1 /*
2  * Copyright (c) 2009 Joshua Oreman <oremanj@rwcr.net>.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation; either version 2 of the
7  * License, or any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
17  * 02110-1301, USA.
18  */
19 
20 FILE_LICENCE ( GPL2_OR_LATER );
21 
22 #include <ipxe/net80211.h>
23 #include <ipxe/sec80211.h>
24 #include <ipxe/crypto.h>
25 #include <ipxe/arc4.h>
26 #include <ipxe/crc32.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <errno.h>
30 
31 /** @file
32  *
33  * The WEP wireless encryption method (insecure!)
34  *
35  * The data field in a WEP-encrypted packet contains a 3-byte
36  * initialisation vector, one-byte Key ID field (only the bottom two
37  * bits are ever used), encrypted data, and a 4-byte encrypted CRC of
38  * the plaintext data, called the ICV. To decrypt it, the IV is
39  * prepended to the shared key and the data stream (including ICV) is
40  * run through the ARC4 stream cipher; if the ICV matches a CRC32
41  * calculated on the plaintext, the packet is valid.
42  *
43  * For efficiency and code-size reasons, this file assumes it is
44  * running on a little-endian machine.
45  */
46 
47 /** Length of WEP initialisation vector */
48 #define WEP_IV_LEN	3
49 
50 /** Length of WEP key ID byte */
51 #define WEP_KID_LEN	1
52 
53 /** Length of WEP ICV checksum */
54 #define WEP_ICV_LEN	4
55 
56 /** Maximum length of WEP key */
57 #define WEP_MAX_KEY	16
58 
59 /** Amount of data placed before the encrypted bytes */
60 #define WEP_HEADER_LEN	4
61 
62 /** Amount of data placed after the encrypted bytes */
63 #define WEP_TRAILER_LEN	4
64 
65 /** Total WEP overhead bytes */
66 #define WEP_OVERHEAD	8
67 
68 /** Context for WEP encryption and decryption */
69 struct wep_ctx
70 {
71 	/** Encoded WEP key
72 	 *
73 	 * The actual key bytes are stored beginning at offset 3, to
74 	 * leave room for easily inserting the IV before a particular
75 	 * operation.
76 	 */
77 	u8 key[WEP_IV_LEN + WEP_MAX_KEY];
78 
79 	/** Length of WEP key (not including IV bytes) */
80 	int keylen;
81 
82 	/** ARC4 context */
83 	struct arc4_ctx arc4;
84 };
85 
86 /**
87  * Initialize WEP algorithm
88  *
89  * @v crypto	802.11 cryptographic algorithm
90  * @v key	WEP key to use
91  * @v keylen	Length of WEP key
92  * @v rsc	Initial receive sequence counter (unused)
93  * @ret rc	Return status code
94  *
95  * Standard key lengths are 5 and 13 bytes; 16-byte keys are
96  * occasionally supported as an extension to the standard.
97  */
wep_init(struct net80211_crypto * crypto,const void * key,int keylen,const void * rsc __unused)98 static int wep_init ( struct net80211_crypto *crypto, const void *key,
99 		      int keylen, const void *rsc __unused )
100 {
101 	struct wep_ctx *ctx = crypto->priv;
102 
103 	ctx->keylen = ( keylen > WEP_MAX_KEY ? WEP_MAX_KEY : keylen );
104 	memcpy ( ctx->key + WEP_IV_LEN, key, ctx->keylen );
105 
106 	return 0;
107 }
108 
109 /**
110  * Encrypt packet using WEP
111  *
112  * @v crypto	802.11 cryptographic algorithm
113  * @v iob	I/O buffer of plaintext packet
114  * @ret eiob	Newly allocated I/O buffer for encrypted packet, or NULL
115  *
116  * If memory allocation fails, @c NULL is returned.
117  */
wep_encrypt(struct net80211_crypto * crypto,struct io_buffer * iob)118 static struct io_buffer * wep_encrypt ( struct net80211_crypto *crypto,
119 					struct io_buffer *iob )
120 {
121 	struct wep_ctx *ctx = crypto->priv;
122 	struct io_buffer *eiob;
123 	struct ieee80211_frame *hdr;
124 	const int hdrlen = IEEE80211_TYP_FRAME_HEADER_LEN;
125 	int datalen = iob_len ( iob ) - hdrlen;
126 	int newlen = hdrlen + datalen + WEP_OVERHEAD;
127 	u32 iv, icv;
128 
129 	eiob = alloc_iob ( newlen );
130 	if ( ! eiob )
131 		return NULL;
132 
133 	memcpy ( iob_put ( eiob, hdrlen ), iob->data, hdrlen );
134 	hdr = eiob->data;
135 	hdr->fc |= IEEE80211_FC_PROTECTED;
136 
137 	/* Calculate IV, put it in the header (with key ID byte = 0), and
138 	   set it up at the start of the encryption key. */
139 	iv = random() & 0xffffff; /* IV in bottom 3 bytes, top byte = KID = 0 */
140 	memcpy ( iob_put ( eiob, WEP_HEADER_LEN ), &iv, WEP_HEADER_LEN );
141 	memcpy ( ctx->key, &iv, WEP_IV_LEN );
142 
143 	/* Encrypt the data using RC4 */
144 	cipher_setkey ( &arc4_algorithm, &ctx->arc4, ctx->key,
145 			ctx->keylen + WEP_IV_LEN );
146 	cipher_encrypt ( &arc4_algorithm, &ctx->arc4, iob->data + hdrlen,
147 			 iob_put ( eiob, datalen ), datalen );
148 
149 	/* Add ICV */
150 	icv = ~crc32_le ( ~0, iob->data + hdrlen, datalen );
151 	cipher_encrypt ( &arc4_algorithm, &ctx->arc4, &icv,
152 			 iob_put ( eiob, WEP_ICV_LEN ), WEP_ICV_LEN );
153 
154 	return eiob;
155 }
156 
157 /**
158  * Decrypt packet using WEP
159  *
160  * @v crypto	802.11 cryptographic algorithm
161  * @v eiob	I/O buffer of encrypted packet
162  * @ret iob	Newly allocated I/O buffer for plaintext packet, or NULL
163  *
164  * If a consistency check for the decryption fails (usually indicating
165  * an invalid key), @c NULL is returned.
166  */
wep_decrypt(struct net80211_crypto * crypto,struct io_buffer * eiob)167 static struct io_buffer * wep_decrypt ( struct net80211_crypto *crypto,
168 					struct io_buffer *eiob )
169 {
170 	struct wep_ctx *ctx = crypto->priv;
171 	struct io_buffer *iob;
172 	struct ieee80211_frame *hdr;
173 	const int hdrlen = IEEE80211_TYP_FRAME_HEADER_LEN;
174 	int datalen = iob_len ( eiob ) - hdrlen - WEP_OVERHEAD;
175 	int newlen = hdrlen + datalen;
176 	u32 iv, icv, crc;
177 
178 	iob = alloc_iob ( newlen );
179 	if ( ! iob )
180 		return NULL;
181 
182 	memcpy ( iob_put ( iob, hdrlen ), eiob->data, hdrlen );
183 	hdr = iob->data;
184 	hdr->fc &= ~IEEE80211_FC_PROTECTED;
185 
186 	/* Strip off IV and use it to initialize cryptosystem */
187 	memcpy ( &iv, eiob->data + hdrlen, 4 );
188 	iv &= 0xffffff;		/* ignore key ID byte */
189 	memcpy ( ctx->key, &iv, WEP_IV_LEN );
190 
191 	/* Decrypt the data using RC4 */
192 	cipher_setkey ( &arc4_algorithm, &ctx->arc4, ctx->key,
193 			ctx->keylen + WEP_IV_LEN );
194 	cipher_decrypt ( &arc4_algorithm, &ctx->arc4, eiob->data + hdrlen +
195 			 WEP_HEADER_LEN, iob_put ( iob, datalen ), datalen );
196 
197 	/* Strip off ICV and verify it */
198 	cipher_decrypt ( &arc4_algorithm, &ctx->arc4, eiob->data + hdrlen +
199 			 WEP_HEADER_LEN + datalen, &icv, WEP_ICV_LEN );
200 	crc = ~crc32_le ( ~0, iob->data + hdrlen, datalen );
201 	if ( crc != icv ) {
202 		DBGC ( crypto, "WEP %p CRC mismatch: expect %08x, get %08x\n",
203 		       crypto, icv, crc );
204 		free_iob ( iob );
205 		return NULL;
206 	}
207 	return iob;
208 }
209 
210 /** WEP cryptosystem for 802.11 */
211 struct net80211_crypto wep_crypto __net80211_crypto = {
212 	.algorithm = NET80211_CRYPT_WEP,
213 	.init = wep_init,
214 	.encrypt = wep_encrypt,
215 	.decrypt = wep_decrypt,
216 	.priv_len = sizeof ( struct wep_ctx ),
217 };
218 
219 /**
220  * Initialize trivial 802.11 security handshaker
221  *
222  * @v dev	802.11 device
223  * @v ctx	Security handshaker
224  *
225  * This simply fetches a WEP key from netX/key, and if it exists,
226  * installs WEP cryptography on the 802.11 device. No real handshaking
227  * is performed.
228  */
trivial_init(struct net80211_device * dev)229 static int trivial_init ( struct net80211_device *dev )
230 {
231 	u8 key[WEP_MAX_KEY];	/* support up to 128-bit keys */
232 	int len;
233 	int rc;
234 
235 	if ( dev->associating &&
236 	     dev->associating->crypto == NET80211_CRYPT_NONE )
237 		return 0;	/* no crypto? OK. */
238 
239 	len = fetch_raw_setting ( netdev_settings ( dev->netdev ),
240 				  &net80211_key_setting, key, WEP_MAX_KEY );
241 
242 	if ( len <= 0 ) {
243 		DBGC ( dev, "802.11 %p cannot do WEP without a key\n", dev );
244 		return -EACCES;
245 	}
246 
247 	/* Full 128-bit keys are a nonstandard extension, but they're
248 	   utterly trivial to support, so we do. */
249 	if ( len != 5 && len != 13 && len != 16 ) {
250 		DBGC ( dev, "802.11 %p invalid WEP key length %d\n",
251 		       dev, len );
252 		return -EINVAL;
253 	}
254 
255 	DBGC ( dev, "802.11 %p installing %d-bit WEP\n", dev, len * 8 );
256 
257 	rc = sec80211_install ( &dev->crypto, NET80211_CRYPT_WEP, key, len,
258 				NULL );
259 	if ( rc < 0 )
260 		return rc;
261 
262 	return 0;
263 }
264 
265 /**
266  * Check for key change on trivial 802.11 security handshaker
267  *
268  * @v dev	802.11 device
269  * @v ctx	Security handshaker
270  */
trivial_change_key(struct net80211_device * dev)271 static int trivial_change_key ( struct net80211_device *dev )
272 {
273 	u8 key[WEP_MAX_KEY];
274 	int len;
275 	int change = 0;
276 
277 	/* If going from WEP to clear, or something else to WEP, reassociate. */
278 	if ( ! dev->crypto || ( dev->crypto->init != wep_init ) )
279 		change ^= 1;
280 
281 	len = fetch_raw_setting ( netdev_settings ( dev->netdev ),
282 				  &net80211_key_setting, key, WEP_MAX_KEY );
283 	if ( len <= 0 )
284 		change ^= 1;
285 
286 	/* Changing crypto type => return nonzero to reassociate. */
287 	if ( change )
288 		return -EINVAL;
289 
290 	/* Going from no crypto to still no crypto => nothing to do. */
291 	if ( len <= 0 )
292 		return 0;
293 
294 	/* Otherwise, reinitialise WEP with new key. */
295 	return wep_init ( dev->crypto, key, len, NULL );
296 }
297 
298 /** Trivial 802.11 security handshaker */
299 struct net80211_handshaker trivial_handshaker __net80211_handshaker = {
300 	.protocol = NET80211_SECPROT_NONE,
301 	.init = trivial_init,
302 	.change_key = trivial_change_key,
303 	.priv_len = 0,
304 };
305