1 /*
2  * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
3  * Rohit Choraria <rohitkc@ti.com>
4  *
5  * See file CREDITS for list of people who contributed to this
6  * project.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 #include <asm/io.h>
26 #include <asm/errno.h>
27 #include <asm/arch/mem.h>
28 #include <asm/arch/omap_gpmc.h>
29 #include <linux/mtd/nand_ecc.h>
30 #include <nand.h>
31 
32 static uint8_t cs;
33 static struct nand_ecclayout hw_nand_oob = GPMC_NAND_HW_ECC_LAYOUT;
34 
35 /*
36  * omap_nand_hwcontrol - Set the address pointers corretly for the
37  *			following address/data/command operation
38  */
omap_nand_hwcontrol(struct mtd_info * mtd,int32_t cmd,uint32_t ctrl)39 static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
40 				uint32_t ctrl)
41 {
42 	register struct nand_chip *this = mtd->priv;
43 
44 	/*
45 	 * Point the IO_ADDR to DATA and ADDRESS registers instead
46 	 * of chip address
47 	 */
48 	switch (ctrl) {
49 	case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
50 		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
51 		break;
52 	case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
53 		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
54 		break;
55 	case NAND_CTRL_CHANGE | NAND_NCE:
56 		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
57 		break;
58 	}
59 
60 	if (cmd != NAND_CMD_NONE)
61 		writeb(cmd, this->IO_ADDR_W);
62 }
63 
64 /*
65  * omap_hwecc_init - Initialize the Hardware ECC for NAND flash in
66  *                   GPMC controller
67  * @mtd:        MTD device structure
68  *
69  */
omap_hwecc_init(struct nand_chip * chip)70 static void omap_hwecc_init(struct nand_chip *chip)
71 {
72 	/*
73 	 * Init ECC Control Register
74 	 * Clear all ECC | Enable Reg1
75 	 */
76 	writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
77 	writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, &gpmc_cfg->ecc_size_config);
78 }
79 
80 /*
81  * gen_true_ecc - This function will generate true ECC value, which
82  * can be used when correcting data read from NAND flash memory core
83  *
84  * @ecc_buf:	buffer to store ecc code
85  *
86  * @return:	re-formatted ECC value
87  */
gen_true_ecc(uint8_t * ecc_buf)88 static uint32_t gen_true_ecc(uint8_t *ecc_buf)
89 {
90 	return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
91 		((ecc_buf[2] & 0x0F) << 8);
92 }
93 
94 /*
95  * omap_correct_data - Compares the ecc read from nand spare area with ECC
96  * registers values and corrects one bit error if it has occured
97  * Further details can be had from OMAP TRM and the following selected links:
98  * http://en.wikipedia.org/wiki/Hamming_code
99  * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
100  *
101  * @mtd:		 MTD device structure
102  * @dat:		 page data
103  * @read_ecc:		 ecc read from nand flash
104  * @calc_ecc:		 ecc read from ECC registers
105  *
106  * @return 0 if data is OK or corrected, else returns -1
107  */
omap_correct_data(struct mtd_info * mtd,uint8_t * dat,uint8_t * read_ecc,uint8_t * calc_ecc)108 static int omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
109 				uint8_t *read_ecc, uint8_t *calc_ecc)
110 {
111 	uint32_t orig_ecc, new_ecc, res, hm;
112 	uint16_t parity_bits, byte;
113 	uint8_t bit;
114 
115 	/* Regenerate the orginal ECC */
116 	orig_ecc = gen_true_ecc(read_ecc);
117 	new_ecc = gen_true_ecc(calc_ecc);
118 	/* Get the XOR of real ecc */
119 	res = orig_ecc ^ new_ecc;
120 	if (res) {
121 		/* Get the hamming width */
122 		hm = hweight32(res);
123 		/* Single bit errors can be corrected! */
124 		if (hm == 12) {
125 			/* Correctable data! */
126 			parity_bits = res >> 16;
127 			bit = (parity_bits & 0x7);
128 			byte = (parity_bits >> 3) & 0x1FF;
129 			/* Flip the bit to correct */
130 			dat[byte] ^= (0x1 << bit);
131 		} else if (hm == 1) {
132 			printf("Error: Ecc is wrong\n");
133 			/* ECC itself is corrupted */
134 			return 2;
135 		} else {
136 			/*
137 			 * hm distance != parity pairs OR one, could mean 2 bit
138 			 * error OR potentially be on a blank page..
139 			 * orig_ecc: contains spare area data from nand flash.
140 			 * new_ecc: generated ecc while reading data area.
141 			 * Note: if the ecc = 0, all data bits from which it was
142 			 * generated are 0xFF.
143 			 * The 3 byte(24 bits) ecc is generated per 512byte
144 			 * chunk of a page. If orig_ecc(from spare area)
145 			 * is 0xFF && new_ecc(computed now from data area)=0x0,
146 			 * this means that data area is 0xFF and spare area is
147 			 * 0xFF. A sure sign of a erased page!
148 			 */
149 			if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
150 				return 0;
151 			printf("Error: Bad compare! failed\n");
152 			/* detected 2 bit error */
153 			return -1;
154 		}
155 	}
156 	return 0;
157 }
158 
159 /*
160  *  omap_calculate_ecc - Generate non-inverted ECC bytes.
161  *
162  *  Using noninverted ECC can be considered ugly since writing a blank
163  *  page ie. padding will clear the ECC bytes. This is no problem as
164  *  long nobody is trying to write data on the seemingly unused page.
165  *  Reading an erased page will produce an ECC mismatch between
166  *  generated and read ECC bytes that has to be dealt with separately.
167  *  E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
168  *  is used, the result of read will be 0x0 while the ECC offsets of the
169  *  spare area will be 0xFF which will result in an ECC mismatch.
170  *  @mtd:	MTD structure
171  *  @dat:	unused
172  *  @ecc_code:	ecc_code buffer
173  */
omap_calculate_ecc(struct mtd_info * mtd,const uint8_t * dat,uint8_t * ecc_code)174 static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
175 				uint8_t *ecc_code)
176 {
177 	u_int32_t val;
178 
179 	/* Start Reading from HW ECC1_Result = 0x200 */
180 	val = readl(&gpmc_cfg->ecc1_result);
181 
182 	ecc_code[0] = val & 0xFF;
183 	ecc_code[1] = (val >> 16) & 0xFF;
184 	ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
185 
186 	/*
187 	 * Stop reading anymore ECC vals and clear old results
188 	 * enable will be called if more reads are required
189 	 */
190 	writel(0x000, &gpmc_cfg->ecc_config);
191 
192 	return 0;
193 }
194 
195 /*
196  * omap_enable_ecc - This function enables the hardware ecc functionality
197  * @mtd:        MTD device structure
198  * @mode:       Read/Write mode
199  */
omap_enable_hwecc(struct mtd_info * mtd,int32_t mode)200 static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
201 {
202 	struct nand_chip *chip = mtd->priv;
203 	uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
204 
205 	switch (mode) {
206 	case NAND_ECC_READ:
207 	case NAND_ECC_WRITE:
208 		/* Clear the ecc result registers, select ecc reg as 1 */
209 		writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
210 
211 		/*
212 		 * Size 0 = 0xFF, Size1 is 0xFF - both are 512 bytes
213 		 * tell all regs to generate size0 sized regs
214 		 * we just have a single ECC engine for all CS
215 		 */
216 		writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL,
217 			&gpmc_cfg->ecc_size_config);
218 		val = (dev_width << 7) | (cs << 1) | (0x1);
219 		writel(val, &gpmc_cfg->ecc_config);
220 		break;
221 	default:
222 		printf("Error: Unrecognized Mode[%d]!\n", mode);
223 		break;
224 	}
225 }
226 
227 /*
228  * omap_nand_switch_ecc - switch the ECC operation b/w h/w ecc and s/w ecc.
229  * The default is to come up on s/w ecc
230  *
231  * @hardware - 1 -switch to h/w ecc, 0 - s/w ecc
232  *
233  */
omap_nand_switch_ecc(int32_t hardware)234 void omap_nand_switch_ecc(int32_t hardware)
235 {
236 	struct nand_chip *nand;
237 	struct mtd_info *mtd;
238 
239 	if (nand_curr_device < 0 ||
240 	    nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
241 	    !nand_info[nand_curr_device].name) {
242 		printf("Error: Can't switch ecc, no devices available\n");
243 		return;
244 	}
245 
246 	mtd = &nand_info[nand_curr_device];
247 	nand = mtd->priv;
248 
249 	nand->options |= NAND_OWN_BUFFERS;
250 
251 	/* Reset ecc interface */
252 	nand->ecc.read_page = NULL;
253 	nand->ecc.write_page = NULL;
254 	nand->ecc.read_oob = NULL;
255 	nand->ecc.write_oob = NULL;
256 	nand->ecc.hwctl = NULL;
257 	nand->ecc.correct = NULL;
258 	nand->ecc.calculate = NULL;
259 
260 	/* Setup the ecc configurations again */
261 	if (hardware) {
262 		nand->ecc.mode = NAND_ECC_HW;
263 		nand->ecc.layout = &hw_nand_oob;
264 		nand->ecc.size = 512;
265 		nand->ecc.bytes = 3;
266 		nand->ecc.hwctl = omap_enable_hwecc;
267 		nand->ecc.correct = omap_correct_data;
268 		nand->ecc.calculate = omap_calculate_ecc;
269 		omap_hwecc_init(nand);
270 		printf("HW ECC selected\n");
271 	} else {
272 		nand->ecc.mode = NAND_ECC_SOFT;
273 		/* Use mtd default settings */
274 		nand->ecc.layout = NULL;
275 		printf("SW ECC selected\n");
276 	}
277 
278 	/* Update NAND handling after ECC mode switch */
279 	nand_scan_tail(mtd);
280 
281 	nand->options &= ~NAND_OWN_BUFFERS;
282 }
283 
284 /*
285  * Board-specific NAND initialization. The following members of the
286  * argument are board-specific:
287  * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
288  * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
289  * - cmd_ctrl: hardwarespecific function for accesing control-lines
290  * - waitfunc: hardwarespecific function for accesing device ready/busy line
291  * - ecc.hwctl: function to enable (reset) hardware ecc generator
292  * - ecc.mode: mode of ecc, see defines
293  * - chip_delay: chip dependent delay for transfering data from array to
294  *   read regs (tR)
295  * - options: various chip options. They can partly be set to inform
296  *   nand_scan about special functionality. See the defines for further
297  *   explanation
298  */
board_nand_init(struct nand_chip * nand)299 int board_nand_init(struct nand_chip *nand)
300 {
301 	int32_t gpmc_config = 0;
302 	cs = 0;
303 
304 	/*
305 	 * xloader/Uboot's gpmc configuration would have configured GPMC for
306 	 * nand type of memory. The following logic scans and latches on to the
307 	 * first CS with NAND type memory.
308 	 * TBD: need to make this logic generic to handle multiple CS NAND
309 	 * devices.
310 	 */
311 	while (cs < GPMC_MAX_CS) {
312 		/* Check if NAND type is set */
313 		if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
314 			/* Found it!! */
315 			break;
316 		}
317 		cs++;
318 	}
319 	if (cs >= GPMC_MAX_CS) {
320 		printf("NAND: Unable to find NAND settings in "
321 			"GPMC Configuration - quitting\n");
322 		return -ENODEV;
323 	}
324 
325 	gpmc_config = readl(&gpmc_cfg->config);
326 	/* Disable Write protect */
327 	gpmc_config |= 0x10;
328 	writel(gpmc_config, &gpmc_cfg->config);
329 
330 	nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
331 	nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
332 
333 	nand->cmd_ctrl = omap_nand_hwcontrol;
334 	nand->options = NAND_NO_PADDING | NAND_CACHEPRG | NAND_NO_AUTOINCR;
335 	/* If we are 16 bit dev, our gpmc config tells us that */
336 	if ((readl(&gpmc_cfg->cs[cs].config1) & 0x3000) == 0x1000)
337 		nand->options |= NAND_BUSWIDTH_16;
338 
339 	nand->chip_delay = 100;
340 	/* Default ECC mode */
341 	nand->ecc.mode = NAND_ECC_SOFT;
342 
343 	return 0;
344 }
345