1 /*
2  *  x86 SMM helpers
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/helper-proto.h"
24 #include "exec/log.h"
25 
26 /* SMM support */
27 
28 #if defined(CONFIG_USER_ONLY)
29 
do_smm_enter(X86CPU * cpu)30 void do_smm_enter(X86CPU *cpu)
31 {
32 }
33 
helper_rsm(CPUX86State * env)34 void helper_rsm(CPUX86State *env)
35 {
36 }
37 
38 #else
39 
40 #ifdef TARGET_X86_64
41 #define SMM_REVISION_ID 0x00020064
42 #else
43 #define SMM_REVISION_ID 0x00020000
44 #endif
45 
do_smm_enter(X86CPU * cpu)46 void do_smm_enter(X86CPU *cpu)
47 {
48     CPUX86State *env = &cpu->env;
49     CPUState *cs = CPU(cpu);
50     target_ulong sm_state;
51     SegmentCache *dt;
52     int i, offset;
53 
54     qemu_log_mask(CPU_LOG_INT, "SMM: enter\n");
55     log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);
56 
57     env->msr_smi_count++;
58     env->hflags |= HF_SMM_MASK;
59     if (env->hflags2 & HF2_NMI_MASK) {
60         env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
61     } else {
62         env->hflags2 |= HF2_NMI_MASK;
63     }
64 
65     sm_state = env->smbase + 0x8000;
66 
67 #ifdef TARGET_X86_64
68     for (i = 0; i < 6; i++) {
69         dt = &env->segs[i];
70         offset = 0x7e00 + i * 16;
71         x86_stw_phys(cs, sm_state + offset, dt->selector);
72         x86_stw_phys(cs, sm_state + offset + 2, (dt->flags >> 8) & 0xf0ff);
73         x86_stl_phys(cs, sm_state + offset + 4, dt->limit);
74         x86_stq_phys(cs, sm_state + offset + 8, dt->base);
75     }
76 
77     x86_stq_phys(cs, sm_state + 0x7e68, env->gdt.base);
78     x86_stl_phys(cs, sm_state + 0x7e64, env->gdt.limit);
79 
80     x86_stw_phys(cs, sm_state + 0x7e70, env->ldt.selector);
81     x86_stq_phys(cs, sm_state + 0x7e78, env->ldt.base);
82     x86_stl_phys(cs, sm_state + 0x7e74, env->ldt.limit);
83     x86_stw_phys(cs, sm_state + 0x7e72, (env->ldt.flags >> 8) & 0xf0ff);
84 
85     x86_stq_phys(cs, sm_state + 0x7e88, env->idt.base);
86     x86_stl_phys(cs, sm_state + 0x7e84, env->idt.limit);
87 
88     x86_stw_phys(cs, sm_state + 0x7e90, env->tr.selector);
89     x86_stq_phys(cs, sm_state + 0x7e98, env->tr.base);
90     x86_stl_phys(cs, sm_state + 0x7e94, env->tr.limit);
91     x86_stw_phys(cs, sm_state + 0x7e92, (env->tr.flags >> 8) & 0xf0ff);
92 
93     /* ??? Vol 1, 16.5.6 Intel MPX and SMM says that IA32_BNDCFGS
94        is saved at offset 7ED0.  Vol 3, 34.4.1.1, Table 32-2, has
95        7EA0-7ED7 as "reserved".  What's this, and what's really
96        supposed to happen?  */
97     x86_stq_phys(cs, sm_state + 0x7ed0, env->efer);
98 
99     x86_stq_phys(cs, sm_state + 0x7ff8, env->regs[R_EAX]);
100     x86_stq_phys(cs, sm_state + 0x7ff0, env->regs[R_ECX]);
101     x86_stq_phys(cs, sm_state + 0x7fe8, env->regs[R_EDX]);
102     x86_stq_phys(cs, sm_state + 0x7fe0, env->regs[R_EBX]);
103     x86_stq_phys(cs, sm_state + 0x7fd8, env->regs[R_ESP]);
104     x86_stq_phys(cs, sm_state + 0x7fd0, env->regs[R_EBP]);
105     x86_stq_phys(cs, sm_state + 0x7fc8, env->regs[R_ESI]);
106     x86_stq_phys(cs, sm_state + 0x7fc0, env->regs[R_EDI]);
107     for (i = 8; i < 16; i++) {
108         x86_stq_phys(cs, sm_state + 0x7ff8 - i * 8, env->regs[i]);
109     }
110     x86_stq_phys(cs, sm_state + 0x7f78, env->eip);
111     x86_stl_phys(cs, sm_state + 0x7f70, cpu_compute_eflags(env));
112     x86_stl_phys(cs, sm_state + 0x7f68, env->dr[6]);
113     x86_stl_phys(cs, sm_state + 0x7f60, env->dr[7]);
114 
115     x86_stl_phys(cs, sm_state + 0x7f48, env->cr[4]);
116     x86_stq_phys(cs, sm_state + 0x7f50, env->cr[3]);
117     x86_stl_phys(cs, sm_state + 0x7f58, env->cr[0]);
118 
119     x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID);
120     x86_stl_phys(cs, sm_state + 0x7f00, env->smbase);
121 #else
122     x86_stl_phys(cs, sm_state + 0x7ffc, env->cr[0]);
123     x86_stl_phys(cs, sm_state + 0x7ff8, env->cr[3]);
124     x86_stl_phys(cs, sm_state + 0x7ff4, cpu_compute_eflags(env));
125     x86_stl_phys(cs, sm_state + 0x7ff0, env->eip);
126     x86_stl_phys(cs, sm_state + 0x7fec, env->regs[R_EDI]);
127     x86_stl_phys(cs, sm_state + 0x7fe8, env->regs[R_ESI]);
128     x86_stl_phys(cs, sm_state + 0x7fe4, env->regs[R_EBP]);
129     x86_stl_phys(cs, sm_state + 0x7fe0, env->regs[R_ESP]);
130     x86_stl_phys(cs, sm_state + 0x7fdc, env->regs[R_EBX]);
131     x86_stl_phys(cs, sm_state + 0x7fd8, env->regs[R_EDX]);
132     x86_stl_phys(cs, sm_state + 0x7fd4, env->regs[R_ECX]);
133     x86_stl_phys(cs, sm_state + 0x7fd0, env->regs[R_EAX]);
134     x86_stl_phys(cs, sm_state + 0x7fcc, env->dr[6]);
135     x86_stl_phys(cs, sm_state + 0x7fc8, env->dr[7]);
136 
137     x86_stl_phys(cs, sm_state + 0x7fc4, env->tr.selector);
138     x86_stl_phys(cs, sm_state + 0x7f64, env->tr.base);
139     x86_stl_phys(cs, sm_state + 0x7f60, env->tr.limit);
140     x86_stl_phys(cs, sm_state + 0x7f5c, (env->tr.flags >> 8) & 0xf0ff);
141 
142     x86_stl_phys(cs, sm_state + 0x7fc0, env->ldt.selector);
143     x86_stl_phys(cs, sm_state + 0x7f80, env->ldt.base);
144     x86_stl_phys(cs, sm_state + 0x7f7c, env->ldt.limit);
145     x86_stl_phys(cs, sm_state + 0x7f78, (env->ldt.flags >> 8) & 0xf0ff);
146 
147     x86_stl_phys(cs, sm_state + 0x7f74, env->gdt.base);
148     x86_stl_phys(cs, sm_state + 0x7f70, env->gdt.limit);
149 
150     x86_stl_phys(cs, sm_state + 0x7f58, env->idt.base);
151     x86_stl_phys(cs, sm_state + 0x7f54, env->idt.limit);
152 
153     for (i = 0; i < 6; i++) {
154         dt = &env->segs[i];
155         if (i < 3) {
156             offset = 0x7f84 + i * 12;
157         } else {
158             offset = 0x7f2c + (i - 3) * 12;
159         }
160         x86_stl_phys(cs, sm_state + 0x7fa8 + i * 4, dt->selector);
161         x86_stl_phys(cs, sm_state + offset + 8, dt->base);
162         x86_stl_phys(cs, sm_state + offset + 4, dt->limit);
163         x86_stl_phys(cs, sm_state + offset, (dt->flags >> 8) & 0xf0ff);
164     }
165     x86_stl_phys(cs, sm_state + 0x7f14, env->cr[4]);
166 
167     x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID);
168     x86_stl_phys(cs, sm_state + 0x7ef8, env->smbase);
169 #endif
170     /* init SMM cpu state */
171 
172 #ifdef TARGET_X86_64
173     cpu_load_efer(env, 0);
174 #endif
175     cpu_load_eflags(env, 0, ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C |
176                               DF_MASK));
177     env->eip = 0x00008000;
178     cpu_x86_update_cr0(env,
179                        env->cr[0] & ~(CR0_PE_MASK | CR0_EM_MASK | CR0_TS_MASK |
180                                       CR0_PG_MASK));
181     cpu_x86_update_cr4(env, 0);
182     env->dr[7] = 0x00000400;
183 
184     cpu_x86_load_seg_cache(env, R_CS, (env->smbase >> 4) & 0xffff, env->smbase,
185                            0xffffffff,
186                            DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
187                            DESC_G_MASK | DESC_A_MASK);
188     cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffffffff,
189                            DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
190                            DESC_G_MASK | DESC_A_MASK);
191     cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffffffff,
192                            DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
193                            DESC_G_MASK | DESC_A_MASK);
194     cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffffffff,
195                            DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
196                            DESC_G_MASK | DESC_A_MASK);
197     cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffffffff,
198                            DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
199                            DESC_G_MASK | DESC_A_MASK);
200     cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffffffff,
201                            DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
202                            DESC_G_MASK | DESC_A_MASK);
203 }
204 
helper_rsm(CPUX86State * env)205 void helper_rsm(CPUX86State *env)
206 {
207     X86CPU *cpu = env_archcpu(env);
208     CPUState *cs = env_cpu(env);
209     target_ulong sm_state;
210     int i, offset;
211     uint32_t val;
212 
213     sm_state = env->smbase + 0x8000;
214 #ifdef TARGET_X86_64
215     cpu_load_efer(env, x86_ldq_phys(cs, sm_state + 0x7ed0));
216 
217     env->gdt.base = x86_ldq_phys(cs, sm_state + 0x7e68);
218     env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7e64);
219 
220     env->ldt.selector = x86_lduw_phys(cs, sm_state + 0x7e70);
221     env->ldt.base = x86_ldq_phys(cs, sm_state + 0x7e78);
222     env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7e74);
223     env->ldt.flags = (x86_lduw_phys(cs, sm_state + 0x7e72) & 0xf0ff) << 8;
224 
225     env->idt.base = x86_ldq_phys(cs, sm_state + 0x7e88);
226     env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7e84);
227 
228     env->tr.selector = x86_lduw_phys(cs, sm_state + 0x7e90);
229     env->tr.base = x86_ldq_phys(cs, sm_state + 0x7e98);
230     env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7e94);
231     env->tr.flags = (x86_lduw_phys(cs, sm_state + 0x7e92) & 0xf0ff) << 8;
232 
233     env->regs[R_EAX] = x86_ldq_phys(cs, sm_state + 0x7ff8);
234     env->regs[R_ECX] = x86_ldq_phys(cs, sm_state + 0x7ff0);
235     env->regs[R_EDX] = x86_ldq_phys(cs, sm_state + 0x7fe8);
236     env->regs[R_EBX] = x86_ldq_phys(cs, sm_state + 0x7fe0);
237     env->regs[R_ESP] = x86_ldq_phys(cs, sm_state + 0x7fd8);
238     env->regs[R_EBP] = x86_ldq_phys(cs, sm_state + 0x7fd0);
239     env->regs[R_ESI] = x86_ldq_phys(cs, sm_state + 0x7fc8);
240     env->regs[R_EDI] = x86_ldq_phys(cs, sm_state + 0x7fc0);
241     for (i = 8; i < 16; i++) {
242         env->regs[i] = x86_ldq_phys(cs, sm_state + 0x7ff8 - i * 8);
243     }
244     env->eip = x86_ldq_phys(cs, sm_state + 0x7f78);
245     cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7f70),
246                     ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
247     env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7f68);
248     env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7f60);
249 
250     cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f48));
251     cpu_x86_update_cr3(env, x86_ldq_phys(cs, sm_state + 0x7f50));
252     cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7f58));
253 
254     for (i = 0; i < 6; i++) {
255         offset = 0x7e00 + i * 16;
256         cpu_x86_load_seg_cache(env, i,
257                                x86_lduw_phys(cs, sm_state + offset),
258                                x86_ldq_phys(cs, sm_state + offset + 8),
259                                x86_ldl_phys(cs, sm_state + offset + 4),
260                                (x86_lduw_phys(cs, sm_state + offset + 2) &
261                                 0xf0ff) << 8);
262     }
263 
264     val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */
265     if (val & 0x20000) {
266         env->smbase = x86_ldl_phys(cs, sm_state + 0x7f00);
267     }
268 #else
269     cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7ffc));
270     cpu_x86_update_cr3(env, x86_ldl_phys(cs, sm_state + 0x7ff8));
271     cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7ff4),
272                     ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
273     env->eip = x86_ldl_phys(cs, sm_state + 0x7ff0);
274     env->regs[R_EDI] = x86_ldl_phys(cs, sm_state + 0x7fec);
275     env->regs[R_ESI] = x86_ldl_phys(cs, sm_state + 0x7fe8);
276     env->regs[R_EBP] = x86_ldl_phys(cs, sm_state + 0x7fe4);
277     env->regs[R_ESP] = x86_ldl_phys(cs, sm_state + 0x7fe0);
278     env->regs[R_EBX] = x86_ldl_phys(cs, sm_state + 0x7fdc);
279     env->regs[R_EDX] = x86_ldl_phys(cs, sm_state + 0x7fd8);
280     env->regs[R_ECX] = x86_ldl_phys(cs, sm_state + 0x7fd4);
281     env->regs[R_EAX] = x86_ldl_phys(cs, sm_state + 0x7fd0);
282     env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7fcc);
283     env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7fc8);
284 
285     env->tr.selector = x86_ldl_phys(cs, sm_state + 0x7fc4) & 0xffff;
286     env->tr.base = x86_ldl_phys(cs, sm_state + 0x7f64);
287     env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7f60);
288     env->tr.flags = (x86_ldl_phys(cs, sm_state + 0x7f5c) & 0xf0ff) << 8;
289 
290     env->ldt.selector = x86_ldl_phys(cs, sm_state + 0x7fc0) & 0xffff;
291     env->ldt.base = x86_ldl_phys(cs, sm_state + 0x7f80);
292     env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7f7c);
293     env->ldt.flags = (x86_ldl_phys(cs, sm_state + 0x7f78) & 0xf0ff) << 8;
294 
295     env->gdt.base = x86_ldl_phys(cs, sm_state + 0x7f74);
296     env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7f70);
297 
298     env->idt.base = x86_ldl_phys(cs, sm_state + 0x7f58);
299     env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7f54);
300 
301     for (i = 0; i < 6; i++) {
302         if (i < 3) {
303             offset = 0x7f84 + i * 12;
304         } else {
305             offset = 0x7f2c + (i - 3) * 12;
306         }
307         cpu_x86_load_seg_cache(env, i,
308                                x86_ldl_phys(cs,
309                                         sm_state + 0x7fa8 + i * 4) & 0xffff,
310                                x86_ldl_phys(cs, sm_state + offset + 8),
311                                x86_ldl_phys(cs, sm_state + offset + 4),
312                                (x86_ldl_phys(cs,
313                                          sm_state + offset) & 0xf0ff) << 8);
314     }
315     cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f14));
316 
317     val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */
318     if (val & 0x20000) {
319         env->smbase = x86_ldl_phys(cs, sm_state + 0x7ef8);
320     }
321 #endif
322     if ((env->hflags2 & HF2_SMM_INSIDE_NMI_MASK) == 0) {
323         env->hflags2 &= ~HF2_NMI_MASK;
324     }
325     env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
326     env->hflags &= ~HF_SMM_MASK;
327 
328     qemu_log_mask(CPU_LOG_INT, "SMM: after RSM\n");
329     log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);
330 }
331 
332 #endif /* !CONFIG_USER_ONLY */
333