribute_Value_Size);
2655
2656         --  Perform checks on specified size against computed sizes
2657
2658         if Present (SC) then
2659            Check_Unused_Bits    (RM_Size (E), Esiz);
2660            Check_Size_Too_Small (RM_Size (E), RM_Siz);
2661         end if;
2662      end if;
2663
2664      --  Set sizes if unknown
2665
2666      if Unknown_Esize (E) then
2667         Set_Esize (E, Esiz);
2668      end if;
2669
2670      if Unknown_RM_Size (E) then
2671         Set_RM_Size (E, RM_Siz);
2672      end if;
2673   end Set_And_Check_Static_Size;
2674
2675   -----------------------------
2676   -- Set_Composite_Alignment --
2677   -----------------------------
2678
2679   procedure Set_Composite_Alignment (E : Entity_Id) is
2680      Siz   : Uint;
2681      Align : Nat;
2682
2683   begin
2684      if Unknown_Alignment (E) then
2685         if Known_Static_Esize (E) then
2686            Siz := Esize (E);
2687
2688         elsif Unknown_Esize (E)
2689           and then Known_Static_RM_Size (E)
2690         then
2691            Siz := RM_Size (E);
2692
2693         else
2694            return;
2695         end if;
2696
2697         --  Size is known, alignment is not set
2698
2699         --  Reset alignment to match size if size is exactly 2, 4, or 8 bytes
2700
2701         if Siz = 2 * System_Storage_Unit then
2702            Align := 2;
2703         elsif Siz = 4 * System_Storage_Unit then
2704            Align := 4;
2705         elsif Siz = 8 * System_Storage_Unit then
2706            Align := 8;
2707
2708         --  On VMS, also reset for odd "in between" sizes, e.g. a 17-bit
2709         --  record is given an alignment of 4. This is more consistent with
2710         --  what DEC Ada does.
2711
2712         elsif OpenVMS_On_Target and then Siz > System_Storage_Unit then
2713
2714            if Siz <= 2 * System_Storage_Unit then
2715               Align := 2;
2716            elsif Siz <= 4 * System_Storage_Unit then
2717               Align := 4;
2718            elsif Siz <= 8 * System_Storage_Unit then
2719               Align := 8;
2720            else
2721               return;
2722            end if;
2723
2724         --  No special alignment fiddling needed
2725
2726         else
2727            return;
2728         end if;
2729
2730         --  Here Align is set to the proposed improved alignment
2731
2732         if Align > Maximum_Alignment then
2733            Align := Maximum_Alignment;
2734         end if;
2735
2736         --  Further processing for record types only to reduce the alignment
2737         --  set by the above processing in some specific cases. We do not
2738         --  do this for atomic records, since we need max alignment there.
2739
2740         if Is_Record_Type (E) then
2741
2742            --  For records, there is generally no point in setting alignment
2743            --  higher than word size since we cannot do better than move by
2744            --  words in any case
2745
2746            if Align > System_Word_Size / System_Storage_Unit then
2747               Align := System_Word_Size / System_Storage_Unit;
2748            end if;
2749
2750            --  Check components. If any component requires a higher
2751            --  alignment, then we set that higher alignment in any case.
2752
2753            declare
2754               Comp : Entity_Id;
2755
2756            begin
2757               Comp := First_Component (E);
2758               while Present (Comp) loop
2759                  if Known_Alignment (Etype (Comp)) then
2760                     declare
2761                        Calign : constant Uint := Alignment (Etype (Comp));
2762
2763                     begin
2764                        --  The cases to worry about are when the alignment
2765                        --  of the component type is larger than the alignment
2766                        --  we have so far, and either there is no component
2767                        --  clause for the alignment, or the length set by
2768                        --  the component clause matches the alignment set.
2769
2770                        if Calign > Align
2771                          and then
2772                            (Unknown_Esize (Comp)
2773                               or else (Known_Static_Esize (Comp)
2774                                          and then
2775                                        Esize (Comp) =
2776                                           Calign * System_Storage_Unit))
2777                        then
2778                           Align := UI_To_Int (Calign);
2779                        end if;
2780                     end;
2781                  end if;
2782
2783                  Next_Component (Comp);
2784               end loop;
2785            end;
2786         end if;
2787
2788         --  Set chosen alignment
2789
2790         Set_Alignment (E, UI_From_Int (Align));
2791
2792         if Known_Static_Esize (E)
2793           and then Esize (E) < Align * System_Storage_Unit
2794         then
2795            Set_Esize (E, UI_From_Int (Align * System_Storage_Unit));
2796         end if;
2797      end if;
2798   end Set_Composite_Alignment;
2799
2800   --------------------------
2801   -- Set_Discrete_RM_Size --
2802   --------------------------
2803
2804   procedure Set_Discrete_RM_Size (Def_Id : Entity_Id) is
2805      FST : constant Entity_Id := First_Subtype (Def_Id);
2806
2807   begin
2808      --  All discrete types except for the base types in standard
2809      --  are constrained, so indicate this by setting Is_Constrained.
2810
2811      Set_Is_Constrained (Def_Id);
2812
2813      --  We set generic types to have an unknown size, since the
2814      --  representation of a generic type is irrelevant, in view
2815      --  of the fact that they have nothing to do with code.
2816
2817      if Is_Generic_Type (Root_Type (FST)) then
2818         Set_RM_Size (Def_Id, Uint_0);
2819
2820      --  If the subtype statically matches the first subtype, then
2821      --  it is required to have exactly the same layout. This is
2822      --  required by aliasing considerations.
2823
2824      elsif Def_Id /= FST and then
2825        Subtypes_Statically_Match (Def_Id, FST)
2826      then
2827         Set_RM_Size   (Def_Id, RM_Size (FST));
2828         Set_Size_Info (Def_Id, FST);
2829
2830      --  In all other cases the RM_Size is set to the minimum size.
2831      --  Note that this routine is never called for subtypes for which
2832      --  the RM_Size is set explicitly by an attribute clause.
2833
2834      else
2835         Set_RM_Size (Def_Id, UI_From_Int (Minimum_Size (Def_Id)));
2836      end if;
2837   end Set_Discrete_RM_Size;
2838
2839   ------------------------
2840   -- Set_Prim_Alignment --
2841   ------------------------
2842
2843   procedure Set_Prim_Alignment (E : Entity_Id) is
2844   begin
2845      --  Do not set alignment for packed array types, unless we are doing
2846      --  front end layout, because otherwise this is always handled in the
2847      --  backend.
2848
2849      if Is_Packed_Array_Type (E) and then not Frontend_Layout_On_Target then
2850         return;
2851
2852      --  If there is an alignment clause, then we respect it
2853
2854      elsif Has_Alignment_Clause (E) then
2855         return;
2856
2857      --  If the size is not set, then don't attempt to set the alignment. This
2858      --  happens in the backend layout case for access-to-subprogram types.
2859
2860      elsif not Known_Static_Esize (E) then
2861         return;
2862
2863      --  For access types, do not set the alignment if the size is less than
2864      --  the allowed minimum size. This avoids cascaded error messages.
2865
2866      elsif Is_Access_Type (E)
2867        and then Esize (E) < System_Address_Size
2868      then
2869         return;
2870      end if;
2871
2872      --  Here we calculate the alignment as the largest power of two
2873      --  multiple of System.Storage_Unit that does not exceed either
2874      --  the actual size of the type, or the maximum allowed alignment.
2875
2876      declare
2877         S : constant Int :=
2878               UI_To_Int (Esize (E)) / SSU;
2879         A : Nat;
2880
2881      begin
2882         A := 1;
2883         while 2 * A <= Ttypes.Maximum_Alignment
2884            and then 2 * A <= S
2885         loop
2886            A := 2 * A;
2887         end loop;
2888
2889         --  Now we think we should set the alignment to A, but we
2890         --  skip this if an alignment is already set to a value
2891         --  greater than A (happens for derived types).
2892
2893         --  However, if the alignment is known and too small it
2894         --  must be increased, this happens in a case like:
2895
2896         --     type R is new Character;
2897         --     for R'Size use 16;
2898
2899         --  Here the alignment inherited from Character is 1, but
2900         --  it must be increased to 2 to reflect the increased size.
2901
2902         if Unknown_Alignment (E) or else Alignment (E) < A then
2903            Init_Alignment (E, A);
2904         end if;
2905      end;
2906   end Set_Prim_Alignment;
2907
2908   ----------------------
2909   -- SO_Ref_From_Expr --
2910   ----------------------
2911
2912   function SO_Ref_From_Expr
2913     (Expr      : Node_Id;
2914      Ins_Type  : Entity_Id;
2915      Vtype     : Entity_Id := Empty;
2916      Make_Func : Boolean   := False)
2917      return      Dynamic_SO_Ref
2918   is
2919      Loc  : constant Source_Ptr := Sloc (Ins_Type);
2920
2921      K : constant Entity_Id :=
2922            Make_Defining_Identifier (Loc,
2923              Chars => New_Internal_Name ('K'));
2924
2925      Decl : Node_Id;
2926
2927      function Check_Node_V_Ref (N : Node_Id) return Traverse_Result;
2928      --  Function used to check one node for reference to V
2929
2930      function Has_V_Ref is new Traverse_Func (Check_Node_V_Ref);
2931      --  Function used to traverse tree to check for reference to V
2932
2933      ----------------------
2934      -- Check_Node_V_Ref --
2935      ----------------------
2936
2937      function Check_Node_V_Ref (N : Node_Id) return Traverse_Result is
2938      begin
2939         if Nkind (N) = N_Identifier then
2940            if Chars (N) = Vname then
2941               return Abandon;
2942            else
2943               return Skip;
2944            end if;
2945
2946         else
2947            return OK;
2948         end if;
2949      end Check_Node_V_Ref;
2950
2951   --  Start of processing for SO_Ref_From_Expr
2952
2953   begin
2954      --  Case of expression is an integer literal, in this case we just
2955      --  return the value (which must always be non-negative, since size
2956      --  and offset values can never be negative).
2957
2958      if Nkind (Expr) = N_Integer_Literal then
2959         pragma Assert (Intval (Expr) >= 0);
2960         return Intval (Expr);
2961      end if;
2962
2963      --  Case where there is a reference to V, create function
2964
2965      if Has_V_Ref (Expr) = Abandon then
2966
2967         pragma Assert (Present (Vtype));
2968         Set_Is_Discrim_SO_Function (K);
2969
2970         Decl :=
2971           Make_Subprogram_Body (Loc,
2972
2973             Specification =>
2974               Make_Function_Specification (Loc,
2975                 Defining_Unit_Name => K,
2976                   Parameter_Specifications => New_List (
2977                     Make_Parameter_Specification (Loc,
2978                       Defining_Identifier =>
2979                         Make_Defining_Identifier (Loc, Chars => Vname),
2980                       Parameter_Type      =>
2981                         New_Occurrence_Of (Vtype, Loc))),
2982                   Subtype_Mark =>
2983                     New_Occurrence_Of (Standard_Unsigned, Loc)),
2984
2985             Declarations => Empty_List,
2986
2987             Handled_Statement_Sequence =>
2988               Make_Handled_Sequence_Of_Statements (Loc,
2989                 Statements => New_List (
2990                   Make_Return_Statement (Loc,
2991                     Expression => Expr))));
2992
2993      --  The caller requests that the expression be encapsulated in
2994      --  a parameterless function.
2995
2996      elsif Make_Func then
2997         Decl :=
2998           Make_Subprogram_Body (Loc,
2999
3000             Specification =>
3001               Make_Function_Specification (Loc,
3002                 Defining_Unit_Name => K,
3003                   Parameter_Specifications => Empty_List,
3004                   Subtype_Mark => New_Occurrence_Of (Standard_Unsigned, Loc)),
3005
3006             Declarations => Empty_List,
3007
3008             Handled_Statement_Sequence =>
3009               Make_Handled_Sequence_Of_Statements (Loc,
3010                 Statements => New_List (
3011                   Make_Return_Statement (Loc, Expression => Expr))));
3012
3013      --  No reference to V and function not requested, so create a constant
3014
3015      else
3016         Decl :=
3017           Make_Object_Declaration (Loc,
3018             Defining_Identifier => K,
3019             Object_Definition   =>
3020               New_Occurrence_Of (Standard_Unsigned, Loc),
3021             Constant_Present    => True,
3022             Expression          => Expr);
3023      end if;
3024
3025      Append_Freeze_Action (Ins_Type, Decl);
3026      Analyze (Decl);
3027      return Create_Dynamic_SO_Ref (K);
3028   end SO_Ref_From_Expr;
3029
3030end Layout;
3031