1 /*
2  * Freescale Three Speed Ethernet Controller driver
3  *
4  * This software may be used and distributed according to the
5  * terms of the GNU Public License, Version 2, incorporated
6  * herein by reference.
7  *
8  * Copyright 2004-2009 Freescale Semiconductor, Inc.
9  * (C) Copyright 2003, Motorola, Inc.
10  * author Andy Fleming
11  *
12  */
13 
14 #include <config.h>
15 #include <common.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <command.h>
19 #include <tsec.h>
20 #include <asm/errno.h>
21 
22 #include "miiphy.h"
23 
24 DECLARE_GLOBAL_DATA_PTR;
25 
26 #define TX_BUF_CNT		2
27 
28 static uint rxIdx;		/* index of the current RX buffer */
29 static uint txIdx;		/* index of the current TX buffer */
30 
31 typedef volatile struct rtxbd {
32 	txbd8_t txbd[TX_BUF_CNT];
33 	rxbd8_t rxbd[PKTBUFSRX];
34 } RTXBD;
35 
36 #define MAXCONTROLLERS	(8)
37 
38 static struct tsec_private *privlist[MAXCONTROLLERS];
39 static int num_tsecs = 0;
40 
41 #ifdef __GNUC__
42 static RTXBD rtx __attribute__ ((aligned(8)));
43 #else
44 #error "rtx must be 64-bit aligned"
45 #endif
46 
47 static int tsec_send(struct eth_device *dev,
48 		     volatile void *packet, int length);
49 static int tsec_recv(struct eth_device *dev);
50 static int tsec_init(struct eth_device *dev, bd_t * bd);
51 static int tsec_initialize(bd_t * bis, struct tsec_info_struct *tsec_info);
52 static void tsec_halt(struct eth_device *dev);
53 static void init_registers(volatile tsec_t * regs);
54 static void startup_tsec(struct eth_device *dev);
55 static int init_phy(struct eth_device *dev);
56 void write_phy_reg(struct tsec_private *priv, uint regnum, uint value);
57 uint read_phy_reg(struct tsec_private *priv, uint regnum);
58 static struct phy_info *get_phy_info(struct eth_device *dev);
59 static void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd);
60 static void adjust_link(struct eth_device *dev);
61 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
62 	&& !defined(BITBANGMII)
63 static int tsec_miiphy_write(char *devname, unsigned char addr,
64 			     unsigned char reg, unsigned short value);
65 static int tsec_miiphy_read(char *devname, unsigned char addr,
66 			    unsigned char reg, unsigned short *value);
67 #endif
68 #ifdef CONFIG_MCAST_TFTP
69 static int tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set);
70 #endif
71 
72 /* Default initializations for TSEC controllers. */
73 
74 static struct tsec_info_struct tsec_info[] = {
75 #ifdef CONFIG_TSEC1
76 	STD_TSEC_INFO(1),	/* TSEC1 */
77 #endif
78 #ifdef CONFIG_TSEC2
79 	STD_TSEC_INFO(2),	/* TSEC2 */
80 #endif
81 #ifdef CONFIG_MPC85XX_FEC
82 	{
83 		.regs = (tsec_t *)(TSEC_BASE_ADDR + 0x2000),
84 		.miiregs = (tsec_mdio_t *)(MDIO_BASE_ADDR),
85 		.devname = CONFIG_MPC85XX_FEC_NAME,
86 		.phyaddr = FEC_PHY_ADDR,
87 		.flags = FEC_FLAGS
88 	},			/* FEC */
89 #endif
90 #ifdef CONFIG_TSEC3
91 	STD_TSEC_INFO(3),	/* TSEC3 */
92 #endif
93 #ifdef CONFIG_TSEC4
94 	STD_TSEC_INFO(4),	/* TSEC4 */
95 #endif
96 };
97 
tsec_eth_init(bd_t * bis,struct tsec_info_struct * tsecs,int num)98 int tsec_eth_init(bd_t *bis, struct tsec_info_struct *tsecs, int num)
99 {
100 	int i;
101 
102 	for (i = 0; i < num; i++)
103 		tsec_initialize(bis, &tsecs[i]);
104 
105 	return 0;
106 }
107 
tsec_standard_init(bd_t * bis)108 int tsec_standard_init(bd_t *bis)
109 {
110 	return tsec_eth_init(bis, tsec_info, ARRAY_SIZE(tsec_info));
111 }
112 
113 /* Initialize device structure. Returns success if PHY
114  * initialization succeeded (i.e. if it recognizes the PHY)
115  */
tsec_initialize(bd_t * bis,struct tsec_info_struct * tsec_info)116 static int tsec_initialize(bd_t * bis, struct tsec_info_struct *tsec_info)
117 {
118 	struct eth_device *dev;
119 	int i;
120 	struct tsec_private *priv;
121 
122 	dev = (struct eth_device *)malloc(sizeof *dev);
123 
124 	if (NULL == dev)
125 		return 0;
126 
127 	memset(dev, 0, sizeof *dev);
128 
129 	priv = (struct tsec_private *)malloc(sizeof(*priv));
130 
131 	if (NULL == priv)
132 		return 0;
133 
134 	privlist[num_tsecs++] = priv;
135 	priv->regs = tsec_info->regs;
136 	priv->phyregs = tsec_info->miiregs;
137 	priv->phyregs_sgmii = tsec_info->miiregs_sgmii;
138 
139 	priv->phyaddr = tsec_info->phyaddr;
140 	priv->flags = tsec_info->flags;
141 
142 	sprintf(dev->name, tsec_info->devname);
143 	dev->iobase = 0;
144 	dev->priv = priv;
145 	dev->init = tsec_init;
146 	dev->halt = tsec_halt;
147 	dev->send = tsec_send;
148 	dev->recv = tsec_recv;
149 #ifdef CONFIG_MCAST_TFTP
150 	dev->mcast = tsec_mcast_addr;
151 #endif
152 
153 	/* Tell u-boot to get the addr from the env */
154 	for (i = 0; i < 6; i++)
155 		dev->enetaddr[i] = 0;
156 
157 	eth_register(dev);
158 
159 	/* Reset the MAC */
160 	priv->regs->maccfg1 |= MACCFG1_SOFT_RESET;
161 	udelay(2);  /* Soft Reset must be asserted for 3 TX clocks */
162 	priv->regs->maccfg1 &= ~(MACCFG1_SOFT_RESET);
163 
164 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
165 	&& !defined(BITBANGMII)
166 	miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write);
167 #endif
168 
169 	/* Try to initialize PHY here, and return */
170 	return init_phy(dev);
171 }
172 
173 /* Initializes data structures and registers for the controller,
174  * and brings the interface up.	 Returns the link status, meaning
175  * that it returns success if the link is up, failure otherwise.
176  * This allows u-boot to find the first active controller.
177  */
tsec_init(struct eth_device * dev,bd_t * bd)178 static int tsec_init(struct eth_device *dev, bd_t * bd)
179 {
180 	uint tempval;
181 	char tmpbuf[MAC_ADDR_LEN];
182 	int i;
183 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
184 	volatile tsec_t *regs = priv->regs;
185 
186 	/* Make sure the controller is stopped */
187 	tsec_halt(dev);
188 
189 	/* Init MACCFG2.  Defaults to GMII */
190 	regs->maccfg2 = MACCFG2_INIT_SETTINGS;
191 
192 	/* Init ECNTRL */
193 	regs->ecntrl = ECNTRL_INIT_SETTINGS;
194 
195 	/* Copy the station address into the address registers.
196 	 * Backwards, because little endian MACS are dumb */
197 	for (i = 0; i < MAC_ADDR_LEN; i++) {
198 		tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
199 	}
200 	tempval = (tmpbuf[0] << 24) | (tmpbuf[1] << 16) | (tmpbuf[2] << 8) |
201 		  tmpbuf[3];
202 
203 	regs->macstnaddr1 = tempval;
204 
205 	tempval = *((uint *) (tmpbuf + 4));
206 
207 	regs->macstnaddr2 = tempval;
208 
209 	/* reset the indices to zero */
210 	rxIdx = 0;
211 	txIdx = 0;
212 
213 	/* Clear out (for the most part) the other registers */
214 	init_registers(regs);
215 
216 	/* Ready the device for tx/rx */
217 	startup_tsec(dev);
218 
219 	/* If there's no link, fail */
220 	return (priv->link ? 0 : -1);
221 }
222 
223 /* Writes the given phy's reg with value, using the specified MDIO regs */
tsec_local_mdio_write(volatile tsec_mdio_t * phyregs,uint addr,uint reg,uint value)224 static void tsec_local_mdio_write(volatile tsec_mdio_t *phyregs, uint addr,
225 		uint reg, uint value)
226 {
227 	int timeout = 1000000;
228 
229 	phyregs->miimadd = (addr << 8) | reg;
230 	phyregs->miimcon = value;
231 	asm("sync");
232 
233 	timeout = 1000000;
234 	while ((phyregs->miimind & MIIMIND_BUSY) && timeout--) ;
235 }
236 
237 
238 /* Provide the default behavior of writing the PHY of this ethernet device */
239 #define write_phy_reg(priv, regnum, value) \
240 	tsec_local_mdio_write(priv->phyregs,priv->phyaddr,regnum,value)
241 
242 /* Reads register regnum on the device's PHY through the
243  * specified registers.	 It lowers and raises the read
244  * command, and waits for the data to become valid (miimind
245  * notvalid bit cleared), and the bus to cease activity (miimind
246  * busy bit cleared), and then returns the value
247  */
tsec_local_mdio_read(volatile tsec_mdio_t * phyregs,uint phyid,uint regnum)248 static uint tsec_local_mdio_read(volatile tsec_mdio_t *phyregs,
249 				uint phyid, uint regnum)
250 {
251 	uint value;
252 
253 	/* Put the address of the phy, and the register
254 	 * number into MIIMADD */
255 	phyregs->miimadd = (phyid << 8) | regnum;
256 
257 	/* Clear the command register, and wait */
258 	phyregs->miimcom = 0;
259 	asm("sync");
260 
261 	/* Initiate a read command, and wait */
262 	phyregs->miimcom = MIIM_READ_COMMAND;
263 	asm("sync");
264 
265 	/* Wait for the the indication that the read is done */
266 	while ((phyregs->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY))) ;
267 
268 	/* Grab the value read from the PHY */
269 	value = phyregs->miimstat;
270 
271 	return value;
272 }
273 
274 /* #define to provide old read_phy_reg functionality without duplicating code */
275 #define read_phy_reg(priv,regnum) \
276 	tsec_local_mdio_read(priv->phyregs,priv->phyaddr,regnum)
277 
278 #define TBIANA_SETTINGS ( \
279 		TBIANA_ASYMMETRIC_PAUSE \
280 		| TBIANA_SYMMETRIC_PAUSE \
281 		| TBIANA_FULL_DUPLEX \
282 		)
283 
284 /* By default force the TBI PHY into 1000Mbps full duplex when in SGMII mode */
285 #ifndef CONFIG_TSEC_TBICR_SETTINGS
286 #define TBICR_SETTINGS ( \
287 		TBICR_PHY_RESET \
288 		| TBICR_FULL_DUPLEX \
289 		| TBICR_SPEED1_SET \
290 		)
291 #else
292 #define TBICR_SETTINGS CONFIG_TSEC_TBICR_SETTINGS
293 #endif /* CONFIG_TSEC_TBICR_SETTINGS */
294 
295 /* Configure the TBI for SGMII operation */
tsec_configure_serdes(struct tsec_private * priv)296 static void tsec_configure_serdes(struct tsec_private *priv)
297 {
298 	/* Access TBI PHY registers at given TSEC register offset as opposed
299 	 * to the register offset used for external PHY accesses */
300 	tsec_local_mdio_write(priv->phyregs_sgmii, priv->regs->tbipa, TBI_ANA,
301 			TBIANA_SETTINGS);
302 	tsec_local_mdio_write(priv->phyregs_sgmii, priv->regs->tbipa, TBI_TBICON,
303 			TBICON_CLK_SELECT);
304 	tsec_local_mdio_write(priv->phyregs_sgmii, priv->regs->tbipa, TBI_CR,
305 			TBICR_SETTINGS);
306 }
307 
308 /* Discover which PHY is attached to the device, and configure it
309  * properly.  If the PHY is not recognized, then return 0
310  * (failure).  Otherwise, return 1
311  */
init_phy(struct eth_device * dev)312 static int init_phy(struct eth_device *dev)
313 {
314 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
315 	struct phy_info *curphy;
316 	volatile tsec_t *regs = priv->regs;
317 
318 	/* Assign a Physical address to the TBI */
319 	regs->tbipa = CONFIG_SYS_TBIPA_VALUE;
320 	asm("sync");
321 
322 	/* Reset MII (due to new addresses) */
323 	priv->phyregs->miimcfg = MIIMCFG_RESET;
324 	asm("sync");
325 	priv->phyregs->miimcfg = MIIMCFG_INIT_VALUE;
326 	asm("sync");
327 	while (priv->phyregs->miimind & MIIMIND_BUSY) ;
328 
329 	/* Get the cmd structure corresponding to the attached
330 	 * PHY */
331 	curphy = get_phy_info(dev);
332 
333 	if (curphy == NULL) {
334 		priv->phyinfo = NULL;
335 		printf("%s: No PHY found\n", dev->name);
336 
337 		return 0;
338 	}
339 
340 	if (regs->ecntrl & ECNTRL_SGMII_MODE)
341 		tsec_configure_serdes(priv);
342 
343 	priv->phyinfo = curphy;
344 
345 	phy_run_commands(priv, priv->phyinfo->config);
346 
347 	return 1;
348 }
349 
350 /*
351  * Returns which value to write to the control register.
352  * For 10/100, the value is slightly different
353  */
mii_cr_init(uint mii_reg,struct tsec_private * priv)354 static uint mii_cr_init(uint mii_reg, struct tsec_private * priv)
355 {
356 	if (priv->flags & TSEC_GIGABIT)
357 		return MIIM_CONTROL_INIT;
358 	else
359 		return MIIM_CR_INIT;
360 }
361 
362 /*
363  * Wait for auto-negotiation to complete, then determine link
364  */
mii_parse_sr(uint mii_reg,struct tsec_private * priv)365 static uint mii_parse_sr(uint mii_reg, struct tsec_private * priv)
366 {
367 	/*
368 	 * Wait if the link is up, and autonegotiation is in progress
369 	 * (ie - we're capable and it's not done)
370 	 */
371 	mii_reg = read_phy_reg(priv, MIIM_STATUS);
372 	if ((mii_reg & PHY_BMSR_AUTN_ABLE) && !(mii_reg & PHY_BMSR_AUTN_COMP)) {
373 		int i = 0;
374 
375 		puts("Waiting for PHY auto negotiation to complete");
376 		while (!(mii_reg & PHY_BMSR_AUTN_COMP)) {
377 			/*
378 			 * Timeout reached ?
379 			 */
380 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
381 				puts(" TIMEOUT !\n");
382 				priv->link = 0;
383 				return 0;
384 			}
385 
386 			if (ctrlc()) {
387 				puts("user interrupt!\n");
388 				priv->link = 0;
389 				return -EINTR;
390 			}
391 
392 			if ((i++ % 1000) == 0) {
393 				putc('.');
394 			}
395 			udelay(1000);	/* 1 ms */
396 			mii_reg = read_phy_reg(priv, MIIM_STATUS);
397 		}
398 		puts(" done\n");
399 
400 		/* Link status bit is latched low, read it again */
401 		mii_reg = read_phy_reg(priv, MIIM_STATUS);
402 
403 		udelay(500000);	/* another 500 ms (results in faster booting) */
404 	}
405 
406 	priv->link = mii_reg & MIIM_STATUS_LINK ? 1 : 0;
407 
408 	return 0;
409 }
410 
411 /* Generic function which updates the speed and duplex.  If
412  * autonegotiation is enabled, it uses the AND of the link
413  * partner's advertised capabilities and our advertised
414  * capabilities.  If autonegotiation is disabled, we use the
415  * appropriate bits in the control register.
416  *
417  * Stolen from Linux's mii.c and phy_device.c
418  */
mii_parse_link(uint mii_reg,struct tsec_private * priv)419 static uint mii_parse_link(uint mii_reg, struct tsec_private *priv)
420 {
421 	/* We're using autonegotiation */
422 	if (mii_reg & PHY_BMSR_AUTN_ABLE) {
423 		uint lpa = 0;
424 		uint gblpa = 0;
425 
426 		/* Check for gigabit capability */
427 		if (mii_reg & PHY_BMSR_EXT) {
428 			/* We want a list of states supported by
429 			 * both PHYs in the link
430 			 */
431 			gblpa = read_phy_reg(priv, PHY_1000BTSR);
432 			gblpa &= read_phy_reg(priv, PHY_1000BTCR) << 2;
433 		}
434 
435 		/* Set the baseline so we only have to set them
436 		 * if they're different
437 		 */
438 		priv->speed = 10;
439 		priv->duplexity = 0;
440 
441 		/* Check the gigabit fields */
442 		if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) {
443 			priv->speed = 1000;
444 
445 			if (gblpa & PHY_1000BTSR_1000FD)
446 				priv->duplexity = 1;
447 
448 			/* We're done! */
449 			return 0;
450 		}
451 
452 		lpa = read_phy_reg(priv, PHY_ANAR);
453 		lpa &= read_phy_reg(priv, PHY_ANLPAR);
454 
455 		if (lpa & (PHY_ANLPAR_TXFD | PHY_ANLPAR_TX)) {
456 			priv->speed = 100;
457 
458 			if (lpa & PHY_ANLPAR_TXFD)
459 				priv->duplexity = 1;
460 
461 		} else if (lpa & PHY_ANLPAR_10FD)
462 			priv->duplexity = 1;
463 	} else {
464 		uint bmcr = read_phy_reg(priv, PHY_BMCR);
465 
466 		priv->speed = 10;
467 		priv->duplexity = 0;
468 
469 		if (bmcr & PHY_BMCR_DPLX)
470 			priv->duplexity = 1;
471 
472 		if (bmcr & PHY_BMCR_1000_MBPS)
473 			priv->speed = 1000;
474 		else if (bmcr & PHY_BMCR_100_MBPS)
475 			priv->speed = 100;
476 	}
477 
478 	return 0;
479 }
480 
481 /*
482  * "Ethernet@Wirespeed" needs to be enabled to achieve link in certain
483  * circumstances.  eg a gigabit TSEC connected to a gigabit switch with
484  * a 4-wire ethernet cable.  Both ends advertise gigabit, but can't
485  * link.  "Ethernet@Wirespeed" reduces advertised speed until link
486  * can be achieved.
487  */
mii_BCM54xx_wirespeed(uint mii_reg,struct tsec_private * priv)488 static uint mii_BCM54xx_wirespeed(uint mii_reg, struct tsec_private *priv)
489 {
490 	return (read_phy_reg(priv, mii_reg) & 0x8FFF) | 0x8010;
491 }
492 
493 /*
494  * Parse the BCM54xx status register for speed and duplex information.
495  * The linux sungem_phy has this information, but in a table format.
496  */
mii_parse_BCM54xx_sr(uint mii_reg,struct tsec_private * priv)497 static uint mii_parse_BCM54xx_sr(uint mii_reg, struct tsec_private *priv)
498 {
499 	/* If there is no link, speed and duplex don't matter */
500 	if (!priv->link)
501 		return 0;
502 
503 	switch ((mii_reg & MIIM_BCM54xx_AUXSTATUS_LINKMODE_MASK) >>
504 		MIIM_BCM54xx_AUXSTATUS_LINKMODE_SHIFT) {
505 	case 1:
506 		priv->duplexity = 0;
507 		priv->speed = 10;
508 		break;
509 	case 2:
510 		priv->duplexity = 1;
511 		priv->speed = 10;
512 		break;
513 	case 3:
514 		priv->duplexity = 0;
515 		priv->speed = 100;
516 		break;
517 	case 5:
518 		priv->duplexity = 1;
519 		priv->speed = 100;
520 		break;
521 	case 6:
522 		priv->duplexity = 0;
523 		priv->speed = 1000;
524 		break;
525 	case 7:
526 		priv->duplexity = 1;
527 		priv->speed = 1000;
528 		break;
529 	default:
530 		printf("Auto-neg error, defaulting to 10BT/HD\n");
531 		priv->duplexity = 0;
532 		priv->speed = 10;
533 		break;
534 	}
535 
536 	return 0;
537 }
538 
539 /*
540  * Find out if PHY is in copper or serdes mode by looking at Expansion Reg
541  * 0x42 - "Operating Mode Status Register"
542  */
BCM8482_is_serdes(struct tsec_private * priv)543 static int BCM8482_is_serdes(struct tsec_private *priv)
544 {
545 	u16 val;
546 	int serdes = 0;
547 
548 	write_phy_reg(priv, MIIM_BCM54XX_EXP_SEL, MIIM_BCM54XX_EXP_SEL_ER | 0x42);
549 	val = read_phy_reg(priv, MIIM_BCM54XX_EXP_DATA);
550 
551 	switch (val & 0x1f) {
552 	case 0x0d:	/* RGMII-to-100Base-FX */
553 	case 0x0e:	/* RGMII-to-SGMII */
554 	case 0x0f:	/* RGMII-to-SerDes */
555 	case 0x12:	/* SGMII-to-SerDes */
556 	case 0x13:	/* SGMII-to-100Base-FX */
557 	case 0x16:	/* SerDes-to-Serdes */
558 		serdes = 1;
559 		break;
560 	case 0x6:	/* RGMII-to-Copper */
561 	case 0x14:	/* SGMII-to-Copper */
562 	case 0x17:	/* SerDes-to-Copper */
563 		break;
564 	default:
565 		printf("ERROR, invalid PHY mode (0x%x\n)", val);
566 		break;
567 	}
568 
569 	return serdes;
570 }
571 
572 /*
573  * Determine SerDes link speed and duplex from Expansion reg 0x42 "Operating
574  * Mode Status Register"
575  */
mii_parse_BCM5482_serdes_sr(struct tsec_private * priv)576 uint mii_parse_BCM5482_serdes_sr(struct tsec_private *priv)
577 {
578 	u16 val;
579 	int i = 0;
580 
581 	/* Wait 1s for link - Clause 37 autonegotiation happens very fast */
582 	while (1) {
583 		write_phy_reg(priv, MIIM_BCM54XX_EXP_SEL,
584 				MIIM_BCM54XX_EXP_SEL_ER | 0x42);
585 		val = read_phy_reg(priv, MIIM_BCM54XX_EXP_DATA);
586 
587 		if (val & 0x8000)
588 			break;
589 
590 		if (i++ > 1000) {
591 			priv->link = 0;
592 			return 1;
593 		}
594 
595 		udelay(1000);	/* 1 ms */
596 	}
597 
598 	priv->link = 1;
599 	switch ((val >> 13) & 0x3) {
600 	case (0x00):
601 		priv->speed = 10;
602 		break;
603 	case (0x01):
604 		priv->speed = 100;
605 		break;
606 	case (0x02):
607 		priv->speed = 1000;
608 		break;
609 	}
610 
611 	priv->duplexity = (val & 0x1000) == 0x1000;
612 
613 	return 0;
614 }
615 
616 /*
617  * Figure out if BCM5482 is in serdes or copper mode and determine link
618  * configuration accordingly
619  */
mii_parse_BCM5482_sr(uint mii_reg,struct tsec_private * priv)620 static uint mii_parse_BCM5482_sr(uint mii_reg, struct tsec_private *priv)
621 {
622 	if (BCM8482_is_serdes(priv)) {
623 		mii_parse_BCM5482_serdes_sr(priv);
624 		priv->flags |= TSEC_FIBER;
625 	} else {
626 		/* Wait for auto-negotiation to complete or fail */
627 		mii_parse_sr(mii_reg, priv);
628 
629 		/* Parse BCM54xx copper aux status register */
630 		mii_reg = read_phy_reg(priv, MIIM_BCM54xx_AUXSTATUS);
631 		mii_parse_BCM54xx_sr(mii_reg, priv);
632 	}
633 
634 	return 0;
635 }
636 
637 /* Parse the 88E1011's status register for speed and duplex
638  * information
639  */
mii_parse_88E1011_psr(uint mii_reg,struct tsec_private * priv)640 static uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private * priv)
641 {
642 	uint speed;
643 
644 	mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
645 
646 	if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
647 		!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
648 		int i = 0;
649 
650 		puts("Waiting for PHY realtime link");
651 		while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
652 			/* Timeout reached ? */
653 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
654 				puts(" TIMEOUT !\n");
655 				priv->link = 0;
656 				break;
657 			}
658 
659 			if ((i++ % 1000) == 0) {
660 				putc('.');
661 			}
662 			udelay(1000);	/* 1 ms */
663 			mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
664 		}
665 		puts(" done\n");
666 		udelay(500000);	/* another 500 ms (results in faster booting) */
667 	} else {
668 		if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
669 			priv->link = 1;
670 		else
671 			priv->link = 0;
672 	}
673 
674 	if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
675 		priv->duplexity = 1;
676 	else
677 		priv->duplexity = 0;
678 
679 	speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
680 
681 	switch (speed) {
682 	case MIIM_88E1011_PHYSTAT_GBIT:
683 		priv->speed = 1000;
684 		break;
685 	case MIIM_88E1011_PHYSTAT_100:
686 		priv->speed = 100;
687 		break;
688 	default:
689 		priv->speed = 10;
690 	}
691 
692 	return 0;
693 }
694 
695 /* Parse the RTL8211B's status register for speed and duplex
696  * information
697  */
mii_parse_RTL8211B_sr(uint mii_reg,struct tsec_private * priv)698 static uint mii_parse_RTL8211B_sr(uint mii_reg, struct tsec_private * priv)
699 {
700 	uint speed;
701 
702 	mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
703 	if (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
704 		int i = 0;
705 
706 		/* in case of timeout ->link is cleared */
707 		priv->link = 1;
708 		puts("Waiting for PHY realtime link");
709 		while (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
710 			/* Timeout reached ? */
711 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
712 				puts(" TIMEOUT !\n");
713 				priv->link = 0;
714 				break;
715 			}
716 
717 			if ((i++ % 1000) == 0) {
718 				putc('.');
719 			}
720 			udelay(1000);	/* 1 ms */
721 			mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
722 		}
723 		puts(" done\n");
724 		udelay(500000);	/* another 500 ms (results in faster booting) */
725 	} else {
726 		if (mii_reg & MIIM_RTL8211B_PHYSTAT_LINK)
727 			priv->link = 1;
728 		else
729 			priv->link = 0;
730 	}
731 
732 	if (mii_reg & MIIM_RTL8211B_PHYSTAT_DUPLEX)
733 		priv->duplexity = 1;
734 	else
735 		priv->duplexity = 0;
736 
737 	speed = (mii_reg & MIIM_RTL8211B_PHYSTAT_SPEED);
738 
739 	switch (speed) {
740 	case MIIM_RTL8211B_PHYSTAT_GBIT:
741 		priv->speed = 1000;
742 		break;
743 	case MIIM_RTL8211B_PHYSTAT_100:
744 		priv->speed = 100;
745 		break;
746 	default:
747 		priv->speed = 10;
748 	}
749 
750 	return 0;
751 }
752 
753 /* Parse the cis8201's status register for speed and duplex
754  * information
755  */
mii_parse_cis8201(uint mii_reg,struct tsec_private * priv)756 static uint mii_parse_cis8201(uint mii_reg, struct tsec_private * priv)
757 {
758 	uint speed;
759 
760 	if (mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX)
761 		priv->duplexity = 1;
762 	else
763 		priv->duplexity = 0;
764 
765 	speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED;
766 	switch (speed) {
767 	case MIIM_CIS8201_AUXCONSTAT_GBIT:
768 		priv->speed = 1000;
769 		break;
770 	case MIIM_CIS8201_AUXCONSTAT_100:
771 		priv->speed = 100;
772 		break;
773 	default:
774 		priv->speed = 10;
775 		break;
776 	}
777 
778 	return 0;
779 }
780 
781 /* Parse the vsc8244's status register for speed and duplex
782  * information
783  */
mii_parse_vsc8244(uint mii_reg,struct tsec_private * priv)784 static uint mii_parse_vsc8244(uint mii_reg, struct tsec_private * priv)
785 {
786 	uint speed;
787 
788 	if (mii_reg & MIIM_VSC8244_AUXCONSTAT_DUPLEX)
789 		priv->duplexity = 1;
790 	else
791 		priv->duplexity = 0;
792 
793 	speed = mii_reg & MIIM_VSC8244_AUXCONSTAT_SPEED;
794 	switch (speed) {
795 	case MIIM_VSC8244_AUXCONSTAT_GBIT:
796 		priv->speed = 1000;
797 		break;
798 	case MIIM_VSC8244_AUXCONSTAT_100:
799 		priv->speed = 100;
800 		break;
801 	default:
802 		priv->speed = 10;
803 		break;
804 	}
805 
806 	return 0;
807 }
808 
809 /* Parse the DM9161's status register for speed and duplex
810  * information
811  */
mii_parse_dm9161_scsr(uint mii_reg,struct tsec_private * priv)812 static uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private * priv)
813 {
814 	if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H))
815 		priv->speed = 100;
816 	else
817 		priv->speed = 10;
818 
819 	if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F))
820 		priv->duplexity = 1;
821 	else
822 		priv->duplexity = 0;
823 
824 	return 0;
825 }
826 
827 /*
828  * Hack to write all 4 PHYs with the LED values
829  */
mii_cis8204_fixled(uint mii_reg,struct tsec_private * priv)830 static uint mii_cis8204_fixled(uint mii_reg, struct tsec_private * priv)
831 {
832 	uint phyid;
833 	volatile tsec_mdio_t *regbase = priv->phyregs;
834 	int timeout = 1000000;
835 
836 	for (phyid = 0; phyid < 4; phyid++) {
837 		regbase->miimadd = (phyid << 8) | mii_reg;
838 		regbase->miimcon = MIIM_CIS8204_SLEDCON_INIT;
839 		asm("sync");
840 
841 		timeout = 1000000;
842 		while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
843 	}
844 
845 	return MIIM_CIS8204_SLEDCON_INIT;
846 }
847 
mii_cis8204_setmode(uint mii_reg,struct tsec_private * priv)848 static uint mii_cis8204_setmode(uint mii_reg, struct tsec_private * priv)
849 {
850 	if (priv->flags & TSEC_REDUCED)
851 		return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII;
852 	else
853 		return MIIM_CIS8204_EPHYCON_INIT;
854 }
855 
mii_m88e1111s_setmode(uint mii_reg,struct tsec_private * priv)856 static uint mii_m88e1111s_setmode(uint mii_reg, struct tsec_private *priv)
857 {
858 	uint mii_data = read_phy_reg(priv, mii_reg);
859 
860 	if (priv->flags & TSEC_REDUCED)
861 		mii_data = (mii_data & 0xfff0) | 0x000b;
862 	return mii_data;
863 }
864 
865 /* Initialized required registers to appropriate values, zeroing
866  * those we don't care about (unless zero is bad, in which case,
867  * choose a more appropriate value)
868  */
init_registers(volatile tsec_t * regs)869 static void init_registers(volatile tsec_t * regs)
870 {
871 	/* Clear IEVENT */
872 	regs->ievent = IEVENT_INIT_CLEAR;
873 
874 	regs->imask = IMASK_INIT_CLEAR;
875 
876 	regs->hash.iaddr0 = 0;
877 	regs->hash.iaddr1 = 0;
878 	regs->hash.iaddr2 = 0;
879 	regs->hash.iaddr3 = 0;
880 	regs->hash.iaddr4 = 0;
881 	regs->hash.iaddr5 = 0;
882 	regs->hash.iaddr6 = 0;
883 	regs->hash.iaddr7 = 0;
884 
885 	regs->hash.gaddr0 = 0;
886 	regs->hash.gaddr1 = 0;
887 	regs->hash.gaddr2 = 0;
888 	regs->hash.gaddr3 = 0;
889 	regs->hash.gaddr4 = 0;
890 	regs->hash.gaddr5 = 0;
891 	regs->hash.gaddr6 = 0;
892 	regs->hash.gaddr7 = 0;
893 
894 	regs->rctrl = 0x00000000;
895 
896 	/* Init RMON mib registers */
897 	memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
898 
899 	regs->rmon.cam1 = 0xffffffff;
900 	regs->rmon.cam2 = 0xffffffff;
901 
902 	regs->mrblr = MRBLR_INIT_SETTINGS;
903 
904 	regs->minflr = MINFLR_INIT_SETTINGS;
905 
906 	regs->attr = ATTR_INIT_SETTINGS;
907 	regs->attreli = ATTRELI_INIT_SETTINGS;
908 
909 }
910 
911 /* Configure maccfg2 based on negotiated speed and duplex
912  * reported by PHY handling code
913  */
adjust_link(struct eth_device * dev)914 static void adjust_link(struct eth_device *dev)
915 {
916 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
917 	volatile tsec_t *regs = priv->regs;
918 
919 	if (priv->link) {
920 		if (priv->duplexity != 0)
921 			regs->maccfg2 |= MACCFG2_FULL_DUPLEX;
922 		else
923 			regs->maccfg2 &= ~(MACCFG2_FULL_DUPLEX);
924 
925 		switch (priv->speed) {
926 		case 1000:
927 			regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
928 					 | MACCFG2_GMII);
929 			break;
930 		case 100:
931 		case 10:
932 			regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
933 					 | MACCFG2_MII);
934 
935 			/* Set R100 bit in all modes although
936 			 * it is only used in RGMII mode
937 			 */
938 			if (priv->speed == 100)
939 				regs->ecntrl |= ECNTRL_R100;
940 			else
941 				regs->ecntrl &= ~(ECNTRL_R100);
942 			break;
943 		default:
944 			printf("%s: Speed was bad\n", dev->name);
945 			break;
946 		}
947 
948 		printf("Speed: %d, %s duplex%s\n", priv->speed,
949 		       (priv->duplexity) ? "full" : "half",
950 		       (priv->flags & TSEC_FIBER) ? ", fiber mode" : "");
951 
952 	} else {
953 		printf("%s: No link.\n", dev->name);
954 	}
955 }
956 
957 /* Set up the buffers and their descriptors, and bring up the
958  * interface
959  */
startup_tsec(struct eth_device * dev)960 static void startup_tsec(struct eth_device *dev)
961 {
962 	int i;
963 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
964 	volatile tsec_t *regs = priv->regs;
965 
966 	/* Point to the buffer descriptors */
967 	regs->tbase = (unsigned int)(&rtx.txbd[txIdx]);
968 	regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]);
969 
970 	/* Initialize the Rx Buffer descriptors */
971 	for (i = 0; i < PKTBUFSRX; i++) {
972 		rtx.rxbd[i].status = RXBD_EMPTY;
973 		rtx.rxbd[i].length = 0;
974 		rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i];
975 	}
976 	rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP;
977 
978 	/* Initialize the TX Buffer Descriptors */
979 	for (i = 0; i < TX_BUF_CNT; i++) {
980 		rtx.txbd[i].status = 0;
981 		rtx.txbd[i].length = 0;
982 		rtx.txbd[i].bufPtr = 0;
983 	}
984 	rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP;
985 
986 	/* Start up the PHY */
987 	if(priv->phyinfo)
988 		phy_run_commands(priv, priv->phyinfo->startup);
989 
990 	adjust_link(dev);
991 
992 	/* Enable Transmit and Receive */
993 	regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
994 
995 	/* Tell the DMA it is clear to go */
996 	regs->dmactrl |= DMACTRL_INIT_SETTINGS;
997 	regs->tstat = TSTAT_CLEAR_THALT;
998 	regs->rstat = RSTAT_CLEAR_RHALT;
999 	regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
1000 }
1001 
1002 /* This returns the status bits of the device.	The return value
1003  * is never checked, and this is what the 8260 driver did, so we
1004  * do the same.	 Presumably, this would be zero if there were no
1005  * errors
1006  */
tsec_send(struct eth_device * dev,volatile void * packet,int length)1007 static int tsec_send(struct eth_device *dev, volatile void *packet, int length)
1008 {
1009 	int i;
1010 	int result = 0;
1011 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
1012 	volatile tsec_t *regs = priv->regs;
1013 
1014 	/* Find an empty buffer descriptor */
1015 	for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
1016 		if (i >= TOUT_LOOP) {
1017 			debug("%s: tsec: tx buffers full\n", dev->name);
1018 			return result;
1019 		}
1020 	}
1021 
1022 	rtx.txbd[txIdx].bufPtr = (uint) packet;
1023 	rtx.txbd[txIdx].length = length;
1024 	rtx.txbd[txIdx].status |=
1025 	    (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
1026 
1027 	/* Tell the DMA to go */
1028 	regs->tstat = TSTAT_CLEAR_THALT;
1029 
1030 	/* Wait for buffer to be transmitted */
1031 	for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
1032 		if (i >= TOUT_LOOP) {
1033 			debug("%s: tsec: tx error\n", dev->name);
1034 			return result;
1035 		}
1036 	}
1037 
1038 	txIdx = (txIdx + 1) % TX_BUF_CNT;
1039 	result = rtx.txbd[txIdx].status & TXBD_STATS;
1040 
1041 	return result;
1042 }
1043 
tsec_recv(struct eth_device * dev)1044 static int tsec_recv(struct eth_device *dev)
1045 {
1046 	int length;
1047 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
1048 	volatile tsec_t *regs = priv->regs;
1049 
1050 	while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
1051 
1052 		length = rtx.rxbd[rxIdx].length;
1053 
1054 		/* Send the packet up if there were no errors */
1055 		if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
1056 			NetReceive(NetRxPackets[rxIdx], length - 4);
1057 		} else {
1058 			printf("Got error %x\n",
1059 			       (rtx.rxbd[rxIdx].status & RXBD_STATS));
1060 		}
1061 
1062 		rtx.rxbd[rxIdx].length = 0;
1063 
1064 		/* Set the wrap bit if this is the last element in the list */
1065 		rtx.rxbd[rxIdx].status =
1066 		    RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
1067 
1068 		rxIdx = (rxIdx + 1) % PKTBUFSRX;
1069 	}
1070 
1071 	if (regs->ievent & IEVENT_BSY) {
1072 		regs->ievent = IEVENT_BSY;
1073 		regs->rstat = RSTAT_CLEAR_RHALT;
1074 	}
1075 
1076 	return -1;
1077 
1078 }
1079 
1080 /* Stop the interface */
tsec_halt(struct eth_device * dev)1081 static void tsec_halt(struct eth_device *dev)
1082 {
1083 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
1084 	volatile tsec_t *regs = priv->regs;
1085 
1086 	regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
1087 	regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS);
1088 
1089 	while ((regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))
1090 		!= (IEVENT_GRSC | IEVENT_GTSC)) ;
1091 
1092 	regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
1093 
1094 	/* Shut down the PHY, as needed */
1095 	if(priv->phyinfo)
1096 		phy_run_commands(priv, priv->phyinfo->shutdown);
1097 }
1098 
1099 static struct phy_info phy_info_M88E1149S = {
1100 	0x1410ca,
1101 	"Marvell 88E1149S",
1102 	4,
1103 	(struct phy_cmd[]) {     /* config */
1104 		/* Reset and configure the PHY */
1105 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1106 		{0x1d, 0x1f, NULL},
1107 		{0x1e, 0x200c, NULL},
1108 		{0x1d, 0x5, NULL},
1109 		{0x1e, 0x0, NULL},
1110 		{0x1e, 0x100, NULL},
1111 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1112 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1113 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1114 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1115 		{miim_end,}
1116 	},
1117 	(struct phy_cmd[]) {     /* startup */
1118 		/* Status is read once to clear old link state */
1119 		{MIIM_STATUS, miim_read, NULL},
1120 		/* Auto-negotiate */
1121 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1122 		/* Read the status */
1123 		{MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1124 		{miim_end,}
1125 	},
1126 	(struct phy_cmd[]) {     /* shutdown */
1127 		{miim_end,}
1128 	},
1129 };
1130 
1131 /* The 5411 id is 0x206070, the 5421 is 0x2060e0 */
1132 static struct phy_info phy_info_BCM5461S = {
1133 	0x02060c1,	/* 5461 ID */
1134 	"Broadcom BCM5461S",
1135 	0, /* not clear to me what minor revisions we can shift away */
1136 	(struct phy_cmd[]) { /* config */
1137 		/* Reset and configure the PHY */
1138 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1139 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1140 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1141 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1142 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1143 		{miim_end,}
1144 	},
1145 	(struct phy_cmd[]) { /* startup */
1146 		/* Status is read once to clear old link state */
1147 		{MIIM_STATUS, miim_read, NULL},
1148 		/* Auto-negotiate */
1149 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1150 		/* Read the status */
1151 		{MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1152 		{miim_end,}
1153 	},
1154 	(struct phy_cmd[]) { /* shutdown */
1155 		{miim_end,}
1156 	},
1157 };
1158 
1159 static struct phy_info phy_info_BCM5464S = {
1160 	0x02060b1,	/* 5464 ID */
1161 	"Broadcom BCM5464S",
1162 	0, /* not clear to me what minor revisions we can shift away */
1163 	(struct phy_cmd[]) { /* config */
1164 		/* Reset and configure the PHY */
1165 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1166 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1167 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1168 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1169 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1170 		{miim_end,}
1171 	},
1172 	(struct phy_cmd[]) { /* startup */
1173 		/* Status is read once to clear old link state */
1174 		{MIIM_STATUS, miim_read, NULL},
1175 		/* Auto-negotiate */
1176 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1177 		/* Read the status */
1178 		{MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1179 		{miim_end,}
1180 	},
1181 	(struct phy_cmd[]) { /* shutdown */
1182 		{miim_end,}
1183 	},
1184 };
1185 
1186 static struct phy_info phy_info_BCM5482S =  {
1187 	0x0143bcb,
1188 	"Broadcom BCM5482S",
1189 	4,
1190 	(struct phy_cmd[]) { /* config */
1191 		/* Reset and configure the PHY */
1192 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1193 		/* Setup read from auxilary control shadow register 7 */
1194 		{MIIM_BCM54xx_AUXCNTL, MIIM_BCM54xx_AUXCNTL_ENCODE(7), NULL},
1195 		/* Read Misc Control register and or in Ethernet@Wirespeed */
1196 		{MIIM_BCM54xx_AUXCNTL, 0, &mii_BCM54xx_wirespeed},
1197 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1198 		/* Initial config/enable of secondary SerDes interface */
1199 		{MIIM_BCM54XX_SHD, MIIM_BCM54XX_SHD_WR_ENCODE(0x14, 0xf), NULL},
1200 		/* Write intial value to secondary SerDes Contol */
1201 		{MIIM_BCM54XX_EXP_SEL, MIIM_BCM54XX_EXP_SEL_SSD | 0, NULL},
1202 		{MIIM_BCM54XX_EXP_DATA, MIIM_CONTROL_RESTART, NULL},
1203 		/* Enable copper/fiber auto-detect */
1204 		{MIIM_BCM54XX_SHD, MIIM_BCM54XX_SHD_WR_ENCODE(0x1e, 0x201)},
1205 		{miim_end,}
1206 	},
1207 	(struct phy_cmd[]) { /* startup */
1208 		/* Status is read once to clear old link state */
1209 		{MIIM_STATUS, miim_read, NULL},
1210 		/* Determine copper/fiber, auto-negotiate, and read the result */
1211 		{MIIM_STATUS, miim_read, &mii_parse_BCM5482_sr},
1212 		{miim_end,}
1213 	},
1214 	(struct phy_cmd[]) { /* shutdown */
1215 		{miim_end,}
1216 	},
1217 };
1218 
1219 static struct phy_info phy_info_M88E1011S = {
1220 	0x01410c6,
1221 	"Marvell 88E1011S",
1222 	4,
1223 	(struct phy_cmd[]) {	/* config */
1224 		/* Reset and configure the PHY */
1225 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1226 		{0x1d, 0x1f, NULL},
1227 		{0x1e, 0x200c, NULL},
1228 		{0x1d, 0x5, NULL},
1229 		{0x1e, 0x0, NULL},
1230 		{0x1e, 0x100, NULL},
1231 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1232 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1233 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1234 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1235 		{miim_end,}
1236 	},
1237 	(struct phy_cmd[]) {	/* startup */
1238 		/* Status is read once to clear old link state */
1239 		{MIIM_STATUS, miim_read, NULL},
1240 		/* Auto-negotiate */
1241 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1242 		/* Read the status */
1243 		{MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1244 		{miim_end,}
1245 	},
1246 	(struct phy_cmd[]) {	/* shutdown */
1247 		{miim_end,}
1248 	},
1249 };
1250 
1251 static struct phy_info phy_info_M88E1111S = {
1252 	0x01410cc,
1253 	"Marvell 88E1111S",
1254 	4,
1255 	(struct phy_cmd[]) {	/* config */
1256 		/* Reset and configure the PHY */
1257 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1258 		{0x1b, 0x848f, &mii_m88e1111s_setmode},
1259 		{0x14, 0x0cd2, NULL}, /* Delay RGMII TX and RX */
1260 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1261 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1262 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1263 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1264 		{miim_end,}
1265 	},
1266 	(struct phy_cmd[]) {	/* startup */
1267 		/* Status is read once to clear old link state */
1268 		{MIIM_STATUS, miim_read, NULL},
1269 		/* Auto-negotiate */
1270 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1271 		/* Read the status */
1272 		{MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1273 		{miim_end,}
1274 	},
1275 	(struct phy_cmd[]) {	/* shutdown */
1276 		{miim_end,}
1277 	},
1278 };
1279 
1280 static struct phy_info phy_info_M88E1118 = {
1281 	0x01410e1,
1282 	"Marvell 88E1118",
1283 	4,
1284 	(struct phy_cmd[]) {	/* config */
1285 		/* Reset and configure the PHY */
1286 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1287 		{0x16, 0x0002, NULL}, /* Change Page Number */
1288 		{0x15, 0x1070, NULL}, /* Delay RGMII TX and RX */
1289 		{0x16, 0x0003, NULL}, /* Change Page Number */
1290 		{0x10, 0x021e, NULL}, /* Adjust LED control */
1291 		{0x16, 0x0000, NULL}, /* Change Page Number */
1292 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1293 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1294 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1295 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1296 		{miim_end,}
1297 	},
1298 	(struct phy_cmd[]) {	/* startup */
1299 		{0x16, 0x0000, NULL}, /* Change Page Number */
1300 		/* Status is read once to clear old link state */
1301 		{MIIM_STATUS, miim_read, NULL},
1302 		/* Auto-negotiate */
1303 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1304 		/* Read the status */
1305 		{MIIM_88E1011_PHY_STATUS, miim_read,
1306 		 &mii_parse_88E1011_psr},
1307 		{miim_end,}
1308 	},
1309 	(struct phy_cmd[]) {	/* shutdown */
1310 		{miim_end,}
1311 	},
1312 };
1313 
1314 /*
1315  *  Since to access LED register we need do switch the page, we
1316  * do LED configuring in the miim_read-like function as follows
1317  */
mii_88E1121_set_led(uint mii_reg,struct tsec_private * priv)1318 static uint mii_88E1121_set_led (uint mii_reg, struct tsec_private *priv)
1319 {
1320 	uint pg;
1321 
1322 	/* Switch the page to access the led register */
1323 	pg = read_phy_reg(priv, MIIM_88E1121_PHY_PAGE);
1324 	write_phy_reg(priv, MIIM_88E1121_PHY_PAGE, MIIM_88E1121_PHY_LED_PAGE);
1325 
1326 	/* Configure leds */
1327 	write_phy_reg(priv, MIIM_88E1121_PHY_LED_CTRL,
1328 		      MIIM_88E1121_PHY_LED_DEF);
1329 
1330 	/* Restore the page pointer */
1331 	write_phy_reg(priv, MIIM_88E1121_PHY_PAGE, pg);
1332 	return 0;
1333 }
1334 
1335 static struct phy_info phy_info_M88E1121R = {
1336 	0x01410cb,
1337 	"Marvell 88E1121R",
1338 	4,
1339 	(struct phy_cmd[]) {	/* config */
1340 		/* Reset and configure the PHY */
1341 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1342 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1343 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1344 		/* Configure leds */
1345 		{MIIM_88E1121_PHY_LED_CTRL, miim_read, &mii_88E1121_set_led},
1346 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1347 		/* Disable IRQs and de-assert interrupt */
1348 		{MIIM_88E1121_PHY_IRQ_EN, 0, NULL},
1349 		{MIIM_88E1121_PHY_IRQ_STATUS, miim_read, NULL},
1350 		{miim_end,}
1351 	},
1352 	(struct phy_cmd[]) {	/* startup */
1353 		/* Status is read once to clear old link state */
1354 		{MIIM_STATUS, miim_read, NULL},
1355 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1356 		{MIIM_STATUS, miim_read, &mii_parse_link},
1357 		{miim_end,}
1358 	},
1359 	(struct phy_cmd[]) {	/* shutdown */
1360 		{miim_end,}
1361 	},
1362 };
1363 
m88e1145_setmode(uint mii_reg,struct tsec_private * priv)1364 static unsigned int m88e1145_setmode(uint mii_reg, struct tsec_private *priv)
1365 {
1366 	uint mii_data = read_phy_reg(priv, mii_reg);
1367 
1368 	/* Setting MIIM_88E1145_PHY_EXT_CR */
1369 	if (priv->flags & TSEC_REDUCED)
1370 		return mii_data |
1371 		    MIIM_M88E1145_RGMII_RX_DELAY | MIIM_M88E1145_RGMII_TX_DELAY;
1372 	else
1373 		return mii_data;
1374 }
1375 
1376 static struct phy_info phy_info_M88E1145 = {
1377 	0x01410cd,
1378 	"Marvell 88E1145",
1379 	4,
1380 	(struct phy_cmd[]) {	/* config */
1381 		/* Reset the PHY */
1382 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1383 
1384 		/* Errata E0, E1 */
1385 		{29, 0x001b, NULL},
1386 		{30, 0x418f, NULL},
1387 		{29, 0x0016, NULL},
1388 		{30, 0xa2da, NULL},
1389 
1390 		/* Configure the PHY */
1391 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1392 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1393 		{MIIM_88E1011_PHY_SCR, MIIM_88E1011_PHY_MDI_X_AUTO, NULL},
1394 		{MIIM_88E1145_PHY_EXT_CR, 0, &m88e1145_setmode},
1395 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1396 		{MIIM_CONTROL, MIIM_CONTROL_INIT, NULL},
1397 		{miim_end,}
1398 	},
1399 	(struct phy_cmd[]) {	/* startup */
1400 		/* Status is read once to clear old link state */
1401 		{MIIM_STATUS, miim_read, NULL},
1402 		/* Auto-negotiate */
1403 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1404 		{MIIM_88E1111_PHY_LED_CONTROL, MIIM_88E1111_PHY_LED_DIRECT, NULL},
1405 		/* Read the Status */
1406 		{MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1407 		{miim_end,}
1408 	},
1409 	(struct phy_cmd[]) {	/* shutdown */
1410 		{miim_end,}
1411 	},
1412 };
1413 
1414 static struct phy_info phy_info_cis8204 = {
1415 	0x3f11,
1416 	"Cicada Cis8204",
1417 	6,
1418 	(struct phy_cmd[]) {	/* config */
1419 		/* Override PHY config settings */
1420 		{MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1421 		/* Configure some basic stuff */
1422 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1423 		{MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT,
1424 		 &mii_cis8204_fixled},
1425 		{MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT,
1426 		 &mii_cis8204_setmode},
1427 		{miim_end,}
1428 	},
1429 	(struct phy_cmd[]) {	/* startup */
1430 		/* Read the Status (2x to make sure link is right) */
1431 		{MIIM_STATUS, miim_read, NULL},
1432 		/* Auto-negotiate */
1433 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1434 		/* Read the status */
1435 		{MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201},
1436 		{miim_end,}
1437 	},
1438 	(struct phy_cmd[]) {	/* shutdown */
1439 		{miim_end,}
1440 	},
1441 };
1442 
1443 /* Cicada 8201 */
1444 static struct phy_info phy_info_cis8201 = {
1445 	0xfc41,
1446 	"CIS8201",
1447 	4,
1448 	(struct phy_cmd[]) {	/* config */
1449 		/* Override PHY config settings */
1450 		{MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1451 		/* Set up the interface mode */
1452 		{MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT, NULL},
1453 		/* Configure some basic stuff */
1454 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1455 		{miim_end,}
1456 	},
1457 	(struct phy_cmd[]) {	/* startup */
1458 		/* Read the Status (2x to make sure link is right) */
1459 		{MIIM_STATUS, miim_read, NULL},
1460 		/* Auto-negotiate */
1461 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1462 		/* Read the status */
1463 		{MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201},
1464 		{miim_end,}
1465 	},
1466 	(struct phy_cmd[]) {	/* shutdown */
1467 		{miim_end,}
1468 	},
1469 };
1470 
1471 static struct phy_info phy_info_VSC8211 = {
1472 	0xfc4b,
1473 	"Vitesse VSC8211",
1474 	4,
1475 	(struct phy_cmd[]) { /* config */
1476 		/* Override PHY config settings */
1477 		{MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1478 		/* Set up the interface mode */
1479 		{MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT, NULL},
1480 		/* Configure some basic stuff */
1481 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1482 		{miim_end,}
1483 	},
1484 	(struct phy_cmd[]) { /* startup */
1485 		/* Read the Status (2x to make sure link is right) */
1486 		{MIIM_STATUS, miim_read, NULL},
1487 		/* Auto-negotiate */
1488 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1489 		/* Read the status */
1490 		{MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201},
1491 		{miim_end,}
1492 	},
1493 	(struct phy_cmd[]) { /* shutdown */
1494 		{miim_end,}
1495 	},
1496 };
1497 
1498 static struct phy_info phy_info_VSC8244 = {
1499 	0x3f1b,
1500 	"Vitesse VSC8244",
1501 	6,
1502 	(struct phy_cmd[]) {	/* config */
1503 		/* Override PHY config settings */
1504 		/* Configure some basic stuff */
1505 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1506 		{miim_end,}
1507 	},
1508 	(struct phy_cmd[]) {	/* startup */
1509 		/* Read the Status (2x to make sure link is right) */
1510 		{MIIM_STATUS, miim_read, NULL},
1511 		/* Auto-negotiate */
1512 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1513 		/* Read the status */
1514 		{MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1515 		{miim_end,}
1516 	},
1517 	(struct phy_cmd[]) {	/* shutdown */
1518 		{miim_end,}
1519 	},
1520 };
1521 
1522 static struct phy_info phy_info_VSC8641 = {
1523 	0x7043,
1524 	"Vitesse VSC8641",
1525 	4,
1526 	(struct phy_cmd[]) {	/* config */
1527 		/* Configure some basic stuff */
1528 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1529 		{miim_end,}
1530 	},
1531 	(struct phy_cmd[]) {	/* startup */
1532 		/* Read the Status (2x to make sure link is right) */
1533 		{MIIM_STATUS, miim_read, NULL},
1534 		/* Auto-negotiate */
1535 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1536 		/* Read the status */
1537 		{MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1538 		{miim_end,}
1539 	},
1540 	(struct phy_cmd[]) {	/* shutdown */
1541 		{miim_end,}
1542 	},
1543 };
1544 
1545 static struct phy_info phy_info_VSC8221 = {
1546 	0xfc55,
1547 	"Vitesse VSC8221",
1548 	4,
1549 	(struct phy_cmd[]) {	/* config */
1550 		/* Configure some basic stuff */
1551 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1552 		{miim_end,}
1553 	},
1554 	(struct phy_cmd[]) {	/* startup */
1555 		/* Read the Status (2x to make sure link is right) */
1556 		{MIIM_STATUS, miim_read, NULL},
1557 		/* Auto-negotiate */
1558 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1559 		/* Read the status */
1560 		{MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1561 		{miim_end,}
1562 	},
1563 	(struct phy_cmd[]) {	/* shutdown */
1564 		{miim_end,}
1565 	},
1566 };
1567 
1568 static struct phy_info phy_info_VSC8601 = {
1569 	0x00007042,
1570 	"Vitesse VSC8601",
1571 	4,
1572 	(struct phy_cmd[]) {     /* config */
1573 		/* Override PHY config settings */
1574 		/* Configure some basic stuff */
1575 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1576 #ifdef CONFIG_SYS_VSC8601_SKEWFIX
1577 		{MIIM_VSC8601_EPHY_CON,MIIM_VSC8601_EPHY_CON_INIT_SKEW,NULL},
1578 #if defined(CONFIG_SYS_VSC8601_SKEW_TX) && defined(CONFIG_SYS_VSC8601_SKEW_RX)
1579 		{MIIM_EXT_PAGE_ACCESS,1,NULL},
1580 #define VSC8101_SKEW \
1581 	(CONFIG_SYS_VSC8601_SKEW_TX << 14) | (CONFIG_SYS_VSC8601_SKEW_RX << 12)
1582 		{MIIM_VSC8601_SKEW_CTRL,VSC8101_SKEW,NULL},
1583 		{MIIM_EXT_PAGE_ACCESS,0,NULL},
1584 #endif
1585 #endif
1586 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1587 		{MIIM_CONTROL, MIIM_CONTROL_RESTART, &mii_cr_init},
1588 		{miim_end,}
1589 	},
1590 	(struct phy_cmd[]) {     /* startup */
1591 		/* Read the Status (2x to make sure link is right) */
1592 		{MIIM_STATUS, miim_read, NULL},
1593 		/* Auto-negotiate */
1594 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1595 		/* Read the status */
1596 		{MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1597 		{miim_end,}
1598 	},
1599 	(struct phy_cmd[]) {     /* shutdown */
1600 		{miim_end,}
1601 	},
1602 };
1603 
1604 static struct phy_info phy_info_dm9161 = {
1605 	0x0181b88,
1606 	"Davicom DM9161E",
1607 	4,
1608 	(struct phy_cmd[]) {	/* config */
1609 		{MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL},
1610 		/* Do not bypass the scrambler/descrambler */
1611 		{MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL},
1612 		/* Clear 10BTCSR to default */
1613 		{MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT, NULL},
1614 		/* Configure some basic stuff */
1615 		{MIIM_CONTROL, MIIM_CR_INIT, NULL},
1616 		/* Restart Auto Negotiation */
1617 		{MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL},
1618 		{miim_end,}
1619 	},
1620 	(struct phy_cmd[]) {	/* startup */
1621 		/* Status is read once to clear old link state */
1622 		{MIIM_STATUS, miim_read, NULL},
1623 		/* Auto-negotiate */
1624 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1625 		/* Read the status */
1626 		{MIIM_DM9161_SCSR, miim_read, &mii_parse_dm9161_scsr},
1627 		{miim_end,}
1628 	},
1629 	(struct phy_cmd[]) {	/* shutdown */
1630 		{miim_end,}
1631 	},
1632 };
1633 
1634 /* a generic flavor.  */
1635 static struct phy_info phy_info_generic =  {
1636 	0,
1637 	"Unknown/Generic PHY",
1638 	32,
1639 	(struct phy_cmd[]) { /* config */
1640 		{PHY_BMCR, PHY_BMCR_RESET, NULL},
1641 		{PHY_BMCR, PHY_BMCR_AUTON|PHY_BMCR_RST_NEG, NULL},
1642 		{miim_end,}
1643 	},
1644 	(struct phy_cmd[]) { /* startup */
1645 		{PHY_BMSR, miim_read, NULL},
1646 		{PHY_BMSR, miim_read, &mii_parse_sr},
1647 		{PHY_BMSR, miim_read, &mii_parse_link},
1648 		{miim_end,}
1649 	},
1650 	(struct phy_cmd[]) { /* shutdown */
1651 		{miim_end,}
1652 	}
1653 };
1654 
mii_parse_lxt971_sr2(uint mii_reg,struct tsec_private * priv)1655 static uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv)
1656 {
1657 	unsigned int speed;
1658 	if (priv->link) {
1659 		speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK;
1660 
1661 		switch (speed) {
1662 		case MIIM_LXT971_SR2_10HDX:
1663 			priv->speed = 10;
1664 			priv->duplexity = 0;
1665 			break;
1666 		case MIIM_LXT971_SR2_10FDX:
1667 			priv->speed = 10;
1668 			priv->duplexity = 1;
1669 			break;
1670 		case MIIM_LXT971_SR2_100HDX:
1671 			priv->speed = 100;
1672 			priv->duplexity = 0;
1673 			break;
1674 		default:
1675 			priv->speed = 100;
1676 			priv->duplexity = 1;
1677 		}
1678 	} else {
1679 		priv->speed = 0;
1680 		priv->duplexity = 0;
1681 	}
1682 
1683 	return 0;
1684 }
1685 
1686 static struct phy_info phy_info_lxt971 = {
1687 	0x0001378e,
1688 	"LXT971",
1689 	4,
1690 	(struct phy_cmd[]) {	/* config */
1691 		{MIIM_CR, MIIM_CR_INIT, mii_cr_init},	/* autonegotiate */
1692 		{miim_end,}
1693 	},
1694 	(struct phy_cmd[]) {	/* startup - enable interrupts */
1695 		/* { 0x12, 0x00f2, NULL }, */
1696 		{MIIM_STATUS, miim_read, NULL},
1697 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1698 		{MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2},
1699 		{miim_end,}
1700 	},
1701 	(struct phy_cmd[]) {	/* shutdown - disable interrupts */
1702 		{miim_end,}
1703 	},
1704 };
1705 
1706 /* Parse the DP83865's link and auto-neg status register for speed and duplex
1707  * information
1708  */
mii_parse_dp83865_lanr(uint mii_reg,struct tsec_private * priv)1709 static uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv)
1710 {
1711 	switch (mii_reg & MIIM_DP83865_SPD_MASK) {
1712 
1713 	case MIIM_DP83865_SPD_1000:
1714 		priv->speed = 1000;
1715 		break;
1716 
1717 	case MIIM_DP83865_SPD_100:
1718 		priv->speed = 100;
1719 		break;
1720 
1721 	default:
1722 		priv->speed = 10;
1723 		break;
1724 
1725 	}
1726 
1727 	if (mii_reg & MIIM_DP83865_DPX_FULL)
1728 		priv->duplexity = 1;
1729 	else
1730 		priv->duplexity = 0;
1731 
1732 	return 0;
1733 }
1734 
1735 static struct phy_info phy_info_dp83865 = {
1736 	0x20005c7,
1737 	"NatSemi DP83865",
1738 	4,
1739 	(struct phy_cmd[]) {	/* config */
1740 		{MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL},
1741 		{miim_end,}
1742 	},
1743 	(struct phy_cmd[]) {	/* startup */
1744 		/* Status is read once to clear old link state */
1745 		{MIIM_STATUS, miim_read, NULL},
1746 		/* Auto-negotiate */
1747 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1748 		/* Read the link and auto-neg status */
1749 		{MIIM_DP83865_LANR, miim_read, &mii_parse_dp83865_lanr},
1750 		{miim_end,}
1751 	},
1752 	(struct phy_cmd[]) {	/* shutdown */
1753 		{miim_end,}
1754 	},
1755 };
1756 
1757 static struct phy_info phy_info_rtl8211b = {
1758 	0x001cc91,
1759 	"RealTek RTL8211B",
1760 	4,
1761 	(struct phy_cmd[]) {	/* config */
1762 		/* Reset and configure the PHY */
1763 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1764 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1765 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1766 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1767 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1768 		{miim_end,}
1769 	},
1770 	(struct phy_cmd[]) {	/* startup */
1771 		/* Status is read once to clear old link state */
1772 		{MIIM_STATUS, miim_read, NULL},
1773 		/* Auto-negotiate */
1774 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1775 		/* Read the status */
1776 		{MIIM_RTL8211B_PHY_STATUS, miim_read, &mii_parse_RTL8211B_sr},
1777 		{miim_end,}
1778 	},
1779 	(struct phy_cmd[]) {	/* shutdown */
1780 		{miim_end,}
1781 	},
1782 };
1783 
1784 static struct phy_info *phy_info[] = {
1785 	&phy_info_cis8204,
1786 	&phy_info_cis8201,
1787 	&phy_info_BCM5461S,
1788 	&phy_info_BCM5464S,
1789 	&phy_info_BCM5482S,
1790 	&phy_info_M88E1011S,
1791 	&phy_info_M88E1111S,
1792 	&phy_info_M88E1118,
1793 	&phy_info_M88E1121R,
1794 	&phy_info_M88E1145,
1795 	&phy_info_M88E1149S,
1796 	&phy_info_dm9161,
1797 	&phy_info_lxt971,
1798 	&phy_info_VSC8211,
1799 	&phy_info_VSC8244,
1800 	&phy_info_VSC8601,
1801 	&phy_info_VSC8641,
1802 	&phy_info_VSC8221,
1803 	&phy_info_dp83865,
1804 	&phy_info_rtl8211b,
1805 	&phy_info_generic,	/* must be last; has ID 0 and 32 bit mask */
1806 	NULL
1807 };
1808 
1809 /* Grab the identifier of the device's PHY, and search through
1810  * all of the known PHYs to see if one matches.	 If so, return
1811  * it, if not, return NULL
1812  */
get_phy_info(struct eth_device * dev)1813 static struct phy_info *get_phy_info(struct eth_device *dev)
1814 {
1815 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
1816 	uint phy_reg, phy_ID;
1817 	int i;
1818 	struct phy_info *theInfo = NULL;
1819 
1820 	/* Grab the bits from PHYIR1, and put them in the upper half */
1821 	phy_reg = read_phy_reg(priv, MIIM_PHYIR1);
1822 	phy_ID = (phy_reg & 0xffff) << 16;
1823 
1824 	/* Grab the bits from PHYIR2, and put them in the lower half */
1825 	phy_reg = read_phy_reg(priv, MIIM_PHYIR2);
1826 	phy_ID |= (phy_reg & 0xffff);
1827 
1828 	/* loop through all the known PHY types, and find one that */
1829 	/* matches the ID we read from the PHY. */
1830 	for (i = 0; phy_info[i]; i++) {
1831 		if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
1832 			theInfo = phy_info[i];
1833 			break;
1834 		}
1835 	}
1836 
1837 	if (theInfo == &phy_info_generic) {
1838 		printf("%s: No support for PHY id %x; assuming generic\n",
1839 			dev->name, phy_ID);
1840 	} else {
1841 		debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
1842 	}
1843 
1844 	return theInfo;
1845 }
1846 
1847 /* Execute the given series of commands on the given device's
1848  * PHY, running functions as necessary
1849  */
phy_run_commands(struct tsec_private * priv,struct phy_cmd * cmd)1850 static void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd)
1851 {
1852 	int i;
1853 	uint result;
1854 	volatile tsec_mdio_t *phyregs = priv->phyregs;
1855 
1856 	phyregs->miimcfg = MIIMCFG_RESET;
1857 
1858 	phyregs->miimcfg = MIIMCFG_INIT_VALUE;
1859 
1860 	while (phyregs->miimind & MIIMIND_BUSY) ;
1861 
1862 	for (i = 0; cmd->mii_reg != miim_end; i++) {
1863 		if (cmd->mii_data == miim_read) {
1864 			result = read_phy_reg(priv, cmd->mii_reg);
1865 
1866 			if (cmd->funct != NULL)
1867 				(*(cmd->funct)) (result, priv);
1868 
1869 		} else {
1870 			if (cmd->funct != NULL)
1871 				result = (*(cmd->funct)) (cmd->mii_reg, priv);
1872 			else
1873 				result = cmd->mii_data;
1874 
1875 			write_phy_reg(priv, cmd->mii_reg, result);
1876 
1877 		}
1878 		cmd++;
1879 	}
1880 }
1881 
1882 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1883 	&& !defined(BITBANGMII)
1884 
1885 /*
1886  * Read a MII PHY register.
1887  *
1888  * Returns:
1889  *  0 on success
1890  */
tsec_miiphy_read(char * devname,unsigned char addr,unsigned char reg,unsigned short * value)1891 static int tsec_miiphy_read(char *devname, unsigned char addr,
1892 			    unsigned char reg, unsigned short *value)
1893 {
1894 	unsigned short ret;
1895 	struct tsec_private *priv = privlist[0];
1896 
1897 	if (NULL == priv) {
1898 		printf("Can't read PHY at address %d\n", addr);
1899 		return -1;
1900 	}
1901 
1902 	ret = (unsigned short)tsec_local_mdio_read(priv->phyregs, addr, reg);
1903 	*value = ret;
1904 
1905 	return 0;
1906 }
1907 
1908 /*
1909  * Write a MII PHY register.
1910  *
1911  * Returns:
1912  *  0 on success
1913  */
tsec_miiphy_write(char * devname,unsigned char addr,unsigned char reg,unsigned short value)1914 static int tsec_miiphy_write(char *devname, unsigned char addr,
1915 			     unsigned char reg, unsigned short value)
1916 {
1917 	struct tsec_private *priv = privlist[0];
1918 
1919 	if (NULL == priv) {
1920 		printf("Can't write PHY at address %d\n", addr);
1921 		return -1;
1922 	}
1923 
1924 	tsec_local_mdio_write(priv->phyregs, addr, reg, value);
1925 
1926 	return 0;
1927 }
1928 
1929 #endif
1930 
1931 #ifdef CONFIG_MCAST_TFTP
1932 
1933 /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */
1934 
1935 /* Set the appropriate hash bit for the given addr */
1936 
1937 /* The algorithm works like so:
1938  * 1) Take the Destination Address (ie the multicast address), and
1939  * do a CRC on it (little endian), and reverse the bits of the
1940  * result.
1941  * 2) Use the 8 most significant bits as a hash into a 256-entry
1942  * table.  The table is controlled through 8 32-bit registers:
1943  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
1944  * gaddr7.  This means that the 3 most significant bits in the
1945  * hash index which gaddr register to use, and the 5 other bits
1946  * indicate which bit (assuming an IBM numbering scheme, which
1947  * for PowerPC (tm) is usually the case) in the tregister holds
1948  * the entry. */
1949 static int
tsec_mcast_addr(struct eth_device * dev,u8 mcast_mac,u8 set)1950 tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set)
1951 {
1952 	struct tsec_private *priv = privlist[1];
1953 	volatile tsec_t *regs = priv->regs;
1954 	volatile u32  *reg_array, value;
1955 	u8 result, whichbit, whichreg;
1956 
1957 	result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff);
1958 	whichbit = result & 0x1f;	/* the 5 LSB = which bit to set */
1959 	whichreg = result >> 5;		/* the 3 MSB = which reg to set it in */
1960 	value = (1 << (31-whichbit));
1961 
1962 	reg_array = &(regs->hash.gaddr0);
1963 
1964 	if (set) {
1965 		reg_array[whichreg] |= value;
1966 	} else {
1967 		reg_array[whichreg] &= ~value;
1968 	}
1969 	return 0;
1970 }
1971 #endif /* Multicast TFTP ? */
1972