1 /*
2  * Based on drivers/usb/gadget/omap1510_udc.c
3  * TI OMAP1510 USB bus interface driver
4  *
5  * (C) Copyright 2009
6  * Vipin Kumar, ST Micoelectronics, vipin.kumar@st.com.
7  *
8  * See file CREDITS for list of people who contributed to this
9  * project.
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License as
13  * published by the Free Software Foundation; either version 2 of
14  * the License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
24  * MA 02111-1307 USA
25  */
26 
27 #include <common.h>
28 #include <asm/io.h>
29 
30 #include <usbdevice.h>
31 #include "ep0.h"
32 #include <usb/spr_udc.h>
33 #include <asm/arch/hardware.h>
34 #include <asm/arch/spr_misc.h>
35 
36 #define UDC_INIT_MDELAY		80	/* Device settle delay */
37 
38 /* Some kind of debugging output... */
39 #ifndef DEBUG_SPRUSBTTY
40 #define UDCDBG(str)
41 #define UDCDBGA(fmt, args...)
42 #else
43 #define UDCDBG(str) serial_printf(str "\n")
44 #define UDCDBGA(fmt, args...) serial_printf(fmt "\n", ##args)
45 #endif
46 
47 static struct urb *ep0_urb;
48 static struct usb_device_instance *udc_device;
49 
50 static struct plug_regs *const plug_regs_p =
51     (struct plug_regs * const)CONFIG_SYS_PLUG_BASE;
52 static struct udc_regs *const udc_regs_p =
53     (struct udc_regs * const)CONFIG_SYS_USBD_BASE;
54 static struct udc_endp_regs *const outep_regs_p =
55     &((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->out_regs[0];
56 static struct udc_endp_regs *const inep_regs_p =
57     &((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->in_regs[0];
58 
59 /*
60  * udc_state_transition - Write the next packet to TxFIFO.
61  * @initial:	Initial state.
62  * @final:	Final state.
63  *
64  * Helper function to implement device state changes. The device states and
65  * the events that transition between them are:
66  *
67  *				STATE_ATTACHED
68  *				||	/\
69  *				\/	||
70  *	DEVICE_HUB_CONFIGURED			DEVICE_HUB_RESET
71  *				||	/\
72  *				\/	||
73  *				STATE_POWERED
74  *				||	/\
75  *				\/	||
76  *	DEVICE_RESET				DEVICE_POWER_INTERRUPTION
77  *				||	/\
78  *				\/	||
79  *				STATE_DEFAULT
80  *				||	/\
81  *				\/	||
82  *	DEVICE_ADDRESS_ASSIGNED			DEVICE_RESET
83  *				||	/\
84  *				\/	||
85  *				STATE_ADDRESSED
86  *				||	/\
87  *				\/	||
88  *	DEVICE_CONFIGURED			DEVICE_DE_CONFIGURED
89  *				||	/\
90  *				\/	||
91  *				STATE_CONFIGURED
92  *
93  * udc_state_transition transitions up (in the direction from STATE_ATTACHED
94  * to STATE_CONFIGURED) from the specified initial state to the specified final
95  * state, passing through each intermediate state on the way. If the initial
96  * state is at or above (i.e. nearer to STATE_CONFIGURED) the final state, then
97  * no state transitions will take place.
98  *
99  * udc_state_transition also transitions down (in the direction from
100  * STATE_CONFIGURED to STATE_ATTACHED) from the specified initial state to the
101  * specified final state, passing through each intermediate state on the way.
102  * If the initial state is at or below (i.e. nearer to STATE_ATTACHED) the final
103  * state, then no state transitions will take place.
104  *
105  * This function must only be called with interrupts disabled.
106  */
udc_state_transition(usb_device_state_t initial,usb_device_state_t final)107 static void udc_state_transition(usb_device_state_t initial,
108 				 usb_device_state_t final)
109 {
110 	if (initial < final) {
111 		switch (initial) {
112 		case STATE_ATTACHED:
113 			usbd_device_event_irq(udc_device,
114 					      DEVICE_HUB_CONFIGURED, 0);
115 			if (final == STATE_POWERED)
116 				break;
117 		case STATE_POWERED:
118 			usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
119 			if (final == STATE_DEFAULT)
120 				break;
121 		case STATE_DEFAULT:
122 			usbd_device_event_irq(udc_device,
123 					      DEVICE_ADDRESS_ASSIGNED, 0);
124 			if (final == STATE_ADDRESSED)
125 				break;
126 		case STATE_ADDRESSED:
127 			usbd_device_event_irq(udc_device, DEVICE_CONFIGURED, 0);
128 		case STATE_CONFIGURED:
129 			break;
130 		default:
131 			break;
132 		}
133 	} else if (initial > final) {
134 		switch (initial) {
135 		case STATE_CONFIGURED:
136 			usbd_device_event_irq(udc_device,
137 					      DEVICE_DE_CONFIGURED, 0);
138 			if (final == STATE_ADDRESSED)
139 				break;
140 		case STATE_ADDRESSED:
141 			usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
142 			if (final == STATE_DEFAULT)
143 				break;
144 		case STATE_DEFAULT:
145 			usbd_device_event_irq(udc_device,
146 					      DEVICE_POWER_INTERRUPTION, 0);
147 			if (final == STATE_POWERED)
148 				break;
149 		case STATE_POWERED:
150 			usbd_device_event_irq(udc_device, DEVICE_HUB_RESET, 0);
151 		case STATE_ATTACHED:
152 			break;
153 		default:
154 			break;
155 		}
156 	}
157 }
158 
159 /* Stall endpoint */
udc_stall_ep(u32 ep_num)160 static void udc_stall_ep(u32 ep_num)
161 {
162 	writel(readl(&inep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL,
163 	       &inep_regs_p[ep_num].endp_cntl);
164 
165 	writel(readl(&outep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL,
166 	       &outep_regs_p[ep_num].endp_cntl);
167 }
168 
get_fifo(int ep_num,int in)169 static void *get_fifo(int ep_num, int in)
170 {
171 	u32 *fifo_ptr = (u32 *)CONFIG_SYS_FIFO_BASE;
172 
173 	switch (ep_num) {
174 	case UDC_EP3:
175 		fifo_ptr += readl(&inep_regs_p[1].endp_bsorfn);
176 		/* break intentionally left out */
177 
178 	case UDC_EP1:
179 		fifo_ptr += readl(&inep_regs_p[0].endp_bsorfn);
180 		/* break intentionally left out */
181 
182 	case UDC_EP0:
183 	default:
184 		if (in) {
185 			fifo_ptr +=
186 			    readl(&outep_regs_p[2].endp_maxpacksize) >> 16;
187 			/* break intentionally left out */
188 		} else {
189 			break;
190 		}
191 
192 	case UDC_EP2:
193 		fifo_ptr += readl(&outep_regs_p[0].endp_maxpacksize) >> 16;
194 		/* break intentionally left out */
195 	}
196 
197 	return (void *)fifo_ptr;
198 }
199 
usbgetpckfromfifo(int epNum,u8 * bufp,u32 len)200 static int usbgetpckfromfifo(int epNum, u8 *bufp, u32 len)
201 {
202 	u8 *fifo_ptr = (u8 *)get_fifo(epNum, 0);
203 	u32 i, nw, nb;
204 	u32 *wrdp;
205 	u8 *bytp;
206 
207 	if (readl(&udc_regs_p->dev_stat) & DEV_STAT_RXFIFO_EMPTY)
208 		return -1;
209 
210 	nw = len / sizeof(u32);
211 	nb = len % sizeof(u32);
212 
213 	wrdp = (u32 *)bufp;
214 	for (i = 0; i < nw; i++) {
215 		writel(readl(fifo_ptr), wrdp);
216 		wrdp++;
217 	}
218 
219 	bytp = (u8 *)wrdp;
220 	for (i = 0; i < nb; i++) {
221 		writeb(readb(fifo_ptr), bytp);
222 		fifo_ptr++;
223 		bytp++;
224 	}
225 	readl(&outep_regs_p[epNum].write_done);
226 
227 	return 0;
228 }
229 
usbputpcktofifo(int epNum,u8 * bufp,u32 len)230 static void usbputpcktofifo(int epNum, u8 *bufp, u32 len)
231 {
232 	u32 i, nw, nb;
233 	u32 *wrdp;
234 	u8 *bytp;
235 	u8 *fifo_ptr = get_fifo(epNum, 1);
236 
237 	nw = len / sizeof(int);
238 	nb = len % sizeof(int);
239 	wrdp = (u32 *)bufp;
240 	for (i = 0; i < nw; i++) {
241 		writel(*wrdp, fifo_ptr);
242 		wrdp++;
243 	}
244 
245 	bytp = (u8 *)wrdp;
246 	for (i = 0; i < nb; i++) {
247 		writeb(*bytp, fifo_ptr);
248 		fifo_ptr++;
249 		bytp++;
250 	}
251 }
252 
253 /*
254  * spear_write_noniso_tx_fifo - Write the next packet to TxFIFO.
255  * @endpoint:		Endpoint pointer.
256  *
257  * If the endpoint has an active tx_urb, then the next packet of data from the
258  * URB is written to the tx FIFO.  The total amount of data in the urb is given
259  * by urb->actual_length.  The maximum amount of data that can be sent in any
260  * one packet is given by endpoint->tx_packetSize.  The number of data bytes
261  * from this URB that have already been transmitted is given by endpoint->sent.
262  * endpoint->last is updated by this routine with the number of data bytes
263  * transmitted in this packet.
264  *
265  */
spear_write_noniso_tx_fifo(struct usb_endpoint_instance * endpoint)266 static void spear_write_noniso_tx_fifo(struct usb_endpoint_instance
267 				       *endpoint)
268 {
269 	struct urb *urb = endpoint->tx_urb;
270 	int align;
271 
272 	if (urb) {
273 		u32 last;
274 
275 		UDCDBGA("urb->buffer %p, buffer_length %d, actual_length %d",
276 			urb->buffer, urb->buffer_length, urb->actual_length);
277 
278 		last = MIN(urb->actual_length - endpoint->sent,
279 			   endpoint->tx_packetSize);
280 
281 		if (last) {
282 			u8 *cp = urb->buffer + endpoint->sent;
283 
284 			/*
285 			 * This ensures that USBD packet fifo is accessed
286 			 * - through word aligned pointer or
287 			 * - through non word aligned pointer but only
288 			 *   with a max length to make the next packet
289 			 *   word aligned
290 			 */
291 
292 			align = ((ulong)cp % sizeof(int));
293 			if (align)
294 				last = MIN(last, sizeof(int) - align);
295 
296 			UDCDBGA("endpoint->sent %d, tx_packetSize %d, last %d",
297 				endpoint->sent, endpoint->tx_packetSize, last);
298 
299 			usbputpcktofifo(endpoint->endpoint_address &
300 					USB_ENDPOINT_NUMBER_MASK, cp, last);
301 		}
302 		endpoint->last = last;
303 	}
304 }
305 
306 /*
307  * Handle SETUP USB interrupt.
308  * This function implements TRM Figure 14-14.
309  */
spear_udc_setup(struct usb_endpoint_instance * endpoint)310 static void spear_udc_setup(struct usb_endpoint_instance *endpoint)
311 {
312 	u8 *datap = (u8 *)&ep0_urb->device_request;
313 	int ep_addr = endpoint->endpoint_address;
314 
315 	UDCDBG("-> Entering device setup");
316 	usbgetpckfromfifo(ep_addr, datap, 8);
317 
318 	/* Try to process setup packet */
319 	if (ep0_recv_setup(ep0_urb)) {
320 		/* Not a setup packet, stall next EP0 transaction */
321 		udc_stall_ep(0);
322 		UDCDBG("can't parse setup packet, still waiting for setup");
323 		return;
324 	}
325 
326 	/* Check direction */
327 	if ((ep0_urb->device_request.bmRequestType & USB_REQ_DIRECTION_MASK)
328 	    == USB_REQ_HOST2DEVICE) {
329 		UDCDBG("control write on EP0");
330 		if (le16_to_cpu(ep0_urb->device_request.wLength)) {
331 			/* Stall this request */
332 			UDCDBG("Stalling unsupported EP0 control write data "
333 			       "stage.");
334 			udc_stall_ep(0);
335 		}
336 	} else {
337 
338 		UDCDBG("control read on EP0");
339 		/*
340 		 * The ep0_recv_setup function has already placed our response
341 		 * packet data in ep0_urb->buffer and the packet length in
342 		 * ep0_urb->actual_length.
343 		 */
344 		endpoint->tx_urb = ep0_urb;
345 		endpoint->sent = 0;
346 		/*
347 		 * Write packet data to the FIFO.  spear_write_noniso_tx_fifo
348 		 * will update endpoint->last with the number of bytes written
349 		 * to the FIFO.
350 		 */
351 		spear_write_noniso_tx_fifo(endpoint);
352 
353 		writel(0x0, &inep_regs_p[ep_addr].write_done);
354 	}
355 
356 	udc_unset_nak(endpoint->endpoint_address);
357 
358 	UDCDBG("<- Leaving device setup");
359 }
360 
361 /*
362  * Handle endpoint 0 RX interrupt
363  */
spear_udc_ep0_rx(struct usb_endpoint_instance * endpoint)364 static void spear_udc_ep0_rx(struct usb_endpoint_instance *endpoint)
365 {
366 	u8 dummy[64];
367 
368 	UDCDBG("RX on EP0");
369 
370 	/* Check direction */
371 	if ((ep0_urb->device_request.bmRequestType
372 	     & USB_REQ_DIRECTION_MASK) == USB_REQ_HOST2DEVICE) {
373 		/*
374 		 * This rx interrupt must be for a control write data
375 		 * stage packet.
376 		 *
377 		 * We don't support control write data stages.
378 		 * We should never end up here.
379 		 */
380 
381 		UDCDBG("Stalling unexpected EP0 control write "
382 		       "data stage packet");
383 		udc_stall_ep(0);
384 	} else {
385 		/*
386 		 * This rx interrupt must be for a control read status
387 		 * stage packet.
388 		 */
389 		UDCDBG("ACK on EP0 control read status stage packet");
390 		u32 len = (readl(&outep_regs_p[0].endp_status) >> 11) & 0xfff;
391 		usbgetpckfromfifo(0, dummy, len);
392 	}
393 }
394 
395 /*
396  * Handle endpoint 0 TX interrupt
397  */
spear_udc_ep0_tx(struct usb_endpoint_instance * endpoint)398 static void spear_udc_ep0_tx(struct usb_endpoint_instance *endpoint)
399 {
400 	struct usb_device_request *request = &ep0_urb->device_request;
401 	int ep_addr;
402 
403 	UDCDBG("TX on EP0");
404 
405 	/* Check direction */
406 	if ((request->bmRequestType & USB_REQ_DIRECTION_MASK) ==
407 	    USB_REQ_HOST2DEVICE) {
408 		/*
409 		 * This tx interrupt must be for a control write status
410 		 * stage packet.
411 		 */
412 		UDCDBG("ACK on EP0 control write status stage packet");
413 	} else {
414 		/*
415 		 * This tx interrupt must be for a control read data
416 		 * stage packet.
417 		 */
418 		int wLength = le16_to_cpu(request->wLength);
419 
420 		/*
421 		 * Update our count of bytes sent so far in this
422 		 * transfer.
423 		 */
424 		endpoint->sent += endpoint->last;
425 
426 		/*
427 		 * We are finished with this transfer if we have sent
428 		 * all of the bytes in our tx urb (urb->actual_length)
429 		 * unless we need a zero-length terminating packet.  We
430 		 * need a zero-length terminating packet if we returned
431 		 * fewer bytes than were requested (wLength) by the host,
432 		 * and the number of bytes we returned is an exact
433 		 * multiple of the packet size endpoint->tx_packetSize.
434 		 */
435 		if ((endpoint->sent == ep0_urb->actual_length) &&
436 		    ((ep0_urb->actual_length == wLength) ||
437 		     (endpoint->last != endpoint->tx_packetSize))) {
438 			/* Done with control read data stage. */
439 			UDCDBG("control read data stage complete");
440 		} else {
441 			/*
442 			 * We still have another packet of data to send
443 			 * in this control read data stage or else we
444 			 * need a zero-length terminating packet.
445 			 */
446 			UDCDBG("ACK control read data stage packet");
447 			spear_write_noniso_tx_fifo(endpoint);
448 
449 			ep_addr = endpoint->endpoint_address;
450 			writel(0x0, &inep_regs_p[ep_addr].write_done);
451 		}
452 	}
453 }
454 
spear_find_ep(int ep)455 static struct usb_endpoint_instance *spear_find_ep(int ep)
456 {
457 	int i;
458 
459 	for (i = 0; i < udc_device->bus->max_endpoints; i++) {
460 		if ((udc_device->bus->endpoint_array[i].endpoint_address &
461 		     USB_ENDPOINT_NUMBER_MASK) == ep)
462 			return &udc_device->bus->endpoint_array[i];
463 	}
464 	return NULL;
465 }
466 
467 /*
468  * Handle RX transaction on non-ISO endpoint.
469  * The ep argument is a physical endpoint number for a non-ISO IN endpoint
470  * in the range 1 to 15.
471  */
spear_udc_epn_rx(int ep)472 static void spear_udc_epn_rx(int ep)
473 {
474 	int nbytes = 0;
475 	struct urb *urb;
476 	struct usb_endpoint_instance *endpoint = spear_find_ep(ep);
477 
478 	if (endpoint) {
479 		urb = endpoint->rcv_urb;
480 
481 		if (urb) {
482 			u8 *cp = urb->buffer + urb->actual_length;
483 
484 			nbytes = (readl(&outep_regs_p[ep].endp_status) >> 11) &
485 			    0xfff;
486 			usbgetpckfromfifo(ep, cp, nbytes);
487 			usbd_rcv_complete(endpoint, nbytes, 0);
488 		}
489 	}
490 }
491 
492 /*
493  * Handle TX transaction on non-ISO endpoint.
494  * The ep argument is a physical endpoint number for a non-ISO IN endpoint
495  * in the range 16 to 30.
496  */
spear_udc_epn_tx(int ep)497 static void spear_udc_epn_tx(int ep)
498 {
499 	struct usb_endpoint_instance *endpoint = spear_find_ep(ep);
500 
501 	/*
502 	 * We need to transmit a terminating zero-length packet now if
503 	 * we have sent all of the data in this URB and the transfer
504 	 * size was an exact multiple of the packet size.
505 	 */
506 	if (endpoint && endpoint->tx_urb && endpoint->tx_urb->actual_length) {
507 		if (endpoint->last == endpoint->tx_packetSize) {
508 			/* handle zero length packet here */
509 			writel(0x0, &inep_regs_p[ep].write_done);
510 		}
511 		/* retire the data that was just sent */
512 		usbd_tx_complete(endpoint);
513 		/*
514 		 * Check to see if we have more data ready to transmit
515 		 * now.
516 		 */
517 		if (endpoint->tx_urb && endpoint->tx_urb->actual_length) {
518 			/* write data to FIFO */
519 			spear_write_noniso_tx_fifo(endpoint);
520 			writel(0x0, &inep_regs_p[ep].write_done);
521 
522 		} else if (endpoint->tx_urb
523 			   && (endpoint->tx_urb->actual_length == 0)) {
524 			/* udc_set_nak(ep); */
525 		}
526 	}
527 }
528 
529 /*
530  * Start of public functions.
531  */
532 
533 /* Called to start packet transmission. */
udc_endpoint_write(struct usb_endpoint_instance * endpoint)534 int udc_endpoint_write(struct usb_endpoint_instance *endpoint)
535 {
536 	udc_unset_nak(endpoint->endpoint_address & USB_ENDPOINT_NUMBER_MASK);
537 	return 0;
538 }
539 
540 /* Start to initialize h/w stuff */
udc_init(void)541 int udc_init(void)
542 {
543 	int i;
544 	u32 plug_st;
545 
546 	udc_device = NULL;
547 
548 	UDCDBG("starting");
549 
550 	readl(&plug_regs_p->plug_pending);
551 
552 	udc_disconnect();
553 
554 	for (i = 0; i < UDC_INIT_MDELAY; i++)
555 		udelay(1000);
556 
557 	plug_st = readl(&plug_regs_p->plug_state);
558 	writel(plug_st | PLUG_STATUS_EN, &plug_regs_p->plug_state);
559 
560 	writel(~0x0, &udc_regs_p->endp_int);
561 	writel(~0x0, &udc_regs_p->dev_int_mask);
562 	writel(~0x0, &udc_regs_p->endp_int_mask);
563 
564 	writel(DEV_CONF_FS_SPEED | DEV_CONF_REMWAKEUP | DEV_CONF_SELFPOW |
565 	       /* Dev_Conf_SYNCFRAME | */
566 	       DEV_CONF_PHYINT_16, &udc_regs_p->dev_conf);
567 
568 	writel(0x0, &udc_regs_p->dev_cntl);
569 
570 	/* Clear all interrupts pending */
571 	writel(DEV_INT_MSK, &udc_regs_p->dev_int);
572 
573 	return 0;
574 }
575 
576 /*
577  * udc_setup_ep - setup endpoint
578  * Associate a physical endpoint with endpoint_instance
579  */
udc_setup_ep(struct usb_device_instance * device,u32 ep,struct usb_endpoint_instance * endpoint)580 void udc_setup_ep(struct usb_device_instance *device,
581 		  u32 ep, struct usb_endpoint_instance *endpoint)
582 {
583 	UDCDBGA("setting up endpoint addr %x", endpoint->endpoint_address);
584 	int ep_addr;
585 	int ep_num, ep_type;
586 	int packet_size;
587 	int buffer_size;
588 	int attributes;
589 	char *tt;
590 	u32 endp_intmask;
591 
592 	tt = getenv("usbtty");
593 	if (!tt)
594 		tt = "generic";
595 
596 	ep_addr = endpoint->endpoint_address;
597 	ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
598 
599 	if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
600 		/* IN endpoint */
601 		packet_size = endpoint->tx_packetSize;
602 		buffer_size = packet_size * 2;
603 		attributes = endpoint->tx_attributes;
604 	} else {
605 		/* OUT endpoint */
606 		packet_size = endpoint->rcv_packetSize;
607 		buffer_size = packet_size * 2;
608 		attributes = endpoint->rcv_attributes;
609 	}
610 
611 	switch (attributes & USB_ENDPOINT_XFERTYPE_MASK) {
612 	case USB_ENDPOINT_XFER_CONTROL:
613 		ep_type = ENDP_EPTYPE_CNTL;
614 		break;
615 	case USB_ENDPOINT_XFER_BULK:
616 	default:
617 		ep_type = ENDP_EPTYPE_BULK;
618 		break;
619 	case USB_ENDPOINT_XFER_INT:
620 		ep_type = ENDP_EPTYPE_INT;
621 		break;
622 	case USB_ENDPOINT_XFER_ISOC:
623 		ep_type = ENDP_EPTYPE_ISO;
624 		break;
625 	}
626 
627 	struct udc_endp_regs *out_p = &outep_regs_p[ep_num];
628 	struct udc_endp_regs *in_p = &inep_regs_p[ep_num];
629 
630 	if (!ep_addr) {
631 		/* Setup endpoint 0 */
632 		buffer_size = packet_size;
633 
634 		writel(readl(&in_p->endp_cntl) | ENDP_CNTL_CNAK,
635 		       &in_p->endp_cntl);
636 
637 		writel(readl(&out_p->endp_cntl) | ENDP_CNTL_CNAK,
638 		       &out_p->endp_cntl);
639 
640 		writel(ENDP_CNTL_CONTROL | ENDP_CNTL_FLUSH, &in_p->endp_cntl);
641 
642 		writel(buffer_size / sizeof(int), &in_p->endp_bsorfn);
643 
644 		writel(packet_size, &in_p->endp_maxpacksize);
645 
646 		writel(ENDP_CNTL_CONTROL | ENDP_CNTL_RRDY, &out_p->endp_cntl);
647 
648 		writel(packet_size | ((buffer_size / sizeof(int)) << 16),
649 		       &out_p->endp_maxpacksize);
650 
651 		writel((packet_size << 19) | ENDP_EPTYPE_CNTL,
652 		       &udc_regs_p->udc_endp_reg[ep_num]);
653 
654 	} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
655 		/* Setup the IN endpoint */
656 		writel(0x0, &in_p->endp_status);
657 		writel((ep_type << 4) | ENDP_CNTL_RRDY, &in_p->endp_cntl);
658 		writel(buffer_size / sizeof(int), &in_p->endp_bsorfn);
659 		writel(packet_size, &in_p->endp_maxpacksize);
660 
661 		if (!strcmp(tt, "cdc_acm")) {
662 			if (ep_type == ENDP_EPTYPE_INT) {
663 				/* Conf no. 1 Interface no. 0 */
664 				writel((packet_size << 19) |
665 				       ENDP_EPDIR_IN | (1 << 7) |
666 				       (0 << 11) | (ep_type << 5) | ep_num,
667 				       &udc_regs_p->udc_endp_reg[ep_num]);
668 			} else {
669 				/* Conf no. 1 Interface no. 1 */
670 				writel((packet_size << 19) |
671 				       ENDP_EPDIR_IN | (1 << 7) |
672 				       (1 << 11) | (ep_type << 5) | ep_num,
673 				       &udc_regs_p->udc_endp_reg[ep_num]);
674 			}
675 		} else {
676 			/* Conf no. 1 Interface no. 0 */
677 			writel((packet_size << 19) |
678 			       ENDP_EPDIR_IN | (1 << 7) |
679 			       (0 << 11) | (ep_type << 5) | ep_num,
680 			       &udc_regs_p->udc_endp_reg[ep_num]);
681 		}
682 
683 	} else {
684 		/* Setup the OUT endpoint */
685 		writel(0x0, &out_p->endp_status);
686 		writel((ep_type << 4) | ENDP_CNTL_RRDY, &out_p->endp_cntl);
687 		writel(packet_size | ((buffer_size / sizeof(int)) << 16),
688 		       &out_p->endp_maxpacksize);
689 
690 		if (!strcmp(tt, "cdc_acm")) {
691 			writel((packet_size << 19) |
692 			       ENDP_EPDIR_OUT | (1 << 7) |
693 			       (1 << 11) | (ep_type << 5) | ep_num,
694 			       &udc_regs_p->udc_endp_reg[ep_num]);
695 		} else {
696 			writel((packet_size << 19) |
697 			       ENDP_EPDIR_OUT | (1 << 7) |
698 			       (0 << 11) | (ep_type << 5) | ep_num,
699 			       &udc_regs_p->udc_endp_reg[ep_num]);
700 		}
701 
702 	}
703 
704 	endp_intmask = readl(&udc_regs_p->endp_int_mask);
705 	endp_intmask &= ~((1 << ep_num) | 0x10000 << ep_num);
706 	writel(endp_intmask, &udc_regs_p->endp_int_mask);
707 }
708 
709 /* Turn on the USB connection by enabling the pullup resistor */
udc_connect(void)710 void udc_connect(void)
711 {
712 	u32 plug_st;
713 
714 	plug_st = readl(&plug_regs_p->plug_state);
715 	plug_st &= ~(PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE);
716 	writel(plug_st, &plug_regs_p->plug_state);
717 }
718 
719 /* Turn off the USB connection by disabling the pullup resistor */
udc_disconnect(void)720 void udc_disconnect(void)
721 {
722 	u32 plug_st;
723 
724 	plug_st = readl(&plug_regs_p->plug_state);
725 	plug_st |= (PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE);
726 	writel(plug_st, &plug_regs_p->plug_state);
727 }
728 
729 /* Switch on the UDC */
udc_enable(struct usb_device_instance * device)730 void udc_enable(struct usb_device_instance *device)
731 {
732 	UDCDBGA("enable device %p, status %d", device, device->status);
733 
734 	/* Save the device structure pointer */
735 	udc_device = device;
736 
737 	/* Setup ep0 urb */
738 	if (!ep0_urb) {
739 		ep0_urb =
740 		    usbd_alloc_urb(udc_device, udc_device->bus->endpoint_array);
741 	} else {
742 		serial_printf("udc_enable: ep0_urb already allocated %p\n",
743 			      ep0_urb);
744 	}
745 
746 	writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask);
747 }
748 
749 /**
750  * udc_startup - allow udc code to do any additional startup
751  */
udc_startup_events(struct usb_device_instance * device)752 void udc_startup_events(struct usb_device_instance *device)
753 {
754 	/* The DEVICE_INIT event puts the USB device in the state STATE_INIT. */
755 	usbd_device_event_irq(device, DEVICE_INIT, 0);
756 
757 	/*
758 	 * The DEVICE_CREATE event puts the USB device in the state
759 	 * STATE_ATTACHED.
760 	 */
761 	usbd_device_event_irq(device, DEVICE_CREATE, 0);
762 
763 	/*
764 	 * Some USB controller driver implementations signal
765 	 * DEVICE_HUB_CONFIGURED and DEVICE_RESET events here.
766 	 * DEVICE_HUB_CONFIGURED causes a transition to the state STATE_POWERED,
767 	 * and DEVICE_RESET causes a transition to the state STATE_DEFAULT.
768 	 * The SPEAr USB client controller has the capability to detect when the
769 	 * USB cable is connected to a powered USB bus, so we will defer the
770 	 * DEVICE_HUB_CONFIGURED and DEVICE_RESET events until later.
771 	 */
772 
773 	udc_enable(device);
774 }
775 
776 /*
777  * Plug detection interrupt handling
778  */
spear_udc_plug_irq(void)779 void spear_udc_plug_irq(void)
780 {
781 	if (readl(&plug_regs_p->plug_state) & PLUG_STATUS_ATTACHED) {
782 		/*
783 		 * USB cable attached
784 		 * Turn off PHY reset bit (PLUG detect).
785 		 * Switch PHY opmode to normal operation (PLUG detect).
786 		 */
787 		udc_connect();
788 		writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask);
789 
790 		UDCDBG("device attached and powered");
791 		udc_state_transition(udc_device->device_state, STATE_POWERED);
792 	} else {
793 		/*
794 		 * USB cable detached
795 		 * Reset the PHY and switch the mode.
796 		 */
797 		udc_disconnect();
798 		writel(~0x0, &udc_regs_p->dev_int_mask);
799 
800 		UDCDBG("device detached or unpowered");
801 		udc_state_transition(udc_device->device_state, STATE_ATTACHED);
802 	}
803 }
804 
805 /*
806  * Device interrupt handling
807  */
spear_udc_dev_irq(void)808 void spear_udc_dev_irq(void)
809 {
810 	if (readl(&udc_regs_p->dev_int) & DEV_INT_USBRESET) {
811 		writel(~0x0, &udc_regs_p->endp_int_mask);
812 
813 		udc_connect();
814 
815 		writel(readl(&inep_regs_p[0].endp_cntl) | ENDP_CNTL_FLUSH,
816 		       &inep_regs_p[0].endp_cntl);
817 
818 		writel(DEV_INT_USBRESET, &udc_regs_p->dev_int);
819 
820 		UDCDBG("device reset in progess");
821 		udc_state_transition(udc_device->device_state, STATE_DEFAULT);
822 	}
823 
824 	/* Device Enumeration completed */
825 	if (readl(&udc_regs_p->dev_int) & DEV_INT_ENUM) {
826 		writel(DEV_INT_ENUM, &udc_regs_p->dev_int);
827 
828 		/* Endpoint interrupt enabled for Ctrl IN & Ctrl OUT */
829 		writel(readl(&udc_regs_p->endp_int_mask) & ~0x10001,
830 		       &udc_regs_p->endp_int_mask);
831 
832 		UDCDBG("default -> addressed");
833 		udc_state_transition(udc_device->device_state, STATE_ADDRESSED);
834 	}
835 
836 	/* The USB will be in SUSPEND in 3 ms */
837 	if (readl(&udc_regs_p->dev_int) & DEV_INT_INACTIVE) {
838 		writel(DEV_INT_INACTIVE, &udc_regs_p->dev_int);
839 
840 		UDCDBG("entering inactive state");
841 		/* usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0); */
842 	}
843 
844 	/* SetConfiguration command received */
845 	if (readl(&udc_regs_p->dev_int) & DEV_INT_SETCFG) {
846 		writel(DEV_INT_SETCFG, &udc_regs_p->dev_int);
847 
848 		UDCDBG("entering configured state");
849 		udc_state_transition(udc_device->device_state,
850 				     STATE_CONFIGURED);
851 	}
852 
853 	/* SetInterface command received */
854 	if (readl(&udc_regs_p->dev_int) & DEV_INT_SETINTF)
855 		writel(DEV_INT_SETINTF, &udc_regs_p->dev_int);
856 
857 	/* USB Suspend detected on cable */
858 	if (readl(&udc_regs_p->dev_int) & DEV_INT_SUSPUSB) {
859 		writel(DEV_INT_SUSPUSB, &udc_regs_p->dev_int);
860 
861 		UDCDBG("entering suspended state");
862 		usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0);
863 	}
864 
865 	/* USB Start-Of-Frame detected on cable */
866 	if (readl(&udc_regs_p->dev_int) & DEV_INT_SOF)
867 		writel(DEV_INT_SOF, &udc_regs_p->dev_int);
868 }
869 
870 /*
871  * Endpoint interrupt handling
872  */
spear_udc_endpoint_irq(void)873 void spear_udc_endpoint_irq(void)
874 {
875 	while (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLOUT) {
876 
877 		writel(ENDP0_INT_CTRLOUT, &udc_regs_p->endp_int);
878 
879 		if ((readl(&outep_regs_p[0].endp_status) & ENDP_STATUS_OUTMSK)
880 		    == ENDP_STATUS_OUT_SETUP) {
881 			spear_udc_setup(udc_device->bus->endpoint_array + 0);
882 			writel(ENDP_STATUS_OUT_SETUP,
883 			       &outep_regs_p[0].endp_status);
884 
885 		} else if ((readl(&outep_regs_p[0].endp_status) &
886 			    ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) {
887 			spear_udc_ep0_rx(udc_device->bus->endpoint_array + 0);
888 			writel(ENDP_STATUS_OUT_DATA,
889 			       &outep_regs_p[0].endp_status);
890 
891 		} else if ((readl(&outep_regs_p[0].endp_status) &
892 			    ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) {
893 			/* NONE received */
894 		}
895 
896 		writel(0x0, &outep_regs_p[0].endp_status);
897 	}
898 
899 	if (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLIN) {
900 		spear_udc_ep0_tx(udc_device->bus->endpoint_array + 0);
901 
902 		writel(ENDP_STATUS_IN, &inep_regs_p[0].endp_status);
903 		writel(ENDP0_INT_CTRLIN, &udc_regs_p->endp_int);
904 	}
905 
906 	while (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOOUT_MSK) {
907 		u32 epnum = 0;
908 		u32 ep_int = readl(&udc_regs_p->endp_int) &
909 		    ENDP_INT_NONISOOUT_MSK;
910 
911 		ep_int >>= 16;
912 		while (0x0 == (ep_int & 0x1)) {
913 			ep_int >>= 1;
914 			epnum++;
915 		}
916 
917 		writel((1 << 16) << epnum, &udc_regs_p->endp_int);
918 
919 		if ((readl(&outep_regs_p[epnum].endp_status) &
920 		     ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) {
921 
922 			spear_udc_epn_rx(epnum);
923 			writel(ENDP_STATUS_OUT_DATA,
924 			       &outep_regs_p[epnum].endp_status);
925 		} else if ((readl(&outep_regs_p[epnum].endp_status) &
926 			    ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) {
927 			writel(0x0, &outep_regs_p[epnum].endp_status);
928 		}
929 	}
930 
931 	if (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOIN_MSK) {
932 		u32 epnum = 0;
933 		u32 ep_int = readl(&udc_regs_p->endp_int) &
934 		    ENDP_INT_NONISOIN_MSK;
935 
936 		while (0x0 == (ep_int & 0x1)) {
937 			ep_int >>= 1;
938 			epnum++;
939 		}
940 
941 		if (readl(&inep_regs_p[epnum].endp_status) & ENDP_STATUS_IN) {
942 			writel(ENDP_STATUS_IN,
943 			       &outep_regs_p[epnum].endp_status);
944 			spear_udc_epn_tx(epnum);
945 
946 			writel(ENDP_STATUS_IN,
947 			       &outep_regs_p[epnum].endp_status);
948 		}
949 
950 		writel((1 << epnum), &udc_regs_p->endp_int);
951 	}
952 }
953 
954 /*
955  * UDC interrupts
956  */
udc_irq(void)957 void udc_irq(void)
958 {
959 	/*
960 	 * Loop while we have interrupts.
961 	 * If we don't do this, the input chain
962 	 * polling delay is likely to miss
963 	 * host requests.
964 	 */
965 	while (readl(&plug_regs_p->plug_pending))
966 		spear_udc_plug_irq();
967 
968 	while (readl(&udc_regs_p->dev_int))
969 		spear_udc_dev_irq();
970 
971 	if (readl(&udc_regs_p->endp_int))
972 		spear_udc_endpoint_irq();
973 }
974 
975 /* Flow control */
udc_set_nak(int epid)976 void udc_set_nak(int epid)
977 {
978 	writel(readl(&inep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK,
979 	       &inep_regs_p[epid].endp_cntl);
980 
981 	writel(readl(&outep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK,
982 	       &outep_regs_p[epid].endp_cntl);
983 }
984 
udc_unset_nak(int epid)985 void udc_unset_nak(int epid)
986 {
987 	u32 val;
988 
989 	val = readl(&inep_regs_p[epid].endp_cntl);
990 	val &= ~ENDP_CNTL_SNAK;
991 	val |= ENDP_CNTL_CNAK;
992 	writel(val, &inep_regs_p[epid].endp_cntl);
993 
994 	val = readl(&outep_regs_p[epid].endp_cntl);
995 	val &= ~ENDP_CNTL_SNAK;
996 	val |= ENDP_CNTL_CNAK;
997 	writel(val, &outep_regs_p[epid].endp_cntl);
998 }
999