1 /*
2  * ARM AdvSIMD / SVE Vector Operations
3  *
4  * Copyright (c) 2018 Linaro
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "tcg/tcg-gvec-desc.h"
24 #include "fpu/softfloat.h"
25 
26 
27 /* Note that vector data is stored in host-endian 64-bit chunks,
28    so addressing units smaller than that needs a host-endian fixup.  */
29 #ifdef HOST_WORDS_BIGENDIAN
30 #define H1(x)  ((x) ^ 7)
31 #define H2(x)  ((x) ^ 3)
32 #define H4(x)  ((x) ^ 1)
33 #else
34 #define H1(x)  (x)
35 #define H2(x)  (x)
36 #define H4(x)  (x)
37 #endif
38 
39 #define SET_QC() env->vfp.qc[0] = 1
40 
clear_tail(void * vd,uintptr_t opr_sz,uintptr_t max_sz)41 static void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz)
42 {
43     uint64_t *d = vd + opr_sz;
44     uintptr_t i;
45 
46     for (i = opr_sz; i < max_sz; i += 8) {
47         *d++ = 0;
48     }
49 }
50 
51 /* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
inl_qrdmlah_s16(CPUARMState * env,int16_t src1,int16_t src2,int16_t src3)52 static uint16_t inl_qrdmlah_s16(CPUARMState *env, int16_t src1,
53                                 int16_t src2, int16_t src3)
54 {
55     /* Simplify:
56      * = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
57      * = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
58      */
59     int32_t ret = (int32_t)src1 * src2;
60     ret = ((int32_t)src3 << 15) + ret + (1 << 14);
61     ret >>= 15;
62     if (ret != (int16_t)ret) {
63         SET_QC();
64         ret = (ret < 0 ? -0x8000 : 0x7fff);
65     }
66     return ret;
67 }
68 
HELPER(neon_qrdmlah_s16)69 uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
70                                   uint32_t src2, uint32_t src3)
71 {
72     uint16_t e1 = inl_qrdmlah_s16(env, src1, src2, src3);
73     uint16_t e2 = inl_qrdmlah_s16(env, src1 >> 16, src2 >> 16, src3 >> 16);
74     return deposit32(e1, 16, 16, e2);
75 }
76 
HELPER(gvec_qrdmlah_s16)77 void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
78                               void *ve, uint32_t desc)
79 {
80     uintptr_t opr_sz = simd_oprsz(desc);
81     int16_t *d = vd;
82     int16_t *n = vn;
83     int16_t *m = vm;
84     CPUARMState *env = ve;
85     uintptr_t i;
86 
87     for (i = 0; i < opr_sz / 2; ++i) {
88         d[i] = inl_qrdmlah_s16(env, n[i], m[i], d[i]);
89     }
90     clear_tail(d, opr_sz, simd_maxsz(desc));
91 }
92 
93 /* Signed saturating rounding doubling multiply-subtract high half, 16-bit */
inl_qrdmlsh_s16(CPUARMState * env,int16_t src1,int16_t src2,int16_t src3)94 static uint16_t inl_qrdmlsh_s16(CPUARMState *env, int16_t src1,
95                                 int16_t src2, int16_t src3)
96 {
97     /* Similarly, using subtraction:
98      * = ((a3 << 16) - ((e1 * e2) << 1) + (1 << 15)) >> 16
99      * = ((a3 << 15) - (e1 * e2) + (1 << 14)) >> 15
100      */
101     int32_t ret = (int32_t)src1 * src2;
102     ret = ((int32_t)src3 << 15) - ret + (1 << 14);
103     ret >>= 15;
104     if (ret != (int16_t)ret) {
105         SET_QC();
106         ret = (ret < 0 ? -0x8000 : 0x7fff);
107     }
108     return ret;
109 }
110 
HELPER(neon_qrdmlsh_s16)111 uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
112                                   uint32_t src2, uint32_t src3)
113 {
114     uint16_t e1 = inl_qrdmlsh_s16(env, src1, src2, src3);
115     uint16_t e2 = inl_qrdmlsh_s16(env, src1 >> 16, src2 >> 16, src3 >> 16);
116     return deposit32(e1, 16, 16, e2);
117 }
118 
HELPER(gvec_qrdmlsh_s16)119 void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
120                               void *ve, uint32_t desc)
121 {
122     uintptr_t opr_sz = simd_oprsz(desc);
123     int16_t *d = vd;
124     int16_t *n = vn;
125     int16_t *m = vm;
126     CPUARMState *env = ve;
127     uintptr_t i;
128 
129     for (i = 0; i < opr_sz / 2; ++i) {
130         d[i] = inl_qrdmlsh_s16(env, n[i], m[i], d[i]);
131     }
132     clear_tail(d, opr_sz, simd_maxsz(desc));
133 }
134 
135 /* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
HELPER(neon_qrdmlah_s32)136 uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
137                                   int32_t src2, int32_t src3)
138 {
139     /* Simplify similarly to int_qrdmlah_s16 above.  */
140     int64_t ret = (int64_t)src1 * src2;
141     ret = ((int64_t)src3 << 31) + ret + (1 << 30);
142     ret >>= 31;
143     if (ret != (int32_t)ret) {
144         SET_QC();
145         ret = (ret < 0 ? INT32_MIN : INT32_MAX);
146     }
147     return ret;
148 }
149 
HELPER(gvec_qrdmlah_s32)150 void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
151                               void *ve, uint32_t desc)
152 {
153     uintptr_t opr_sz = simd_oprsz(desc);
154     int32_t *d = vd;
155     int32_t *n = vn;
156     int32_t *m = vm;
157     CPUARMState *env = ve;
158     uintptr_t i;
159 
160     for (i = 0; i < opr_sz / 4; ++i) {
161         d[i] = helper_neon_qrdmlah_s32(env, n[i], m[i], d[i]);
162     }
163     clear_tail(d, opr_sz, simd_maxsz(desc));
164 }
165 
166 /* Signed saturating rounding doubling multiply-subtract high half, 32-bit */
HELPER(neon_qrdmlsh_s32)167 uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
168                                   int32_t src2, int32_t src3)
169 {
170     /* Simplify similarly to int_qrdmlsh_s16 above.  */
171     int64_t ret = (int64_t)src1 * src2;
172     ret = ((int64_t)src3 << 31) - ret + (1 << 30);
173     ret >>= 31;
174     if (ret != (int32_t)ret) {
175         SET_QC();
176         ret = (ret < 0 ? INT32_MIN : INT32_MAX);
177     }
178     return ret;
179 }
180 
HELPER(gvec_qrdmlsh_s32)181 void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
182                               void *ve, uint32_t desc)
183 {
184     uintptr_t opr_sz = simd_oprsz(desc);
185     int32_t *d = vd;
186     int32_t *n = vn;
187     int32_t *m = vm;
188     CPUARMState *env = ve;
189     uintptr_t i;
190 
191     for (i = 0; i < opr_sz / 4; ++i) {
192         d[i] = helper_neon_qrdmlsh_s32(env, n[i], m[i], d[i]);
193     }
194     clear_tail(d, opr_sz, simd_maxsz(desc));
195 }
196 
197 /* Integer 8 and 16-bit dot-product.
198  *
199  * Note that for the loops herein, host endianness does not matter
200  * with respect to the ordering of data within the 64-bit lanes.
201  * All elements are treated equally, no matter where they are.
202  */
203 
HELPER(gvec_sdot_b)204 void HELPER(gvec_sdot_b)(void *vd, void *vn, void *vm, uint32_t desc)
205 {
206     intptr_t i, opr_sz = simd_oprsz(desc);
207     uint32_t *d = vd;
208     int8_t *n = vn, *m = vm;
209 
210     for (i = 0; i < opr_sz / 4; ++i) {
211         d[i] += n[i * 4 + 0] * m[i * 4 + 0]
212               + n[i * 4 + 1] * m[i * 4 + 1]
213               + n[i * 4 + 2] * m[i * 4 + 2]
214               + n[i * 4 + 3] * m[i * 4 + 3];
215     }
216     clear_tail(d, opr_sz, simd_maxsz(desc));
217 }
218 
HELPER(gvec_udot_b)219 void HELPER(gvec_udot_b)(void *vd, void *vn, void *vm, uint32_t desc)
220 {
221     intptr_t i, opr_sz = simd_oprsz(desc);
222     uint32_t *d = vd;
223     uint8_t *n = vn, *m = vm;
224 
225     for (i = 0; i < opr_sz / 4; ++i) {
226         d[i] += n[i * 4 + 0] * m[i * 4 + 0]
227               + n[i * 4 + 1] * m[i * 4 + 1]
228               + n[i * 4 + 2] * m[i * 4 + 2]
229               + n[i * 4 + 3] * m[i * 4 + 3];
230     }
231     clear_tail(d, opr_sz, simd_maxsz(desc));
232 }
233 
HELPER(gvec_sdot_h)234 void HELPER(gvec_sdot_h)(void *vd, void *vn, void *vm, uint32_t desc)
235 {
236     intptr_t i, opr_sz = simd_oprsz(desc);
237     uint64_t *d = vd;
238     int16_t *n = vn, *m = vm;
239 
240     for (i = 0; i < opr_sz / 8; ++i) {
241         d[i] += (int64_t)n[i * 4 + 0] * m[i * 4 + 0]
242               + (int64_t)n[i * 4 + 1] * m[i * 4 + 1]
243               + (int64_t)n[i * 4 + 2] * m[i * 4 + 2]
244               + (int64_t)n[i * 4 + 3] * m[i * 4 + 3];
245     }
246     clear_tail(d, opr_sz, simd_maxsz(desc));
247 }
248 
HELPER(gvec_udot_h)249 void HELPER(gvec_udot_h)(void *vd, void *vn, void *vm, uint32_t desc)
250 {
251     intptr_t i, opr_sz = simd_oprsz(desc);
252     uint64_t *d = vd;
253     uint16_t *n = vn, *m = vm;
254 
255     for (i = 0; i < opr_sz / 8; ++i) {
256         d[i] += (uint64_t)n[i * 4 + 0] * m[i * 4 + 0]
257               + (uint64_t)n[i * 4 + 1] * m[i * 4 + 1]
258               + (uint64_t)n[i * 4 + 2] * m[i * 4 + 2]
259               + (uint64_t)n[i * 4 + 3] * m[i * 4 + 3];
260     }
261     clear_tail(d, opr_sz, simd_maxsz(desc));
262 }
263 
HELPER(gvec_sdot_idx_b)264 void HELPER(gvec_sdot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
265 {
266     intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
267     intptr_t index = simd_data(desc);
268     uint32_t *d = vd;
269     int8_t *n = vn;
270     int8_t *m_indexed = (int8_t *)vm + index * 4;
271 
272     /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
273      * Otherwise opr_sz is a multiple of 16.
274      */
275     segend = MIN(4, opr_sz_4);
276     i = 0;
277     do {
278         int8_t m0 = m_indexed[i * 4 + 0];
279         int8_t m1 = m_indexed[i * 4 + 1];
280         int8_t m2 = m_indexed[i * 4 + 2];
281         int8_t m3 = m_indexed[i * 4 + 3];
282 
283         do {
284             d[i] += n[i * 4 + 0] * m0
285                   + n[i * 4 + 1] * m1
286                   + n[i * 4 + 2] * m2
287                   + n[i * 4 + 3] * m3;
288         } while (++i < segend);
289         segend = i + 4;
290     } while (i < opr_sz_4);
291 
292     clear_tail(d, opr_sz, simd_maxsz(desc));
293 }
294 
HELPER(gvec_udot_idx_b)295 void HELPER(gvec_udot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
296 {
297     intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
298     intptr_t index = simd_data(desc);
299     uint32_t *d = vd;
300     uint8_t *n = vn;
301     uint8_t *m_indexed = (uint8_t *)vm + index * 4;
302 
303     /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
304      * Otherwise opr_sz is a multiple of 16.
305      */
306     segend = MIN(4, opr_sz_4);
307     i = 0;
308     do {
309         uint8_t m0 = m_indexed[i * 4 + 0];
310         uint8_t m1 = m_indexed[i * 4 + 1];
311         uint8_t m2 = m_indexed[i * 4 + 2];
312         uint8_t m3 = m_indexed[i * 4 + 3];
313 
314         do {
315             d[i] += n[i * 4 + 0] * m0
316                   + n[i * 4 + 1] * m1
317                   + n[i * 4 + 2] * m2
318                   + n[i * 4 + 3] * m3;
319         } while (++i < segend);
320         segend = i + 4;
321     } while (i < opr_sz_4);
322 
323     clear_tail(d, opr_sz, simd_maxsz(desc));
324 }
325 
HELPER(gvec_sdot_idx_h)326 void HELPER(gvec_sdot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
327 {
328     intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
329     intptr_t index = simd_data(desc);
330     uint64_t *d = vd;
331     int16_t *n = vn;
332     int16_t *m_indexed = (int16_t *)vm + index * 4;
333 
334     /* This is supported by SVE only, so opr_sz is always a multiple of 16.
335      * Process the entire segment all at once, writing back the results
336      * only after we've consumed all of the inputs.
337      */
338     for (i = 0; i < opr_sz_8 ; i += 2) {
339         uint64_t d0, d1;
340 
341         d0  = n[i * 4 + 0] * (int64_t)m_indexed[i * 4 + 0];
342         d0 += n[i * 4 + 1] * (int64_t)m_indexed[i * 4 + 1];
343         d0 += n[i * 4 + 2] * (int64_t)m_indexed[i * 4 + 2];
344         d0 += n[i * 4 + 3] * (int64_t)m_indexed[i * 4 + 3];
345         d1  = n[i * 4 + 4] * (int64_t)m_indexed[i * 4 + 0];
346         d1 += n[i * 4 + 5] * (int64_t)m_indexed[i * 4 + 1];
347         d1 += n[i * 4 + 6] * (int64_t)m_indexed[i * 4 + 2];
348         d1 += n[i * 4 + 7] * (int64_t)m_indexed[i * 4 + 3];
349 
350         d[i + 0] += d0;
351         d[i + 1] += d1;
352     }
353 
354     clear_tail(d, opr_sz, simd_maxsz(desc));
355 }
356 
HELPER(gvec_udot_idx_h)357 void HELPER(gvec_udot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
358 {
359     intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
360     intptr_t index = simd_data(desc);
361     uint64_t *d = vd;
362     uint16_t *n = vn;
363     uint16_t *m_indexed = (uint16_t *)vm + index * 4;
364 
365     /* This is supported by SVE only, so opr_sz is always a multiple of 16.
366      * Process the entire segment all at once, writing back the results
367      * only after we've consumed all of the inputs.
368      */
369     for (i = 0; i < opr_sz_8 ; i += 2) {
370         uint64_t d0, d1;
371 
372         d0  = n[i * 4 + 0] * (uint64_t)m_indexed[i * 4 + 0];
373         d0 += n[i * 4 + 1] * (uint64_t)m_indexed[i * 4 + 1];
374         d0 += n[i * 4 + 2] * (uint64_t)m_indexed[i * 4 + 2];
375         d0 += n[i * 4 + 3] * (uint64_t)m_indexed[i * 4 + 3];
376         d1  = n[i * 4 + 4] * (uint64_t)m_indexed[i * 4 + 0];
377         d1 += n[i * 4 + 5] * (uint64_t)m_indexed[i * 4 + 1];
378         d1 += n[i * 4 + 6] * (uint64_t)m_indexed[i * 4 + 2];
379         d1 += n[i * 4 + 7] * (uint64_t)m_indexed[i * 4 + 3];
380 
381         d[i + 0] += d0;
382         d[i + 1] += d1;
383     }
384 
385     clear_tail(d, opr_sz, simd_maxsz(desc));
386 }
387 
HELPER(gvec_fcaddh)388 void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
389                          void *vfpst, uint32_t desc)
390 {
391     uintptr_t opr_sz = simd_oprsz(desc);
392     float16 *d = vd;
393     float16 *n = vn;
394     float16 *m = vm;
395     float_status *fpst = vfpst;
396     uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
397     uint32_t neg_imag = neg_real ^ 1;
398     uintptr_t i;
399 
400     /* Shift boolean to the sign bit so we can xor to negate.  */
401     neg_real <<= 15;
402     neg_imag <<= 15;
403 
404     for (i = 0; i < opr_sz / 2; i += 2) {
405         float16 e0 = n[H2(i)];
406         float16 e1 = m[H2(i + 1)] ^ neg_imag;
407         float16 e2 = n[H2(i + 1)];
408         float16 e3 = m[H2(i)] ^ neg_real;
409 
410         d[H2(i)] = float16_add(e0, e1, fpst);
411         d[H2(i + 1)] = float16_add(e2, e3, fpst);
412     }
413     clear_tail(d, opr_sz, simd_maxsz(desc));
414 }
415 
HELPER(gvec_fcadds)416 void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
417                          void *vfpst, uint32_t desc)
418 {
419     uintptr_t opr_sz = simd_oprsz(desc);
420     float32 *d = vd;
421     float32 *n = vn;
422     float32 *m = vm;
423     float_status *fpst = vfpst;
424     uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
425     uint32_t neg_imag = neg_real ^ 1;
426     uintptr_t i;
427 
428     /* Shift boolean to the sign bit so we can xor to negate.  */
429     neg_real <<= 31;
430     neg_imag <<= 31;
431 
432     for (i = 0; i < opr_sz / 4; i += 2) {
433         float32 e0 = n[H4(i)];
434         float32 e1 = m[H4(i + 1)] ^ neg_imag;
435         float32 e2 = n[H4(i + 1)];
436         float32 e3 = m[H4(i)] ^ neg_real;
437 
438         d[H4(i)] = float32_add(e0, e1, fpst);
439         d[H4(i + 1)] = float32_add(e2, e3, fpst);
440     }
441     clear_tail(d, opr_sz, simd_maxsz(desc));
442 }
443 
HELPER(gvec_fcaddd)444 void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
445                          void *vfpst, uint32_t desc)
446 {
447     uintptr_t opr_sz = simd_oprsz(desc);
448     float64 *d = vd;
449     float64 *n = vn;
450     float64 *m = vm;
451     float_status *fpst = vfpst;
452     uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
453     uint64_t neg_imag = neg_real ^ 1;
454     uintptr_t i;
455 
456     /* Shift boolean to the sign bit so we can xor to negate.  */
457     neg_real <<= 63;
458     neg_imag <<= 63;
459 
460     for (i = 0; i < opr_sz / 8; i += 2) {
461         float64 e0 = n[i];
462         float64 e1 = m[i + 1] ^ neg_imag;
463         float64 e2 = n[i + 1];
464         float64 e3 = m[i] ^ neg_real;
465 
466         d[i] = float64_add(e0, e1, fpst);
467         d[i + 1] = float64_add(e2, e3, fpst);
468     }
469     clear_tail(d, opr_sz, simd_maxsz(desc));
470 }
471 
HELPER(gvec_fcmlah)472 void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm,
473                          void *vfpst, uint32_t desc)
474 {
475     uintptr_t opr_sz = simd_oprsz(desc);
476     float16 *d = vd;
477     float16 *n = vn;
478     float16 *m = vm;
479     float_status *fpst = vfpst;
480     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
481     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
482     uint32_t neg_real = flip ^ neg_imag;
483     uintptr_t i;
484 
485     /* Shift boolean to the sign bit so we can xor to negate.  */
486     neg_real <<= 15;
487     neg_imag <<= 15;
488 
489     for (i = 0; i < opr_sz / 2; i += 2) {
490         float16 e2 = n[H2(i + flip)];
491         float16 e1 = m[H2(i + flip)] ^ neg_real;
492         float16 e4 = e2;
493         float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
494 
495         d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
496         d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
497     }
498     clear_tail(d, opr_sz, simd_maxsz(desc));
499 }
500 
HELPER(gvec_fcmlah_idx)501 void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm,
502                              void *vfpst, uint32_t desc)
503 {
504     uintptr_t opr_sz = simd_oprsz(desc);
505     float16 *d = vd;
506     float16 *n = vn;
507     float16 *m = vm;
508     float_status *fpst = vfpst;
509     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
510     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
511     intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
512     uint32_t neg_real = flip ^ neg_imag;
513     intptr_t elements = opr_sz / sizeof(float16);
514     intptr_t eltspersegment = 16 / sizeof(float16);
515     intptr_t i, j;
516 
517     /* Shift boolean to the sign bit so we can xor to negate.  */
518     neg_real <<= 15;
519     neg_imag <<= 15;
520 
521     for (i = 0; i < elements; i += eltspersegment) {
522         float16 mr = m[H2(i + 2 * index + 0)];
523         float16 mi = m[H2(i + 2 * index + 1)];
524         float16 e1 = neg_real ^ (flip ? mi : mr);
525         float16 e3 = neg_imag ^ (flip ? mr : mi);
526 
527         for (j = i; j < i + eltspersegment; j += 2) {
528             float16 e2 = n[H2(j + flip)];
529             float16 e4 = e2;
530 
531             d[H2(j)] = float16_muladd(e2, e1, d[H2(j)], 0, fpst);
532             d[H2(j + 1)] = float16_muladd(e4, e3, d[H2(j + 1)], 0, fpst);
533         }
534     }
535     clear_tail(d, opr_sz, simd_maxsz(desc));
536 }
537 
HELPER(gvec_fcmlas)538 void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm,
539                          void *vfpst, uint32_t desc)
540 {
541     uintptr_t opr_sz = simd_oprsz(desc);
542     float32 *d = vd;
543     float32 *n = vn;
544     float32 *m = vm;
545     float_status *fpst = vfpst;
546     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
547     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
548     uint32_t neg_real = flip ^ neg_imag;
549     uintptr_t i;
550 
551     /* Shift boolean to the sign bit so we can xor to negate.  */
552     neg_real <<= 31;
553     neg_imag <<= 31;
554 
555     for (i = 0; i < opr_sz / 4; i += 2) {
556         float32 e2 = n[H4(i + flip)];
557         float32 e1 = m[H4(i + flip)] ^ neg_real;
558         float32 e4 = e2;
559         float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
560 
561         d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
562         d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
563     }
564     clear_tail(d, opr_sz, simd_maxsz(desc));
565 }
566 
HELPER(gvec_fcmlas_idx)567 void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm,
568                              void *vfpst, uint32_t desc)
569 {
570     uintptr_t opr_sz = simd_oprsz(desc);
571     float32 *d = vd;
572     float32 *n = vn;
573     float32 *m = vm;
574     float_status *fpst = vfpst;
575     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
576     uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
577     intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
578     uint32_t neg_real = flip ^ neg_imag;
579     intptr_t elements = opr_sz / sizeof(float32);
580     intptr_t eltspersegment = 16 / sizeof(float32);
581     intptr_t i, j;
582 
583     /* Shift boolean to the sign bit so we can xor to negate.  */
584     neg_real <<= 31;
585     neg_imag <<= 31;
586 
587     for (i = 0; i < elements; i += eltspersegment) {
588         float32 mr = m[H4(i + 2 * index + 0)];
589         float32 mi = m[H4(i + 2 * index + 1)];
590         float32 e1 = neg_real ^ (flip ? mi : mr);
591         float32 e3 = neg_imag ^ (flip ? mr : mi);
592 
593         for (j = i; j < i + eltspersegment; j += 2) {
594             float32 e2 = n[H4(j + flip)];
595             float32 e4 = e2;
596 
597             d[H4(j)] = float32_muladd(e2, e1, d[H4(j)], 0, fpst);
598             d[H4(j + 1)] = float32_muladd(e4, e3, d[H4(j + 1)], 0, fpst);
599         }
600     }
601     clear_tail(d, opr_sz, simd_maxsz(desc));
602 }
603 
HELPER(gvec_fcmlad)604 void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm,
605                          void *vfpst, uint32_t desc)
606 {
607     uintptr_t opr_sz = simd_oprsz(desc);
608     float64 *d = vd;
609     float64 *n = vn;
610     float64 *m = vm;
611     float_status *fpst = vfpst;
612     intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
613     uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
614     uint64_t neg_real = flip ^ neg_imag;
615     uintptr_t i;
616 
617     /* Shift boolean to the sign bit so we can xor to negate.  */
618     neg_real <<= 63;
619     neg_imag <<= 63;
620 
621     for (i = 0; i < opr_sz / 8; i += 2) {
622         float64 e2 = n[i + flip];
623         float64 e1 = m[i + flip] ^ neg_real;
624         float64 e4 = e2;
625         float64 e3 = m[i + 1 - flip] ^ neg_imag;
626 
627         d[i] = float64_muladd(e2, e1, d[i], 0, fpst);
628         d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst);
629     }
630     clear_tail(d, opr_sz, simd_maxsz(desc));
631 }
632 
633 #define DO_2OP(NAME, FUNC, TYPE) \
634 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc)  \
635 {                                                                 \
636     intptr_t i, oprsz = simd_oprsz(desc);                         \
637     TYPE *d = vd, *n = vn;                                        \
638     for (i = 0; i < oprsz / sizeof(TYPE); i++) {                  \
639         d[i] = FUNC(n[i], stat);                                  \
640     }                                                             \
641     clear_tail(d, oprsz, simd_maxsz(desc));                       \
642 }
643 
DO_2OP(gvec_frecpe_h,helper_recpe_f16,float16)644 DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16)
645 DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32)
646 DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64)
647 
648 DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16)
649 DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32)
650 DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64)
651 
652 #undef DO_2OP
653 
654 /* Floating-point trigonometric starting value.
655  * See the ARM ARM pseudocode function FPTrigSMul.
656  */
657 static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat)
658 {
659     float16 result = float16_mul(op1, op1, stat);
660     if (!float16_is_any_nan(result)) {
661         result = float16_set_sign(result, op2 & 1);
662     }
663     return result;
664 }
665 
float32_ftsmul(float32 op1,uint32_t op2,float_status * stat)666 static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat)
667 {
668     float32 result = float32_mul(op1, op1, stat);
669     if (!float32_is_any_nan(result)) {
670         result = float32_set_sign(result, op2 & 1);
671     }
672     return result;
673 }
674 
float64_ftsmul(float64 op1,uint64_t op2,float_status * stat)675 static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat)
676 {
677     float64 result = float64_mul(op1, op1, stat);
678     if (!float64_is_any_nan(result)) {
679         result = float64_set_sign(result, op2 & 1);
680     }
681     return result;
682 }
683 
684 #define DO_3OP(NAME, FUNC, TYPE) \
685 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
686 {                                                                          \
687     intptr_t i, oprsz = simd_oprsz(desc);                                  \
688     TYPE *d = vd, *n = vn, *m = vm;                                        \
689     for (i = 0; i < oprsz / sizeof(TYPE); i++) {                           \
690         d[i] = FUNC(n[i], m[i], stat);                                     \
691     }                                                                      \
692     clear_tail(d, oprsz, simd_maxsz(desc));                                \
693 }
694 
DO_3OP(gvec_fadd_h,float16_add,float16)695 DO_3OP(gvec_fadd_h, float16_add, float16)
696 DO_3OP(gvec_fadd_s, float32_add, float32)
697 DO_3OP(gvec_fadd_d, float64_add, float64)
698 
699 DO_3OP(gvec_fsub_h, float16_sub, float16)
700 DO_3OP(gvec_fsub_s, float32_sub, float32)
701 DO_3OP(gvec_fsub_d, float64_sub, float64)
702 
703 DO_3OP(gvec_fmul_h, float16_mul, float16)
704 DO_3OP(gvec_fmul_s, float32_mul, float32)
705 DO_3OP(gvec_fmul_d, float64_mul, float64)
706 
707 DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16)
708 DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32)
709 DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64)
710 
711 #ifdef TARGET_AARCH64
712 
713 DO_3OP(gvec_recps_h, helper_recpsf_f16, float16)
714 DO_3OP(gvec_recps_s, helper_recpsf_f32, float32)
715 DO_3OP(gvec_recps_d, helper_recpsf_f64, float64)
716 
717 DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16)
718 DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32)
719 DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64)
720 
721 #endif
722 #undef DO_3OP
723 
724 /* For the indexed ops, SVE applies the index per 128-bit vector segment.
725  * For AdvSIMD, there is of course only one such vector segment.
726  */
727 
728 #define DO_MUL_IDX(NAME, TYPE, H) \
729 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
730 {                                                                          \
731     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
732     intptr_t idx = simd_data(desc);                                        \
733     TYPE *d = vd, *n = vn, *m = vm;                                        \
734     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
735         TYPE mm = m[H(i + idx)];                                           \
736         for (j = 0; j < segment; j++) {                                    \
737             d[i + j] = TYPE##_mul(n[i + j], mm, stat);                     \
738         }                                                                  \
739     }                                                                      \
740 }
741 
742 DO_MUL_IDX(gvec_fmul_idx_h, float16, H2)
743 DO_MUL_IDX(gvec_fmul_idx_s, float32, H4)
744 DO_MUL_IDX(gvec_fmul_idx_d, float64, )
745 
746 #undef DO_MUL_IDX
747 
748 #define DO_FMLA_IDX(NAME, TYPE, H)                                         \
749 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va,                  \
750                   void *stat, uint32_t desc)                               \
751 {                                                                          \
752     intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);  \
753     TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1);                    \
754     intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1);                          \
755     TYPE *d = vd, *n = vn, *m = vm, *a = va;                               \
756     op1_neg <<= (8 * sizeof(TYPE) - 1);                                    \
757     for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {                  \
758         TYPE mm = m[H(i + idx)];                                           \
759         for (j = 0; j < segment; j++) {                                    \
760             d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg,                   \
761                                      mm, a[i + j], 0, stat);               \
762         }                                                                  \
763     }                                                                      \
764 }
765 
766 DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2)
767 DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4)
768 DO_FMLA_IDX(gvec_fmla_idx_d, float64, )
769 
770 #undef DO_FMLA_IDX
771 
772 #define DO_SAT(NAME, WTYPE, TYPEN, TYPEM, OP, MIN, MAX) \
773 void HELPER(NAME)(void *vd, void *vq, void *vn, void *vm, uint32_t desc)   \
774 {                                                                          \
775     intptr_t i, oprsz = simd_oprsz(desc);                                  \
776     TYPEN *d = vd, *n = vn; TYPEM *m = vm;                                 \
777     bool q = false;                                                        \
778     for (i = 0; i < oprsz / sizeof(TYPEN); i++) {                          \
779         WTYPE dd = (WTYPE)n[i] OP m[i];                                    \
780         if (dd < MIN) {                                                    \
781             dd = MIN;                                                      \
782             q = true;                                                      \
783         } else if (dd > MAX) {                                             \
784             dd = MAX;                                                      \
785             q = true;                                                      \
786         }                                                                  \
787         d[i] = dd;                                                         \
788     }                                                                      \
789     if (q) {                                                               \
790         uint32_t *qc = vq;                                                 \
791         qc[0] = 1;                                                         \
792     }                                                                      \
793     clear_tail(d, oprsz, simd_maxsz(desc));                                \
794 }
795 
796 DO_SAT(gvec_uqadd_b, int, uint8_t, uint8_t, +, 0, UINT8_MAX)
797 DO_SAT(gvec_uqadd_h, int, uint16_t, uint16_t, +, 0, UINT16_MAX)
798 DO_SAT(gvec_uqadd_s, int64_t, uint32_t, uint32_t, +, 0, UINT32_MAX)
799 
800 DO_SAT(gvec_sqadd_b, int, int8_t, int8_t, +, INT8_MIN, INT8_MAX)
801 DO_SAT(gvec_sqadd_h, int, int16_t, int16_t, +, INT16_MIN, INT16_MAX)
802 DO_SAT(gvec_sqadd_s, int64_t, int32_t, int32_t, +, INT32_MIN, INT32_MAX)
803 
804 DO_SAT(gvec_uqsub_b, int, uint8_t, uint8_t, -, 0, UINT8_MAX)
805 DO_SAT(gvec_uqsub_h, int, uint16_t, uint16_t, -, 0, UINT16_MAX)
806 DO_SAT(gvec_uqsub_s, int64_t, uint32_t, uint32_t, -, 0, UINT32_MAX)
807 
808 DO_SAT(gvec_sqsub_b, int, int8_t, int8_t, -, INT8_MIN, INT8_MAX)
809 DO_SAT(gvec_sqsub_h, int, int16_t, int16_t, -, INT16_MIN, INT16_MAX)
810 DO_SAT(gvec_sqsub_s, int64_t, int32_t, int32_t, -, INT32_MIN, INT32_MAX)
811 
812 #undef DO_SAT
813 
814 void HELPER(gvec_uqadd_d)(void *vd, void *vq, void *vn,
815                           void *vm, uint32_t desc)
816 {
817     intptr_t i, oprsz = simd_oprsz(desc);
818     uint64_t *d = vd, *n = vn, *m = vm;
819     bool q = false;
820 
821     for (i = 0; i < oprsz / 8; i++) {
822         uint64_t nn = n[i], mm = m[i], dd = nn + mm;
823         if (dd < nn) {
824             dd = UINT64_MAX;
825             q = true;
826         }
827         d[i] = dd;
828     }
829     if (q) {
830         uint32_t *qc = vq;
831         qc[0] = 1;
832     }
833     clear_tail(d, oprsz, simd_maxsz(desc));
834 }
835 
HELPER(gvec_uqsub_d)836 void HELPER(gvec_uqsub_d)(void *vd, void *vq, void *vn,
837                           void *vm, uint32_t desc)
838 {
839     intptr_t i, oprsz = simd_oprsz(desc);
840     uint64_t *d = vd, *n = vn, *m = vm;
841     bool q = false;
842 
843     for (i = 0; i < oprsz / 8; i++) {
844         uint64_t nn = n[i], mm = m[i], dd = nn - mm;
845         if (nn < mm) {
846             dd = 0;
847             q = true;
848         }
849         d[i] = dd;
850     }
851     if (q) {
852         uint32_t *qc = vq;
853         qc[0] = 1;
854     }
855     clear_tail(d, oprsz, simd_maxsz(desc));
856 }
857 
HELPER(gvec_sqadd_d)858 void HELPER(gvec_sqadd_d)(void *vd, void *vq, void *vn,
859                           void *vm, uint32_t desc)
860 {
861     intptr_t i, oprsz = simd_oprsz(desc);
862     int64_t *d = vd, *n = vn, *m = vm;
863     bool q = false;
864 
865     for (i = 0; i < oprsz / 8; i++) {
866         int64_t nn = n[i], mm = m[i], dd = nn + mm;
867         if (((dd ^ nn) & ~(nn ^ mm)) & INT64_MIN) {
868             dd = (nn >> 63) ^ ~INT64_MIN;
869             q = true;
870         }
871         d[i] = dd;
872     }
873     if (q) {
874         uint32_t *qc = vq;
875         qc[0] = 1;
876     }
877     clear_tail(d, oprsz, simd_maxsz(desc));
878 }
879 
HELPER(gvec_sqsub_d)880 void HELPER(gvec_sqsub_d)(void *vd, void *vq, void *vn,
881                           void *vm, uint32_t desc)
882 {
883     intptr_t i, oprsz = simd_oprsz(desc);
884     int64_t *d = vd, *n = vn, *m = vm;
885     bool q = false;
886 
887     for (i = 0; i < oprsz / 8; i++) {
888         int64_t nn = n[i], mm = m[i], dd = nn - mm;
889         if (((dd ^ nn) & (nn ^ mm)) & INT64_MIN) {
890             dd = (nn >> 63) ^ ~INT64_MIN;
891             q = true;
892         }
893         d[i] = dd;
894     }
895     if (q) {
896         uint32_t *qc = vq;
897         qc[0] = 1;
898     }
899     clear_tail(d, oprsz, simd_maxsz(desc));
900 }
901 
902 /*
903  * Convert float16 to float32, raising no exceptions and
904  * preserving exceptional values, including SNaN.
905  * This is effectively an unpack+repack operation.
906  */
float16_to_float32_by_bits(uint32_t f16,bool fz16)907 static float32 float16_to_float32_by_bits(uint32_t f16, bool fz16)
908 {
909     const int f16_bias = 15;
910     const int f32_bias = 127;
911     uint32_t sign = extract32(f16, 15, 1);
912     uint32_t exp = extract32(f16, 10, 5);
913     uint32_t frac = extract32(f16, 0, 10);
914 
915     if (exp == 0x1f) {
916         /* Inf or NaN */
917         exp = 0xff;
918     } else if (exp == 0) {
919         /* Zero or denormal.  */
920         if (frac != 0) {
921             if (fz16) {
922                 frac = 0;
923             } else {
924                 /*
925                  * Denormal; these are all normal float32.
926                  * Shift the fraction so that the msb is at bit 11,
927                  * then remove bit 11 as the implicit bit of the
928                  * normalized float32.  Note that we still go through
929                  * the shift for normal numbers below, to put the
930                  * float32 fraction at the right place.
931                  */
932                 int shift = clz32(frac) - 21;
933                 frac = (frac << shift) & 0x3ff;
934                 exp = f32_bias - f16_bias - shift + 1;
935             }
936         }
937     } else {
938         /* Normal number; adjust the bias.  */
939         exp += f32_bias - f16_bias;
940     }
941     sign <<= 31;
942     exp <<= 23;
943     frac <<= 23 - 10;
944 
945     return sign | exp | frac;
946 }
947 
load4_f16(uint64_t * ptr,int is_q,int is_2)948 static uint64_t load4_f16(uint64_t *ptr, int is_q, int is_2)
949 {
950     /*
951      * Branchless load of u32[0], u64[0], u32[1], or u64[1].
952      * Load the 2nd qword iff is_q & is_2.
953      * Shift to the 2nd dword iff !is_q & is_2.
954      * For !is_q & !is_2, the upper bits of the result are garbage.
955      */
956     return ptr[is_q & is_2] >> ((is_2 & ~is_q) << 5);
957 }
958 
959 /*
960  * Note that FMLAL requires oprsz == 8 or oprsz == 16,
961  * as there is not yet SVE versions that might use blocking.
962  */
963 
do_fmlal(float32 * d,void * vn,void * vm,float_status * fpst,uint32_t desc,bool fz16)964 static void do_fmlal(float32 *d, void *vn, void *vm, float_status *fpst,
965                      uint32_t desc, bool fz16)
966 {
967     intptr_t i, oprsz = simd_oprsz(desc);
968     int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
969     int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
970     int is_q = oprsz == 16;
971     uint64_t n_4, m_4;
972 
973     /* Pre-load all of the f16 data, avoiding overlap issues.  */
974     n_4 = load4_f16(vn, is_q, is_2);
975     m_4 = load4_f16(vm, is_q, is_2);
976 
977     /* Negate all inputs for FMLSL at once.  */
978     if (is_s) {
979         n_4 ^= 0x8000800080008000ull;
980     }
981 
982     for (i = 0; i < oprsz / 4; i++) {
983         float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
984         float32 m_1 = float16_to_float32_by_bits(m_4 >> (i * 16), fz16);
985         d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
986     }
987     clear_tail(d, oprsz, simd_maxsz(desc));
988 }
989 
HELPER(gvec_fmlal_a32)990 void HELPER(gvec_fmlal_a32)(void *vd, void *vn, void *vm,
991                             void *venv, uint32_t desc)
992 {
993     CPUARMState *env = venv;
994     do_fmlal(vd, vn, vm, &env->vfp.standard_fp_status, desc,
995              get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
996 }
997 
HELPER(gvec_fmlal_a64)998 void HELPER(gvec_fmlal_a64)(void *vd, void *vn, void *vm,
999                             void *venv, uint32_t desc)
1000 {
1001     CPUARMState *env = venv;
1002     do_fmlal(vd, vn, vm, &env->vfp.fp_status, desc,
1003              get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1004 }
1005 
do_fmlal_idx(float32 * d,void * vn,void * vm,float_status * fpst,uint32_t desc,bool fz16)1006 static void do_fmlal_idx(float32 *d, void *vn, void *vm, float_status *fpst,
1007                          uint32_t desc, bool fz16)
1008 {
1009     intptr_t i, oprsz = simd_oprsz(desc);
1010     int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
1011     int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
1012     int index = extract32(desc, SIMD_DATA_SHIFT + 2, 3);
1013     int is_q = oprsz == 16;
1014     uint64_t n_4;
1015     float32 m_1;
1016 
1017     /* Pre-load all of the f16 data, avoiding overlap issues.  */
1018     n_4 = load4_f16(vn, is_q, is_2);
1019 
1020     /* Negate all inputs for FMLSL at once.  */
1021     if (is_s) {
1022         n_4 ^= 0x8000800080008000ull;
1023     }
1024 
1025     m_1 = float16_to_float32_by_bits(((float16 *)vm)[H2(index)], fz16);
1026 
1027     for (i = 0; i < oprsz / 4; i++) {
1028         float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
1029         d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
1030     }
1031     clear_tail(d, oprsz, simd_maxsz(desc));
1032 }
1033 
HELPER(gvec_fmlal_idx_a32)1034 void HELPER(gvec_fmlal_idx_a32)(void *vd, void *vn, void *vm,
1035                                 void *venv, uint32_t desc)
1036 {
1037     CPUARMState *env = venv;
1038     do_fmlal_idx(vd, vn, vm, &env->vfp.standard_fp_status, desc,
1039                  get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1040 }
1041 
HELPER(gvec_fmlal_idx_a64)1042 void HELPER(gvec_fmlal_idx_a64)(void *vd, void *vn, void *vm,
1043                                 void *venv, uint32_t desc)
1044 {
1045     CPUARMState *env = venv;
1046     do_fmlal_idx(vd, vn, vm, &env->vfp.fp_status, desc,
1047                  get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
1048 }
1049 
HELPER(gvec_sshl_b)1050 void HELPER(gvec_sshl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1051 {
1052     intptr_t i, opr_sz = simd_oprsz(desc);
1053     int8_t *d = vd, *n = vn, *m = vm;
1054 
1055     for (i = 0; i < opr_sz; ++i) {
1056         int8_t mm = m[i];
1057         int8_t nn = n[i];
1058         int8_t res = 0;
1059         if (mm >= 0) {
1060             if (mm < 8) {
1061                 res = nn << mm;
1062             }
1063         } else {
1064             res = nn >> (mm > -8 ? -mm : 7);
1065         }
1066         d[i] = res;
1067     }
1068     clear_tail(d, opr_sz, simd_maxsz(desc));
1069 }
1070 
HELPER(gvec_sshl_h)1071 void HELPER(gvec_sshl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1072 {
1073     intptr_t i, opr_sz = simd_oprsz(desc);
1074     int16_t *d = vd, *n = vn, *m = vm;
1075 
1076     for (i = 0; i < opr_sz / 2; ++i) {
1077         int8_t mm = m[i];   /* only 8 bits of shift are significant */
1078         int16_t nn = n[i];
1079         int16_t res = 0;
1080         if (mm >= 0) {
1081             if (mm < 16) {
1082                 res = nn << mm;
1083             }
1084         } else {
1085             res = nn >> (mm > -16 ? -mm : 15);
1086         }
1087         d[i] = res;
1088     }
1089     clear_tail(d, opr_sz, simd_maxsz(desc));
1090 }
1091 
HELPER(gvec_ushl_b)1092 void HELPER(gvec_ushl_b)(void *vd, void *vn, void *vm, uint32_t desc)
1093 {
1094     intptr_t i, opr_sz = simd_oprsz(desc);
1095     uint8_t *d = vd, *n = vn, *m = vm;
1096 
1097     for (i = 0; i < opr_sz; ++i) {
1098         int8_t mm = m[i];
1099         uint8_t nn = n[i];
1100         uint8_t res = 0;
1101         if (mm >= 0) {
1102             if (mm < 8) {
1103                 res = nn << mm;
1104             }
1105         } else {
1106             if (mm > -8) {
1107                 res = nn >> -mm;
1108             }
1109         }
1110         d[i] = res;
1111     }
1112     clear_tail(d, opr_sz, simd_maxsz(desc));
1113 }
1114 
HELPER(gvec_ushl_h)1115 void HELPER(gvec_ushl_h)(void *vd, void *vn, void *vm, uint32_t desc)
1116 {
1117     intptr_t i, opr_sz = simd_oprsz(desc);
1118     uint16_t *d = vd, *n = vn, *m = vm;
1119 
1120     for (i = 0; i < opr_sz / 2; ++i) {
1121         int8_t mm = m[i];   /* only 8 bits of shift are significant */
1122         uint16_t nn = n[i];
1123         uint16_t res = 0;
1124         if (mm >= 0) {
1125             if (mm < 16) {
1126                 res = nn << mm;
1127             }
1128         } else {
1129             if (mm > -16) {
1130                 res = nn >> -mm;
1131             }
1132         }
1133         d[i] = res;
1134     }
1135     clear_tail(d, opr_sz, simd_maxsz(desc));
1136 }
1137 
1138 /*
1139  * 8x8->8 polynomial multiply.
1140  *
1141  * Polynomial multiplication is like integer multiplication except the
1142  * partial products are XORed, not added.
1143  *
1144  * TODO: expose this as a generic vector operation, as it is a common
1145  * crypto building block.
1146  */
HELPER(gvec_pmul_b)1147 void HELPER(gvec_pmul_b)(void *vd, void *vn, void *vm, uint32_t desc)
1148 {
1149     intptr_t i, j, opr_sz = simd_oprsz(desc);
1150     uint64_t *d = vd, *n = vn, *m = vm;
1151 
1152     for (i = 0; i < opr_sz / 8; ++i) {
1153         uint64_t nn = n[i];
1154         uint64_t mm = m[i];
1155         uint64_t rr = 0;
1156 
1157         for (j = 0; j < 8; ++j) {
1158             uint64_t mask = (nn & 0x0101010101010101ull) * 0xff;
1159             rr ^= mm & mask;
1160             mm = (mm << 1) & 0xfefefefefefefefeull;
1161             nn >>= 1;
1162         }
1163         d[i] = rr;
1164     }
1165     clear_tail(d, opr_sz, simd_maxsz(desc));
1166 }
1167 
1168 /*
1169  * 64x64->128 polynomial multiply.
1170  * Because of the lanes are not accessed in strict columns,
1171  * this probably cannot be turned into a generic helper.
1172  */
HELPER(gvec_pmull_q)1173 void HELPER(gvec_pmull_q)(void *vd, void *vn, void *vm, uint32_t desc)
1174 {
1175     intptr_t i, j, opr_sz = simd_oprsz(desc);
1176     intptr_t hi = simd_data(desc);
1177     uint64_t *d = vd, *n = vn, *m = vm;
1178 
1179     for (i = 0; i < opr_sz / 8; i += 2) {
1180         uint64_t nn = n[i + hi];
1181         uint64_t mm = m[i + hi];
1182         uint64_t rhi = 0;
1183         uint64_t rlo = 0;
1184 
1185         /* Bit 0 can only influence the low 64-bit result.  */
1186         if (nn & 1) {
1187             rlo = mm;
1188         }
1189 
1190         for (j = 1; j < 64; ++j) {
1191             uint64_t mask = -((nn >> j) & 1);
1192             rlo ^= (mm << j) & mask;
1193             rhi ^= (mm >> (64 - j)) & mask;
1194         }
1195         d[i] = rlo;
1196         d[i + 1] = rhi;
1197     }
1198     clear_tail(d, opr_sz, simd_maxsz(desc));
1199 }
1200 
1201 /*
1202  * 8x8->16 polynomial multiply.
1203  *
1204  * The byte inputs are expanded to (or extracted from) half-words.
1205  * Note that neon and sve2 get the inputs from different positions.
1206  * This allows 4 bytes to be processed in parallel with uint64_t.
1207  */
1208 
expand_byte_to_half(uint64_t x)1209 static uint64_t expand_byte_to_half(uint64_t x)
1210 {
1211     return  (x & 0x000000ff)
1212          | ((x & 0x0000ff00) << 8)
1213          | ((x & 0x00ff0000) << 16)
1214          | ((x & 0xff000000) << 24);
1215 }
1216 
pmull_h(uint64_t op1,uint64_t op2)1217 static uint64_t pmull_h(uint64_t op1, uint64_t op2)
1218 {
1219     uint64_t result = 0;
1220     int i;
1221 
1222     for (i = 0; i < 8; ++i) {
1223         uint64_t mask = (op1 & 0x0001000100010001ull) * 0xffff;
1224         result ^= op2 & mask;
1225         op1 >>= 1;
1226         op2 <<= 1;
1227     }
1228     return result;
1229 }
1230 
HELPER(neon_pmull_h)1231 void HELPER(neon_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1232 {
1233     int hi = simd_data(desc);
1234     uint64_t *d = vd, *n = vn, *m = vm;
1235     uint64_t nn = n[hi], mm = m[hi];
1236 
1237     d[0] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1238     nn >>= 32;
1239     mm >>= 32;
1240     d[1] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
1241 
1242     clear_tail(d, 16, simd_maxsz(desc));
1243 }
1244 
1245 #ifdef TARGET_AARCH64
HELPER(sve2_pmull_h)1246 void HELPER(sve2_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
1247 {
1248     int shift = simd_data(desc) * 8;
1249     intptr_t i, opr_sz = simd_oprsz(desc);
1250     uint64_t *d = vd, *n = vn, *m = vm;
1251 
1252     for (i = 0; i < opr_sz / 8; ++i) {
1253         uint64_t nn = (n[i] >> shift) & 0x00ff00ff00ff00ffull;
1254         uint64_t mm = (m[i] >> shift) & 0x00ff00ff00ff00ffull;
1255 
1256         d[i] = pmull_h(nn, mm);
1257     }
1258 }
1259 #endif
1260