1 /* Utility routines for data type conversion for GCC.
2    Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3    2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA.  */
21 
22 
23 /* These routines are somewhat language-independent utility function
24    intended to be called by the language-specific convert () functions.  */
25 
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "convert.h"
33 #include "toplev.h"
34 #include "langhooks.h"
35 #include "real.h"
36 /* Convert EXPR to some pointer or reference type TYPE.
37 
38    EXPR must be pointer, reference, integer, enumeral, or literal zero;
39    in other cases error is called.  */
40 
41 tree
convert_to_pointer(tree type,tree expr)42 convert_to_pointer (tree type, tree expr)
43 {
44   if (integer_zerop (expr))
45     {
46       expr = build_int_2 (0, 0);
47       TREE_TYPE (expr) = type;
48       return expr;
49     }
50 
51   switch (TREE_CODE (TREE_TYPE (expr)))
52     {
53     case POINTER_TYPE:
54     case REFERENCE_TYPE:
55       return build1 (NOP_EXPR, type, expr);
56 
57     case INTEGER_TYPE:
58     case ENUMERAL_TYPE:
59     case BOOLEAN_TYPE:
60     case CHAR_TYPE:
61       if (TYPE_PRECISION (TREE_TYPE (expr)) == POINTER_SIZE)
62 	return build1 (CONVERT_EXPR, type, expr);
63 
64       return
65 	convert_to_pointer (type,
66 			    convert ((*lang_hooks.types.type_for_size)
67 				     (POINTER_SIZE, 0), expr));
68 
69     default:
70       error ("cannot convert to a pointer type");
71       return convert_to_pointer (type, integer_zero_node);
72     }
73 }
74 
75 /* Avoid any floating point extensions from EXP.  */
76 tree
strip_float_extensions(tree exp)77 strip_float_extensions (tree exp)
78 {
79   tree sub, expt, subt;
80 
81   /*  For floating point constant look up the narrowest type that can hold
82       it properly and handle it like (type)(narrowest_type)constant.
83       This way we can optimize for instance a=a*2.0 where "a" is float
84       but 2.0 is double constant.  */
85   if (TREE_CODE (exp) == REAL_CST)
86     {
87       REAL_VALUE_TYPE orig;
88       tree type = NULL;
89 
90       orig = TREE_REAL_CST (exp);
91       if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
92 	  && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
93 	type = float_type_node;
94       else if (TYPE_PRECISION (TREE_TYPE (exp))
95 	       > TYPE_PRECISION (double_type_node)
96 	       && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
97 	type = double_type_node;
98       if (type)
99 	return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
100     }
101 
102   if (TREE_CODE (exp) != NOP_EXPR)
103     return exp;
104 
105   sub = TREE_OPERAND (exp, 0);
106   subt = TREE_TYPE (sub);
107   expt = TREE_TYPE (exp);
108 
109   if (!FLOAT_TYPE_P (subt))
110     return exp;
111 
112   if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
113     return exp;
114 
115   return strip_float_extensions (sub);
116 }
117 
118 
119 /* Convert EXPR to some floating-point type TYPE.
120 
121    EXPR must be float, integer, or enumeral;
122    in other cases error is called.  */
123 
124 tree
convert_to_real(tree type,tree expr)125 convert_to_real (tree type, tree expr)
126 {
127   enum built_in_function fcode = builtin_mathfn_code (expr);
128   tree itype = TREE_TYPE (expr);
129 
130   /* Disable until we figure out how to decide whether the functions are
131      present in runtime.  */
132   /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
133   if (optimize
134       && (fcode == BUILT_IN_SQRT
135 	  || fcode == BUILT_IN_SQRTL
136 	  || fcode == BUILT_IN_SIN
137 	  || fcode == BUILT_IN_SINL
138 	  || fcode == BUILT_IN_COS
139 	  || fcode == BUILT_IN_COSL
140 	  || fcode == BUILT_IN_EXP
141 	  || fcode == BUILT_IN_EXPL
142 	  || fcode == BUILT_IN_LOG
143 	  || fcode == BUILT_IN_LOGL)
144       && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
145           || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
146     {
147       tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
148       tree newtype = type;
149 
150       /* We have (outertype)sqrt((innertype)x).  Choose the wider mode from
151 	 the both as the safe type for operation.  */
152       if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
153 	newtype = TREE_TYPE (arg0);
154 
155       /* Be careful about integer to fp conversions.
156 	 These may overflow still.  */
157       if (FLOAT_TYPE_P (TREE_TYPE (arg0))
158 	  && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
159 	  && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
160 	      || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
161 	{
162 	  tree arglist;
163 	  tree fn = mathfn_built_in (newtype, fcode);
164 
165 	  if (fn)
166 	    {
167 	      arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
168 	      expr = build_function_call_expr (fn, arglist);
169 	      if (newtype == type)
170 		return expr;
171 	    }
172 	}
173     }
174   if (optimize
175       && (((fcode == BUILT_IN_FLOORL
176 	   || fcode == BUILT_IN_CEILL
177 	   || fcode == BUILT_IN_ROUND
178 	   || fcode == BUILT_IN_TRUNC
179 	   || fcode == BUILT_IN_NEARBYINT)
180 	  && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
181 	      || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
182 	  || ((fcode == BUILT_IN_FLOOR
183 	       || fcode == BUILT_IN_CEIL
184 	       || fcode == BUILT_IN_ROUND
185 	       || fcode == BUILT_IN_TRUNC
186 	       || fcode == BUILT_IN_NEARBYINT)
187 	      && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
188     {
189       tree fn = mathfn_built_in (type, fcode);
190 
191       if (fn)
192 	{
193 	  tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr,
194 									1)));
195 	  tree arglist = build_tree_list (NULL_TREE,
196 					  fold (convert_to_real (type, arg0)));
197 
198 	  return build_function_call_expr (fn, arglist);
199 	}
200     }
201 
202   /* Propagate the cast into the operation.  */
203   if (itype != type && FLOAT_TYPE_P (type))
204     switch (TREE_CODE (expr))
205       {
206 	/* Convert (float)-x into -(float)x.  This is always safe.  */
207 	case ABS_EXPR:
208 	case NEGATE_EXPR:
209 	  if (TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
210 	    return build1 (TREE_CODE (expr), type,
211 			   fold (convert_to_real (type,
212 						  TREE_OPERAND (expr, 0))));
213 	  break;
214 	/* Convert (outertype)((innertype0)a+(innertype1)b)
215 	   into ((newtype)a+(newtype)b) where newtype
216 	   is the widest mode from all of these.  */
217 	case PLUS_EXPR:
218 	case MINUS_EXPR:
219 	case MULT_EXPR:
220 	case RDIV_EXPR:
221 	   {
222 	     tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
223 	     tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
224 
225 	     if (FLOAT_TYPE_P (TREE_TYPE (arg0))
226 		 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
227 	       {
228 		  tree newtype = type;
229 		  if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
230 		    newtype = TREE_TYPE (arg0);
231 		  if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
232 		    newtype = TREE_TYPE (arg1);
233 		  if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
234 		    {
235 		      expr = build (TREE_CODE (expr), newtype,
236 				    fold (convert_to_real (newtype, arg0)),
237 				    fold (convert_to_real (newtype, arg1)));
238 		      if (newtype == type)
239 			return expr;
240 		    }
241 	       }
242 	   }
243 	  break;
244 	default:
245 	  break;
246       }
247 
248   switch (TREE_CODE (TREE_TYPE (expr)))
249     {
250     case REAL_TYPE:
251       return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
252 		     type, expr);
253 
254     case INTEGER_TYPE:
255     case ENUMERAL_TYPE:
256     case BOOLEAN_TYPE:
257     case CHAR_TYPE:
258       return build1 (FLOAT_EXPR, type, expr);
259 
260     case COMPLEX_TYPE:
261       return convert (type,
262 		      fold (build1 (REALPART_EXPR,
263 				    TREE_TYPE (TREE_TYPE (expr)), expr)));
264 
265     case POINTER_TYPE:
266     case REFERENCE_TYPE:
267       error ("pointer value used where a floating point value was expected");
268       return convert_to_real (type, integer_zero_node);
269 
270     default:
271       error ("aggregate value used where a float was expected");
272       return convert_to_real (type, integer_zero_node);
273     }
274 }
275 
276 /* Convert EXPR to some integer (or enum) type TYPE.
277 
278    EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
279    vector; in other cases error is called.
280 
281    The result of this is always supposed to be a newly created tree node
282    not in use in any existing structure.  */
283 
284 tree
convert_to_integer(tree type,tree expr)285 convert_to_integer (tree type, tree expr)
286 {
287   enum tree_code ex_form = TREE_CODE (expr);
288   tree intype = TREE_TYPE (expr);
289   unsigned int inprec = TYPE_PRECISION (intype);
290   unsigned int outprec = TYPE_PRECISION (type);
291 
292   /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
293      be.  Consider `enum E = { a, b = (enum E) 3 };'.  */
294   if (!COMPLETE_TYPE_P (type))
295     {
296       error ("conversion to incomplete type");
297       return error_mark_node;
298     }
299 
300   switch (TREE_CODE (intype))
301     {
302     case POINTER_TYPE:
303     case REFERENCE_TYPE:
304       if (integer_zerop (expr))
305 	expr = integer_zero_node;
306       else
307 	expr = fold (build1 (CONVERT_EXPR, (*lang_hooks.types.type_for_size)
308 			     (POINTER_SIZE, 0), expr));
309 
310       return convert_to_integer (type, expr);
311 
312     case INTEGER_TYPE:
313     case ENUMERAL_TYPE:
314     case BOOLEAN_TYPE:
315     case CHAR_TYPE:
316       /* If this is a logical operation, which just returns 0 or 1, we can
317 	 change the type of the expression.  For some logical operations,
318 	 we must also change the types of the operands to maintain type
319 	 correctness.  */
320 
321       if (TREE_CODE_CLASS (ex_form) == '<')
322 	{
323 	  expr = copy_node (expr);
324 	  TREE_TYPE (expr) = type;
325 	  return expr;
326 	}
327 
328       else if (ex_form == TRUTH_AND_EXPR || ex_form == TRUTH_ANDIF_EXPR
329 	       || ex_form == TRUTH_OR_EXPR || ex_form == TRUTH_ORIF_EXPR
330 	       || ex_form == TRUTH_XOR_EXPR)
331 	{
332 	  expr = copy_node (expr);
333 	  TREE_OPERAND (expr, 0) = convert (type, TREE_OPERAND (expr, 0));
334 	  TREE_OPERAND (expr, 1) = convert (type, TREE_OPERAND (expr, 1));
335 	  TREE_TYPE (expr) = type;
336 	  return expr;
337 	}
338 
339       else if (ex_form == TRUTH_NOT_EXPR)
340 	{
341 	  expr = copy_node (expr);
342 	  TREE_OPERAND (expr, 0) = convert (type, TREE_OPERAND (expr, 0));
343 	  TREE_TYPE (expr) = type;
344 	  return expr;
345 	}
346 
347       /* If we are widening the type, put in an explicit conversion.
348 	 Similarly if we are not changing the width.  After this, we know
349 	 we are truncating EXPR.  */
350 
351       else if (outprec >= inprec)
352 	{
353 	  enum tree_code code;
354 
355 	  /* If the precision of the EXPR's type is K bits and the
356 	     destination mode has more bits, and the sign is changing,
357 	     it is not safe to use a NOP_EXPR.  For example, suppose
358 	     that EXPR's type is a 3-bit unsigned integer type, the
359 	     TYPE is a 3-bit signed integer type, and the machine mode
360 	     for the types is 8-bit QImode.  In that case, the
361 	     conversion necessitates an explicit sign-extension.  In
362 	     the signed-to-unsigned case the high-order bits have to
363 	     be cleared.  */
364 	  if (TREE_UNSIGNED (type) != TREE_UNSIGNED (TREE_TYPE (expr))
365 	      && (TYPE_PRECISION (TREE_TYPE (expr))
366 		  != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
367 	    code = CONVERT_EXPR;
368 	  else
369 	    code = NOP_EXPR;
370 
371 	  return build1 (code, type, expr);
372 	}
373 
374       /* If TYPE is an enumeral type or a type with a precision less
375 	 than the number of bits in its mode, do the conversion to the
376 	 type corresponding to its mode, then do a nop conversion
377 	 to TYPE.  */
378       else if (TREE_CODE (type) == ENUMERAL_TYPE
379 	       || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
380 	return build1 (NOP_EXPR, type,
381 		       convert ((*lang_hooks.types.type_for_mode)
382 				(TYPE_MODE (type), TREE_UNSIGNED (type)),
383 				expr));
384 
385       /* Here detect when we can distribute the truncation down past some
386 	 arithmetic.  For example, if adding two longs and converting to an
387 	 int, we can equally well convert both to ints and then add.
388 	 For the operations handled here, such truncation distribution
389 	 is always safe.
390 	 It is desirable in these cases:
391 	 1) when truncating down to full-word from a larger size
392 	 2) when truncating takes no work.
393 	 3) when at least one operand of the arithmetic has been extended
394 	 (as by C's default conversions).  In this case we need two conversions
395 	 if we do the arithmetic as already requested, so we might as well
396 	 truncate both and then combine.  Perhaps that way we need only one.
397 
398 	 Note that in general we cannot do the arithmetic in a type
399 	 shorter than the desired result of conversion, even if the operands
400 	 are both extended from a shorter type, because they might overflow
401 	 if combined in that type.  The exceptions to this--the times when
402 	 two narrow values can be combined in their narrow type even to
403 	 make a wider result--are handled by "shorten" in build_binary_op.  */
404 
405       switch (ex_form)
406 	{
407 	case RSHIFT_EXPR:
408 	  /* We can pass truncation down through right shifting
409 	     when the shift count is a nonpositive constant.  */
410 	  if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
411 	      && tree_int_cst_lt (TREE_OPERAND (expr, 1),
412 				  convert (TREE_TYPE (TREE_OPERAND (expr, 1)),
413 					   integer_one_node)))
414 	    goto trunc1;
415 	  break;
416 
417 	case LSHIFT_EXPR:
418 	  /* We can pass truncation down through left shifting
419 	     when the shift count is a nonnegative constant and
420 	     the target type is unsigned.  */
421 	  if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
422 	      && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
423 	      && TREE_UNSIGNED (type)
424 	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
425 	    {
426 	      /* If shift count is less than the width of the truncated type,
427 		 really shift.  */
428 	      if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
429 		/* In this case, shifting is like multiplication.  */
430 		goto trunc1;
431 	      else
432 		{
433 		  /* If it is >= that width, result is zero.
434 		     Handling this with trunc1 would give the wrong result:
435 		     (int) ((long long) a << 32) is well defined (as 0)
436 		     but (int) a << 32 is undefined and would get a
437 		     warning.  */
438 
439 		  tree t = convert_to_integer (type, integer_zero_node);
440 
441 		  /* If the original expression had side-effects, we must
442 		     preserve it.  */
443 		  if (TREE_SIDE_EFFECTS (expr))
444 		    return build (COMPOUND_EXPR, type, expr, t);
445 		  else
446 		    return t;
447 		}
448 	    }
449 	  break;
450 
451 	case MAX_EXPR:
452 	case MIN_EXPR:
453 	case MULT_EXPR:
454 	  {
455 	    tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
456 	    tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
457 
458 	    /* Don't distribute unless the output precision is at least as big
459 	       as the actual inputs.  Otherwise, the comparison of the
460 	       truncated values will be wrong.  */
461 	    if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
462 		&& outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
463 		/* If signedness of arg0 and arg1 don't match,
464 		   we can't necessarily find a type to compare them in.  */
465 		&& (TREE_UNSIGNED (TREE_TYPE (arg0))
466 		    == TREE_UNSIGNED (TREE_TYPE (arg1))))
467 	      goto trunc1;
468 	    break;
469 	  }
470 
471 	case PLUS_EXPR:
472 	case MINUS_EXPR:
473 	case BIT_AND_EXPR:
474 	case BIT_IOR_EXPR:
475 	case BIT_XOR_EXPR:
476 	trunc1:
477 	  {
478 	    tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
479 	    tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
480 
481 	    if (outprec >= BITS_PER_WORD
482 		|| TRULY_NOOP_TRUNCATION (outprec, inprec)
483 		|| inprec > TYPE_PRECISION (TREE_TYPE (arg0))
484 		|| inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
485 	      {
486 		/* Do the arithmetic in type TYPEX,
487 		   then convert result to TYPE.  */
488 		tree typex = type;
489 
490 		/* Can't do arithmetic in enumeral types
491 		   so use an integer type that will hold the values.  */
492 		if (TREE_CODE (typex) == ENUMERAL_TYPE)
493 		  typex = (*lang_hooks.types.type_for_size)
494 		    (TYPE_PRECISION (typex), TREE_UNSIGNED (typex));
495 
496 		/* But now perhaps TYPEX is as wide as INPREC.
497 		   In that case, do nothing special here.
498 		   (Otherwise would recurse infinitely in convert.  */
499 		if (TYPE_PRECISION (typex) != inprec)
500 		  {
501 		    /* Don't do unsigned arithmetic where signed was wanted,
502 		       or vice versa.
503 		       Exception: if both of the original operands were
504 		       unsigned then we can safely do the work as unsigned.
505 		       Exception: shift operations take their type solely
506 		       from the first argument.
507 		       Exception: the LSHIFT_EXPR case above requires that
508 		       we perform this operation unsigned lest we produce
509 		       signed-overflow undefinedness.
510 		       And we may need to do it as unsigned
511 		       if we truncate to the original size.  */
512 		    if (TREE_UNSIGNED (TREE_TYPE (expr))
513 			|| (TREE_UNSIGNED (TREE_TYPE (arg0))
514 			    && (TREE_UNSIGNED (TREE_TYPE (arg1))
515 				|| ex_form == LSHIFT_EXPR
516 				|| ex_form == RSHIFT_EXPR
517 				|| ex_form == LROTATE_EXPR
518 				|| ex_form == RROTATE_EXPR))
519 			|| ex_form == LSHIFT_EXPR)
520 		      typex = (*lang_hooks.types.unsigned_type) (typex);
521 		    else
522 		      typex = (*lang_hooks.types.signed_type) (typex);
523 		    return convert (type,
524 				    fold (build (ex_form, typex,
525 						 convert (typex, arg0),
526 						 convert (typex, arg1),
527 						 0)));
528 		  }
529 	      }
530 	  }
531 	  break;
532 
533 	case NEGATE_EXPR:
534 	case BIT_NOT_EXPR:
535 	  /* This is not correct for ABS_EXPR,
536 	     since we must test the sign before truncation.  */
537 	  {
538 	    tree typex = type;
539 
540 	    /* Can't do arithmetic in enumeral types
541 	       so use an integer type that will hold the values.  */
542 	    if (TREE_CODE (typex) == ENUMERAL_TYPE)
543 	      typex = (*lang_hooks.types.type_for_size)
544 		(TYPE_PRECISION (typex), TREE_UNSIGNED (typex));
545 
546 	    /* But now perhaps TYPEX is as wide as INPREC.
547 	       In that case, do nothing special here.
548 	       (Otherwise would recurse infinitely in convert.  */
549 	    if (TYPE_PRECISION (typex) != inprec)
550 	      {
551 		/* Don't do unsigned arithmetic where signed was wanted,
552 		   or vice versa.  */
553 		if (TREE_UNSIGNED (TREE_TYPE (expr)))
554 		  typex = (*lang_hooks.types.unsigned_type) (typex);
555 		else
556 		  typex = (*lang_hooks.types.signed_type) (typex);
557 		return convert (type,
558 				fold (build1 (ex_form, typex,
559 					      convert (typex,
560 						       TREE_OPERAND (expr, 0)))));
561 	      }
562 	  }
563 
564 	case NOP_EXPR:
565 	  /* Don't introduce a
566 	     "can't convert between vector values of different size" error.  */
567 	  if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
568 	      && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
569 		  != GET_MODE_SIZE (TYPE_MODE (type))))
570 	    break;
571 	  /* If truncating after truncating, might as well do all at once.
572 	     If truncating after extending, we may get rid of wasted work.  */
573 	  return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
574 
575 	case COND_EXPR:
576 	  /* It is sometimes worthwhile to push the narrowing down through
577 	     the conditional and never loses.  */
578 	  return fold (build (COND_EXPR, type, TREE_OPERAND (expr, 0),
579 			      convert (type, TREE_OPERAND (expr, 1)),
580 			      convert (type, TREE_OPERAND (expr, 2))));
581 
582 	default:
583 	  break;
584 	}
585 
586       return build1 (NOP_EXPR, type, expr);
587 
588     case REAL_TYPE:
589       return build1 (FIX_TRUNC_EXPR, type, expr);
590 
591     case COMPLEX_TYPE:
592       return convert (type,
593 		      fold (build1 (REALPART_EXPR,
594 				    TREE_TYPE (TREE_TYPE (expr)), expr)));
595 
596     case VECTOR_TYPE:
597       if (GET_MODE_SIZE (TYPE_MODE (type))
598 	  != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr))))
599 	{
600 	  error ("can't convert between vector values of different size");
601 	  return error_mark_node;
602 	}
603       return build1 (NOP_EXPR, type, expr);
604 
605     default:
606       error ("aggregate value used where an integer was expected");
607       return convert (type, integer_zero_node);
608     }
609 }
610 
611 /* Convert EXPR to the complex type TYPE in the usual ways.  */
612 
613 tree
convert_to_complex(tree type,tree expr)614 convert_to_complex (tree type, tree expr)
615 {
616   tree subtype = TREE_TYPE (type);
617 
618   switch (TREE_CODE (TREE_TYPE (expr)))
619     {
620     case REAL_TYPE:
621     case INTEGER_TYPE:
622     case ENUMERAL_TYPE:
623     case BOOLEAN_TYPE:
624     case CHAR_TYPE:
625       return build (COMPLEX_EXPR, type, convert (subtype, expr),
626 		    convert (subtype, integer_zero_node));
627 
628     case COMPLEX_TYPE:
629       {
630 	tree elt_type = TREE_TYPE (TREE_TYPE (expr));
631 
632 	if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
633 	  return expr;
634 	else if (TREE_CODE (expr) == COMPLEX_EXPR)
635 	  return fold (build (COMPLEX_EXPR,
636 			      type,
637 			      convert (subtype, TREE_OPERAND (expr, 0)),
638 			      convert (subtype, TREE_OPERAND (expr, 1))));
639 	else
640 	  {
641 	    expr = save_expr (expr);
642 	    return
643 	      fold (build (COMPLEX_EXPR,
644 			   type, convert (subtype,
645 					  fold (build1 (REALPART_EXPR,
646 							TREE_TYPE (TREE_TYPE (expr)),
647 							expr))),
648 			   convert (subtype,
649 				    fold (build1 (IMAGPART_EXPR,
650 						  TREE_TYPE (TREE_TYPE (expr)),
651 						  expr)))));
652 	  }
653       }
654 
655     case POINTER_TYPE:
656     case REFERENCE_TYPE:
657       error ("pointer value used where a complex was expected");
658       return convert_to_complex (type, integer_zero_node);
659 
660     default:
661       error ("aggregate value used where a complex was expected");
662       return convert_to_complex (type, integer_zero_node);
663     }
664 }
665 
666 /* Convert EXPR to the vector type TYPE in the usual ways.  */
667 
668 tree
convert_to_vector(tree type,tree expr)669 convert_to_vector (tree type, tree expr)
670 {
671   switch (TREE_CODE (TREE_TYPE (expr)))
672     {
673     case INTEGER_TYPE:
674     case VECTOR_TYPE:
675       if (GET_MODE_SIZE (TYPE_MODE (type))
676 	  != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr))))
677 	{
678 	  error ("can't convert between vector values of different size");
679 	  return error_mark_node;
680 	}
681       return build1 (NOP_EXPR, type, expr);
682 
683     default:
684       error ("can't convert value to a vector");
685       return convert_to_vector (type, integer_zero_node);
686     }
687 }
688