1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
19 
20 #include <linux/kvm.h>
21 #include "standard-headers/asm-x86/kvm_para.h"
22 
23 #include "cpu.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/hw_accel.h"
26 #include "sysemu/kvm_int.h"
27 #include "sysemu/reset.h"
28 #include "sysemu/runstate.h"
29 #include "kvm_i386.h"
30 #include "hyperv.h"
31 #include "hyperv-proto.h"
32 
33 #include "exec/gdbstub.h"
34 #include "qemu/host-utils.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #include "hw/i386/pc.h"
39 #include "hw/i386/apic.h"
40 #include "hw/i386/apic_internal.h"
41 #include "hw/i386/apic-msidef.h"
42 #include "hw/i386/intel_iommu.h"
43 #include "hw/i386/x86-iommu.h"
44 #include "hw/i386/e820_memory_layout.h"
45 
46 #include "hw/pci/pci.h"
47 #include "hw/pci/msi.h"
48 #include "hw/pci/msix.h"
49 #include "migration/blocker.h"
50 #include "exec/memattrs.h"
51 #include "trace.h"
52 
53 //#define DEBUG_KVM
54 
55 #ifdef DEBUG_KVM
56 #define DPRINTF(fmt, ...) \
57     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58 #else
59 #define DPRINTF(fmt, ...) \
60     do { } while (0)
61 #endif
62 
63 #define MSR_KVM_WALL_CLOCK  0x11
64 #define MSR_KVM_SYSTEM_TIME 0x12
65 
66 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
67  * 255 kvm_msr_entry structs */
68 #define MSR_BUF_SIZE 4096
69 
70 static void kvm_init_msrs(X86CPU *cpu);
71 
72 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
73     KVM_CAP_INFO(SET_TSS_ADDR),
74     KVM_CAP_INFO(EXT_CPUID),
75     KVM_CAP_INFO(MP_STATE),
76     KVM_CAP_LAST_INFO
77 };
78 
79 static bool has_msr_star;
80 static bool has_msr_hsave_pa;
81 static bool has_msr_tsc_aux;
82 static bool has_msr_tsc_adjust;
83 static bool has_msr_tsc_deadline;
84 static bool has_msr_feature_control;
85 static bool has_msr_misc_enable;
86 static bool has_msr_smbase;
87 static bool has_msr_bndcfgs;
88 static int lm_capable_kernel;
89 static bool has_msr_hv_hypercall;
90 static bool has_msr_hv_crash;
91 static bool has_msr_hv_reset;
92 static bool has_msr_hv_vpindex;
93 static bool hv_vpindex_settable;
94 static bool has_msr_hv_runtime;
95 static bool has_msr_hv_synic;
96 static bool has_msr_hv_stimer;
97 static bool has_msr_hv_frequencies;
98 static bool has_msr_hv_reenlightenment;
99 static bool has_msr_xss;
100 static bool has_msr_umwait;
101 static bool has_msr_spec_ctrl;
102 static bool has_msr_tsx_ctrl;
103 static bool has_msr_virt_ssbd;
104 static bool has_msr_smi_count;
105 static bool has_msr_arch_capabs;
106 static bool has_msr_core_capabs;
107 static bool has_msr_vmx_vmfunc;
108 static bool has_msr_vmx_procbased_ctls2;
109 
110 static uint32_t has_architectural_pmu_version;
111 static uint32_t num_architectural_pmu_gp_counters;
112 static uint32_t num_architectural_pmu_fixed_counters;
113 
114 static int has_xsave;
115 static int has_xcrs;
116 static int has_pit_state2;
117 static int has_exception_payload;
118 
119 static bool has_msr_mcg_ext_ctl;
120 
121 static struct kvm_cpuid2 *cpuid_cache;
122 static struct kvm_msr_list *kvm_feature_msrs;
123 
kvm_has_pit_state2(void)124 int kvm_has_pit_state2(void)
125 {
126     return has_pit_state2;
127 }
128 
kvm_has_smm(void)129 bool kvm_has_smm(void)
130 {
131     return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
132 }
133 
kvm_has_adjust_clock_stable(void)134 bool kvm_has_adjust_clock_stable(void)
135 {
136     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
137 
138     return (ret == KVM_CLOCK_TSC_STABLE);
139 }
140 
kvm_has_exception_payload(void)141 bool kvm_has_exception_payload(void)
142 {
143     return has_exception_payload;
144 }
145 
kvm_allows_irq0_override(void)146 bool kvm_allows_irq0_override(void)
147 {
148     return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
149 }
150 
kvm_x2apic_api_set_flags(uint64_t flags)151 static bool kvm_x2apic_api_set_flags(uint64_t flags)
152 {
153     KVMState *s = KVM_STATE(current_machine->accelerator);
154 
155     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
156 }
157 
158 #define MEMORIZE(fn, _result) \
159     ({ \
160         static bool _memorized; \
161         \
162         if (_memorized) { \
163             return _result; \
164         } \
165         _memorized = true; \
166         _result = fn; \
167     })
168 
169 static bool has_x2apic_api;
170 
kvm_has_x2apic_api(void)171 bool kvm_has_x2apic_api(void)
172 {
173     return has_x2apic_api;
174 }
175 
kvm_enable_x2apic(void)176 bool kvm_enable_x2apic(void)
177 {
178     return MEMORIZE(
179              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
180                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
181              has_x2apic_api);
182 }
183 
kvm_hv_vpindex_settable(void)184 bool kvm_hv_vpindex_settable(void)
185 {
186     return hv_vpindex_settable;
187 }
188 
kvm_get_tsc(CPUState * cs)189 static int kvm_get_tsc(CPUState *cs)
190 {
191     X86CPU *cpu = X86_CPU(cs);
192     CPUX86State *env = &cpu->env;
193     struct {
194         struct kvm_msrs info;
195         struct kvm_msr_entry entries[1];
196     } msr_data = {};
197     int ret;
198 
199     if (env->tsc_valid) {
200         return 0;
201     }
202 
203     memset(&msr_data, 0, sizeof(msr_data));
204     msr_data.info.nmsrs = 1;
205     msr_data.entries[0].index = MSR_IA32_TSC;
206     env->tsc_valid = !runstate_is_running();
207 
208     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
209     if (ret < 0) {
210         return ret;
211     }
212 
213     assert(ret == 1);
214     env->tsc = msr_data.entries[0].data;
215     return 0;
216 }
217 
do_kvm_synchronize_tsc(CPUState * cpu,run_on_cpu_data arg)218 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
219 {
220     kvm_get_tsc(cpu);
221 }
222 
kvm_synchronize_all_tsc(void)223 void kvm_synchronize_all_tsc(void)
224 {
225     CPUState *cpu;
226 
227     if (kvm_enabled()) {
228         CPU_FOREACH(cpu) {
229             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
230         }
231     }
232 }
233 
try_get_cpuid(KVMState * s,int max)234 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
235 {
236     struct kvm_cpuid2 *cpuid;
237     int r, size;
238 
239     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
240     cpuid = g_malloc0(size);
241     cpuid->nent = max;
242     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
243     if (r == 0 && cpuid->nent >= max) {
244         r = -E2BIG;
245     }
246     if (r < 0) {
247         if (r == -E2BIG) {
248             g_free(cpuid);
249             return NULL;
250         } else {
251             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
252                     strerror(-r));
253             exit(1);
254         }
255     }
256     return cpuid;
257 }
258 
259 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
260  * for all entries.
261  */
get_supported_cpuid(KVMState * s)262 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
263 {
264     struct kvm_cpuid2 *cpuid;
265     int max = 1;
266 
267     if (cpuid_cache != NULL) {
268         return cpuid_cache;
269     }
270     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
271         max *= 2;
272     }
273     cpuid_cache = cpuid;
274     return cpuid;
275 }
276 
277 static const struct kvm_para_features {
278     int cap;
279     int feature;
280 } para_features[] = {
281     { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
282     { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
283     { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
284     { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
285 };
286 
get_para_features(KVMState * s)287 static int get_para_features(KVMState *s)
288 {
289     int i, features = 0;
290 
291     for (i = 0; i < ARRAY_SIZE(para_features); i++) {
292         if (kvm_check_extension(s, para_features[i].cap)) {
293             features |= (1 << para_features[i].feature);
294         }
295     }
296 
297     return features;
298 }
299 
host_tsx_blacklisted(void)300 static bool host_tsx_blacklisted(void)
301 {
302     int family, model, stepping;\
303     char vendor[CPUID_VENDOR_SZ + 1];
304 
305     host_vendor_fms(vendor, &family, &model, &stepping);
306 
307     /* Check if we are running on a Haswell host known to have broken TSX */
308     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
309            (family == 6) &&
310            ((model == 63 && stepping < 4) ||
311             model == 60 || model == 69 || model == 70);
312 }
313 
314 /* Returns the value for a specific register on the cpuid entry
315  */
cpuid_entry_get_reg(struct kvm_cpuid_entry2 * entry,int reg)316 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
317 {
318     uint32_t ret = 0;
319     switch (reg) {
320     case R_EAX:
321         ret = entry->eax;
322         break;
323     case R_EBX:
324         ret = entry->ebx;
325         break;
326     case R_ECX:
327         ret = entry->ecx;
328         break;
329     case R_EDX:
330         ret = entry->edx;
331         break;
332     }
333     return ret;
334 }
335 
336 /* Find matching entry for function/index on kvm_cpuid2 struct
337  */
cpuid_find_entry(struct kvm_cpuid2 * cpuid,uint32_t function,uint32_t index)338 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
339                                                  uint32_t function,
340                                                  uint32_t index)
341 {
342     int i;
343     for (i = 0; i < cpuid->nent; ++i) {
344         if (cpuid->entries[i].function == function &&
345             cpuid->entries[i].index == index) {
346             return &cpuid->entries[i];
347         }
348     }
349     /* not found: */
350     return NULL;
351 }
352 
kvm_arch_get_supported_cpuid(KVMState * s,uint32_t function,uint32_t index,int reg)353 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
354                                       uint32_t index, int reg)
355 {
356     struct kvm_cpuid2 *cpuid;
357     uint32_t ret = 0;
358     uint32_t cpuid_1_edx;
359     bool found = false;
360 
361     cpuid = get_supported_cpuid(s);
362 
363     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
364     if (entry) {
365         found = true;
366         ret = cpuid_entry_get_reg(entry, reg);
367     }
368 
369     /* Fixups for the data returned by KVM, below */
370 
371     if (function == 1 && reg == R_EDX) {
372         /* KVM before 2.6.30 misreports the following features */
373         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
374     } else if (function == 1 && reg == R_ECX) {
375         /* We can set the hypervisor flag, even if KVM does not return it on
376          * GET_SUPPORTED_CPUID
377          */
378         ret |= CPUID_EXT_HYPERVISOR;
379         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
380          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
381          * and the irqchip is in the kernel.
382          */
383         if (kvm_irqchip_in_kernel() &&
384                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
385             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
386         }
387 
388         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
389          * without the in-kernel irqchip
390          */
391         if (!kvm_irqchip_in_kernel()) {
392             ret &= ~CPUID_EXT_X2APIC;
393         }
394 
395         if (enable_cpu_pm) {
396             int disable_exits = kvm_check_extension(s,
397                                                     KVM_CAP_X86_DISABLE_EXITS);
398 
399             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
400                 ret |= CPUID_EXT_MONITOR;
401             }
402         }
403     } else if (function == 6 && reg == R_EAX) {
404         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
405     } else if (function == 7 && index == 0 && reg == R_EBX) {
406         if (host_tsx_blacklisted()) {
407             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
408         }
409     } else if (function == 7 && index == 0 && reg == R_ECX) {
410         if (enable_cpu_pm) {
411             ret |= CPUID_7_0_ECX_WAITPKG;
412         } else {
413             ret &= ~CPUID_7_0_ECX_WAITPKG;
414         }
415     } else if (function == 7 && index == 0 && reg == R_EDX) {
416         /*
417          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
418          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
419          * returned by KVM_GET_MSR_INDEX_LIST.
420          */
421         if (!has_msr_arch_capabs) {
422             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
423         }
424     } else if (function == 0x80000001 && reg == R_ECX) {
425         /*
426          * It's safe to enable TOPOEXT even if it's not returned by
427          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
428          * us to keep CPU models including TOPOEXT runnable on older kernels.
429          */
430         ret |= CPUID_EXT3_TOPOEXT;
431     } else if (function == 0x80000001 && reg == R_EDX) {
432         /* On Intel, kvm returns cpuid according to the Intel spec,
433          * so add missing bits according to the AMD spec:
434          */
435         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
436         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
437     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
438         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
439          * be enabled without the in-kernel irqchip
440          */
441         if (!kvm_irqchip_in_kernel()) {
442             ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
443         }
444     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
445         ret |= 1U << KVM_HINTS_REALTIME;
446         found = 1;
447     }
448 
449     /* fallback for older kernels */
450     if ((function == KVM_CPUID_FEATURES) && !found) {
451         ret = get_para_features(s);
452     }
453 
454     return ret;
455 }
456 
kvm_arch_get_supported_msr_feature(KVMState * s,uint32_t index)457 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
458 {
459     struct {
460         struct kvm_msrs info;
461         struct kvm_msr_entry entries[1];
462     } msr_data = {};
463     uint64_t value;
464     uint32_t ret, can_be_one, must_be_one;
465 
466     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
467         return 0;
468     }
469 
470     /* Check if requested MSR is supported feature MSR */
471     int i;
472     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
473         if (kvm_feature_msrs->indices[i] == index) {
474             break;
475         }
476     if (i == kvm_feature_msrs->nmsrs) {
477         return 0; /* if the feature MSR is not supported, simply return 0 */
478     }
479 
480     msr_data.info.nmsrs = 1;
481     msr_data.entries[0].index = index;
482 
483     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
484     if (ret != 1) {
485         error_report("KVM get MSR (index=0x%x) feature failed, %s",
486             index, strerror(-ret));
487         exit(1);
488     }
489 
490     value = msr_data.entries[0].data;
491     switch (index) {
492     case MSR_IA32_VMX_PROCBASED_CTLS2:
493         if (!has_msr_vmx_procbased_ctls2) {
494             /* KVM forgot to add these bits for some time, do this ourselves. */
495             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
496                 CPUID_XSAVE_XSAVES) {
497                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
498             }
499             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
500                 CPUID_EXT_RDRAND) {
501                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
502             }
503             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
504                 CPUID_7_0_EBX_INVPCID) {
505                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
506             }
507             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
508                 CPUID_7_0_EBX_RDSEED) {
509                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
510             }
511             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
512                 CPUID_EXT2_RDTSCP) {
513                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
514             }
515         }
516         /* fall through */
517     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
518     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
519     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
520     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
521         /*
522          * Return true for bits that can be one, but do not have to be one.
523          * The SDM tells us which bits could have a "must be one" setting,
524          * so we can do the opposite transformation in make_vmx_msr_value.
525          */
526         must_be_one = (uint32_t)value;
527         can_be_one = (uint32_t)(value >> 32);
528         return can_be_one & ~must_be_one;
529 
530     default:
531         return value;
532     }
533 }
534 
535 
536 typedef struct HWPoisonPage {
537     ram_addr_t ram_addr;
538     QLIST_ENTRY(HWPoisonPage) list;
539 } HWPoisonPage;
540 
541 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
542     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
543 
kvm_unpoison_all(void * param)544 static void kvm_unpoison_all(void *param)
545 {
546     HWPoisonPage *page, *next_page;
547 
548     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
549         QLIST_REMOVE(page, list);
550         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
551         g_free(page);
552     }
553 }
554 
kvm_hwpoison_page_add(ram_addr_t ram_addr)555 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
556 {
557     HWPoisonPage *page;
558 
559     QLIST_FOREACH(page, &hwpoison_page_list, list) {
560         if (page->ram_addr == ram_addr) {
561             return;
562         }
563     }
564     page = g_new(HWPoisonPage, 1);
565     page->ram_addr = ram_addr;
566     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
567 }
568 
kvm_get_mce_cap_supported(KVMState * s,uint64_t * mce_cap,int * max_banks)569 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
570                                      int *max_banks)
571 {
572     int r;
573 
574     r = kvm_check_extension(s, KVM_CAP_MCE);
575     if (r > 0) {
576         *max_banks = r;
577         return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
578     }
579     return -ENOSYS;
580 }
581 
kvm_mce_inject(X86CPU * cpu,hwaddr paddr,int code)582 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
583 {
584     CPUState *cs = CPU(cpu);
585     CPUX86State *env = &cpu->env;
586     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
587                       MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
588     uint64_t mcg_status = MCG_STATUS_MCIP;
589     int flags = 0;
590 
591     if (code == BUS_MCEERR_AR) {
592         status |= MCI_STATUS_AR | 0x134;
593         mcg_status |= MCG_STATUS_EIPV;
594     } else {
595         status |= 0xc0;
596         mcg_status |= MCG_STATUS_RIPV;
597     }
598 
599     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
600     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
601      * guest kernel back into env->mcg_ext_ctl.
602      */
603     cpu_synchronize_state(cs);
604     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
605         mcg_status |= MCG_STATUS_LMCE;
606         flags = 0;
607     }
608 
609     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
610                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
611 }
612 
hardware_memory_error(void * host_addr)613 static void hardware_memory_error(void *host_addr)
614 {
615     error_report("QEMU got Hardware memory error at addr %p", host_addr);
616     exit(1);
617 }
618 
kvm_arch_on_sigbus_vcpu(CPUState * c,int code,void * addr)619 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
620 {
621     X86CPU *cpu = X86_CPU(c);
622     CPUX86State *env = &cpu->env;
623     ram_addr_t ram_addr;
624     hwaddr paddr;
625 
626     /* If we get an action required MCE, it has been injected by KVM
627      * while the VM was running.  An action optional MCE instead should
628      * be coming from the main thread, which qemu_init_sigbus identifies
629      * as the "early kill" thread.
630      */
631     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
632 
633     if ((env->mcg_cap & MCG_SER_P) && addr) {
634         ram_addr = qemu_ram_addr_from_host(addr);
635         if (ram_addr != RAM_ADDR_INVALID &&
636             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
637             kvm_hwpoison_page_add(ram_addr);
638             kvm_mce_inject(cpu, paddr, code);
639 
640             /*
641              * Use different logging severity based on error type.
642              * If there is additional MCE reporting on the hypervisor, QEMU VA
643              * could be another source to identify the PA and MCE details.
644              */
645             if (code == BUS_MCEERR_AR) {
646                 error_report("Guest MCE Memory Error at QEMU addr %p and "
647                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
648                     addr, paddr, "BUS_MCEERR_AR");
649             } else {
650                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
651                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
652                      addr, paddr, "BUS_MCEERR_AO");
653             }
654 
655             return;
656         }
657 
658         if (code == BUS_MCEERR_AO) {
659             warn_report("Hardware memory error at addr %p of type %s "
660                 "for memory used by QEMU itself instead of guest system!",
661                  addr, "BUS_MCEERR_AO");
662         }
663     }
664 
665     if (code == BUS_MCEERR_AR) {
666         hardware_memory_error(addr);
667     }
668 
669     /* Hope we are lucky for AO MCE */
670 }
671 
kvm_reset_exception(CPUX86State * env)672 static void kvm_reset_exception(CPUX86State *env)
673 {
674     env->exception_nr = -1;
675     env->exception_pending = 0;
676     env->exception_injected = 0;
677     env->exception_has_payload = false;
678     env->exception_payload = 0;
679 }
680 
kvm_queue_exception(CPUX86State * env,int32_t exception_nr,uint8_t exception_has_payload,uint64_t exception_payload)681 static void kvm_queue_exception(CPUX86State *env,
682                                 int32_t exception_nr,
683                                 uint8_t exception_has_payload,
684                                 uint64_t exception_payload)
685 {
686     assert(env->exception_nr == -1);
687     assert(!env->exception_pending);
688     assert(!env->exception_injected);
689     assert(!env->exception_has_payload);
690 
691     env->exception_nr = exception_nr;
692 
693     if (has_exception_payload) {
694         env->exception_pending = 1;
695 
696         env->exception_has_payload = exception_has_payload;
697         env->exception_payload = exception_payload;
698     } else {
699         env->exception_injected = 1;
700 
701         if (exception_nr == EXCP01_DB) {
702             assert(exception_has_payload);
703             env->dr[6] = exception_payload;
704         } else if (exception_nr == EXCP0E_PAGE) {
705             assert(exception_has_payload);
706             env->cr[2] = exception_payload;
707         } else {
708             assert(!exception_has_payload);
709         }
710     }
711 }
712 
kvm_inject_mce_oldstyle(X86CPU * cpu)713 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
714 {
715     CPUX86State *env = &cpu->env;
716 
717     if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
718         unsigned int bank, bank_num = env->mcg_cap & 0xff;
719         struct kvm_x86_mce mce;
720 
721         kvm_reset_exception(env);
722 
723         /*
724          * There must be at least one bank in use if an MCE is pending.
725          * Find it and use its values for the event injection.
726          */
727         for (bank = 0; bank < bank_num; bank++) {
728             if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
729                 break;
730             }
731         }
732         assert(bank < bank_num);
733 
734         mce.bank = bank;
735         mce.status = env->mce_banks[bank * 4 + 1];
736         mce.mcg_status = env->mcg_status;
737         mce.addr = env->mce_banks[bank * 4 + 2];
738         mce.misc = env->mce_banks[bank * 4 + 3];
739 
740         return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
741     }
742     return 0;
743 }
744 
cpu_update_state(void * opaque,int running,RunState state)745 static void cpu_update_state(void *opaque, int running, RunState state)
746 {
747     CPUX86State *env = opaque;
748 
749     if (running) {
750         env->tsc_valid = false;
751     }
752 }
753 
kvm_arch_vcpu_id(CPUState * cs)754 unsigned long kvm_arch_vcpu_id(CPUState *cs)
755 {
756     X86CPU *cpu = X86_CPU(cs);
757     return cpu->apic_id;
758 }
759 
760 #ifndef KVM_CPUID_SIGNATURE_NEXT
761 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
762 #endif
763 
hyperv_enabled(X86CPU * cpu)764 static bool hyperv_enabled(X86CPU *cpu)
765 {
766     CPUState *cs = CPU(cpu);
767     return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
768         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) ||
769          cpu->hyperv_features || cpu->hyperv_passthrough);
770 }
771 
kvm_arch_set_tsc_khz(CPUState * cs)772 static int kvm_arch_set_tsc_khz(CPUState *cs)
773 {
774     X86CPU *cpu = X86_CPU(cs);
775     CPUX86State *env = &cpu->env;
776     int r;
777 
778     if (!env->tsc_khz) {
779         return 0;
780     }
781 
782     r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
783         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
784         -ENOTSUP;
785     if (r < 0) {
786         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
787          * TSC frequency doesn't match the one we want.
788          */
789         int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
790                        kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
791                        -ENOTSUP;
792         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
793             warn_report("TSC frequency mismatch between "
794                         "VM (%" PRId64 " kHz) and host (%d kHz), "
795                         "and TSC scaling unavailable",
796                         env->tsc_khz, cur_freq);
797             return r;
798         }
799     }
800 
801     return 0;
802 }
803 
tsc_is_stable_and_known(CPUX86State * env)804 static bool tsc_is_stable_and_known(CPUX86State *env)
805 {
806     if (!env->tsc_khz) {
807         return false;
808     }
809     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
810         || env->user_tsc_khz;
811 }
812 
813 static struct {
814     const char *desc;
815     struct {
816         uint32_t fw;
817         uint32_t bits;
818     } flags[2];
819     uint64_t dependencies;
820 } kvm_hyperv_properties[] = {
821     [HYPERV_FEAT_RELAXED] = {
822         .desc = "relaxed timing (hv-relaxed)",
823         .flags = {
824             {.fw = FEAT_HYPERV_EAX,
825              .bits = HV_HYPERCALL_AVAILABLE},
826             {.fw = FEAT_HV_RECOMM_EAX,
827              .bits = HV_RELAXED_TIMING_RECOMMENDED}
828         }
829     },
830     [HYPERV_FEAT_VAPIC] = {
831         .desc = "virtual APIC (hv-vapic)",
832         .flags = {
833             {.fw = FEAT_HYPERV_EAX,
834              .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
835             {.fw = FEAT_HV_RECOMM_EAX,
836              .bits = HV_APIC_ACCESS_RECOMMENDED}
837         }
838     },
839     [HYPERV_FEAT_TIME] = {
840         .desc = "clocksources (hv-time)",
841         .flags = {
842             {.fw = FEAT_HYPERV_EAX,
843              .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
844              HV_REFERENCE_TSC_AVAILABLE}
845         }
846     },
847     [HYPERV_FEAT_CRASH] = {
848         .desc = "crash MSRs (hv-crash)",
849         .flags = {
850             {.fw = FEAT_HYPERV_EDX,
851              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
852         }
853     },
854     [HYPERV_FEAT_RESET] = {
855         .desc = "reset MSR (hv-reset)",
856         .flags = {
857             {.fw = FEAT_HYPERV_EAX,
858              .bits = HV_RESET_AVAILABLE}
859         }
860     },
861     [HYPERV_FEAT_VPINDEX] = {
862         .desc = "VP_INDEX MSR (hv-vpindex)",
863         .flags = {
864             {.fw = FEAT_HYPERV_EAX,
865              .bits = HV_VP_INDEX_AVAILABLE}
866         }
867     },
868     [HYPERV_FEAT_RUNTIME] = {
869         .desc = "VP_RUNTIME MSR (hv-runtime)",
870         .flags = {
871             {.fw = FEAT_HYPERV_EAX,
872              .bits = HV_VP_RUNTIME_AVAILABLE}
873         }
874     },
875     [HYPERV_FEAT_SYNIC] = {
876         .desc = "synthetic interrupt controller (hv-synic)",
877         .flags = {
878             {.fw = FEAT_HYPERV_EAX,
879              .bits = HV_SYNIC_AVAILABLE}
880         }
881     },
882     [HYPERV_FEAT_STIMER] = {
883         .desc = "synthetic timers (hv-stimer)",
884         .flags = {
885             {.fw = FEAT_HYPERV_EAX,
886              .bits = HV_SYNTIMERS_AVAILABLE}
887         },
888         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
889     },
890     [HYPERV_FEAT_FREQUENCIES] = {
891         .desc = "frequency MSRs (hv-frequencies)",
892         .flags = {
893             {.fw = FEAT_HYPERV_EAX,
894              .bits = HV_ACCESS_FREQUENCY_MSRS},
895             {.fw = FEAT_HYPERV_EDX,
896              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
897         }
898     },
899     [HYPERV_FEAT_REENLIGHTENMENT] = {
900         .desc = "reenlightenment MSRs (hv-reenlightenment)",
901         .flags = {
902             {.fw = FEAT_HYPERV_EAX,
903              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
904         }
905     },
906     [HYPERV_FEAT_TLBFLUSH] = {
907         .desc = "paravirtualized TLB flush (hv-tlbflush)",
908         .flags = {
909             {.fw = FEAT_HV_RECOMM_EAX,
910              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
911              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
912         },
913         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
914     },
915     [HYPERV_FEAT_EVMCS] = {
916         .desc = "enlightened VMCS (hv-evmcs)",
917         .flags = {
918             {.fw = FEAT_HV_RECOMM_EAX,
919              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
920         },
921         .dependencies = BIT(HYPERV_FEAT_VAPIC)
922     },
923     [HYPERV_FEAT_IPI] = {
924         .desc = "paravirtualized IPI (hv-ipi)",
925         .flags = {
926             {.fw = FEAT_HV_RECOMM_EAX,
927              .bits = HV_CLUSTER_IPI_RECOMMENDED |
928              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
929         },
930         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
931     },
932     [HYPERV_FEAT_STIMER_DIRECT] = {
933         .desc = "direct mode synthetic timers (hv-stimer-direct)",
934         .flags = {
935             {.fw = FEAT_HYPERV_EDX,
936              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
937         },
938         .dependencies = BIT(HYPERV_FEAT_STIMER)
939     },
940 };
941 
try_get_hv_cpuid(CPUState * cs,int max)942 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
943 {
944     struct kvm_cpuid2 *cpuid;
945     int r, size;
946 
947     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
948     cpuid = g_malloc0(size);
949     cpuid->nent = max;
950 
951     r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
952     if (r == 0 && cpuid->nent >= max) {
953         r = -E2BIG;
954     }
955     if (r < 0) {
956         if (r == -E2BIG) {
957             g_free(cpuid);
958             return NULL;
959         } else {
960             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
961                     strerror(-r));
962             exit(1);
963         }
964     }
965     return cpuid;
966 }
967 
968 /*
969  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
970  * for all entries.
971  */
get_supported_hv_cpuid(CPUState * cs)972 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
973 {
974     struct kvm_cpuid2 *cpuid;
975     int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
976 
977     /*
978      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
979      * -E2BIG, however, it doesn't report back the right size. Keep increasing
980      * it and re-trying until we succeed.
981      */
982     while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
983         max++;
984     }
985     return cpuid;
986 }
987 
988 /*
989  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
990  * leaves from KVM_CAP_HYPERV* and present MSRs data.
991  */
get_supported_hv_cpuid_legacy(CPUState * cs)992 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
993 {
994     X86CPU *cpu = X86_CPU(cs);
995     struct kvm_cpuid2 *cpuid;
996     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
997 
998     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
999     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1000     cpuid->nent = 2;
1001 
1002     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1003     entry_feat = &cpuid->entries[0];
1004     entry_feat->function = HV_CPUID_FEATURES;
1005 
1006     entry_recomm = &cpuid->entries[1];
1007     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1008     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1009 
1010     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1011         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1012         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1013         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1014         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1015         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1016     }
1017 
1018     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1019         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1020         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1021     }
1022 
1023     if (has_msr_hv_frequencies) {
1024         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1025         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1026     }
1027 
1028     if (has_msr_hv_crash) {
1029         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1030     }
1031 
1032     if (has_msr_hv_reenlightenment) {
1033         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1034     }
1035 
1036     if (has_msr_hv_reset) {
1037         entry_feat->eax |= HV_RESET_AVAILABLE;
1038     }
1039 
1040     if (has_msr_hv_vpindex) {
1041         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1042     }
1043 
1044     if (has_msr_hv_runtime) {
1045         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1046     }
1047 
1048     if (has_msr_hv_synic) {
1049         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1050             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1051 
1052         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1053             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1054         }
1055     }
1056 
1057     if (has_msr_hv_stimer) {
1058         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1059     }
1060 
1061     if (kvm_check_extension(cs->kvm_state,
1062                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1063         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1064         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1065     }
1066 
1067     if (kvm_check_extension(cs->kvm_state,
1068                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1069         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1070     }
1071 
1072     if (kvm_check_extension(cs->kvm_state,
1073                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1074         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1075         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1076     }
1077 
1078     return cpuid;
1079 }
1080 
hv_cpuid_get_fw(struct kvm_cpuid2 * cpuid,int fw,uint32_t * r)1081 static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1082 {
1083     struct kvm_cpuid_entry2 *entry;
1084     uint32_t func;
1085     int reg;
1086 
1087     switch (fw) {
1088     case FEAT_HYPERV_EAX:
1089         reg = R_EAX;
1090         func = HV_CPUID_FEATURES;
1091         break;
1092     case FEAT_HYPERV_EDX:
1093         reg = R_EDX;
1094         func = HV_CPUID_FEATURES;
1095         break;
1096     case FEAT_HV_RECOMM_EAX:
1097         reg = R_EAX;
1098         func = HV_CPUID_ENLIGHTMENT_INFO;
1099         break;
1100     default:
1101         return -EINVAL;
1102     }
1103 
1104     entry = cpuid_find_entry(cpuid, func, 0);
1105     if (!entry) {
1106         return -ENOENT;
1107     }
1108 
1109     switch (reg) {
1110     case R_EAX:
1111         *r = entry->eax;
1112         break;
1113     case R_EDX:
1114         *r = entry->edx;
1115         break;
1116     default:
1117         return -EINVAL;
1118     }
1119 
1120     return 0;
1121 }
1122 
hv_cpuid_check_and_set(CPUState * cs,struct kvm_cpuid2 * cpuid,int feature)1123 static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1124                                   int feature)
1125 {
1126     X86CPU *cpu = X86_CPU(cs);
1127     CPUX86State *env = &cpu->env;
1128     uint32_t r, fw, bits;
1129     uint64_t deps;
1130     int i, dep_feat;
1131 
1132     if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
1133         return 0;
1134     }
1135 
1136     deps = kvm_hyperv_properties[feature].dependencies;
1137     while (deps) {
1138         dep_feat = ctz64(deps);
1139         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1140                 fprintf(stderr,
1141                         "Hyper-V %s requires Hyper-V %s\n",
1142                         kvm_hyperv_properties[feature].desc,
1143                         kvm_hyperv_properties[dep_feat].desc);
1144                 return 1;
1145         }
1146         deps &= ~(1ull << dep_feat);
1147     }
1148 
1149     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1150         fw = kvm_hyperv_properties[feature].flags[i].fw;
1151         bits = kvm_hyperv_properties[feature].flags[i].bits;
1152 
1153         if (!fw) {
1154             continue;
1155         }
1156 
1157         if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
1158             if (hyperv_feat_enabled(cpu, feature)) {
1159                 fprintf(stderr,
1160                         "Hyper-V %s is not supported by kernel\n",
1161                         kvm_hyperv_properties[feature].desc);
1162                 return 1;
1163             } else {
1164                 return 0;
1165             }
1166         }
1167 
1168         env->features[fw] |= bits;
1169     }
1170 
1171     if (cpu->hyperv_passthrough) {
1172         cpu->hyperv_features |= BIT(feature);
1173     }
1174 
1175     return 0;
1176 }
1177 
1178 /*
1179  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1180  * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1181  * extentions are enabled.
1182  */
hyperv_handle_properties(CPUState * cs,struct kvm_cpuid_entry2 * cpuid_ent)1183 static int hyperv_handle_properties(CPUState *cs,
1184                                     struct kvm_cpuid_entry2 *cpuid_ent)
1185 {
1186     X86CPU *cpu = X86_CPU(cs);
1187     CPUX86State *env = &cpu->env;
1188     struct kvm_cpuid2 *cpuid;
1189     struct kvm_cpuid_entry2 *c;
1190     uint32_t signature[3];
1191     uint32_t cpuid_i = 0;
1192     int r;
1193 
1194     if (!hyperv_enabled(cpu))
1195         return 0;
1196 
1197     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1198         cpu->hyperv_passthrough) {
1199         uint16_t evmcs_version;
1200 
1201         r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1202                                 (uintptr_t)&evmcs_version);
1203 
1204         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
1205             fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1206                     kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1207             return -ENOSYS;
1208         }
1209 
1210         if (!r) {
1211             env->features[FEAT_HV_RECOMM_EAX] |=
1212                 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1213             env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1214         }
1215     }
1216 
1217     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1218         cpuid = get_supported_hv_cpuid(cs);
1219     } else {
1220         cpuid = get_supported_hv_cpuid_legacy(cs);
1221     }
1222 
1223     if (cpu->hyperv_passthrough) {
1224         memcpy(cpuid_ent, &cpuid->entries[0],
1225                cpuid->nent * sizeof(cpuid->entries[0]));
1226 
1227         c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1228         if (c) {
1229             env->features[FEAT_HYPERV_EAX] = c->eax;
1230             env->features[FEAT_HYPERV_EBX] = c->ebx;
1231             env->features[FEAT_HYPERV_EDX] = c->eax;
1232         }
1233         c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1234         if (c) {
1235             env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1236 
1237             /* hv-spinlocks may have been overriden */
1238             if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) {
1239                 c->ebx = cpu->hyperv_spinlock_attempts;
1240             }
1241         }
1242         c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1243         if (c) {
1244             env->features[FEAT_HV_NESTED_EAX] = c->eax;
1245         }
1246     }
1247 
1248     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1249         env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING;
1250     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1251         c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1252         if (c) {
1253             env->features[FEAT_HV_RECOMM_EAX] |=
1254                 c->eax & HV_NO_NONARCH_CORESHARING;
1255         }
1256     }
1257 
1258     /* Features */
1259     r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
1260     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1261     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1262     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1263     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1264     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1265     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1266     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1267     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1268     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1269     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1270     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1271     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1272     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
1273     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
1274 
1275     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1276     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1277         !cpu->hyperv_synic_kvm_only &&
1278         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1279         fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
1280                 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1281                 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1282         r |= 1;
1283     }
1284 
1285     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1286     env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1287 
1288     if (r) {
1289         r = -ENOSYS;
1290         goto free;
1291     }
1292 
1293     if (cpu->hyperv_passthrough) {
1294         /* We already copied all feature words from KVM as is */
1295         r = cpuid->nent;
1296         goto free;
1297     }
1298 
1299     c = &cpuid_ent[cpuid_i++];
1300     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1301     if (!cpu->hyperv_vendor_id) {
1302         memcpy(signature, "Microsoft Hv", 12);
1303     } else {
1304         size_t len = strlen(cpu->hyperv_vendor_id);
1305 
1306         if (len > 12) {
1307             error_report("hv-vendor-id truncated to 12 characters");
1308             len = 12;
1309         }
1310         memset(signature, 0, 12);
1311         memcpy(signature, cpu->hyperv_vendor_id, len);
1312     }
1313     c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1314         HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1315     c->ebx = signature[0];
1316     c->ecx = signature[1];
1317     c->edx = signature[2];
1318 
1319     c = &cpuid_ent[cpuid_i++];
1320     c->function = HV_CPUID_INTERFACE;
1321     memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1322     c->eax = signature[0];
1323     c->ebx = 0;
1324     c->ecx = 0;
1325     c->edx = 0;
1326 
1327     c = &cpuid_ent[cpuid_i++];
1328     c->function = HV_CPUID_VERSION;
1329     c->eax = 0x00001bbc;
1330     c->ebx = 0x00060001;
1331 
1332     c = &cpuid_ent[cpuid_i++];
1333     c->function = HV_CPUID_FEATURES;
1334     c->eax = env->features[FEAT_HYPERV_EAX];
1335     c->ebx = env->features[FEAT_HYPERV_EBX];
1336     c->edx = env->features[FEAT_HYPERV_EDX];
1337 
1338     c = &cpuid_ent[cpuid_i++];
1339     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1340     c->eax = env->features[FEAT_HV_RECOMM_EAX];
1341     c->ebx = cpu->hyperv_spinlock_attempts;
1342 
1343     c = &cpuid_ent[cpuid_i++];
1344     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1345     c->eax = cpu->hv_max_vps;
1346     c->ebx = 0x40;
1347 
1348     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1349         __u32 function;
1350 
1351         /* Create zeroed 0x40000006..0x40000009 leaves */
1352         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1353              function < HV_CPUID_NESTED_FEATURES; function++) {
1354             c = &cpuid_ent[cpuid_i++];
1355             c->function = function;
1356         }
1357 
1358         c = &cpuid_ent[cpuid_i++];
1359         c->function = HV_CPUID_NESTED_FEATURES;
1360         c->eax = env->features[FEAT_HV_NESTED_EAX];
1361     }
1362     r = cpuid_i;
1363 
1364 free:
1365     g_free(cpuid);
1366 
1367     return r;
1368 }
1369 
1370 static Error *hv_passthrough_mig_blocker;
1371 static Error *hv_no_nonarch_cs_mig_blocker;
1372 
hyperv_init_vcpu(X86CPU * cpu)1373 static int hyperv_init_vcpu(X86CPU *cpu)
1374 {
1375     CPUState *cs = CPU(cpu);
1376     Error *local_err = NULL;
1377     int ret;
1378 
1379     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1380         error_setg(&hv_passthrough_mig_blocker,
1381                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1382                    " set of hv-* flags instead");
1383         ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1384         if (local_err) {
1385             error_report_err(local_err);
1386             error_free(hv_passthrough_mig_blocker);
1387             return ret;
1388         }
1389     }
1390 
1391     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1392         hv_no_nonarch_cs_mig_blocker == NULL) {
1393         error_setg(&hv_no_nonarch_cs_mig_blocker,
1394                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1395                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1396                    " make sure SMT is disabled and/or that vCPUs are properly"
1397                    " pinned)");
1398         ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1399         if (local_err) {
1400             error_report_err(local_err);
1401             error_free(hv_no_nonarch_cs_mig_blocker);
1402             return ret;
1403         }
1404     }
1405 
1406     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1407         /*
1408          * the kernel doesn't support setting vp_index; assert that its value
1409          * is in sync
1410          */
1411         struct {
1412             struct kvm_msrs info;
1413             struct kvm_msr_entry entries[1];
1414         } msr_data = {
1415             .info.nmsrs = 1,
1416             .entries[0].index = HV_X64_MSR_VP_INDEX,
1417         };
1418 
1419         ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1420         if (ret < 0) {
1421             return ret;
1422         }
1423         assert(ret == 1);
1424 
1425         if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1426             error_report("kernel's vp_index != QEMU's vp_index");
1427             return -ENXIO;
1428         }
1429     }
1430 
1431     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1432         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1433             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1434         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1435         if (ret < 0) {
1436             error_report("failed to turn on HyperV SynIC in KVM: %s",
1437                          strerror(-ret));
1438             return ret;
1439         }
1440 
1441         if (!cpu->hyperv_synic_kvm_only) {
1442             ret = hyperv_x86_synic_add(cpu);
1443             if (ret < 0) {
1444                 error_report("failed to create HyperV SynIC: %s",
1445                              strerror(-ret));
1446                 return ret;
1447             }
1448         }
1449     }
1450 
1451     return 0;
1452 }
1453 
1454 static Error *invtsc_mig_blocker;
1455 
1456 #define KVM_MAX_CPUID_ENTRIES  100
1457 
kvm_arch_init_vcpu(CPUState * cs)1458 int kvm_arch_init_vcpu(CPUState *cs)
1459 {
1460     struct {
1461         struct kvm_cpuid2 cpuid;
1462         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1463     } cpuid_data;
1464     /*
1465      * The kernel defines these structs with padding fields so there
1466      * should be no extra padding in our cpuid_data struct.
1467      */
1468     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1469                       sizeof(struct kvm_cpuid2) +
1470                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1471 
1472     X86CPU *cpu = X86_CPU(cs);
1473     CPUX86State *env = &cpu->env;
1474     uint32_t limit, i, j, cpuid_i;
1475     uint32_t unused;
1476     struct kvm_cpuid_entry2 *c;
1477     uint32_t signature[3];
1478     int kvm_base = KVM_CPUID_SIGNATURE;
1479     int max_nested_state_len;
1480     int r;
1481     Error *local_err = NULL;
1482 
1483     memset(&cpuid_data, 0, sizeof(cpuid_data));
1484 
1485     cpuid_i = 0;
1486 
1487     r = kvm_arch_set_tsc_khz(cs);
1488     if (r < 0) {
1489         return r;
1490     }
1491 
1492     /* vcpu's TSC frequency is either specified by user, or following
1493      * the value used by KVM if the former is not present. In the
1494      * latter case, we query it from KVM and record in env->tsc_khz,
1495      * so that vcpu's TSC frequency can be migrated later via this field.
1496      */
1497     if (!env->tsc_khz) {
1498         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1499             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1500             -ENOTSUP;
1501         if (r > 0) {
1502             env->tsc_khz = r;
1503         }
1504     }
1505 
1506     /* Paravirtualization CPUIDs */
1507     r = hyperv_handle_properties(cs, cpuid_data.entries);
1508     if (r < 0) {
1509         return r;
1510     } else if (r > 0) {
1511         cpuid_i = r;
1512         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1513         has_msr_hv_hypercall = true;
1514     }
1515 
1516     if (cpu->expose_kvm) {
1517         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1518         c = &cpuid_data.entries[cpuid_i++];
1519         c->function = KVM_CPUID_SIGNATURE | kvm_base;
1520         c->eax = KVM_CPUID_FEATURES | kvm_base;
1521         c->ebx = signature[0];
1522         c->ecx = signature[1];
1523         c->edx = signature[2];
1524 
1525         c = &cpuid_data.entries[cpuid_i++];
1526         c->function = KVM_CPUID_FEATURES | kvm_base;
1527         c->eax = env->features[FEAT_KVM];
1528         c->edx = env->features[FEAT_KVM_HINTS];
1529     }
1530 
1531     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1532 
1533     for (i = 0; i <= limit; i++) {
1534         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1535             fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1536             abort();
1537         }
1538         c = &cpuid_data.entries[cpuid_i++];
1539 
1540         switch (i) {
1541         case 2: {
1542             /* Keep reading function 2 till all the input is received */
1543             int times;
1544 
1545             c->function = i;
1546             c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1547                        KVM_CPUID_FLAG_STATE_READ_NEXT;
1548             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1549             times = c->eax & 0xff;
1550 
1551             for (j = 1; j < times; ++j) {
1552                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1553                     fprintf(stderr, "cpuid_data is full, no space for "
1554                             "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1555                     abort();
1556                 }
1557                 c = &cpuid_data.entries[cpuid_i++];
1558                 c->function = i;
1559                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1560                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1561             }
1562             break;
1563         }
1564         case 0x1f:
1565             if (env->nr_dies < 2) {
1566                 break;
1567             }
1568         case 4:
1569         case 0xb:
1570         case 0xd:
1571             for (j = 0; ; j++) {
1572                 if (i == 0xd && j == 64) {
1573                     break;
1574                 }
1575 
1576                 if (i == 0x1f && j == 64) {
1577                     break;
1578                 }
1579 
1580                 c->function = i;
1581                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1582                 c->index = j;
1583                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1584 
1585                 if (i == 4 && c->eax == 0) {
1586                     break;
1587                 }
1588                 if (i == 0xb && !(c->ecx & 0xff00)) {
1589                     break;
1590                 }
1591                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1592                     break;
1593                 }
1594                 if (i == 0xd && c->eax == 0) {
1595                     continue;
1596                 }
1597                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1598                     fprintf(stderr, "cpuid_data is full, no space for "
1599                             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1600                     abort();
1601                 }
1602                 c = &cpuid_data.entries[cpuid_i++];
1603             }
1604             break;
1605         case 0x7:
1606         case 0x14: {
1607             uint32_t times;
1608 
1609             c->function = i;
1610             c->index = 0;
1611             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1612             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1613             times = c->eax;
1614 
1615             for (j = 1; j <= times; ++j) {
1616                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1617                     fprintf(stderr, "cpuid_data is full, no space for "
1618                                 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1619                     abort();
1620                 }
1621                 c = &cpuid_data.entries[cpuid_i++];
1622                 c->function = i;
1623                 c->index = j;
1624                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1625                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1626             }
1627             break;
1628         }
1629         default:
1630             c->function = i;
1631             c->flags = 0;
1632             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1633             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1634                 /*
1635                  * KVM already returns all zeroes if a CPUID entry is missing,
1636                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1637                  */
1638                 cpuid_i--;
1639             }
1640             break;
1641         }
1642     }
1643 
1644     if (limit >= 0x0a) {
1645         uint32_t eax, edx;
1646 
1647         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1648 
1649         has_architectural_pmu_version = eax & 0xff;
1650         if (has_architectural_pmu_version > 0) {
1651             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1652 
1653             /* Shouldn't be more than 32, since that's the number of bits
1654              * available in EBX to tell us _which_ counters are available.
1655              * Play it safe.
1656              */
1657             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1658                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1659             }
1660 
1661             if (has_architectural_pmu_version > 1) {
1662                 num_architectural_pmu_fixed_counters = edx & 0x1f;
1663 
1664                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1665                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1666                 }
1667             }
1668         }
1669     }
1670 
1671     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1672 
1673     for (i = 0x80000000; i <= limit; i++) {
1674         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1675             fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1676             abort();
1677         }
1678         c = &cpuid_data.entries[cpuid_i++];
1679 
1680         switch (i) {
1681         case 0x8000001d:
1682             /* Query for all AMD cache information leaves */
1683             for (j = 0; ; j++) {
1684                 c->function = i;
1685                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1686                 c->index = j;
1687                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1688 
1689                 if (c->eax == 0) {
1690                     break;
1691                 }
1692                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1693                     fprintf(stderr, "cpuid_data is full, no space for "
1694                             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1695                     abort();
1696                 }
1697                 c = &cpuid_data.entries[cpuid_i++];
1698             }
1699             break;
1700         default:
1701             c->function = i;
1702             c->flags = 0;
1703             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1704             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1705                 /*
1706                  * KVM already returns all zeroes if a CPUID entry is missing,
1707                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1708                  */
1709                 cpuid_i--;
1710             }
1711             break;
1712         }
1713     }
1714 
1715     /* Call Centaur's CPUID instructions they are supported. */
1716     if (env->cpuid_xlevel2 > 0) {
1717         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1718 
1719         for (i = 0xC0000000; i <= limit; i++) {
1720             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1721                 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1722                 abort();
1723             }
1724             c = &cpuid_data.entries[cpuid_i++];
1725 
1726             c->function = i;
1727             c->flags = 0;
1728             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1729         }
1730     }
1731 
1732     cpuid_data.cpuid.nent = cpuid_i;
1733 
1734     if (((env->cpuid_version >> 8)&0xF) >= 6
1735         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1736            (CPUID_MCE | CPUID_MCA)
1737         && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1738         uint64_t mcg_cap, unsupported_caps;
1739         int banks;
1740         int ret;
1741 
1742         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1743         if (ret < 0) {
1744             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1745             return ret;
1746         }
1747 
1748         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1749             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1750                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1751             return -ENOTSUP;
1752         }
1753 
1754         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1755         if (unsupported_caps) {
1756             if (unsupported_caps & MCG_LMCE_P) {
1757                 error_report("kvm: LMCE not supported");
1758                 return -ENOTSUP;
1759             }
1760             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1761                         unsupported_caps);
1762         }
1763 
1764         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1765         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1766         if (ret < 0) {
1767             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1768             return ret;
1769         }
1770     }
1771 
1772     qemu_add_vm_change_state_handler(cpu_update_state, env);
1773 
1774     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1775     if (c) {
1776         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1777                                   !!(c->ecx & CPUID_EXT_SMX);
1778     }
1779 
1780     if (env->mcg_cap & MCG_LMCE_P) {
1781         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1782     }
1783 
1784     if (!env->user_tsc_khz) {
1785         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1786             invtsc_mig_blocker == NULL) {
1787             error_setg(&invtsc_mig_blocker,
1788                        "State blocked by non-migratable CPU device"
1789                        " (invtsc flag)");
1790             r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1791             if (local_err) {
1792                 error_report_err(local_err);
1793                 error_free(invtsc_mig_blocker);
1794                 return r;
1795             }
1796         }
1797     }
1798 
1799     if (cpu->vmware_cpuid_freq
1800         /* Guests depend on 0x40000000 to detect this feature, so only expose
1801          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1802         && cpu->expose_kvm
1803         && kvm_base == KVM_CPUID_SIGNATURE
1804         /* TSC clock must be stable and known for this feature. */
1805         && tsc_is_stable_and_known(env)) {
1806 
1807         c = &cpuid_data.entries[cpuid_i++];
1808         c->function = KVM_CPUID_SIGNATURE | 0x10;
1809         c->eax = env->tsc_khz;
1810         /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1811          * APIC_BUS_CYCLE_NS */
1812         c->ebx = 1000000;
1813         c->ecx = c->edx = 0;
1814 
1815         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1816         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1817     }
1818 
1819     cpuid_data.cpuid.nent = cpuid_i;
1820 
1821     cpuid_data.cpuid.padding = 0;
1822     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1823     if (r) {
1824         goto fail;
1825     }
1826 
1827     if (has_xsave) {
1828         env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1829         memset(env->xsave_buf, 0, sizeof(struct kvm_xsave));
1830     }
1831 
1832     max_nested_state_len = kvm_max_nested_state_length();
1833     if (max_nested_state_len > 0) {
1834         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
1835 
1836         if (cpu_has_vmx(env)) {
1837             struct kvm_vmx_nested_state_hdr *vmx_hdr;
1838 
1839             env->nested_state = g_malloc0(max_nested_state_len);
1840             env->nested_state->size = max_nested_state_len;
1841             env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1842 
1843             vmx_hdr = &env->nested_state->hdr.vmx;
1844             vmx_hdr->vmxon_pa = -1ull;
1845             vmx_hdr->vmcs12_pa = -1ull;
1846         }
1847     }
1848 
1849     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1850 
1851     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1852         has_msr_tsc_aux = false;
1853     }
1854 
1855     kvm_init_msrs(cpu);
1856 
1857     r = hyperv_init_vcpu(cpu);
1858     if (r) {
1859         goto fail;
1860     }
1861 
1862     return 0;
1863 
1864  fail:
1865     migrate_del_blocker(invtsc_mig_blocker);
1866 
1867     return r;
1868 }
1869 
kvm_arch_destroy_vcpu(CPUState * cs)1870 int kvm_arch_destroy_vcpu(CPUState *cs)
1871 {
1872     X86CPU *cpu = X86_CPU(cs);
1873     CPUX86State *env = &cpu->env;
1874 
1875     if (cpu->kvm_msr_buf) {
1876         g_free(cpu->kvm_msr_buf);
1877         cpu->kvm_msr_buf = NULL;
1878     }
1879 
1880     if (env->nested_state) {
1881         g_free(env->nested_state);
1882         env->nested_state = NULL;
1883     }
1884 
1885     return 0;
1886 }
1887 
kvm_arch_reset_vcpu(X86CPU * cpu)1888 void kvm_arch_reset_vcpu(X86CPU *cpu)
1889 {
1890     CPUX86State *env = &cpu->env;
1891 
1892     env->xcr0 = 1;
1893     if (kvm_irqchip_in_kernel()) {
1894         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1895                                           KVM_MP_STATE_UNINITIALIZED;
1896     } else {
1897         env->mp_state = KVM_MP_STATE_RUNNABLE;
1898     }
1899 
1900     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1901         int i;
1902         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1903             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1904         }
1905 
1906         hyperv_x86_synic_reset(cpu);
1907     }
1908     /* enabled by default */
1909     env->poll_control_msr = 1;
1910 }
1911 
kvm_arch_do_init_vcpu(X86CPU * cpu)1912 void kvm_arch_do_init_vcpu(X86CPU *cpu)
1913 {
1914     CPUX86State *env = &cpu->env;
1915 
1916     /* APs get directly into wait-for-SIPI state.  */
1917     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1918         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1919     }
1920 }
1921 
kvm_get_supported_feature_msrs(KVMState * s)1922 static int kvm_get_supported_feature_msrs(KVMState *s)
1923 {
1924     int ret = 0;
1925 
1926     if (kvm_feature_msrs != NULL) {
1927         return 0;
1928     }
1929 
1930     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1931         return 0;
1932     }
1933 
1934     struct kvm_msr_list msr_list;
1935 
1936     msr_list.nmsrs = 0;
1937     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1938     if (ret < 0 && ret != -E2BIG) {
1939         error_report("Fetch KVM feature MSR list failed: %s",
1940             strerror(-ret));
1941         return ret;
1942     }
1943 
1944     assert(msr_list.nmsrs > 0);
1945     kvm_feature_msrs = (struct kvm_msr_list *) \
1946         g_malloc0(sizeof(msr_list) +
1947                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
1948 
1949     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1950     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1951 
1952     if (ret < 0) {
1953         error_report("Fetch KVM feature MSR list failed: %s",
1954             strerror(-ret));
1955         g_free(kvm_feature_msrs);
1956         kvm_feature_msrs = NULL;
1957         return ret;
1958     }
1959 
1960     return 0;
1961 }
1962 
kvm_get_supported_msrs(KVMState * s)1963 static int kvm_get_supported_msrs(KVMState *s)
1964 {
1965     int ret = 0;
1966     struct kvm_msr_list msr_list, *kvm_msr_list;
1967 
1968     /*
1969      *  Obtain MSR list from KVM.  These are the MSRs that we must
1970      *  save/restore.
1971      */
1972     msr_list.nmsrs = 0;
1973     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1974     if (ret < 0 && ret != -E2BIG) {
1975         return ret;
1976     }
1977     /*
1978      * Old kernel modules had a bug and could write beyond the provided
1979      * memory. Allocate at least a safe amount of 1K.
1980      */
1981     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1982                                           msr_list.nmsrs *
1983                                           sizeof(msr_list.indices[0])));
1984 
1985     kvm_msr_list->nmsrs = msr_list.nmsrs;
1986     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1987     if (ret >= 0) {
1988         int i;
1989 
1990         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1991             switch (kvm_msr_list->indices[i]) {
1992             case MSR_STAR:
1993                 has_msr_star = true;
1994                 break;
1995             case MSR_VM_HSAVE_PA:
1996                 has_msr_hsave_pa = true;
1997                 break;
1998             case MSR_TSC_AUX:
1999                 has_msr_tsc_aux = true;
2000                 break;
2001             case MSR_TSC_ADJUST:
2002                 has_msr_tsc_adjust = true;
2003                 break;
2004             case MSR_IA32_TSCDEADLINE:
2005                 has_msr_tsc_deadline = true;
2006                 break;
2007             case MSR_IA32_SMBASE:
2008                 has_msr_smbase = true;
2009                 break;
2010             case MSR_SMI_COUNT:
2011                 has_msr_smi_count = true;
2012                 break;
2013             case MSR_IA32_MISC_ENABLE:
2014                 has_msr_misc_enable = true;
2015                 break;
2016             case MSR_IA32_BNDCFGS:
2017                 has_msr_bndcfgs = true;
2018                 break;
2019             case MSR_IA32_XSS:
2020                 has_msr_xss = true;
2021                 break;
2022             case MSR_IA32_UMWAIT_CONTROL:
2023                 has_msr_umwait = true;
2024                 break;
2025             case HV_X64_MSR_CRASH_CTL:
2026                 has_msr_hv_crash = true;
2027                 break;
2028             case HV_X64_MSR_RESET:
2029                 has_msr_hv_reset = true;
2030                 break;
2031             case HV_X64_MSR_VP_INDEX:
2032                 has_msr_hv_vpindex = true;
2033                 break;
2034             case HV_X64_MSR_VP_RUNTIME:
2035                 has_msr_hv_runtime = true;
2036                 break;
2037             case HV_X64_MSR_SCONTROL:
2038                 has_msr_hv_synic = true;
2039                 break;
2040             case HV_X64_MSR_STIMER0_CONFIG:
2041                 has_msr_hv_stimer = true;
2042                 break;
2043             case HV_X64_MSR_TSC_FREQUENCY:
2044                 has_msr_hv_frequencies = true;
2045                 break;
2046             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2047                 has_msr_hv_reenlightenment = true;
2048                 break;
2049             case MSR_IA32_SPEC_CTRL:
2050                 has_msr_spec_ctrl = true;
2051                 break;
2052             case MSR_IA32_TSX_CTRL:
2053                 has_msr_tsx_ctrl = true;
2054                 break;
2055             case MSR_VIRT_SSBD:
2056                 has_msr_virt_ssbd = true;
2057                 break;
2058             case MSR_IA32_ARCH_CAPABILITIES:
2059                 has_msr_arch_capabs = true;
2060                 break;
2061             case MSR_IA32_CORE_CAPABILITY:
2062                 has_msr_core_capabs = true;
2063                 break;
2064             case MSR_IA32_VMX_VMFUNC:
2065                 has_msr_vmx_vmfunc = true;
2066                 break;
2067             case MSR_IA32_VMX_PROCBASED_CTLS2:
2068                 has_msr_vmx_procbased_ctls2 = true;
2069                 break;
2070             }
2071         }
2072     }
2073 
2074     g_free(kvm_msr_list);
2075 
2076     return ret;
2077 }
2078 
2079 static Notifier smram_machine_done;
2080 static KVMMemoryListener smram_listener;
2081 static AddressSpace smram_address_space;
2082 static MemoryRegion smram_as_root;
2083 static MemoryRegion smram_as_mem;
2084 
register_smram_listener(Notifier * n,void * unused)2085 static void register_smram_listener(Notifier *n, void *unused)
2086 {
2087     MemoryRegion *smram =
2088         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2089 
2090     /* Outer container... */
2091     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2092     memory_region_set_enabled(&smram_as_root, true);
2093 
2094     /* ... with two regions inside: normal system memory with low
2095      * priority, and...
2096      */
2097     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2098                              get_system_memory(), 0, ~0ull);
2099     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2100     memory_region_set_enabled(&smram_as_mem, true);
2101 
2102     if (smram) {
2103         /* ... SMRAM with higher priority */
2104         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2105         memory_region_set_enabled(smram, true);
2106     }
2107 
2108     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2109     kvm_memory_listener_register(kvm_state, &smram_listener,
2110                                  &smram_address_space, 1);
2111 }
2112 
kvm_arch_init(MachineState * ms,KVMState * s)2113 int kvm_arch_init(MachineState *ms, KVMState *s)
2114 {
2115     uint64_t identity_base = 0xfffbc000;
2116     uint64_t shadow_mem;
2117     int ret;
2118     struct utsname utsname;
2119 
2120     has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2121     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2122     has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2123 
2124     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2125 
2126     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2127     if (has_exception_payload) {
2128         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2129         if (ret < 0) {
2130             error_report("kvm: Failed to enable exception payload cap: %s",
2131                          strerror(-ret));
2132             return ret;
2133         }
2134     }
2135 
2136     ret = kvm_get_supported_msrs(s);
2137     if (ret < 0) {
2138         return ret;
2139     }
2140 
2141     kvm_get_supported_feature_msrs(s);
2142 
2143     uname(&utsname);
2144     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2145 
2146     /*
2147      * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2148      * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
2149      * Since these must be part of guest physical memory, we need to allocate
2150      * them, both by setting their start addresses in the kernel and by
2151      * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2152      *
2153      * Older KVM versions may not support setting the identity map base. In
2154      * that case we need to stick with the default, i.e. a 256K maximum BIOS
2155      * size.
2156      */
2157     if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2158         /* Allows up to 16M BIOSes. */
2159         identity_base = 0xfeffc000;
2160 
2161         ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2162         if (ret < 0) {
2163             return ret;
2164         }
2165     }
2166 
2167     /* Set TSS base one page after EPT identity map. */
2168     ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2169     if (ret < 0) {
2170         return ret;
2171     }
2172 
2173     /* Tell fw_cfg to notify the BIOS to reserve the range. */
2174     ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2175     if (ret < 0) {
2176         fprintf(stderr, "e820_add_entry() table is full\n");
2177         return ret;
2178     }
2179     qemu_register_reset(kvm_unpoison_all, NULL);
2180 
2181     shadow_mem = machine_kvm_shadow_mem(ms);
2182     if (shadow_mem != -1) {
2183         shadow_mem /= 4096;
2184         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2185         if (ret < 0) {
2186             return ret;
2187         }
2188     }
2189 
2190     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2191         object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) &&
2192         pc_machine_is_smm_enabled(PC_MACHINE(ms))) {
2193         smram_machine_done.notify = register_smram_listener;
2194         qemu_add_machine_init_done_notifier(&smram_machine_done);
2195     }
2196 
2197     if (enable_cpu_pm) {
2198         int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2199         int ret;
2200 
2201 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2202 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2203 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2204 #endif
2205         if (disable_exits) {
2206             disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2207                               KVM_X86_DISABLE_EXITS_HLT |
2208                               KVM_X86_DISABLE_EXITS_PAUSE |
2209                               KVM_X86_DISABLE_EXITS_CSTATE);
2210         }
2211 
2212         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2213                                 disable_exits);
2214         if (ret < 0) {
2215             error_report("kvm: guest stopping CPU not supported: %s",
2216                          strerror(-ret));
2217         }
2218     }
2219 
2220     return 0;
2221 }
2222 
set_v8086_seg(struct kvm_segment * lhs,const SegmentCache * rhs)2223 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2224 {
2225     lhs->selector = rhs->selector;
2226     lhs->base = rhs->base;
2227     lhs->limit = rhs->limit;
2228     lhs->type = 3;
2229     lhs->present = 1;
2230     lhs->dpl = 3;
2231     lhs->db = 0;
2232     lhs->s = 1;
2233     lhs->l = 0;
2234     lhs->g = 0;
2235     lhs->avl = 0;
2236     lhs->unusable = 0;
2237 }
2238 
set_seg(struct kvm_segment * lhs,const SegmentCache * rhs)2239 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2240 {
2241     unsigned flags = rhs->flags;
2242     lhs->selector = rhs->selector;
2243     lhs->base = rhs->base;
2244     lhs->limit = rhs->limit;
2245     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2246     lhs->present = (flags & DESC_P_MASK) != 0;
2247     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2248     lhs->db = (flags >> DESC_B_SHIFT) & 1;
2249     lhs->s = (flags & DESC_S_MASK) != 0;
2250     lhs->l = (flags >> DESC_L_SHIFT) & 1;
2251     lhs->g = (flags & DESC_G_MASK) != 0;
2252     lhs->avl = (flags & DESC_AVL_MASK) != 0;
2253     lhs->unusable = !lhs->present;
2254     lhs->padding = 0;
2255 }
2256 
get_seg(SegmentCache * lhs,const struct kvm_segment * rhs)2257 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2258 {
2259     lhs->selector = rhs->selector;
2260     lhs->base = rhs->base;
2261     lhs->limit = rhs->limit;
2262     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2263                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2264                  (rhs->dpl << DESC_DPL_SHIFT) |
2265                  (rhs->db << DESC_B_SHIFT) |
2266                  (rhs->s * DESC_S_MASK) |
2267                  (rhs->l << DESC_L_SHIFT) |
2268                  (rhs->g * DESC_G_MASK) |
2269                  (rhs->avl * DESC_AVL_MASK);
2270 }
2271 
kvm_getput_reg(__u64 * kvm_reg,target_ulong * qemu_reg,int set)2272 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2273 {
2274     if (set) {
2275         *kvm_reg = *qemu_reg;
2276     } else {
2277         *qemu_reg = *kvm_reg;
2278     }
2279 }
2280 
kvm_getput_regs(X86CPU * cpu,int set)2281 static int kvm_getput_regs(X86CPU *cpu, int set)
2282 {
2283     CPUX86State *env = &cpu->env;
2284     struct kvm_regs regs;
2285     int ret = 0;
2286 
2287     if (!set) {
2288         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2289         if (ret < 0) {
2290             return ret;
2291         }
2292     }
2293 
2294     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2295     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2296     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2297     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2298     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2299     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2300     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2301     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2302 #ifdef TARGET_X86_64
2303     kvm_getput_reg(&regs.r8, &env->regs[8], set);
2304     kvm_getput_reg(&regs.r9, &env->regs[9], set);
2305     kvm_getput_reg(&regs.r10, &env->regs[10], set);
2306     kvm_getput_reg(&regs.r11, &env->regs[11], set);
2307     kvm_getput_reg(&regs.r12, &env->regs[12], set);
2308     kvm_getput_reg(&regs.r13, &env->regs[13], set);
2309     kvm_getput_reg(&regs.r14, &env->regs[14], set);
2310     kvm_getput_reg(&regs.r15, &env->regs[15], set);
2311 #endif
2312 
2313     kvm_getput_reg(&regs.rflags, &env->eflags, set);
2314     kvm_getput_reg(&regs.rip, &env->eip, set);
2315 
2316     if (set) {
2317         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2318     }
2319 
2320     return ret;
2321 }
2322 
kvm_put_fpu(X86CPU * cpu)2323 static int kvm_put_fpu(X86CPU *cpu)
2324 {
2325     CPUX86State *env = &cpu->env;
2326     struct kvm_fpu fpu;
2327     int i;
2328 
2329     memset(&fpu, 0, sizeof fpu);
2330     fpu.fsw = env->fpus & ~(7 << 11);
2331     fpu.fsw |= (env->fpstt & 7) << 11;
2332     fpu.fcw = env->fpuc;
2333     fpu.last_opcode = env->fpop;
2334     fpu.last_ip = env->fpip;
2335     fpu.last_dp = env->fpdp;
2336     for (i = 0; i < 8; ++i) {
2337         fpu.ftwx |= (!env->fptags[i]) << i;
2338     }
2339     memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2340     for (i = 0; i < CPU_NB_REGS; i++) {
2341         stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2342         stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2343     }
2344     fpu.mxcsr = env->mxcsr;
2345 
2346     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2347 }
2348 
2349 #define XSAVE_FCW_FSW     0
2350 #define XSAVE_FTW_FOP     1
2351 #define XSAVE_CWD_RIP     2
2352 #define XSAVE_CWD_RDP     4
2353 #define XSAVE_MXCSR       6
2354 #define XSAVE_ST_SPACE    8
2355 #define XSAVE_XMM_SPACE   40
2356 #define XSAVE_XSTATE_BV   128
2357 #define XSAVE_YMMH_SPACE  144
2358 #define XSAVE_BNDREGS     240
2359 #define XSAVE_BNDCSR      256
2360 #define XSAVE_OPMASK      272
2361 #define XSAVE_ZMM_Hi256   288
2362 #define XSAVE_Hi16_ZMM    416
2363 #define XSAVE_PKRU        672
2364 
2365 #define XSAVE_BYTE_OFFSET(word_offset) \
2366     ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
2367 
2368 #define ASSERT_OFFSET(word_offset, field) \
2369     QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2370                       offsetof(X86XSaveArea, field))
2371 
2372 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2373 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2374 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2375 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2376 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2377 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2378 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2379 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2380 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2381 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2382 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2383 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2384 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2385 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2386 ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2387 
kvm_put_xsave(X86CPU * cpu)2388 static int kvm_put_xsave(X86CPU *cpu)
2389 {
2390     CPUX86State *env = &cpu->env;
2391     X86XSaveArea *xsave = env->xsave_buf;
2392 
2393     if (!has_xsave) {
2394         return kvm_put_fpu(cpu);
2395     }
2396     x86_cpu_xsave_all_areas(cpu, xsave);
2397 
2398     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2399 }
2400 
kvm_put_xcrs(X86CPU * cpu)2401 static int kvm_put_xcrs(X86CPU *cpu)
2402 {
2403     CPUX86State *env = &cpu->env;
2404     struct kvm_xcrs xcrs = {};
2405 
2406     if (!has_xcrs) {
2407         return 0;
2408     }
2409 
2410     xcrs.nr_xcrs = 1;
2411     xcrs.flags = 0;
2412     xcrs.xcrs[0].xcr = 0;
2413     xcrs.xcrs[0].value = env->xcr0;
2414     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2415 }
2416 
kvm_put_sregs(X86CPU * cpu)2417 static int kvm_put_sregs(X86CPU *cpu)
2418 {
2419     CPUX86State *env = &cpu->env;
2420     struct kvm_sregs sregs;
2421 
2422     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2423     if (env->interrupt_injected >= 0) {
2424         sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2425                 (uint64_t)1 << (env->interrupt_injected % 64);
2426     }
2427 
2428     if ((env->eflags & VM_MASK)) {
2429         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2430         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2431         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2432         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2433         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2434         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2435     } else {
2436         set_seg(&sregs.cs, &env->segs[R_CS]);
2437         set_seg(&sregs.ds, &env->segs[R_DS]);
2438         set_seg(&sregs.es, &env->segs[R_ES]);
2439         set_seg(&sregs.fs, &env->segs[R_FS]);
2440         set_seg(&sregs.gs, &env->segs[R_GS]);
2441         set_seg(&sregs.ss, &env->segs[R_SS]);
2442     }
2443 
2444     set_seg(&sregs.tr, &env->tr);
2445     set_seg(&sregs.ldt, &env->ldt);
2446 
2447     sregs.idt.limit = env->idt.limit;
2448     sregs.idt.base = env->idt.base;
2449     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2450     sregs.gdt.limit = env->gdt.limit;
2451     sregs.gdt.base = env->gdt.base;
2452     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2453 
2454     sregs.cr0 = env->cr[0];
2455     sregs.cr2 = env->cr[2];
2456     sregs.cr3 = env->cr[3];
2457     sregs.cr4 = env->cr[4];
2458 
2459     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2460     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2461 
2462     sregs.efer = env->efer;
2463 
2464     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2465 }
2466 
kvm_msr_buf_reset(X86CPU * cpu)2467 static void kvm_msr_buf_reset(X86CPU *cpu)
2468 {
2469     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2470 }
2471 
kvm_msr_entry_add(X86CPU * cpu,uint32_t index,uint64_t value)2472 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2473 {
2474     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2475     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2476     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2477 
2478     assert((void *)(entry + 1) <= limit);
2479 
2480     entry->index = index;
2481     entry->reserved = 0;
2482     entry->data = value;
2483     msrs->nmsrs++;
2484 }
2485 
kvm_put_one_msr(X86CPU * cpu,int index,uint64_t value)2486 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2487 {
2488     kvm_msr_buf_reset(cpu);
2489     kvm_msr_entry_add(cpu, index, value);
2490 
2491     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2492 }
2493 
kvm_put_apicbase(X86CPU * cpu,uint64_t value)2494 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2495 {
2496     int ret;
2497 
2498     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2499     assert(ret == 1);
2500 }
2501 
kvm_put_tscdeadline_msr(X86CPU * cpu)2502 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2503 {
2504     CPUX86State *env = &cpu->env;
2505     int ret;
2506 
2507     if (!has_msr_tsc_deadline) {
2508         return 0;
2509     }
2510 
2511     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2512     if (ret < 0) {
2513         return ret;
2514     }
2515 
2516     assert(ret == 1);
2517     return 0;
2518 }
2519 
2520 /*
2521  * Provide a separate write service for the feature control MSR in order to
2522  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2523  * before writing any other state because forcibly leaving nested mode
2524  * invalidates the VCPU state.
2525  */
kvm_put_msr_feature_control(X86CPU * cpu)2526 static int kvm_put_msr_feature_control(X86CPU *cpu)
2527 {
2528     int ret;
2529 
2530     if (!has_msr_feature_control) {
2531         return 0;
2532     }
2533 
2534     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2535                           cpu->env.msr_ia32_feature_control);
2536     if (ret < 0) {
2537         return ret;
2538     }
2539 
2540     assert(ret == 1);
2541     return 0;
2542 }
2543 
make_vmx_msr_value(uint32_t index,uint32_t features)2544 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2545 {
2546     uint32_t default1, can_be_one, can_be_zero;
2547     uint32_t must_be_one;
2548 
2549     switch (index) {
2550     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2551         default1 = 0x00000016;
2552         break;
2553     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2554         default1 = 0x0401e172;
2555         break;
2556     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2557         default1 = 0x000011ff;
2558         break;
2559     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2560         default1 = 0x00036dff;
2561         break;
2562     case MSR_IA32_VMX_PROCBASED_CTLS2:
2563         default1 = 0;
2564         break;
2565     default:
2566         abort();
2567     }
2568 
2569     /* If a feature bit is set, the control can be either set or clear.
2570      * Otherwise the value is limited to either 0 or 1 by default1.
2571      */
2572     can_be_one = features | default1;
2573     can_be_zero = features | ~default1;
2574     must_be_one = ~can_be_zero;
2575 
2576     /*
2577      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2578      * Bit 32:63 -> 1 if the control bit can be one.
2579      */
2580     return must_be_one | (((uint64_t)can_be_one) << 32);
2581 }
2582 
2583 #define VMCS12_MAX_FIELD_INDEX (0x17)
2584 
kvm_msr_entry_add_vmx(X86CPU * cpu,FeatureWordArray f)2585 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2586 {
2587     uint64_t kvm_vmx_basic =
2588         kvm_arch_get_supported_msr_feature(kvm_state,
2589                                            MSR_IA32_VMX_BASIC);
2590 
2591     if (!kvm_vmx_basic) {
2592         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2593          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2594          */
2595         return;
2596     }
2597 
2598     uint64_t kvm_vmx_misc =
2599         kvm_arch_get_supported_msr_feature(kvm_state,
2600                                            MSR_IA32_VMX_MISC);
2601     uint64_t kvm_vmx_ept_vpid =
2602         kvm_arch_get_supported_msr_feature(kvm_state,
2603                                            MSR_IA32_VMX_EPT_VPID_CAP);
2604 
2605     /*
2606      * If the guest is 64-bit, a value of 1 is allowed for the host address
2607      * space size vmexit control.
2608      */
2609     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2610         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2611 
2612     /*
2613      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
2614      * not change them for backwards compatibility.
2615      */
2616     uint64_t fixed_vmx_basic = kvm_vmx_basic &
2617         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2618          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2619          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2620 
2621     /*
2622      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
2623      * change in the future but are always zero for now, clear them to be
2624      * future proof.  Bits 32-63 in theory could change, though KVM does
2625      * not support dual-monitor treatment and probably never will; mask
2626      * them out as well.
2627      */
2628     uint64_t fixed_vmx_misc = kvm_vmx_misc &
2629         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2630          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2631 
2632     /*
2633      * EPT memory types should not change either, so we do not bother
2634      * adding features for them.
2635      */
2636     uint64_t fixed_vmx_ept_mask =
2637             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2638              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2639     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2640 
2641     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2642                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2643                                          f[FEAT_VMX_PROCBASED_CTLS]));
2644     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2645                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2646                                          f[FEAT_VMX_PINBASED_CTLS]));
2647     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2648                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2649                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2650     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2651                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2652                                          f[FEAT_VMX_ENTRY_CTLS]));
2653     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2654                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2655                                          f[FEAT_VMX_SECONDARY_CTLS]));
2656     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2657                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2658     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2659                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2660     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2661                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
2662     if (has_msr_vmx_vmfunc) {
2663         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2664     }
2665 
2666     /*
2667      * Just to be safe, write these with constant values.  The CRn_FIXED1
2668      * MSRs are generated by KVM based on the vCPU's CPUID.
2669      */
2670     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2671                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2672     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2673                       CR4_VMXE_MASK);
2674     kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM,
2675                       VMCS12_MAX_FIELD_INDEX << 1);
2676 }
2677 
kvm_buf_set_msrs(X86CPU * cpu)2678 static int kvm_buf_set_msrs(X86CPU *cpu)
2679 {
2680     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2681     if (ret < 0) {
2682         return ret;
2683     }
2684 
2685     if (ret < cpu->kvm_msr_buf->nmsrs) {
2686         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2687         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2688                      (uint32_t)e->index, (uint64_t)e->data);
2689     }
2690 
2691     assert(ret == cpu->kvm_msr_buf->nmsrs);
2692     return 0;
2693 }
2694 
kvm_init_msrs(X86CPU * cpu)2695 static void kvm_init_msrs(X86CPU *cpu)
2696 {
2697     CPUX86State *env = &cpu->env;
2698 
2699     kvm_msr_buf_reset(cpu);
2700     if (has_msr_arch_capabs) {
2701         kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2702                           env->features[FEAT_ARCH_CAPABILITIES]);
2703     }
2704 
2705     if (has_msr_core_capabs) {
2706         kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2707                           env->features[FEAT_CORE_CAPABILITY]);
2708     }
2709 
2710     /*
2711      * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2712      * all kernels with MSR features should have them.
2713      */
2714     if (kvm_feature_msrs && cpu_has_vmx(env)) {
2715         kvm_msr_entry_add_vmx(cpu, env->features);
2716     }
2717 
2718     assert(kvm_buf_set_msrs(cpu) == 0);
2719 }
2720 
kvm_put_msrs(X86CPU * cpu,int level)2721 static int kvm_put_msrs(X86CPU *cpu, int level)
2722 {
2723     CPUX86State *env = &cpu->env;
2724     int i;
2725 
2726     kvm_msr_buf_reset(cpu);
2727 
2728     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2729     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2730     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2731     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
2732     if (has_msr_star) {
2733         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
2734     }
2735     if (has_msr_hsave_pa) {
2736         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
2737     }
2738     if (has_msr_tsc_aux) {
2739         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
2740     }
2741     if (has_msr_tsc_adjust) {
2742         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
2743     }
2744     if (has_msr_misc_enable) {
2745         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
2746                           env->msr_ia32_misc_enable);
2747     }
2748     if (has_msr_smbase) {
2749         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
2750     }
2751     if (has_msr_smi_count) {
2752         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2753     }
2754     if (has_msr_bndcfgs) {
2755         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
2756     }
2757     if (has_msr_xss) {
2758         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2759     }
2760     if (has_msr_umwait) {
2761         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
2762     }
2763     if (has_msr_spec_ctrl) {
2764         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2765     }
2766     if (has_msr_tsx_ctrl) {
2767         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
2768     }
2769     if (has_msr_virt_ssbd) {
2770         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2771     }
2772 
2773 #ifdef TARGET_X86_64
2774     if (lm_capable_kernel) {
2775         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2776         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2777         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2778         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2779     }
2780 #endif
2781 
2782     /*
2783      * The following MSRs have side effects on the guest or are too heavy
2784      * for normal writeback. Limit them to reset or full state updates.
2785      */
2786     if (level >= KVM_PUT_RESET_STATE) {
2787         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2788         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2789         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2790         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2791             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2792         }
2793         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2794             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2795         }
2796         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2797             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2798         }
2799 
2800         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
2801             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
2802         }
2803 
2804         if (has_architectural_pmu_version > 0) {
2805             if (has_architectural_pmu_version > 1) {
2806                 /* Stop the counter.  */
2807                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2808                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2809             }
2810 
2811             /* Set the counter values.  */
2812             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2813                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2814                                   env->msr_fixed_counters[i]);
2815             }
2816             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2817                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2818                                   env->msr_gp_counters[i]);
2819                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2820                                   env->msr_gp_evtsel[i]);
2821             }
2822             if (has_architectural_pmu_version > 1) {
2823                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2824                                   env->msr_global_status);
2825                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2826                                   env->msr_global_ovf_ctrl);
2827 
2828                 /* Now start the PMU.  */
2829                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2830                                   env->msr_fixed_ctr_ctrl);
2831                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2832                                   env->msr_global_ctrl);
2833             }
2834         }
2835         /*
2836          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2837          * only sync them to KVM on the first cpu
2838          */
2839         if (current_cpu == first_cpu) {
2840             if (has_msr_hv_hypercall) {
2841                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2842                                   env->msr_hv_guest_os_id);
2843                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2844                                   env->msr_hv_hypercall);
2845             }
2846             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2847                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2848                                   env->msr_hv_tsc);
2849             }
2850             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2851                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2852                                   env->msr_hv_reenlightenment_control);
2853                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2854                                   env->msr_hv_tsc_emulation_control);
2855                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2856                                   env->msr_hv_tsc_emulation_status);
2857             }
2858         }
2859         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2860             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
2861                               env->msr_hv_vapic);
2862         }
2863         if (has_msr_hv_crash) {
2864             int j;
2865 
2866             for (j = 0; j < HV_CRASH_PARAMS; j++)
2867                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
2868                                   env->msr_hv_crash_params[j]);
2869 
2870             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
2871         }
2872         if (has_msr_hv_runtime) {
2873             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
2874         }
2875         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2876             && hv_vpindex_settable) {
2877             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2878                               hyperv_vp_index(CPU(cpu)));
2879         }
2880         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2881             int j;
2882 
2883             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2884 
2885             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
2886                               env->msr_hv_synic_control);
2887             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
2888                               env->msr_hv_synic_evt_page);
2889             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
2890                               env->msr_hv_synic_msg_page);
2891 
2892             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
2893                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
2894                                   env->msr_hv_synic_sint[j]);
2895             }
2896         }
2897         if (has_msr_hv_stimer) {
2898             int j;
2899 
2900             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
2901                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
2902                                 env->msr_hv_stimer_config[j]);
2903             }
2904 
2905             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
2906                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
2907                                 env->msr_hv_stimer_count[j]);
2908             }
2909         }
2910         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2911             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2912 
2913             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2914             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2915             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2916             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2917             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2918             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2919             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2920             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2921             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2922             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2923             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2924             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
2925             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2926                 /* The CPU GPs if we write to a bit above the physical limit of
2927                  * the host CPU (and KVM emulates that)
2928                  */
2929                 uint64_t mask = env->mtrr_var[i].mask;
2930                 mask &= phys_mask;
2931 
2932                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2933                                   env->mtrr_var[i].base);
2934                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
2935             }
2936         }
2937         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2938             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2939                                                     0x14, 1, R_EAX) & 0x7;
2940 
2941             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2942                             env->msr_rtit_ctrl);
2943             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2944                             env->msr_rtit_status);
2945             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2946                             env->msr_rtit_output_base);
2947             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2948                             env->msr_rtit_output_mask);
2949             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2950                             env->msr_rtit_cr3_match);
2951             for (i = 0; i < addr_num; i++) {
2952                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2953                             env->msr_rtit_addrs[i]);
2954             }
2955         }
2956 
2957         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2958          *       kvm_put_msr_feature_control. */
2959     }
2960 
2961     if (env->mcg_cap) {
2962         int i;
2963 
2964         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2965         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
2966         if (has_msr_mcg_ext_ctl) {
2967             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2968         }
2969         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2970             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
2971         }
2972     }
2973 
2974     return kvm_buf_set_msrs(cpu);
2975 }
2976 
2977 
kvm_get_fpu(X86CPU * cpu)2978 static int kvm_get_fpu(X86CPU *cpu)
2979 {
2980     CPUX86State *env = &cpu->env;
2981     struct kvm_fpu fpu;
2982     int i, ret;
2983 
2984     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
2985     if (ret < 0) {
2986         return ret;
2987     }
2988 
2989     env->fpstt = (fpu.fsw >> 11) & 7;
2990     env->fpus = fpu.fsw;
2991     env->fpuc = fpu.fcw;
2992     env->fpop = fpu.last_opcode;
2993     env->fpip = fpu.last_ip;
2994     env->fpdp = fpu.last_dp;
2995     for (i = 0; i < 8; ++i) {
2996         env->fptags[i] = !((fpu.ftwx >> i) & 1);
2997     }
2998     memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
2999     for (i = 0; i < CPU_NB_REGS; i++) {
3000         env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3001         env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3002     }
3003     env->mxcsr = fpu.mxcsr;
3004 
3005     return 0;
3006 }
3007 
kvm_get_xsave(X86CPU * cpu)3008 static int kvm_get_xsave(X86CPU *cpu)
3009 {
3010     CPUX86State *env = &cpu->env;
3011     X86XSaveArea *xsave = env->xsave_buf;
3012     int ret;
3013 
3014     if (!has_xsave) {
3015         return kvm_get_fpu(cpu);
3016     }
3017 
3018     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
3019     if (ret < 0) {
3020         return ret;
3021     }
3022     x86_cpu_xrstor_all_areas(cpu, xsave);
3023 
3024     return 0;
3025 }
3026 
kvm_get_xcrs(X86CPU * cpu)3027 static int kvm_get_xcrs(X86CPU *cpu)
3028 {
3029     CPUX86State *env = &cpu->env;
3030     int i, ret;
3031     struct kvm_xcrs xcrs;
3032 
3033     if (!has_xcrs) {
3034         return 0;
3035     }
3036 
3037     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3038     if (ret < 0) {
3039         return ret;
3040     }
3041 
3042     for (i = 0; i < xcrs.nr_xcrs; i++) {
3043         /* Only support xcr0 now */
3044         if (xcrs.xcrs[i].xcr == 0) {
3045             env->xcr0 = xcrs.xcrs[i].value;
3046             break;
3047         }
3048     }
3049     return 0;
3050 }
3051 
kvm_get_sregs(X86CPU * cpu)3052 static int kvm_get_sregs(X86CPU *cpu)
3053 {
3054     CPUX86State *env = &cpu->env;
3055     struct kvm_sregs sregs;
3056     int bit, i, ret;
3057 
3058     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3059     if (ret < 0) {
3060         return ret;
3061     }
3062 
3063     /* There can only be one pending IRQ set in the bitmap at a time, so try
3064        to find it and save its number instead (-1 for none). */
3065     env->interrupt_injected = -1;
3066     for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
3067         if (sregs.interrupt_bitmap[i]) {
3068             bit = ctz64(sregs.interrupt_bitmap[i]);
3069             env->interrupt_injected = i * 64 + bit;
3070             break;
3071         }
3072     }
3073 
3074     get_seg(&env->segs[R_CS], &sregs.cs);
3075     get_seg(&env->segs[R_DS], &sregs.ds);
3076     get_seg(&env->segs[R_ES], &sregs.es);
3077     get_seg(&env->segs[R_FS], &sregs.fs);
3078     get_seg(&env->segs[R_GS], &sregs.gs);
3079     get_seg(&env->segs[R_SS], &sregs.ss);
3080 
3081     get_seg(&env->tr, &sregs.tr);
3082     get_seg(&env->ldt, &sregs.ldt);
3083 
3084     env->idt.limit = sregs.idt.limit;
3085     env->idt.base = sregs.idt.base;
3086     env->gdt.limit = sregs.gdt.limit;
3087     env->gdt.base = sregs.gdt.base;
3088 
3089     env->cr[0] = sregs.cr0;
3090     env->cr[2] = sregs.cr2;
3091     env->cr[3] = sregs.cr3;
3092     env->cr[4] = sregs.cr4;
3093 
3094     env->efer = sregs.efer;
3095 
3096     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3097     x86_update_hflags(env);
3098 
3099     return 0;
3100 }
3101 
kvm_get_msrs(X86CPU * cpu)3102 static int kvm_get_msrs(X86CPU *cpu)
3103 {
3104     CPUX86State *env = &cpu->env;
3105     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3106     int ret, i;
3107     uint64_t mtrr_top_bits;
3108 
3109     kvm_msr_buf_reset(cpu);
3110 
3111     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3112     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3113     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3114     kvm_msr_entry_add(cpu, MSR_PAT, 0);
3115     if (has_msr_star) {
3116         kvm_msr_entry_add(cpu, MSR_STAR, 0);
3117     }
3118     if (has_msr_hsave_pa) {
3119         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3120     }
3121     if (has_msr_tsc_aux) {
3122         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3123     }
3124     if (has_msr_tsc_adjust) {
3125         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3126     }
3127     if (has_msr_tsc_deadline) {
3128         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3129     }
3130     if (has_msr_misc_enable) {
3131         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3132     }
3133     if (has_msr_smbase) {
3134         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3135     }
3136     if (has_msr_smi_count) {
3137         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3138     }
3139     if (has_msr_feature_control) {
3140         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3141     }
3142     if (has_msr_bndcfgs) {
3143         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3144     }
3145     if (has_msr_xss) {
3146         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3147     }
3148     if (has_msr_umwait) {
3149         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3150     }
3151     if (has_msr_spec_ctrl) {
3152         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3153     }
3154     if (has_msr_tsx_ctrl) {
3155         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3156     }
3157     if (has_msr_virt_ssbd) {
3158         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3159     }
3160     if (!env->tsc_valid) {
3161         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3162         env->tsc_valid = !runstate_is_running();
3163     }
3164 
3165 #ifdef TARGET_X86_64
3166     if (lm_capable_kernel) {
3167         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3168         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3169         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3170         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3171     }
3172 #endif
3173     kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3174     kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3175     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3176         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3177     }
3178     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3179         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3180     }
3181     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3182         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3183     }
3184     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3185         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3186     }
3187     if (has_architectural_pmu_version > 0) {
3188         if (has_architectural_pmu_version > 1) {
3189             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3190             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3191             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3192             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3193         }
3194         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3195             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3196         }
3197         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3198             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3199             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3200         }
3201     }
3202 
3203     if (env->mcg_cap) {
3204         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3205         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3206         if (has_msr_mcg_ext_ctl) {
3207             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3208         }
3209         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3210             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3211         }
3212     }
3213 
3214     if (has_msr_hv_hypercall) {
3215         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3216         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3217     }
3218     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3219         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3220     }
3221     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3222         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3223     }
3224     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3225         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3226         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3227         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3228     }
3229     if (has_msr_hv_crash) {
3230         int j;
3231 
3232         for (j = 0; j < HV_CRASH_PARAMS; j++) {
3233             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3234         }
3235     }
3236     if (has_msr_hv_runtime) {
3237         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3238     }
3239     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3240         uint32_t msr;
3241 
3242         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3243         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3244         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3245         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3246             kvm_msr_entry_add(cpu, msr, 0);
3247         }
3248     }
3249     if (has_msr_hv_stimer) {
3250         uint32_t msr;
3251 
3252         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3253              msr++) {
3254             kvm_msr_entry_add(cpu, msr, 0);
3255         }
3256     }
3257     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3258         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3259         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3260         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3261         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3262         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3263         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3264         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3265         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3266         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3267         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3268         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3269         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3270         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3271             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3272             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3273         }
3274     }
3275 
3276     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3277         int addr_num =
3278             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3279 
3280         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3281         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3282         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3283         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3284         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3285         for (i = 0; i < addr_num; i++) {
3286             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3287         }
3288     }
3289 
3290     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3291     if (ret < 0) {
3292         return ret;
3293     }
3294 
3295     if (ret < cpu->kvm_msr_buf->nmsrs) {
3296         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3297         error_report("error: failed to get MSR 0x%" PRIx32,
3298                      (uint32_t)e->index);
3299     }
3300 
3301     assert(ret == cpu->kvm_msr_buf->nmsrs);
3302     /*
3303      * MTRR masks: Each mask consists of 5 parts
3304      * a  10..0: must be zero
3305      * b  11   : valid bit
3306      * c n-1.12: actual mask bits
3307      * d  51..n: reserved must be zero
3308      * e  63.52: reserved must be zero
3309      *
3310      * 'n' is the number of physical bits supported by the CPU and is
3311      * apparently always <= 52.   We know our 'n' but don't know what
3312      * the destinations 'n' is; it might be smaller, in which case
3313      * it masks (c) on loading. It might be larger, in which case
3314      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3315      * we're migrating to.
3316      */
3317 
3318     if (cpu->fill_mtrr_mask) {
3319         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3320         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3321         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3322     } else {
3323         mtrr_top_bits = 0;
3324     }
3325 
3326     for (i = 0; i < ret; i++) {
3327         uint32_t index = msrs[i].index;
3328         switch (index) {
3329         case MSR_IA32_SYSENTER_CS:
3330             env->sysenter_cs = msrs[i].data;
3331             break;
3332         case MSR_IA32_SYSENTER_ESP:
3333             env->sysenter_esp = msrs[i].data;
3334             break;
3335         case MSR_IA32_SYSENTER_EIP:
3336             env->sysenter_eip = msrs[i].data;
3337             break;
3338         case MSR_PAT:
3339             env->pat = msrs[i].data;
3340             break;
3341         case MSR_STAR:
3342             env->star = msrs[i].data;
3343             break;
3344 #ifdef TARGET_X86_64
3345         case MSR_CSTAR:
3346             env->cstar = msrs[i].data;
3347             break;
3348         case MSR_KERNELGSBASE:
3349             env->kernelgsbase = msrs[i].data;
3350             break;
3351         case MSR_FMASK:
3352             env->fmask = msrs[i].data;
3353             break;
3354         case MSR_LSTAR:
3355             env->lstar = msrs[i].data;
3356             break;
3357 #endif
3358         case MSR_IA32_TSC:
3359             env->tsc = msrs[i].data;
3360             break;
3361         case MSR_TSC_AUX:
3362             env->tsc_aux = msrs[i].data;
3363             break;
3364         case MSR_TSC_ADJUST:
3365             env->tsc_adjust = msrs[i].data;
3366             break;
3367         case MSR_IA32_TSCDEADLINE:
3368             env->tsc_deadline = msrs[i].data;
3369             break;
3370         case MSR_VM_HSAVE_PA:
3371             env->vm_hsave = msrs[i].data;
3372             break;
3373         case MSR_KVM_SYSTEM_TIME:
3374             env->system_time_msr = msrs[i].data;
3375             break;
3376         case MSR_KVM_WALL_CLOCK:
3377             env->wall_clock_msr = msrs[i].data;
3378             break;
3379         case MSR_MCG_STATUS:
3380             env->mcg_status = msrs[i].data;
3381             break;
3382         case MSR_MCG_CTL:
3383             env->mcg_ctl = msrs[i].data;
3384             break;
3385         case MSR_MCG_EXT_CTL:
3386             env->mcg_ext_ctl = msrs[i].data;
3387             break;
3388         case MSR_IA32_MISC_ENABLE:
3389             env->msr_ia32_misc_enable = msrs[i].data;
3390             break;
3391         case MSR_IA32_SMBASE:
3392             env->smbase = msrs[i].data;
3393             break;
3394         case MSR_SMI_COUNT:
3395             env->msr_smi_count = msrs[i].data;
3396             break;
3397         case MSR_IA32_FEATURE_CONTROL:
3398             env->msr_ia32_feature_control = msrs[i].data;
3399             break;
3400         case MSR_IA32_BNDCFGS:
3401             env->msr_bndcfgs = msrs[i].data;
3402             break;
3403         case MSR_IA32_XSS:
3404             env->xss = msrs[i].data;
3405             break;
3406         case MSR_IA32_UMWAIT_CONTROL:
3407             env->umwait = msrs[i].data;
3408             break;
3409         default:
3410             if (msrs[i].index >= MSR_MC0_CTL &&
3411                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3412                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3413             }
3414             break;
3415         case MSR_KVM_ASYNC_PF_EN:
3416             env->async_pf_en_msr = msrs[i].data;
3417             break;
3418         case MSR_KVM_PV_EOI_EN:
3419             env->pv_eoi_en_msr = msrs[i].data;
3420             break;
3421         case MSR_KVM_STEAL_TIME:
3422             env->steal_time_msr = msrs[i].data;
3423             break;
3424         case MSR_KVM_POLL_CONTROL: {
3425             env->poll_control_msr = msrs[i].data;
3426             break;
3427         }
3428         case MSR_CORE_PERF_FIXED_CTR_CTRL:
3429             env->msr_fixed_ctr_ctrl = msrs[i].data;
3430             break;
3431         case MSR_CORE_PERF_GLOBAL_CTRL:
3432             env->msr_global_ctrl = msrs[i].data;
3433             break;
3434         case MSR_CORE_PERF_GLOBAL_STATUS:
3435             env->msr_global_status = msrs[i].data;
3436             break;
3437         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3438             env->msr_global_ovf_ctrl = msrs[i].data;
3439             break;
3440         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3441             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3442             break;
3443         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3444             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3445             break;
3446         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3447             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3448             break;
3449         case HV_X64_MSR_HYPERCALL:
3450             env->msr_hv_hypercall = msrs[i].data;
3451             break;
3452         case HV_X64_MSR_GUEST_OS_ID:
3453             env->msr_hv_guest_os_id = msrs[i].data;
3454             break;
3455         case HV_X64_MSR_APIC_ASSIST_PAGE:
3456             env->msr_hv_vapic = msrs[i].data;
3457             break;
3458         case HV_X64_MSR_REFERENCE_TSC:
3459             env->msr_hv_tsc = msrs[i].data;
3460             break;
3461         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3462             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3463             break;
3464         case HV_X64_MSR_VP_RUNTIME:
3465             env->msr_hv_runtime = msrs[i].data;
3466             break;
3467         case HV_X64_MSR_SCONTROL:
3468             env->msr_hv_synic_control = msrs[i].data;
3469             break;
3470         case HV_X64_MSR_SIEFP:
3471             env->msr_hv_synic_evt_page = msrs[i].data;
3472             break;
3473         case HV_X64_MSR_SIMP:
3474             env->msr_hv_synic_msg_page = msrs[i].data;
3475             break;
3476         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3477             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3478             break;
3479         case HV_X64_MSR_STIMER0_CONFIG:
3480         case HV_X64_MSR_STIMER1_CONFIG:
3481         case HV_X64_MSR_STIMER2_CONFIG:
3482         case HV_X64_MSR_STIMER3_CONFIG:
3483             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3484                                 msrs[i].data;
3485             break;
3486         case HV_X64_MSR_STIMER0_COUNT:
3487         case HV_X64_MSR_STIMER1_COUNT:
3488         case HV_X64_MSR_STIMER2_COUNT:
3489         case HV_X64_MSR_STIMER3_COUNT:
3490             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3491                                 msrs[i].data;
3492             break;
3493         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3494             env->msr_hv_reenlightenment_control = msrs[i].data;
3495             break;
3496         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3497             env->msr_hv_tsc_emulation_control = msrs[i].data;
3498             break;
3499         case HV_X64_MSR_TSC_EMULATION_STATUS:
3500             env->msr_hv_tsc_emulation_status = msrs[i].data;
3501             break;
3502         case MSR_MTRRdefType:
3503             env->mtrr_deftype = msrs[i].data;
3504             break;
3505         case MSR_MTRRfix64K_00000:
3506             env->mtrr_fixed[0] = msrs[i].data;
3507             break;
3508         case MSR_MTRRfix16K_80000:
3509             env->mtrr_fixed[1] = msrs[i].data;
3510             break;
3511         case MSR_MTRRfix16K_A0000:
3512             env->mtrr_fixed[2] = msrs[i].data;
3513             break;
3514         case MSR_MTRRfix4K_C0000:
3515             env->mtrr_fixed[3] = msrs[i].data;
3516             break;
3517         case MSR_MTRRfix4K_C8000:
3518             env->mtrr_fixed[4] = msrs[i].data;
3519             break;
3520         case MSR_MTRRfix4K_D0000:
3521             env->mtrr_fixed[5] = msrs[i].data;
3522             break;
3523         case MSR_MTRRfix4K_D8000:
3524             env->mtrr_fixed[6] = msrs[i].data;
3525             break;
3526         case MSR_MTRRfix4K_E0000:
3527             env->mtrr_fixed[7] = msrs[i].data;
3528             break;
3529         case MSR_MTRRfix4K_E8000:
3530             env->mtrr_fixed[8] = msrs[i].data;
3531             break;
3532         case MSR_MTRRfix4K_F0000:
3533             env->mtrr_fixed[9] = msrs[i].data;
3534             break;
3535         case MSR_MTRRfix4K_F8000:
3536             env->mtrr_fixed[10] = msrs[i].data;
3537             break;
3538         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3539             if (index & 1) {
3540                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3541                                                                mtrr_top_bits;
3542             } else {
3543                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3544             }
3545             break;
3546         case MSR_IA32_SPEC_CTRL:
3547             env->spec_ctrl = msrs[i].data;
3548             break;
3549         case MSR_IA32_TSX_CTRL:
3550             env->tsx_ctrl = msrs[i].data;
3551             break;
3552         case MSR_VIRT_SSBD:
3553             env->virt_ssbd = msrs[i].data;
3554             break;
3555         case MSR_IA32_RTIT_CTL:
3556             env->msr_rtit_ctrl = msrs[i].data;
3557             break;
3558         case MSR_IA32_RTIT_STATUS:
3559             env->msr_rtit_status = msrs[i].data;
3560             break;
3561         case MSR_IA32_RTIT_OUTPUT_BASE:
3562             env->msr_rtit_output_base = msrs[i].data;
3563             break;
3564         case MSR_IA32_RTIT_OUTPUT_MASK:
3565             env->msr_rtit_output_mask = msrs[i].data;
3566             break;
3567         case MSR_IA32_RTIT_CR3_MATCH:
3568             env->msr_rtit_cr3_match = msrs[i].data;
3569             break;
3570         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3571             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3572             break;
3573         }
3574     }
3575 
3576     return 0;
3577 }
3578 
kvm_put_mp_state(X86CPU * cpu)3579 static int kvm_put_mp_state(X86CPU *cpu)
3580 {
3581     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
3582 
3583     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
3584 }
3585 
kvm_get_mp_state(X86CPU * cpu)3586 static int kvm_get_mp_state(X86CPU *cpu)
3587 {
3588     CPUState *cs = CPU(cpu);
3589     CPUX86State *env = &cpu->env;
3590     struct kvm_mp_state mp_state;
3591     int ret;
3592 
3593     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
3594     if (ret < 0) {
3595         return ret;
3596     }
3597     env->mp_state = mp_state.mp_state;
3598     if (kvm_irqchip_in_kernel()) {
3599         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
3600     }
3601     return 0;
3602 }
3603 
kvm_get_apic(X86CPU * cpu)3604 static int kvm_get_apic(X86CPU *cpu)
3605 {
3606     DeviceState *apic = cpu->apic_state;
3607     struct kvm_lapic_state kapic;
3608     int ret;
3609 
3610     if (apic && kvm_irqchip_in_kernel()) {
3611         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
3612         if (ret < 0) {
3613             return ret;
3614         }
3615 
3616         kvm_get_apic_state(apic, &kapic);
3617     }
3618     return 0;
3619 }
3620 
kvm_put_vcpu_events(X86CPU * cpu,int level)3621 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
3622 {
3623     CPUState *cs = CPU(cpu);
3624     CPUX86State *env = &cpu->env;
3625     struct kvm_vcpu_events events = {};
3626 
3627     if (!kvm_has_vcpu_events()) {
3628         return 0;
3629     }
3630 
3631     events.flags = 0;
3632 
3633     if (has_exception_payload) {
3634         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3635         events.exception.pending = env->exception_pending;
3636         events.exception_has_payload = env->exception_has_payload;
3637         events.exception_payload = env->exception_payload;
3638     }
3639     events.exception.nr = env->exception_nr;
3640     events.exception.injected = env->exception_injected;
3641     events.exception.has_error_code = env->has_error_code;
3642     events.exception.error_code = env->error_code;
3643 
3644     events.interrupt.injected = (env->interrupt_injected >= 0);
3645     events.interrupt.nr = env->interrupt_injected;
3646     events.interrupt.soft = env->soft_interrupt;
3647 
3648     events.nmi.injected = env->nmi_injected;
3649     events.nmi.pending = env->nmi_pending;
3650     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3651 
3652     events.sipi_vector = env->sipi_vector;
3653 
3654     if (has_msr_smbase) {
3655         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3656         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3657         if (kvm_irqchip_in_kernel()) {
3658             /* As soon as these are moved to the kernel, remove them
3659              * from cs->interrupt_request.
3660              */
3661             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3662             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3663             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3664         } else {
3665             /* Keep these in cs->interrupt_request.  */
3666             events.smi.pending = 0;
3667             events.smi.latched_init = 0;
3668         }
3669         /* Stop SMI delivery on old machine types to avoid a reboot
3670          * on an inward migration of an old VM.
3671          */
3672         if (!cpu->kvm_no_smi_migration) {
3673             events.flags |= KVM_VCPUEVENT_VALID_SMM;
3674         }
3675     }
3676 
3677     if (level >= KVM_PUT_RESET_STATE) {
3678         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3679         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3680             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3681         }
3682     }
3683 
3684     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
3685 }
3686 
kvm_get_vcpu_events(X86CPU * cpu)3687 static int kvm_get_vcpu_events(X86CPU *cpu)
3688 {
3689     CPUX86State *env = &cpu->env;
3690     struct kvm_vcpu_events events;
3691     int ret;
3692 
3693     if (!kvm_has_vcpu_events()) {
3694         return 0;
3695     }
3696 
3697     memset(&events, 0, sizeof(events));
3698     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
3699     if (ret < 0) {
3700        return ret;
3701     }
3702 
3703     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3704         env->exception_pending = events.exception.pending;
3705         env->exception_has_payload = events.exception_has_payload;
3706         env->exception_payload = events.exception_payload;
3707     } else {
3708         env->exception_pending = 0;
3709         env->exception_has_payload = false;
3710     }
3711     env->exception_injected = events.exception.injected;
3712     env->exception_nr =
3713         (env->exception_pending || env->exception_injected) ?
3714         events.exception.nr : -1;
3715     env->has_error_code = events.exception.has_error_code;
3716     env->error_code = events.exception.error_code;
3717 
3718     env->interrupt_injected =
3719         events.interrupt.injected ? events.interrupt.nr : -1;
3720     env->soft_interrupt = events.interrupt.soft;
3721 
3722     env->nmi_injected = events.nmi.injected;
3723     env->nmi_pending = events.nmi.pending;
3724     if (events.nmi.masked) {
3725         env->hflags2 |= HF2_NMI_MASK;
3726     } else {
3727         env->hflags2 &= ~HF2_NMI_MASK;
3728     }
3729 
3730     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3731         if (events.smi.smm) {
3732             env->hflags |= HF_SMM_MASK;
3733         } else {
3734             env->hflags &= ~HF_SMM_MASK;
3735         }
3736         if (events.smi.pending) {
3737             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3738         } else {
3739             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3740         }
3741         if (events.smi.smm_inside_nmi) {
3742             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3743         } else {
3744             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3745         }
3746         if (events.smi.latched_init) {
3747             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3748         } else {
3749             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3750         }
3751     }
3752 
3753     env->sipi_vector = events.sipi_vector;
3754 
3755     return 0;
3756 }
3757 
kvm_guest_debug_workarounds(X86CPU * cpu)3758 static int kvm_guest_debug_workarounds(X86CPU *cpu)
3759 {
3760     CPUState *cs = CPU(cpu);
3761     CPUX86State *env = &cpu->env;
3762     int ret = 0;
3763     unsigned long reinject_trap = 0;
3764 
3765     if (!kvm_has_vcpu_events()) {
3766         if (env->exception_nr == EXCP01_DB) {
3767             reinject_trap = KVM_GUESTDBG_INJECT_DB;
3768         } else if (env->exception_injected == EXCP03_INT3) {
3769             reinject_trap = KVM_GUESTDBG_INJECT_BP;
3770         }
3771         kvm_reset_exception(env);
3772     }
3773 
3774     /*
3775      * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3776      * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3777      * by updating the debug state once again if single-stepping is on.
3778      * Another reason to call kvm_update_guest_debug here is a pending debug
3779      * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3780      * reinject them via SET_GUEST_DEBUG.
3781      */
3782     if (reinject_trap ||
3783         (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
3784         ret = kvm_update_guest_debug(cs, reinject_trap);
3785     }
3786     return ret;
3787 }
3788 
kvm_put_debugregs(X86CPU * cpu)3789 static int kvm_put_debugregs(X86CPU *cpu)
3790 {
3791     CPUX86State *env = &cpu->env;
3792     struct kvm_debugregs dbgregs;
3793     int i;
3794 
3795     if (!kvm_has_debugregs()) {
3796         return 0;
3797     }
3798 
3799     memset(&dbgregs, 0, sizeof(dbgregs));
3800     for (i = 0; i < 4; i++) {
3801         dbgregs.db[i] = env->dr[i];
3802     }
3803     dbgregs.dr6 = env->dr[6];
3804     dbgregs.dr7 = env->dr[7];
3805     dbgregs.flags = 0;
3806 
3807     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
3808 }
3809 
kvm_get_debugregs(X86CPU * cpu)3810 static int kvm_get_debugregs(X86CPU *cpu)
3811 {
3812     CPUX86State *env = &cpu->env;
3813     struct kvm_debugregs dbgregs;
3814     int i, ret;
3815 
3816     if (!kvm_has_debugregs()) {
3817         return 0;
3818     }
3819 
3820     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
3821     if (ret < 0) {
3822         return ret;
3823     }
3824     for (i = 0; i < 4; i++) {
3825         env->dr[i] = dbgregs.db[i];
3826     }
3827     env->dr[4] = env->dr[6] = dbgregs.dr6;
3828     env->dr[5] = env->dr[7] = dbgregs.dr7;
3829 
3830     return 0;
3831 }
3832 
kvm_put_nested_state(X86CPU * cpu)3833 static int kvm_put_nested_state(X86CPU *cpu)
3834 {
3835     CPUX86State *env = &cpu->env;
3836     int max_nested_state_len = kvm_max_nested_state_length();
3837 
3838     if (!env->nested_state) {
3839         return 0;
3840     }
3841 
3842     assert(env->nested_state->size <= max_nested_state_len);
3843     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3844 }
3845 
kvm_get_nested_state(X86CPU * cpu)3846 static int kvm_get_nested_state(X86CPU *cpu)
3847 {
3848     CPUX86State *env = &cpu->env;
3849     int max_nested_state_len = kvm_max_nested_state_length();
3850     int ret;
3851 
3852     if (!env->nested_state) {
3853         return 0;
3854     }
3855 
3856     /*
3857      * It is possible that migration restored a smaller size into
3858      * nested_state->hdr.size than what our kernel support.
3859      * We preserve migration origin nested_state->hdr.size for
3860      * call to KVM_SET_NESTED_STATE but wish that our next call
3861      * to KVM_GET_NESTED_STATE will use max size our kernel support.
3862      */
3863     env->nested_state->size = max_nested_state_len;
3864 
3865     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3866     if (ret < 0) {
3867         return ret;
3868     }
3869 
3870     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3871         env->hflags |= HF_GUEST_MASK;
3872     } else {
3873         env->hflags &= ~HF_GUEST_MASK;
3874     }
3875 
3876     return ret;
3877 }
3878 
kvm_arch_put_registers(CPUState * cpu,int level)3879 int kvm_arch_put_registers(CPUState *cpu, int level)
3880 {
3881     X86CPU *x86_cpu = X86_CPU(cpu);
3882     int ret;
3883 
3884     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
3885 
3886     if (level >= KVM_PUT_RESET_STATE) {
3887         ret = kvm_put_nested_state(x86_cpu);
3888         if (ret < 0) {
3889             return ret;
3890         }
3891 
3892         ret = kvm_put_msr_feature_control(x86_cpu);
3893         if (ret < 0) {
3894             return ret;
3895         }
3896     }
3897 
3898     if (level == KVM_PUT_FULL_STATE) {
3899         /* We don't check for kvm_arch_set_tsc_khz() errors here,
3900          * because TSC frequency mismatch shouldn't abort migration,
3901          * unless the user explicitly asked for a more strict TSC
3902          * setting (e.g. using an explicit "tsc-freq" option).
3903          */
3904         kvm_arch_set_tsc_khz(cpu);
3905     }
3906 
3907     ret = kvm_getput_regs(x86_cpu, 1);
3908     if (ret < 0) {
3909         return ret;
3910     }
3911     ret = kvm_put_xsave(x86_cpu);
3912     if (ret < 0) {
3913         return ret;
3914     }
3915     ret = kvm_put_xcrs(x86_cpu);
3916     if (ret < 0) {
3917         return ret;
3918     }
3919     ret = kvm_put_sregs(x86_cpu);
3920     if (ret < 0) {
3921         return ret;
3922     }
3923     /* must be before kvm_put_msrs */
3924     ret = kvm_inject_mce_oldstyle(x86_cpu);
3925     if (ret < 0) {
3926         return ret;
3927     }
3928     ret = kvm_put_msrs(x86_cpu, level);
3929     if (ret < 0) {
3930         return ret;
3931     }
3932     ret = kvm_put_vcpu_events(x86_cpu, level);
3933     if (ret < 0) {
3934         return ret;
3935     }
3936     if (level >= KVM_PUT_RESET_STATE) {
3937         ret = kvm_put_mp_state(x86_cpu);
3938         if (ret < 0) {
3939             return ret;
3940         }
3941     }
3942 
3943     ret = kvm_put_tscdeadline_msr(x86_cpu);
3944     if (ret < 0) {
3945         return ret;
3946     }
3947     ret = kvm_put_debugregs(x86_cpu);
3948     if (ret < 0) {
3949         return ret;
3950     }
3951     /* must be last */
3952     ret = kvm_guest_debug_workarounds(x86_cpu);
3953     if (ret < 0) {
3954         return ret;
3955     }
3956     return 0;
3957 }
3958 
kvm_arch_get_registers(CPUState * cs)3959 int kvm_arch_get_registers(CPUState *cs)
3960 {
3961     X86CPU *cpu = X86_CPU(cs);
3962     int ret;
3963 
3964     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
3965 
3966     ret = kvm_get_vcpu_events(cpu);
3967     if (ret < 0) {
3968         goto out;
3969     }
3970     /*
3971      * KVM_GET_MPSTATE can modify CS and RIP, call it before
3972      * KVM_GET_REGS and KVM_GET_SREGS.
3973      */
3974     ret = kvm_get_mp_state(cpu);
3975     if (ret < 0) {
3976         goto out;
3977     }
3978     ret = kvm_getput_regs(cpu, 0);
3979     if (ret < 0) {
3980         goto out;
3981     }
3982     ret = kvm_get_xsave(cpu);
3983     if (ret < 0) {
3984         goto out;
3985     }
3986     ret = kvm_get_xcrs(cpu);
3987     if (ret < 0) {
3988         goto out;
3989     }
3990     ret = kvm_get_sregs(cpu);
3991     if (ret < 0) {
3992         goto out;
3993     }
3994     ret = kvm_get_msrs(cpu);
3995     if (ret < 0) {
3996         goto out;
3997     }
3998     ret = kvm_get_apic(cpu);
3999     if (ret < 0) {
4000         goto out;
4001     }
4002     ret = kvm_get_debugregs(cpu);
4003     if (ret < 0) {
4004         goto out;
4005     }
4006     ret = kvm_get_nested_state(cpu);
4007     if (ret < 0) {
4008         goto out;
4009     }
4010     ret = 0;
4011  out:
4012     cpu_sync_bndcs_hflags(&cpu->env);
4013     return ret;
4014 }
4015 
kvm_arch_pre_run(CPUState * cpu,struct kvm_run * run)4016 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4017 {
4018     X86CPU *x86_cpu = X86_CPU(cpu);
4019     CPUX86State *env = &x86_cpu->env;
4020     int ret;
4021 
4022     /* Inject NMI */
4023     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4024         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4025             qemu_mutex_lock_iothread();
4026             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4027             qemu_mutex_unlock_iothread();
4028             DPRINTF("injected NMI\n");
4029             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4030             if (ret < 0) {
4031                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4032                         strerror(-ret));
4033             }
4034         }
4035         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4036             qemu_mutex_lock_iothread();
4037             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4038             qemu_mutex_unlock_iothread();
4039             DPRINTF("injected SMI\n");
4040             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4041             if (ret < 0) {
4042                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4043                         strerror(-ret));
4044             }
4045         }
4046     }
4047 
4048     if (!kvm_pic_in_kernel()) {
4049         qemu_mutex_lock_iothread();
4050     }
4051 
4052     /* Force the VCPU out of its inner loop to process any INIT requests
4053      * or (for userspace APIC, but it is cheap to combine the checks here)
4054      * pending TPR access reports.
4055      */
4056     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4057         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4058             !(env->hflags & HF_SMM_MASK)) {
4059             cpu->exit_request = 1;
4060         }
4061         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4062             cpu->exit_request = 1;
4063         }
4064     }
4065 
4066     if (!kvm_pic_in_kernel()) {
4067         /* Try to inject an interrupt if the guest can accept it */
4068         if (run->ready_for_interrupt_injection &&
4069             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4070             (env->eflags & IF_MASK)) {
4071             int irq;
4072 
4073             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4074             irq = cpu_get_pic_interrupt(env);
4075             if (irq >= 0) {
4076                 struct kvm_interrupt intr;
4077 
4078                 intr.irq = irq;
4079                 DPRINTF("injected interrupt %d\n", irq);
4080                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4081                 if (ret < 0) {
4082                     fprintf(stderr,
4083                             "KVM: injection failed, interrupt lost (%s)\n",
4084                             strerror(-ret));
4085                 }
4086             }
4087         }
4088 
4089         /* If we have an interrupt but the guest is not ready to receive an
4090          * interrupt, request an interrupt window exit.  This will
4091          * cause a return to userspace as soon as the guest is ready to
4092          * receive interrupts. */
4093         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4094             run->request_interrupt_window = 1;
4095         } else {
4096             run->request_interrupt_window = 0;
4097         }
4098 
4099         DPRINTF("setting tpr\n");
4100         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4101 
4102         qemu_mutex_unlock_iothread();
4103     }
4104 }
4105 
kvm_arch_post_run(CPUState * cpu,struct kvm_run * run)4106 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4107 {
4108     X86CPU *x86_cpu = X86_CPU(cpu);
4109     CPUX86State *env = &x86_cpu->env;
4110 
4111     if (run->flags & KVM_RUN_X86_SMM) {
4112         env->hflags |= HF_SMM_MASK;
4113     } else {
4114         env->hflags &= ~HF_SMM_MASK;
4115     }
4116     if (run->if_flag) {
4117         env->eflags |= IF_MASK;
4118     } else {
4119         env->eflags &= ~IF_MASK;
4120     }
4121 
4122     /* We need to protect the apic state against concurrent accesses from
4123      * different threads in case the userspace irqchip is used. */
4124     if (!kvm_irqchip_in_kernel()) {
4125         qemu_mutex_lock_iothread();
4126     }
4127     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4128     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4129     if (!kvm_irqchip_in_kernel()) {
4130         qemu_mutex_unlock_iothread();
4131     }
4132     return cpu_get_mem_attrs(env);
4133 }
4134 
kvm_arch_process_async_events(CPUState * cs)4135 int kvm_arch_process_async_events(CPUState *cs)
4136 {
4137     X86CPU *cpu = X86_CPU(cs);
4138     CPUX86State *env = &cpu->env;
4139 
4140     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4141         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4142         assert(env->mcg_cap);
4143 
4144         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4145 
4146         kvm_cpu_synchronize_state(cs);
4147 
4148         if (env->exception_nr == EXCP08_DBLE) {
4149             /* this means triple fault */
4150             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4151             cs->exit_request = 1;
4152             return 0;
4153         }
4154         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4155         env->has_error_code = 0;
4156 
4157         cs->halted = 0;
4158         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4159             env->mp_state = KVM_MP_STATE_RUNNABLE;
4160         }
4161     }
4162 
4163     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4164         !(env->hflags & HF_SMM_MASK)) {
4165         kvm_cpu_synchronize_state(cs);
4166         do_cpu_init(cpu);
4167     }
4168 
4169     if (kvm_irqchip_in_kernel()) {
4170         return 0;
4171     }
4172 
4173     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4174         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4175         apic_poll_irq(cpu->apic_state);
4176     }
4177     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4178          (env->eflags & IF_MASK)) ||
4179         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4180         cs->halted = 0;
4181     }
4182     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4183         kvm_cpu_synchronize_state(cs);
4184         do_cpu_sipi(cpu);
4185     }
4186     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4187         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4188         kvm_cpu_synchronize_state(cs);
4189         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4190                                       env->tpr_access_type);
4191     }
4192 
4193     return cs->halted;
4194 }
4195 
kvm_handle_halt(X86CPU * cpu)4196 static int kvm_handle_halt(X86CPU *cpu)
4197 {
4198     CPUState *cs = CPU(cpu);
4199     CPUX86State *env = &cpu->env;
4200 
4201     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4202           (env->eflags & IF_MASK)) &&
4203         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4204         cs->halted = 1;
4205         return EXCP_HLT;
4206     }
4207 
4208     return 0;
4209 }
4210 
kvm_handle_tpr_access(X86CPU * cpu)4211 static int kvm_handle_tpr_access(X86CPU *cpu)
4212 {
4213     CPUState *cs = CPU(cpu);
4214     struct kvm_run *run = cs->kvm_run;
4215 
4216     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4217                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
4218                                                            : TPR_ACCESS_READ);
4219     return 1;
4220 }
4221 
kvm_arch_insert_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)4222 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4223 {
4224     static const uint8_t int3 = 0xcc;
4225 
4226     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4227         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4228         return -EINVAL;
4229     }
4230     return 0;
4231 }
4232 
kvm_arch_remove_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)4233 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4234 {
4235     uint8_t int3;
4236 
4237     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
4238         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4239         return -EINVAL;
4240     }
4241     return 0;
4242 }
4243 
4244 static struct {
4245     target_ulong addr;
4246     int len;
4247     int type;
4248 } hw_breakpoint[4];
4249 
4250 static int nb_hw_breakpoint;
4251 
find_hw_breakpoint(target_ulong addr,int len,int type)4252 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4253 {
4254     int n;
4255 
4256     for (n = 0; n < nb_hw_breakpoint; n++) {
4257         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4258             (hw_breakpoint[n].len == len || len == -1)) {
4259             return n;
4260         }
4261     }
4262     return -1;
4263 }
4264 
kvm_arch_insert_hw_breakpoint(target_ulong addr,target_ulong len,int type)4265 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4266                                   target_ulong len, int type)
4267 {
4268     switch (type) {
4269     case GDB_BREAKPOINT_HW:
4270         len = 1;
4271         break;
4272     case GDB_WATCHPOINT_WRITE:
4273     case GDB_WATCHPOINT_ACCESS:
4274         switch (len) {
4275         case 1:
4276             break;
4277         case 2:
4278         case 4:
4279         case 8:
4280             if (addr & (len - 1)) {
4281                 return -EINVAL;
4282             }
4283             break;
4284         default:
4285             return -EINVAL;
4286         }
4287         break;
4288     default:
4289         return -ENOSYS;
4290     }
4291 
4292     if (nb_hw_breakpoint == 4) {
4293         return -ENOBUFS;
4294     }
4295     if (find_hw_breakpoint(addr, len, type) >= 0) {
4296         return -EEXIST;
4297     }
4298     hw_breakpoint[nb_hw_breakpoint].addr = addr;
4299     hw_breakpoint[nb_hw_breakpoint].len = len;
4300     hw_breakpoint[nb_hw_breakpoint].type = type;
4301     nb_hw_breakpoint++;
4302 
4303     return 0;
4304 }
4305 
kvm_arch_remove_hw_breakpoint(target_ulong addr,target_ulong len,int type)4306 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4307                                   target_ulong len, int type)
4308 {
4309     int n;
4310 
4311     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4312     if (n < 0) {
4313         return -ENOENT;
4314     }
4315     nb_hw_breakpoint--;
4316     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4317 
4318     return 0;
4319 }
4320 
kvm_arch_remove_all_hw_breakpoints(void)4321 void kvm_arch_remove_all_hw_breakpoints(void)
4322 {
4323     nb_hw_breakpoint = 0;
4324 }
4325 
4326 static CPUWatchpoint hw_watchpoint;
4327 
kvm_handle_debug(X86CPU * cpu,struct kvm_debug_exit_arch * arch_info)4328 static int kvm_handle_debug(X86CPU *cpu,
4329                             struct kvm_debug_exit_arch *arch_info)
4330 {
4331     CPUState *cs = CPU(cpu);
4332     CPUX86State *env = &cpu->env;
4333     int ret = 0;
4334     int n;
4335 
4336     if (arch_info->exception == EXCP01_DB) {
4337         if (arch_info->dr6 & DR6_BS) {
4338             if (cs->singlestep_enabled) {
4339                 ret = EXCP_DEBUG;
4340             }
4341         } else {
4342             for (n = 0; n < 4; n++) {
4343                 if (arch_info->dr6 & (1 << n)) {
4344                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4345                     case 0x0:
4346                         ret = EXCP_DEBUG;
4347                         break;
4348                     case 0x1:
4349                         ret = EXCP_DEBUG;
4350                         cs->watchpoint_hit = &hw_watchpoint;
4351                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4352                         hw_watchpoint.flags = BP_MEM_WRITE;
4353                         break;
4354                     case 0x3:
4355                         ret = EXCP_DEBUG;
4356                         cs->watchpoint_hit = &hw_watchpoint;
4357                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4358                         hw_watchpoint.flags = BP_MEM_ACCESS;
4359                         break;
4360                     }
4361                 }
4362             }
4363         }
4364     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4365         ret = EXCP_DEBUG;
4366     }
4367     if (ret == 0) {
4368         cpu_synchronize_state(cs);
4369         assert(env->exception_nr == -1);
4370 
4371         /* pass to guest */
4372         kvm_queue_exception(env, arch_info->exception,
4373                             arch_info->exception == EXCP01_DB,
4374                             arch_info->dr6);
4375         env->has_error_code = 0;
4376     }
4377 
4378     return ret;
4379 }
4380 
kvm_arch_update_guest_debug(CPUState * cpu,struct kvm_guest_debug * dbg)4381 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4382 {
4383     const uint8_t type_code[] = {
4384         [GDB_BREAKPOINT_HW] = 0x0,
4385         [GDB_WATCHPOINT_WRITE] = 0x1,
4386         [GDB_WATCHPOINT_ACCESS] = 0x3
4387     };
4388     const uint8_t len_code[] = {
4389         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4390     };
4391     int n;
4392 
4393     if (kvm_sw_breakpoints_active(cpu)) {
4394         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4395     }
4396     if (nb_hw_breakpoint > 0) {
4397         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4398         dbg->arch.debugreg[7] = 0x0600;
4399         for (n = 0; n < nb_hw_breakpoint; n++) {
4400             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4401             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4402                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4403                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4404         }
4405     }
4406 }
4407 
host_supports_vmx(void)4408 static bool host_supports_vmx(void)
4409 {
4410     uint32_t ecx, unused;
4411 
4412     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4413     return ecx & CPUID_EXT_VMX;
4414 }
4415 
4416 #define VMX_INVALID_GUEST_STATE 0x80000021
4417 
kvm_arch_handle_exit(CPUState * cs,struct kvm_run * run)4418 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4419 {
4420     X86CPU *cpu = X86_CPU(cs);
4421     uint64_t code;
4422     int ret;
4423 
4424     switch (run->exit_reason) {
4425     case KVM_EXIT_HLT:
4426         DPRINTF("handle_hlt\n");
4427         qemu_mutex_lock_iothread();
4428         ret = kvm_handle_halt(cpu);
4429         qemu_mutex_unlock_iothread();
4430         break;
4431     case KVM_EXIT_SET_TPR:
4432         ret = 0;
4433         break;
4434     case KVM_EXIT_TPR_ACCESS:
4435         qemu_mutex_lock_iothread();
4436         ret = kvm_handle_tpr_access(cpu);
4437         qemu_mutex_unlock_iothread();
4438         break;
4439     case KVM_EXIT_FAIL_ENTRY:
4440         code = run->fail_entry.hardware_entry_failure_reason;
4441         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4442                 code);
4443         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4444             fprintf(stderr,
4445                     "\nIf you're running a guest on an Intel machine without "
4446                         "unrestricted mode\n"
4447                     "support, the failure can be most likely due to the guest "
4448                         "entering an invalid\n"
4449                     "state for Intel VT. For example, the guest maybe running "
4450                         "in big real mode\n"
4451                     "which is not supported on less recent Intel processors."
4452                         "\n\n");
4453         }
4454         ret = -1;
4455         break;
4456     case KVM_EXIT_EXCEPTION:
4457         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4458                 run->ex.exception, run->ex.error_code);
4459         ret = -1;
4460         break;
4461     case KVM_EXIT_DEBUG:
4462         DPRINTF("kvm_exit_debug\n");
4463         qemu_mutex_lock_iothread();
4464         ret = kvm_handle_debug(cpu, &run->debug.arch);
4465         qemu_mutex_unlock_iothread();
4466         break;
4467     case KVM_EXIT_HYPERV:
4468         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4469         break;
4470     case KVM_EXIT_IOAPIC_EOI:
4471         ioapic_eoi_broadcast(run->eoi.vector);
4472         ret = 0;
4473         break;
4474     default:
4475         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4476         ret = -1;
4477         break;
4478     }
4479 
4480     return ret;
4481 }
4482 
kvm_arch_stop_on_emulation_error(CPUState * cs)4483 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4484 {
4485     X86CPU *cpu = X86_CPU(cs);
4486     CPUX86State *env = &cpu->env;
4487 
4488     kvm_cpu_synchronize_state(cs);
4489     return !(env->cr[0] & CR0_PE_MASK) ||
4490            ((env->segs[R_CS].selector  & 3) != 3);
4491 }
4492 
kvm_arch_init_irq_routing(KVMState * s)4493 void kvm_arch_init_irq_routing(KVMState *s)
4494 {
4495     if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
4496         /* If kernel can't do irq routing, interrupt source
4497          * override 0->2 cannot be set up as required by HPET.
4498          * So we have to disable it.
4499          */
4500         no_hpet = 1;
4501     }
4502     /* We know at this point that we're using the in-kernel
4503      * irqchip, so we can use irqfds, and on x86 we know
4504      * we can use msi via irqfd and GSI routing.
4505      */
4506     kvm_msi_via_irqfd_allowed = true;
4507     kvm_gsi_routing_allowed = true;
4508 
4509     if (kvm_irqchip_is_split()) {
4510         int i;
4511 
4512         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4513            MSI routes for signaling interrupts to the local apics. */
4514         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
4515             if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
4516                 error_report("Could not enable split IRQ mode.");
4517                 exit(1);
4518             }
4519         }
4520     }
4521 }
4522 
kvm_arch_irqchip_create(MachineState * ms,KVMState * s)4523 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
4524 {
4525     int ret;
4526     if (machine_kernel_irqchip_split(ms)) {
4527         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4528         if (ret) {
4529             error_report("Could not enable split irqchip mode: %s",
4530                          strerror(-ret));
4531             exit(1);
4532         } else {
4533             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4534             kvm_split_irqchip = true;
4535             return 1;
4536         }
4537     } else {
4538         return 0;
4539     }
4540 }
4541 
4542 /* Classic KVM device assignment interface. Will remain x86 only. */
kvm_device_pci_assign(KVMState * s,PCIHostDeviceAddress * dev_addr,uint32_t flags,uint32_t * dev_id)4543 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
4544                           uint32_t flags, uint32_t *dev_id)
4545 {
4546     struct kvm_assigned_pci_dev dev_data = {
4547         .segnr = dev_addr->domain,
4548         .busnr = dev_addr->bus,
4549         .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
4550         .flags = flags,
4551     };
4552     int ret;
4553 
4554     dev_data.assigned_dev_id =
4555         (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
4556 
4557     ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
4558     if (ret < 0) {
4559         return ret;
4560     }
4561 
4562     *dev_id = dev_data.assigned_dev_id;
4563 
4564     return 0;
4565 }
4566 
kvm_device_pci_deassign(KVMState * s,uint32_t dev_id)4567 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
4568 {
4569     struct kvm_assigned_pci_dev dev_data = {
4570         .assigned_dev_id = dev_id,
4571     };
4572 
4573     return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
4574 }
4575 
kvm_assign_irq_internal(KVMState * s,uint32_t dev_id,uint32_t irq_type,uint32_t guest_irq)4576 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
4577                                    uint32_t irq_type, uint32_t guest_irq)
4578 {
4579     struct kvm_assigned_irq assigned_irq = {
4580         .assigned_dev_id = dev_id,
4581         .guest_irq = guest_irq,
4582         .flags = irq_type,
4583     };
4584 
4585     if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
4586         return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
4587     } else {
4588         return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
4589     }
4590 }
4591 
kvm_device_intx_assign(KVMState * s,uint32_t dev_id,bool use_host_msi,uint32_t guest_irq)4592 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
4593                            uint32_t guest_irq)
4594 {
4595     uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
4596         (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
4597 
4598     return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
4599 }
4600 
kvm_device_intx_set_mask(KVMState * s,uint32_t dev_id,bool masked)4601 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
4602 {
4603     struct kvm_assigned_pci_dev dev_data = {
4604         .assigned_dev_id = dev_id,
4605         .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
4606     };
4607 
4608     return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
4609 }
4610 
kvm_deassign_irq_internal(KVMState * s,uint32_t dev_id,uint32_t type)4611 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
4612                                      uint32_t type)
4613 {
4614     struct kvm_assigned_irq assigned_irq = {
4615         .assigned_dev_id = dev_id,
4616         .flags = type,
4617     };
4618 
4619     return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
4620 }
4621 
kvm_device_intx_deassign(KVMState * s,uint32_t dev_id,bool use_host_msi)4622 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
4623 {
4624     return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
4625         (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
4626 }
4627 
kvm_device_msi_assign(KVMState * s,uint32_t dev_id,int virq)4628 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
4629 {
4630     return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
4631                                               KVM_DEV_IRQ_GUEST_MSI, virq);
4632 }
4633 
kvm_device_msi_deassign(KVMState * s,uint32_t dev_id)4634 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
4635 {
4636     return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
4637                                                 KVM_DEV_IRQ_HOST_MSI);
4638 }
4639 
kvm_device_msix_supported(KVMState * s)4640 bool kvm_device_msix_supported(KVMState *s)
4641 {
4642     /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
4643      * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
4644     return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
4645 }
4646 
kvm_device_msix_init_vectors(KVMState * s,uint32_t dev_id,uint32_t nr_vectors)4647 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
4648                                  uint32_t nr_vectors)
4649 {
4650     struct kvm_assigned_msix_nr msix_nr = {
4651         .assigned_dev_id = dev_id,
4652         .entry_nr = nr_vectors,
4653     };
4654 
4655     return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
4656 }
4657 
kvm_device_msix_set_vector(KVMState * s,uint32_t dev_id,uint32_t vector,int virq)4658 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
4659                                int virq)
4660 {
4661     struct kvm_assigned_msix_entry msix_entry = {
4662         .assigned_dev_id = dev_id,
4663         .gsi = virq,
4664         .entry = vector,
4665     };
4666 
4667     return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
4668 }
4669 
kvm_device_msix_assign(KVMState * s,uint32_t dev_id)4670 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
4671 {
4672     return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
4673                                               KVM_DEV_IRQ_GUEST_MSIX, 0);
4674 }
4675 
kvm_device_msix_deassign(KVMState * s,uint32_t dev_id)4676 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
4677 {
4678     return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
4679                                                 KVM_DEV_IRQ_HOST_MSIX);
4680 }
4681 
kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry * route,uint64_t address,uint32_t data,PCIDevice * dev)4682 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
4683                              uint64_t address, uint32_t data, PCIDevice *dev)
4684 {
4685     X86IOMMUState *iommu = x86_iommu_get_default();
4686 
4687     if (iommu) {
4688         int ret;
4689         MSIMessage src, dst;
4690         X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
4691 
4692         if (!class->int_remap) {
4693             return 0;
4694         }
4695 
4696         src.address = route->u.msi.address_hi;
4697         src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4698         src.address |= route->u.msi.address_lo;
4699         src.data = route->u.msi.data;
4700 
4701         ret = class->int_remap(iommu, &src, &dst, dev ? \
4702                                pci_requester_id(dev) : \
4703                                X86_IOMMU_SID_INVALID);
4704         if (ret) {
4705             trace_kvm_x86_fixup_msi_error(route->gsi);
4706             return 1;
4707         }
4708 
4709         route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4710         route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4711         route->u.msi.data = dst.data;
4712     }
4713 
4714     return 0;
4715 }
4716 
4717 typedef struct MSIRouteEntry MSIRouteEntry;
4718 
4719 struct MSIRouteEntry {
4720     PCIDevice *dev;             /* Device pointer */
4721     int vector;                 /* MSI/MSIX vector index */
4722     int virq;                   /* Virtual IRQ index */
4723     QLIST_ENTRY(MSIRouteEntry) list;
4724 };
4725 
4726 /* List of used GSI routes */
4727 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4728     QLIST_HEAD_INITIALIZER(msi_route_list);
4729 
kvm_update_msi_routes_all(void * private,bool global,uint32_t index,uint32_t mask)4730 static void kvm_update_msi_routes_all(void *private, bool global,
4731                                       uint32_t index, uint32_t mask)
4732 {
4733     int cnt = 0, vector;
4734     MSIRouteEntry *entry;
4735     MSIMessage msg;
4736     PCIDevice *dev;
4737 
4738     /* TODO: explicit route update */
4739     QLIST_FOREACH(entry, &msi_route_list, list) {
4740         cnt++;
4741         vector = entry->vector;
4742         dev = entry->dev;
4743         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4744             msg = msix_get_message(dev, vector);
4745         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4746             msg = msi_get_message(dev, vector);
4747         } else {
4748             /*
4749              * Either MSI/MSIX is disabled for the device, or the
4750              * specific message was masked out.  Skip this one.
4751              */
4752             continue;
4753         }
4754         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
4755     }
4756     kvm_irqchip_commit_routes(kvm_state);
4757     trace_kvm_x86_update_msi_routes(cnt);
4758 }
4759 
kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry * route,int vector,PCIDevice * dev)4760 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4761                                 int vector, PCIDevice *dev)
4762 {
4763     static bool notify_list_inited = false;
4764     MSIRouteEntry *entry;
4765 
4766     if (!dev) {
4767         /* These are (possibly) IOAPIC routes only used for split
4768          * kernel irqchip mode, while what we are housekeeping are
4769          * PCI devices only. */
4770         return 0;
4771     }
4772 
4773     entry = g_new0(MSIRouteEntry, 1);
4774     entry->dev = dev;
4775     entry->vector = vector;
4776     entry->virq = route->gsi;
4777     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4778 
4779     trace_kvm_x86_add_msi_route(route->gsi);
4780 
4781     if (!notify_list_inited) {
4782         /* For the first time we do add route, add ourselves into
4783          * IOMMU's IEC notify list if needed. */
4784         X86IOMMUState *iommu = x86_iommu_get_default();
4785         if (iommu) {
4786             x86_iommu_iec_register_notifier(iommu,
4787                                             kvm_update_msi_routes_all,
4788                                             NULL);
4789         }
4790         notify_list_inited = true;
4791     }
4792     return 0;
4793 }
4794 
kvm_arch_release_virq_post(int virq)4795 int kvm_arch_release_virq_post(int virq)
4796 {
4797     MSIRouteEntry *entry, *next;
4798     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4799         if (entry->virq == virq) {
4800             trace_kvm_x86_remove_msi_route(virq);
4801             QLIST_REMOVE(entry, list);
4802             g_free(entry);
4803             break;
4804         }
4805     }
4806     return 0;
4807 }
4808 
kvm_arch_msi_data_to_gsi(uint32_t data)4809 int kvm_arch_msi_data_to_gsi(uint32_t data)
4810 {
4811     abort();
4812 }
4813