1 #ifndef TARGET_ARM_TRANSLATE_H
2 #define TARGET_ARM_TRANSLATE_H
3 
4 #include "exec/translator.h"
5 #include "internals.h"
6 
7 
8 /* internal defines */
9 typedef struct DisasContext {
10     DisasContextBase base;
11     const ARMISARegisters *isar;
12 
13     /* The address of the current instruction being translated. */
14     target_ulong pc_curr;
15     target_ulong page_start;
16     uint32_t insn;
17     /* Nonzero if this instruction has been conditionally skipped.  */
18     int condjmp;
19     /* The label that will be jumped to when the instruction is skipped.  */
20     TCGLabel *condlabel;
21     /* Thumb-2 conditional execution bits.  */
22     int condexec_mask;
23     int condexec_cond;
24     /* M-profile ECI/ICI exception-continuable instruction state */
25     int eci;
26     /*
27      * trans_ functions for insns which are continuable should set this true
28      * after decode (ie after any UNDEF checks)
29      */
30     bool eci_handled;
31     /* TCG op to rewind to if this turns out to be an invalid ECI state */
32     TCGOp *insn_eci_rewind;
33     int thumb;
34     int sctlr_b;
35     MemOp be_data;
36 #if !defined(CONFIG_USER_ONLY)
37     int user;
38 #endif
39     ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */
40     uint8_t tbii;      /* TBI1|TBI0 for insns */
41     uint8_t tbid;      /* TBI1|TBI0 for data */
42     uint8_t tcma;      /* TCMA1|TCMA0 for MTE */
43     bool ns;        /* Use non-secure CPREG bank on access */
44     int fp_excp_el; /* FP exception EL or 0 if enabled */
45     int sve_excp_el; /* SVE exception EL or 0 if enabled */
46     int sve_len;     /* SVE vector length in bytes */
47     /* Flag indicating that exceptions from secure mode are routed to EL3. */
48     bool secure_routed_to_el3;
49     bool vfp_enabled; /* FP enabled via FPSCR.EN */
50     int vec_len;
51     int vec_stride;
52     bool v7m_handler_mode;
53     bool v8m_secure; /* true if v8M and we're in Secure mode */
54     bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */
55     bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */
56     bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */
57     bool v7m_lspact; /* FPCCR.LSPACT set */
58     /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI
59      * so that top level loop can generate correct syndrome information.
60      */
61     uint32_t svc_imm;
62     int aarch64;
63     int current_el;
64     /* Debug target exception level for single-step exceptions */
65     int debug_target_el;
66     GHashTable *cp_regs;
67     uint64_t features; /* CPU features bits */
68     /* Because unallocated encodings generate different exception syndrome
69      * information from traps due to FP being disabled, we can't do a single
70      * "is fp access disabled" check at a high level in the decode tree.
71      * To help in catching bugs where the access check was forgotten in some
72      * code path, we set this flag when the access check is done, and assert
73      * that it is set at the point where we actually touch the FP regs.
74      */
75     bool fp_access_checked;
76     bool sve_access_checked;
77     /* ARMv8 single-step state (this is distinct from the QEMU gdbstub
78      * single-step support).
79      */
80     bool ss_active;
81     bool pstate_ss;
82     /* True if the insn just emitted was a load-exclusive instruction
83      * (necessary for syndrome information for single step exceptions),
84      * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*.
85      */
86     bool is_ldex;
87     /* True if AccType_UNPRIV should be used for LDTR et al */
88     bool unpriv;
89     /* True if v8.3-PAuth is active.  */
90     bool pauth_active;
91     /* True if v8.5-MTE access to tags is enabled.  */
92     bool ata;
93     /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv.  */
94     bool mte_active[2];
95     /* True with v8.5-BTI and SCTLR_ELx.BT* set.  */
96     bool bt;
97     /* True if any CP15 access is trapped by HSTR_EL2 */
98     bool hstr_active;
99     /* True if memory operations require alignment */
100     bool align_mem;
101     /* True if PSTATE.IL is set */
102     bool pstate_il;
103     /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */
104     bool mve_no_pred;
105     /*
106      * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI.
107      *  < 0, set by the current instruction.
108      */
109     int8_t btype;
110     /* A copy of cpu->dcz_blocksize. */
111     uint8_t dcz_blocksize;
112     /* True if this page is guarded.  */
113     bool guarded_page;
114     /* Bottom two bits of XScale c15_cpar coprocessor access control reg */
115     int c15_cpar;
116     /* TCG op of the current insn_start.  */
117     TCGOp *insn_start;
118 #define TMP_A64_MAX 16
119     int tmp_a64_count;
120     TCGv_i64 tmp_a64[TMP_A64_MAX];
121 } DisasContext;
122 
123 typedef struct DisasCompare {
124     TCGCond cond;
125     TCGv_i32 value;
126     bool value_global;
127 } DisasCompare;
128 
129 /* Share the TCG temporaries common between 32 and 64 bit modes.  */
130 extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF;
131 extern TCGv_i64 cpu_exclusive_addr;
132 extern TCGv_i64 cpu_exclusive_val;
133 
134 /*
135  * Constant expanders for the decoders.
136  */
137 
negate(DisasContext * s,int x)138 static inline int negate(DisasContext *s, int x)
139 {
140     return -x;
141 }
142 
plus_1(DisasContext * s,int x)143 static inline int plus_1(DisasContext *s, int x)
144 {
145     return x + 1;
146 }
147 
plus_2(DisasContext * s,int x)148 static inline int plus_2(DisasContext *s, int x)
149 {
150     return x + 2;
151 }
152 
times_2(DisasContext * s,int x)153 static inline int times_2(DisasContext *s, int x)
154 {
155     return x * 2;
156 }
157 
times_4(DisasContext * s,int x)158 static inline int times_4(DisasContext *s, int x)
159 {
160     return x * 4;
161 }
162 
times_2_plus_1(DisasContext * s,int x)163 static inline int times_2_plus_1(DisasContext *s, int x)
164 {
165     return x * 2 + 1;
166 }
167 
rsub_64(DisasContext * s,int x)168 static inline int rsub_64(DisasContext *s, int x)
169 {
170     return 64 - x;
171 }
172 
rsub_32(DisasContext * s,int x)173 static inline int rsub_32(DisasContext *s, int x)
174 {
175     return 32 - x;
176 }
177 
rsub_16(DisasContext * s,int x)178 static inline int rsub_16(DisasContext *s, int x)
179 {
180     return 16 - x;
181 }
182 
rsub_8(DisasContext * s,int x)183 static inline int rsub_8(DisasContext *s, int x)
184 {
185     return 8 - x;
186 }
187 
neon_3same_fp_size(DisasContext * s,int x)188 static inline int neon_3same_fp_size(DisasContext *s, int x)
189 {
190     /* Convert 0==fp32, 1==fp16 into a MO_* value */
191     return MO_32 - x;
192 }
193 
arm_dc_feature(DisasContext * dc,int feature)194 static inline int arm_dc_feature(DisasContext *dc, int feature)
195 {
196     return (dc->features & (1ULL << feature)) != 0;
197 }
198 
get_mem_index(DisasContext * s)199 static inline int get_mem_index(DisasContext *s)
200 {
201     return arm_to_core_mmu_idx(s->mmu_idx);
202 }
203 
204 /* Function used to determine the target exception EL when otherwise not known
205  * or default.
206  */
default_exception_el(DisasContext * s)207 static inline int default_exception_el(DisasContext *s)
208 {
209     /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
210      * there is no secure EL1, so we route exceptions to EL3.  Otherwise,
211      * exceptions can only be routed to ELs above 1, so we target the higher of
212      * 1 or the current EL.
213      */
214     return (s->mmu_idx == ARMMMUIdx_SE10_0 && s->secure_routed_to_el3)
215             ? 3 : MAX(1, s->current_el);
216 }
217 
disas_set_insn_syndrome(DisasContext * s,uint32_t syn)218 static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
219 {
220     /* We don't need to save all of the syndrome so we mask and shift
221      * out unneeded bits to help the sleb128 encoder do a better job.
222      */
223     syn &= ARM_INSN_START_WORD2_MASK;
224     syn >>= ARM_INSN_START_WORD2_SHIFT;
225 
226     /* We check and clear insn_start_idx to catch multiple updates.  */
227     assert(s->insn_start != NULL);
228     tcg_set_insn_start_param(s->insn_start, 2, syn);
229     s->insn_start = NULL;
230 }
231 
232 /* is_jmp field values */
233 #define DISAS_JUMP      DISAS_TARGET_0 /* only pc was modified dynamically */
234 /* CPU state was modified dynamically; exit to main loop for interrupts. */
235 #define DISAS_UPDATE_EXIT  DISAS_TARGET_1
236 /* These instructions trap after executing, so the A32/T32 decoder must
237  * defer them until after the conditional execution state has been updated.
238  * WFI also needs special handling when single-stepping.
239  */
240 #define DISAS_WFI       DISAS_TARGET_2
241 #define DISAS_SWI       DISAS_TARGET_3
242 /* WFE */
243 #define DISAS_WFE       DISAS_TARGET_4
244 #define DISAS_HVC       DISAS_TARGET_5
245 #define DISAS_SMC       DISAS_TARGET_6
246 #define DISAS_YIELD     DISAS_TARGET_7
247 /* M profile branch which might be an exception return (and so needs
248  * custom end-of-TB code)
249  */
250 #define DISAS_BX_EXCRET DISAS_TARGET_8
251 /*
252  * For instructions which want an immediate exit to the main loop, as opposed
253  * to attempting to use lookup_and_goto_ptr.  Unlike DISAS_UPDATE_EXIT, this
254  * doesn't write the PC on exiting the translation loop so you need to ensure
255  * something (gen_a64_set_pc_im or runtime helper) has done so before we reach
256  * return from cpu_tb_exec.
257  */
258 #define DISAS_EXIT      DISAS_TARGET_9
259 /* CPU state was modified dynamically; no need to exit, but do not chain. */
260 #define DISAS_UPDATE_NOCHAIN  DISAS_TARGET_10
261 
262 #ifdef TARGET_AARCH64
263 void a64_translate_init(void);
264 void gen_a64_set_pc_im(uint64_t val);
265 extern const TranslatorOps aarch64_translator_ops;
266 #else
a64_translate_init(void)267 static inline void a64_translate_init(void)
268 {
269 }
270 
gen_a64_set_pc_im(uint64_t val)271 static inline void gen_a64_set_pc_im(uint64_t val)
272 {
273 }
274 #endif
275 
276 void arm_test_cc(DisasCompare *cmp, int cc);
277 void arm_free_cc(DisasCompare *cmp);
278 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label);
279 void arm_gen_test_cc(int cc, TCGLabel *label);
280 MemOp pow2_align(unsigned i);
281 void unallocated_encoding(DisasContext *s);
282 void gen_exception_insn(DisasContext *s, uint64_t pc, int excp,
283                         uint32_t syn, uint32_t target_el);
284 
285 /* Return state of Alternate Half-precision flag, caller frees result */
get_ahp_flag(void)286 static inline TCGv_i32 get_ahp_flag(void)
287 {
288     TCGv_i32 ret = tcg_temp_new_i32();
289 
290     tcg_gen_ld_i32(ret, cpu_env,
291                    offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPSCR]));
292     tcg_gen_extract_i32(ret, ret, 26, 1);
293 
294     return ret;
295 }
296 
297 /* Set bits within PSTATE.  */
set_pstate_bits(uint32_t bits)298 static inline void set_pstate_bits(uint32_t bits)
299 {
300     TCGv_i32 p = tcg_temp_new_i32();
301 
302     tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
303 
304     tcg_gen_ld_i32(p, cpu_env, offsetof(CPUARMState, pstate));
305     tcg_gen_ori_i32(p, p, bits);
306     tcg_gen_st_i32(p, cpu_env, offsetof(CPUARMState, pstate));
307     tcg_temp_free_i32(p);
308 }
309 
310 /* Clear bits within PSTATE.  */
clear_pstate_bits(uint32_t bits)311 static inline void clear_pstate_bits(uint32_t bits)
312 {
313     TCGv_i32 p = tcg_temp_new_i32();
314 
315     tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
316 
317     tcg_gen_ld_i32(p, cpu_env, offsetof(CPUARMState, pstate));
318     tcg_gen_andi_i32(p, p, ~bits);
319     tcg_gen_st_i32(p, cpu_env, offsetof(CPUARMState, pstate));
320     tcg_temp_free_i32(p);
321 }
322 
323 /* If the singlestep state is Active-not-pending, advance to Active-pending. */
gen_ss_advance(DisasContext * s)324 static inline void gen_ss_advance(DisasContext *s)
325 {
326     if (s->ss_active) {
327         s->pstate_ss = 0;
328         clear_pstate_bits(PSTATE_SS);
329     }
330 }
331 
gen_exception(int excp,uint32_t syndrome,uint32_t target_el)332 static inline void gen_exception(int excp, uint32_t syndrome,
333                                  uint32_t target_el)
334 {
335     TCGv_i32 tcg_excp = tcg_const_i32(excp);
336     TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
337     TCGv_i32 tcg_el = tcg_const_i32(target_el);
338 
339     gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
340                                        tcg_syn, tcg_el);
341 
342     tcg_temp_free_i32(tcg_el);
343     tcg_temp_free_i32(tcg_syn);
344     tcg_temp_free_i32(tcg_excp);
345 }
346 
347 /* Generate an architectural singlestep exception */
gen_swstep_exception(DisasContext * s,int isv,int ex)348 static inline void gen_swstep_exception(DisasContext *s, int isv, int ex)
349 {
350     bool same_el = (s->debug_target_el == s->current_el);
351 
352     /*
353      * If singlestep is targeting a lower EL than the current one,
354      * then s->ss_active must be false and we can never get here.
355      */
356     assert(s->debug_target_el >= s->current_el);
357 
358     gen_exception(EXCP_UDEF, syn_swstep(same_el, isv, ex), s->debug_target_el);
359 }
360 
361 /*
362  * Given a VFP floating point constant encoded into an 8 bit immediate in an
363  * instruction, expand it to the actual constant value of the specified
364  * size, as per the VFPExpandImm() pseudocode in the Arm ARM.
365  */
366 uint64_t vfp_expand_imm(int size, uint8_t imm8);
367 
368 /* Vector operations shared between ARM and AArch64.  */
369 void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
370                    uint32_t opr_sz, uint32_t max_sz);
371 void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
372                    uint32_t opr_sz, uint32_t max_sz);
373 void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
374                    uint32_t opr_sz, uint32_t max_sz);
375 void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
376                    uint32_t opr_sz, uint32_t max_sz);
377 void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
378                    uint32_t opr_sz, uint32_t max_sz);
379 
380 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
381                   uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
382 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
383                   uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
384 
385 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
386                     uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
387 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
388                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
389 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
390                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
391 
392 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
393 void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
394 void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
395 void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
396 void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
397 
398 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
399                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
400 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
401                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
402 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
403                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
404 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
405                        uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
406 
407 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
408                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
409 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
410                    int64_t shift, uint32_t opr_sz, uint32_t max_sz);
411 
412 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
413                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
414 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
415                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
416 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
417                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
418 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
419                     int64_t shift, uint32_t opr_sz, uint32_t max_sz);
420 
421 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
422                   int64_t shift, uint32_t opr_sz, uint32_t max_sz);
423 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
424                   int64_t shift, uint32_t opr_sz, uint32_t max_sz);
425 
426 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
427                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
428 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
429                           uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
430 
431 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
432                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
433 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
434                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
435 
436 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
437                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
438 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
439                    uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
440 
441 /*
442  * Forward to the isar_feature_* tests given a DisasContext pointer.
443  */
444 #define dc_isar_feature(name, ctx) \
445     ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); })
446 
447 /* Note that the gvec expanders operate on offsets + sizes.  */
448 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
449 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
450                          uint32_t, uint32_t);
451 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
452                         uint32_t, uint32_t, uint32_t);
453 typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t,
454                         uint32_t, uint32_t, uint32_t);
455 
456 /* Function prototype for gen_ functions for calling Neon helpers */
457 typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32);
458 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
459 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
460 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
461 typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32,
462                                  TCGv_i32, TCGv_i32);
463 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
464 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
465 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
466 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
467 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
468 typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32);
469 typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr);
470 typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
471 typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
472 typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64);
473 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
474 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
475 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
476 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp);
477 typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift);
478 typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32);
479 typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift);
480 typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
481 
482 /**
483  * arm_tbflags_from_tb:
484  * @tb: the TranslationBlock
485  *
486  * Extract the flag values from @tb.
487  */
arm_tbflags_from_tb(const TranslationBlock * tb)488 static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb)
489 {
490     return (CPUARMTBFlags){ tb->flags, tb->cs_base };
491 }
492 
493 /*
494  * Enum for argument to fpstatus_ptr().
495  */
496 typedef enum ARMFPStatusFlavour {
497     FPST_FPCR,
498     FPST_FPCR_F16,
499     FPST_STD,
500     FPST_STD_F16,
501 } ARMFPStatusFlavour;
502 
503 /**
504  * fpstatus_ptr: return TCGv_ptr to the specified fp_status field
505  *
506  * We have multiple softfloat float_status fields in the Arm CPU state struct
507  * (see the comment in cpu.h for details). Return a TCGv_ptr which has
508  * been set up to point to the requested field in the CPU state struct.
509  * The options are:
510  *
511  * FPST_FPCR
512  *   for non-FP16 operations controlled by the FPCR
513  * FPST_FPCR_F16
514  *   for operations controlled by the FPCR where FPCR.FZ16 is to be used
515  * FPST_STD
516  *   for A32/T32 Neon operations using the "standard FPSCR value"
517  * FPST_STD_F16
518  *   as FPST_STD, but where FPCR.FZ16 is to be used
519  */
fpstatus_ptr(ARMFPStatusFlavour flavour)520 static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour)
521 {
522     TCGv_ptr statusptr = tcg_temp_new_ptr();
523     int offset;
524 
525     switch (flavour) {
526     case FPST_FPCR:
527         offset = offsetof(CPUARMState, vfp.fp_status);
528         break;
529     case FPST_FPCR_F16:
530         offset = offsetof(CPUARMState, vfp.fp_status_f16);
531         break;
532     case FPST_STD:
533         offset = offsetof(CPUARMState, vfp.standard_fp_status);
534         break;
535     case FPST_STD_F16:
536         offset = offsetof(CPUARMState, vfp.standard_fp_status_f16);
537         break;
538     default:
539         g_assert_not_reached();
540     }
541     tcg_gen_addi_ptr(statusptr, cpu_env, offset);
542     return statusptr;
543 }
544 
545 /**
546  * finalize_memop:
547  * @s: DisasContext
548  * @opc: size+sign+align of the memory operation
549  *
550  * Build the complete MemOp for a memory operation, including alignment
551  * and endianness.
552  *
553  * If (op & MO_AMASK) then the operation already contains the required
554  * alignment, e.g. for AccType_ATOMIC.  Otherwise, this an optionally
555  * unaligned operation, e.g. for AccType_NORMAL.
556  *
557  * In the latter case, there are configuration bits that require alignment,
558  * and this is applied here.  Note that there is no way to indicate that
559  * no alignment should ever be enforced; this must be handled manually.
560  */
finalize_memop(DisasContext * s,MemOp opc)561 static inline MemOp finalize_memop(DisasContext *s, MemOp opc)
562 {
563     if (s->align_mem && !(opc & MO_AMASK)) {
564         opc |= MO_ALIGN;
565     }
566     return opc | s->be_data;
567 }
568 
569 /**
570  * asimd_imm_const: Expand an encoded SIMD constant value
571  *
572  * Expand a SIMD constant value. This is essentially the pseudocode
573  * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for
574  * VMVN and VBIC (when cmode < 14 && op == 1).
575  *
576  * The combination cmode == 15 op == 1 is a reserved encoding for AArch32;
577  * callers must catch this; we return the 64-bit constant value defined
578  * for AArch64.
579  *
580  * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but
581  * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A;
582  * we produce an immediate constant value of 0 in these cases.
583  */
584 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op);
585 
586 #endif /* TARGET_ARM_TRANSLATE_H */
587