1 /*
2  * QEMU NVM Express Controller
3  *
4  * Copyright (c) 2012, Intel Corporation
5  *
6  * Written by Keith Busch <keith.busch@intel.com>
7  *
8  * This code is licensed under the GNU GPL v2 or later.
9  */
10 
11 /**
12  * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
13  *
14  *  https://nvmexpress.org/developers/nvme-specification/
15  */
16 
17 /**
18  * Usage: add options:
19  *      -drive file=<file>,if=none,id=<drive_id>
20  *      -device nvme,serial=<serial>,id=<bus_name>, \
21  *              cmb_size_mb=<cmb_size_mb[optional]>, \
22  *              [pmrdev=<mem_backend_file_id>,] \
23  *              max_ioqpairs=<N[optional]>, \
24  *              aerl=<N[optional]>, aer_max_queued=<N[optional]>, \
25  *              mdts=<N[optional]>
26  *      -device nvme-ns,drive=<drive_id>,bus=bus_name,nsid=<nsid>
27  *
28  * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
29  * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
30  *
31  * cmb_size_mb= and pmrdev= options are mutually exclusive due to limitation
32  * in available BAR's. cmb_size_mb= will take precedence over pmrdev= when
33  * both provided.
34  * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
35  * For example:
36  * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
37  *  size=<size> .... -device nvme,...,pmrdev=<mem_id>
38  *
39  *
40  * nvme device parameters
41  * ~~~~~~~~~~~~~~~~~~~~~~
42  * - `aerl`
43  *   The Asynchronous Event Request Limit (AERL). Indicates the maximum number
44  *   of concurrently outstanding Asynchronous Event Request commands suppoert
45  *   by the controller. This is a 0's based value.
46  *
47  * - `aer_max_queued`
48  *   This is the maximum number of events that the device will enqueue for
49  *   completion when there are no oustanding AERs. When the maximum number of
50  *   enqueued events are reached, subsequent events will be dropped.
51  *
52  */
53 
54 #include "qemu/osdep.h"
55 #include "qemu/units.h"
56 #include "qemu/error-report.h"
57 #include "hw/block/block.h"
58 #include "hw/pci/msix.h"
59 #include "hw/pci/pci.h"
60 #include "hw/qdev-properties.h"
61 #include "migration/vmstate.h"
62 #include "sysemu/sysemu.h"
63 #include "qapi/error.h"
64 #include "qapi/visitor.h"
65 #include "sysemu/hostmem.h"
66 #include "sysemu/block-backend.h"
67 #include "exec/memory.h"
68 #include "qemu/log.h"
69 #include "qemu/module.h"
70 #include "qemu/cutils.h"
71 #include "trace.h"
72 #include "nvme.h"
73 #include "nvme-ns.h"
74 
75 #define NVME_MAX_IOQPAIRS 0xffff
76 #define NVME_DB_SIZE  4
77 #define NVME_SPEC_VER 0x00010300
78 #define NVME_CMB_BIR 2
79 #define NVME_PMR_BIR 2
80 #define NVME_TEMPERATURE 0x143
81 #define NVME_TEMPERATURE_WARNING 0x157
82 #define NVME_TEMPERATURE_CRITICAL 0x175
83 #define NVME_NUM_FW_SLOTS 1
84 
85 #define NVME_GUEST_ERR(trace, fmt, ...) \
86     do { \
87         (trace_##trace)(__VA_ARGS__); \
88         qemu_log_mask(LOG_GUEST_ERROR, #trace \
89             " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
90     } while (0)
91 
92 static const bool nvme_feature_support[NVME_FID_MAX] = {
93     [NVME_ARBITRATION]              = true,
94     [NVME_POWER_MANAGEMENT]         = true,
95     [NVME_TEMPERATURE_THRESHOLD]    = true,
96     [NVME_ERROR_RECOVERY]           = true,
97     [NVME_VOLATILE_WRITE_CACHE]     = true,
98     [NVME_NUMBER_OF_QUEUES]         = true,
99     [NVME_INTERRUPT_COALESCING]     = true,
100     [NVME_INTERRUPT_VECTOR_CONF]    = true,
101     [NVME_WRITE_ATOMICITY]          = true,
102     [NVME_ASYNCHRONOUS_EVENT_CONF]  = true,
103     [NVME_TIMESTAMP]                = true,
104 };
105 
106 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
107     [NVME_TEMPERATURE_THRESHOLD]    = NVME_FEAT_CAP_CHANGE,
108     [NVME_VOLATILE_WRITE_CACHE]     = NVME_FEAT_CAP_CHANGE,
109     [NVME_NUMBER_OF_QUEUES]         = NVME_FEAT_CAP_CHANGE,
110     [NVME_ASYNCHRONOUS_EVENT_CONF]  = NVME_FEAT_CAP_CHANGE,
111     [NVME_TIMESTAMP]                = NVME_FEAT_CAP_CHANGE,
112 };
113 
114 static void nvme_process_sq(void *opaque);
115 
nvme_cid(NvmeRequest * req)116 static uint16_t nvme_cid(NvmeRequest *req)
117 {
118     if (!req) {
119         return 0xffff;
120     }
121 
122     return le16_to_cpu(req->cqe.cid);
123 }
124 
nvme_sqid(NvmeRequest * req)125 static uint16_t nvme_sqid(NvmeRequest *req)
126 {
127     return le16_to_cpu(req->sq->sqid);
128 }
129 
nvme_addr_is_cmb(NvmeCtrl * n,hwaddr addr)130 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
131 {
132     hwaddr low = n->ctrl_mem.addr;
133     hwaddr hi  = n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size);
134 
135     return addr >= low && addr < hi;
136 }
137 
nvme_addr_to_cmb(NvmeCtrl * n,hwaddr addr)138 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
139 {
140     assert(nvme_addr_is_cmb(n, addr));
141 
142     return &n->cmbuf[addr - n->ctrl_mem.addr];
143 }
144 
nvme_addr_read(NvmeCtrl * n,hwaddr addr,void * buf,int size)145 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
146 {
147     hwaddr hi = addr + size - 1;
148     if (hi < addr) {
149         return 1;
150     }
151 
152     if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
153         memcpy(buf, nvme_addr_to_cmb(n, addr), size);
154         return 0;
155     }
156 
157     return pci_dma_read(&n->parent_obj, addr, buf, size);
158 }
159 
nvme_nsid_valid(NvmeCtrl * n,uint32_t nsid)160 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
161 {
162     return nsid && (nsid == NVME_NSID_BROADCAST || nsid <= n->num_namespaces);
163 }
164 
nvme_check_sqid(NvmeCtrl * n,uint16_t sqid)165 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
166 {
167     return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
168 }
169 
nvme_check_cqid(NvmeCtrl * n,uint16_t cqid)170 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
171 {
172     return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
173 }
174 
nvme_inc_cq_tail(NvmeCQueue * cq)175 static void nvme_inc_cq_tail(NvmeCQueue *cq)
176 {
177     cq->tail++;
178     if (cq->tail >= cq->size) {
179         cq->tail = 0;
180         cq->phase = !cq->phase;
181     }
182 }
183 
nvme_inc_sq_head(NvmeSQueue * sq)184 static void nvme_inc_sq_head(NvmeSQueue *sq)
185 {
186     sq->head = (sq->head + 1) % sq->size;
187 }
188 
nvme_cq_full(NvmeCQueue * cq)189 static uint8_t nvme_cq_full(NvmeCQueue *cq)
190 {
191     return (cq->tail + 1) % cq->size == cq->head;
192 }
193 
nvme_sq_empty(NvmeSQueue * sq)194 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
195 {
196     return sq->head == sq->tail;
197 }
198 
nvme_irq_check(NvmeCtrl * n)199 static void nvme_irq_check(NvmeCtrl *n)
200 {
201     if (msix_enabled(&(n->parent_obj))) {
202         return;
203     }
204     if (~n->bar.intms & n->irq_status) {
205         pci_irq_assert(&n->parent_obj);
206     } else {
207         pci_irq_deassert(&n->parent_obj);
208     }
209 }
210 
nvme_irq_assert(NvmeCtrl * n,NvmeCQueue * cq)211 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
212 {
213     if (cq->irq_enabled) {
214         if (msix_enabled(&(n->parent_obj))) {
215             trace_pci_nvme_irq_msix(cq->vector);
216             msix_notify(&(n->parent_obj), cq->vector);
217         } else {
218             trace_pci_nvme_irq_pin();
219             assert(cq->vector < 32);
220             n->irq_status |= 1 << cq->vector;
221             nvme_irq_check(n);
222         }
223     } else {
224         trace_pci_nvme_irq_masked();
225     }
226 }
227 
nvme_irq_deassert(NvmeCtrl * n,NvmeCQueue * cq)228 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
229 {
230     if (cq->irq_enabled) {
231         if (msix_enabled(&(n->parent_obj))) {
232             return;
233         } else {
234             assert(cq->vector < 32);
235             n->irq_status &= ~(1 << cq->vector);
236             nvme_irq_check(n);
237         }
238     }
239 }
240 
nvme_req_clear(NvmeRequest * req)241 static void nvme_req_clear(NvmeRequest *req)
242 {
243     req->ns = NULL;
244     memset(&req->cqe, 0x0, sizeof(req->cqe));
245     req->status = NVME_SUCCESS;
246 }
247 
nvme_req_exit(NvmeRequest * req)248 static void nvme_req_exit(NvmeRequest *req)
249 {
250     if (req->qsg.sg) {
251         qemu_sglist_destroy(&req->qsg);
252     }
253 
254     if (req->iov.iov) {
255         qemu_iovec_destroy(&req->iov);
256     }
257 }
258 
nvme_map_addr_cmb(NvmeCtrl * n,QEMUIOVector * iov,hwaddr addr,size_t len)259 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
260                                   size_t len)
261 {
262     if (!len) {
263         return NVME_SUCCESS;
264     }
265 
266     trace_pci_nvme_map_addr_cmb(addr, len);
267 
268     if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
269         return NVME_DATA_TRAS_ERROR;
270     }
271 
272     qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
273 
274     return NVME_SUCCESS;
275 }
276 
nvme_map_addr(NvmeCtrl * n,QEMUSGList * qsg,QEMUIOVector * iov,hwaddr addr,size_t len)277 static uint16_t nvme_map_addr(NvmeCtrl *n, QEMUSGList *qsg, QEMUIOVector *iov,
278                               hwaddr addr, size_t len)
279 {
280     if (!len) {
281         return NVME_SUCCESS;
282     }
283 
284     trace_pci_nvme_map_addr(addr, len);
285 
286     if (nvme_addr_is_cmb(n, addr)) {
287         if (qsg && qsg->sg) {
288             return NVME_INVALID_USE_OF_CMB | NVME_DNR;
289         }
290 
291         assert(iov);
292 
293         if (!iov->iov) {
294             qemu_iovec_init(iov, 1);
295         }
296 
297         return nvme_map_addr_cmb(n, iov, addr, len);
298     }
299 
300     if (iov && iov->iov) {
301         return NVME_INVALID_USE_OF_CMB | NVME_DNR;
302     }
303 
304     assert(qsg);
305 
306     if (!qsg->sg) {
307         pci_dma_sglist_init(qsg, &n->parent_obj, 1);
308     }
309 
310     qemu_sglist_add(qsg, addr, len);
311 
312     return NVME_SUCCESS;
313 }
314 
nvme_map_prp(NvmeCtrl * n,uint64_t prp1,uint64_t prp2,uint32_t len,NvmeRequest * req)315 static uint16_t nvme_map_prp(NvmeCtrl *n, uint64_t prp1, uint64_t prp2,
316                              uint32_t len, NvmeRequest *req)
317 {
318     hwaddr trans_len = n->page_size - (prp1 % n->page_size);
319     trans_len = MIN(len, trans_len);
320     int num_prps = (len >> n->page_bits) + 1;
321     uint16_t status;
322     bool prp_list_in_cmb = false;
323     int ret;
324 
325     QEMUSGList *qsg = &req->qsg;
326     QEMUIOVector *iov = &req->iov;
327 
328     trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
329 
330     if (nvme_addr_is_cmb(n, prp1)) {
331         qemu_iovec_init(iov, num_prps);
332     } else {
333         pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
334     }
335 
336     status = nvme_map_addr(n, qsg, iov, prp1, trans_len);
337     if (status) {
338         return status;
339     }
340 
341     len -= trans_len;
342     if (len) {
343         if (len > n->page_size) {
344             uint64_t prp_list[n->max_prp_ents];
345             uint32_t nents, prp_trans;
346             int i = 0;
347 
348             if (nvme_addr_is_cmb(n, prp2)) {
349                 prp_list_in_cmb = true;
350             }
351 
352             nents = (len + n->page_size - 1) >> n->page_bits;
353             prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
354             ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
355             if (ret) {
356                 trace_pci_nvme_err_addr_read(prp2);
357                 return NVME_DATA_TRAS_ERROR;
358             }
359             while (len != 0) {
360                 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
361 
362                 if (i == n->max_prp_ents - 1 && len > n->page_size) {
363                     if (unlikely(prp_ent & (n->page_size - 1))) {
364                         trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
365                         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
366                     }
367 
368                     if (prp_list_in_cmb != nvme_addr_is_cmb(n, prp_ent)) {
369                         return NVME_INVALID_USE_OF_CMB | NVME_DNR;
370                     }
371 
372                     i = 0;
373                     nents = (len + n->page_size - 1) >> n->page_bits;
374                     prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
375                     ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
376                                          prp_trans);
377                     if (ret) {
378                         trace_pci_nvme_err_addr_read(prp_ent);
379                         return NVME_DATA_TRAS_ERROR;
380                     }
381                     prp_ent = le64_to_cpu(prp_list[i]);
382                 }
383 
384                 if (unlikely(prp_ent & (n->page_size - 1))) {
385                     trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
386                     return NVME_INVALID_PRP_OFFSET | NVME_DNR;
387                 }
388 
389                 trans_len = MIN(len, n->page_size);
390                 status = nvme_map_addr(n, qsg, iov, prp_ent, trans_len);
391                 if (status) {
392                     return status;
393                 }
394 
395                 len -= trans_len;
396                 i++;
397             }
398         } else {
399             if (unlikely(prp2 & (n->page_size - 1))) {
400                 trace_pci_nvme_err_invalid_prp2_align(prp2);
401                 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
402             }
403             status = nvme_map_addr(n, qsg, iov, prp2, len);
404             if (status) {
405                 return status;
406             }
407         }
408     }
409 
410     return NVME_SUCCESS;
411 }
412 
413 /*
414  * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
415  * number of bytes mapped in len.
416  */
nvme_map_sgl_data(NvmeCtrl * n,QEMUSGList * qsg,QEMUIOVector * iov,NvmeSglDescriptor * segment,uint64_t nsgld,size_t * len,NvmeRequest * req)417 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, QEMUSGList *qsg,
418                                   QEMUIOVector *iov,
419                                   NvmeSglDescriptor *segment, uint64_t nsgld,
420                                   size_t *len, NvmeRequest *req)
421 {
422     dma_addr_t addr, trans_len;
423     uint32_t dlen;
424     uint16_t status;
425 
426     for (int i = 0; i < nsgld; i++) {
427         uint8_t type = NVME_SGL_TYPE(segment[i].type);
428 
429         switch (type) {
430         case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
431             if (req->cmd.opcode == NVME_CMD_WRITE) {
432                 continue;
433             }
434         case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
435             break;
436         case NVME_SGL_DESCR_TYPE_SEGMENT:
437         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
438             return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
439         default:
440             return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
441         }
442 
443         dlen = le32_to_cpu(segment[i].len);
444 
445         if (!dlen) {
446             continue;
447         }
448 
449         if (*len == 0) {
450             /*
451              * All data has been mapped, but the SGL contains additional
452              * segments and/or descriptors. The controller might accept
453              * ignoring the rest of the SGL.
454              */
455             uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
456             if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
457                 break;
458             }
459 
460             trace_pci_nvme_err_invalid_sgl_excess_length(nvme_cid(req));
461             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
462         }
463 
464         trans_len = MIN(*len, dlen);
465 
466         if (type == NVME_SGL_DESCR_TYPE_BIT_BUCKET) {
467             goto next;
468         }
469 
470         addr = le64_to_cpu(segment[i].addr);
471 
472         if (UINT64_MAX - addr < dlen) {
473             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
474         }
475 
476         status = nvme_map_addr(n, qsg, iov, addr, trans_len);
477         if (status) {
478             return status;
479         }
480 
481 next:
482         *len -= trans_len;
483     }
484 
485     return NVME_SUCCESS;
486 }
487 
nvme_map_sgl(NvmeCtrl * n,QEMUSGList * qsg,QEMUIOVector * iov,NvmeSglDescriptor sgl,size_t len,NvmeRequest * req)488 static uint16_t nvme_map_sgl(NvmeCtrl *n, QEMUSGList *qsg, QEMUIOVector *iov,
489                              NvmeSglDescriptor sgl, size_t len,
490                              NvmeRequest *req)
491 {
492     /*
493      * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
494      * dynamically allocating a potentially huge SGL. The spec allows the SGL
495      * to be larger (as in number of bytes required to describe the SGL
496      * descriptors and segment chain) than the command transfer size, so it is
497      * not bounded by MDTS.
498      */
499     const int SEG_CHUNK_SIZE = 256;
500 
501     NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
502     uint64_t nsgld;
503     uint32_t seg_len;
504     uint16_t status;
505     bool sgl_in_cmb = false;
506     hwaddr addr;
507     int ret;
508 
509     sgld = &sgl;
510     addr = le64_to_cpu(sgl.addr);
511 
512     trace_pci_nvme_map_sgl(nvme_cid(req), NVME_SGL_TYPE(sgl.type), len);
513 
514     /*
515      * If the entire transfer can be described with a single data block it can
516      * be mapped directly.
517      */
518     if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
519         status = nvme_map_sgl_data(n, qsg, iov, sgld, 1, &len, req);
520         if (status) {
521             goto unmap;
522         }
523 
524         goto out;
525     }
526 
527     /*
528      * If the segment is located in the CMB, the submission queue of the
529      * request must also reside there.
530      */
531     if (nvme_addr_is_cmb(n, addr)) {
532         if (!nvme_addr_is_cmb(n, req->sq->dma_addr)) {
533             return NVME_INVALID_USE_OF_CMB | NVME_DNR;
534         }
535 
536         sgl_in_cmb = true;
537     }
538 
539     for (;;) {
540         switch (NVME_SGL_TYPE(sgld->type)) {
541         case NVME_SGL_DESCR_TYPE_SEGMENT:
542         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
543             break;
544         default:
545             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
546         }
547 
548         seg_len = le32_to_cpu(sgld->len);
549 
550         /* check the length of the (Last) Segment descriptor */
551         if ((!seg_len || seg_len & 0xf) &&
552             (NVME_SGL_TYPE(sgld->type) != NVME_SGL_DESCR_TYPE_BIT_BUCKET)) {
553             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
554         }
555 
556         if (UINT64_MAX - addr < seg_len) {
557             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
558         }
559 
560         nsgld = seg_len / sizeof(NvmeSglDescriptor);
561 
562         while (nsgld > SEG_CHUNK_SIZE) {
563             if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
564                 trace_pci_nvme_err_addr_read(addr);
565                 status = NVME_DATA_TRAS_ERROR;
566                 goto unmap;
567             }
568 
569             status = nvme_map_sgl_data(n, qsg, iov, segment, SEG_CHUNK_SIZE,
570                                        &len, req);
571             if (status) {
572                 goto unmap;
573             }
574 
575             nsgld -= SEG_CHUNK_SIZE;
576             addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
577         }
578 
579         ret = nvme_addr_read(n, addr, segment, nsgld *
580                              sizeof(NvmeSglDescriptor));
581         if (ret) {
582             trace_pci_nvme_err_addr_read(addr);
583             status = NVME_DATA_TRAS_ERROR;
584             goto unmap;
585         }
586 
587         last_sgld = &segment[nsgld - 1];
588 
589         /*
590          * If the segment ends with a Data Block or Bit Bucket Descriptor Type,
591          * then we are done.
592          */
593         switch (NVME_SGL_TYPE(last_sgld->type)) {
594         case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
595         case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
596             status = nvme_map_sgl_data(n, qsg, iov, segment, nsgld, &len, req);
597             if (status) {
598                 goto unmap;
599             }
600 
601             goto out;
602 
603         default:
604             break;
605         }
606 
607         /*
608          * If the last descriptor was not a Data Block or Bit Bucket, then the
609          * current segment must not be a Last Segment.
610          */
611         if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
612             status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
613             goto unmap;
614         }
615 
616         sgld = last_sgld;
617         addr = le64_to_cpu(sgld->addr);
618 
619         /*
620          * Do not map the last descriptor; it will be a Segment or Last Segment
621          * descriptor and is handled by the next iteration.
622          */
623         status = nvme_map_sgl_data(n, qsg, iov, segment, nsgld - 1, &len, req);
624         if (status) {
625             goto unmap;
626         }
627 
628         /*
629          * If the next segment is in the CMB, make sure that the sgl was
630          * already located there.
631          */
632         if (sgl_in_cmb != nvme_addr_is_cmb(n, addr)) {
633             status = NVME_INVALID_USE_OF_CMB | NVME_DNR;
634             goto unmap;
635         }
636     }
637 
638 out:
639     /* if there is any residual left in len, the SGL was too short */
640     if (len) {
641         status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
642         goto unmap;
643     }
644 
645     return NVME_SUCCESS;
646 
647 unmap:
648     if (iov->iov) {
649         qemu_iovec_destroy(iov);
650     }
651 
652     if (qsg->sg) {
653         qemu_sglist_destroy(qsg);
654     }
655 
656     return status;
657 }
658 
nvme_map_dptr(NvmeCtrl * n,size_t len,NvmeRequest * req)659 static uint16_t nvme_map_dptr(NvmeCtrl *n, size_t len, NvmeRequest *req)
660 {
661     uint64_t prp1, prp2;
662 
663     switch (NVME_CMD_FLAGS_PSDT(req->cmd.flags)) {
664     case NVME_PSDT_PRP:
665         prp1 = le64_to_cpu(req->cmd.dptr.prp1);
666         prp2 = le64_to_cpu(req->cmd.dptr.prp2);
667 
668         return nvme_map_prp(n, prp1, prp2, len, req);
669     case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
670     case NVME_PSDT_SGL_MPTR_SGL:
671         /* SGLs shall not be used for Admin commands in NVMe over PCIe */
672         if (!req->sq->sqid) {
673             return NVME_INVALID_FIELD | NVME_DNR;
674         }
675 
676         return nvme_map_sgl(n, &req->qsg, &req->iov, req->cmd.dptr.sgl, len,
677                             req);
678     default:
679         return NVME_INVALID_FIELD;
680     }
681 }
682 
nvme_dma(NvmeCtrl * n,uint8_t * ptr,uint32_t len,DMADirection dir,NvmeRequest * req)683 static uint16_t nvme_dma(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
684                          DMADirection dir, NvmeRequest *req)
685 {
686     uint16_t status = NVME_SUCCESS;
687 
688     status = nvme_map_dptr(n, len, req);
689     if (status) {
690         return status;
691     }
692 
693     /* assert that only one of qsg and iov carries data */
694     assert((req->qsg.nsg > 0) != (req->iov.niov > 0));
695 
696     if (req->qsg.nsg > 0) {
697         uint64_t residual;
698 
699         if (dir == DMA_DIRECTION_TO_DEVICE) {
700             residual = dma_buf_write(ptr, len, &req->qsg);
701         } else {
702             residual = dma_buf_read(ptr, len, &req->qsg);
703         }
704 
705         if (unlikely(residual)) {
706             trace_pci_nvme_err_invalid_dma();
707             status = NVME_INVALID_FIELD | NVME_DNR;
708         }
709     } else {
710         size_t bytes;
711 
712         if (dir == DMA_DIRECTION_TO_DEVICE) {
713             bytes = qemu_iovec_to_buf(&req->iov, 0, ptr, len);
714         } else {
715             bytes = qemu_iovec_from_buf(&req->iov, 0, ptr, len);
716         }
717 
718         if (unlikely(bytes != len)) {
719             trace_pci_nvme_err_invalid_dma();
720             status = NVME_INVALID_FIELD | NVME_DNR;
721         }
722     }
723 
724     return status;
725 }
726 
nvme_post_cqes(void * opaque)727 static void nvme_post_cqes(void *opaque)
728 {
729     NvmeCQueue *cq = opaque;
730     NvmeCtrl *n = cq->ctrl;
731     NvmeRequest *req, *next;
732     int ret;
733 
734     QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
735         NvmeSQueue *sq;
736         hwaddr addr;
737 
738         if (nvme_cq_full(cq)) {
739             break;
740         }
741 
742         sq = req->sq;
743         req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
744         req->cqe.sq_id = cpu_to_le16(sq->sqid);
745         req->cqe.sq_head = cpu_to_le16(sq->head);
746         addr = cq->dma_addr + cq->tail * n->cqe_size;
747         ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
748                             sizeof(req->cqe));
749         if (ret) {
750             trace_pci_nvme_err_addr_write(addr);
751             trace_pci_nvme_err_cfs();
752             n->bar.csts = NVME_CSTS_FAILED;
753             break;
754         }
755         QTAILQ_REMOVE(&cq->req_list, req, entry);
756         nvme_inc_cq_tail(cq);
757         nvme_req_exit(req);
758         QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
759     }
760     if (cq->tail != cq->head) {
761         nvme_irq_assert(n, cq);
762     }
763 }
764 
nvme_enqueue_req_completion(NvmeCQueue * cq,NvmeRequest * req)765 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
766 {
767     assert(cq->cqid == req->sq->cqid);
768     trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
769                                           req->status);
770 
771     if (req->status) {
772         trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
773                                       req->status, req->cmd.opcode);
774     }
775 
776     QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
777     QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
778     timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
779 }
780 
nvme_process_aers(void * opaque)781 static void nvme_process_aers(void *opaque)
782 {
783     NvmeCtrl *n = opaque;
784     NvmeAsyncEvent *event, *next;
785 
786     trace_pci_nvme_process_aers(n->aer_queued);
787 
788     QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
789         NvmeRequest *req;
790         NvmeAerResult *result;
791 
792         /* can't post cqe if there is nothing to complete */
793         if (!n->outstanding_aers) {
794             trace_pci_nvme_no_outstanding_aers();
795             break;
796         }
797 
798         /* ignore if masked (cqe posted, but event not cleared) */
799         if (n->aer_mask & (1 << event->result.event_type)) {
800             trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
801             continue;
802         }
803 
804         QTAILQ_REMOVE(&n->aer_queue, event, entry);
805         n->aer_queued--;
806 
807         n->aer_mask |= 1 << event->result.event_type;
808         n->outstanding_aers--;
809 
810         req = n->aer_reqs[n->outstanding_aers];
811 
812         result = (NvmeAerResult *) &req->cqe.result;
813         result->event_type = event->result.event_type;
814         result->event_info = event->result.event_info;
815         result->log_page = event->result.log_page;
816         g_free(event);
817 
818         trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
819                                     result->log_page);
820 
821         nvme_enqueue_req_completion(&n->admin_cq, req);
822     }
823 }
824 
nvme_enqueue_event(NvmeCtrl * n,uint8_t event_type,uint8_t event_info,uint8_t log_page)825 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
826                                uint8_t event_info, uint8_t log_page)
827 {
828     NvmeAsyncEvent *event;
829 
830     trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
831 
832     if (n->aer_queued == n->params.aer_max_queued) {
833         trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
834         return;
835     }
836 
837     event = g_new(NvmeAsyncEvent, 1);
838     event->result = (NvmeAerResult) {
839         .event_type = event_type,
840         .event_info = event_info,
841         .log_page   = log_page,
842     };
843 
844     QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
845     n->aer_queued++;
846 
847     nvme_process_aers(n);
848 }
849 
nvme_clear_events(NvmeCtrl * n,uint8_t event_type)850 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
851 {
852     n->aer_mask &= ~(1 << event_type);
853     if (!QTAILQ_EMPTY(&n->aer_queue)) {
854         nvme_process_aers(n);
855     }
856 }
857 
nvme_check_mdts(NvmeCtrl * n,size_t len)858 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
859 {
860     uint8_t mdts = n->params.mdts;
861 
862     if (mdts && len > n->page_size << mdts) {
863         return NVME_INVALID_FIELD | NVME_DNR;
864     }
865 
866     return NVME_SUCCESS;
867 }
868 
nvme_check_bounds(NvmeCtrl * n,NvmeNamespace * ns,uint64_t slba,uint32_t nlb)869 static inline uint16_t nvme_check_bounds(NvmeCtrl *n, NvmeNamespace *ns,
870                                          uint64_t slba, uint32_t nlb)
871 {
872     uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
873 
874     if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
875         return NVME_LBA_RANGE | NVME_DNR;
876     }
877 
878     return NVME_SUCCESS;
879 }
880 
nvme_rw_cb(void * opaque,int ret)881 static void nvme_rw_cb(void *opaque, int ret)
882 {
883     NvmeRequest *req = opaque;
884     NvmeNamespace *ns = req->ns;
885 
886     BlockBackend *blk = ns->blkconf.blk;
887     BlockAcctCookie *acct = &req->acct;
888     BlockAcctStats *stats = blk_get_stats(blk);
889 
890     Error *local_err = NULL;
891 
892     trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
893 
894     if (!ret) {
895         block_acct_done(stats, acct);
896     } else {
897         uint16_t status;
898 
899         block_acct_failed(stats, acct);
900 
901         switch (req->cmd.opcode) {
902         case NVME_CMD_READ:
903             status = NVME_UNRECOVERED_READ;
904             break;
905         case NVME_CMD_FLUSH:
906         case NVME_CMD_WRITE:
907         case NVME_CMD_WRITE_ZEROES:
908             status = NVME_WRITE_FAULT;
909             break;
910         default:
911             status = NVME_INTERNAL_DEV_ERROR;
912             break;
913         }
914 
915         trace_pci_nvme_err_aio(nvme_cid(req), strerror(ret), status);
916 
917         error_setg_errno(&local_err, -ret, "aio failed");
918         error_report_err(local_err);
919 
920         req->status = status;
921     }
922 
923     nvme_enqueue_req_completion(nvme_cq(req), req);
924 }
925 
nvme_flush(NvmeCtrl * n,NvmeRequest * req)926 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
927 {
928     block_acct_start(blk_get_stats(req->ns->blkconf.blk), &req->acct, 0,
929                      BLOCK_ACCT_FLUSH);
930     req->aiocb = blk_aio_flush(req->ns->blkconf.blk, nvme_rw_cb, req);
931     return NVME_NO_COMPLETE;
932 }
933 
nvme_write_zeroes(NvmeCtrl * n,NvmeRequest * req)934 static uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
935 {
936     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
937     NvmeNamespace *ns = req->ns;
938     uint64_t slba = le64_to_cpu(rw->slba);
939     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
940     uint64_t offset = nvme_l2b(ns, slba);
941     uint32_t count = nvme_l2b(ns, nlb);
942     uint16_t status;
943 
944     trace_pci_nvme_write_zeroes(nvme_cid(req), nvme_nsid(ns), slba, nlb);
945 
946     status = nvme_check_bounds(n, ns, slba, nlb);
947     if (status) {
948         trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
949         return status;
950     }
951 
952     block_acct_start(blk_get_stats(req->ns->blkconf.blk), &req->acct, 0,
953                      BLOCK_ACCT_WRITE);
954     req->aiocb = blk_aio_pwrite_zeroes(req->ns->blkconf.blk, offset, count,
955                                        BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
956     return NVME_NO_COMPLETE;
957 }
958 
nvme_rw(NvmeCtrl * n,NvmeRequest * req)959 static uint16_t nvme_rw(NvmeCtrl *n, NvmeRequest *req)
960 {
961     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
962     NvmeNamespace *ns = req->ns;
963     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
964     uint64_t slba = le64_to_cpu(rw->slba);
965 
966     uint64_t data_size = nvme_l2b(ns, nlb);
967     uint64_t data_offset = nvme_l2b(ns, slba);
968     enum BlockAcctType acct = req->cmd.opcode == NVME_CMD_WRITE ?
969         BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
970     BlockBackend *blk = ns->blkconf.blk;
971     uint16_t status;
972 
973     trace_pci_nvme_rw(nvme_cid(req), nvme_io_opc_str(rw->opcode),
974                       nvme_nsid(ns), nlb, data_size, slba);
975 
976     status = nvme_check_mdts(n, data_size);
977     if (status) {
978         trace_pci_nvme_err_mdts(nvme_cid(req), data_size);
979         goto invalid;
980     }
981 
982     status = nvme_check_bounds(n, ns, slba, nlb);
983     if (status) {
984         trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
985         goto invalid;
986     }
987 
988     status = nvme_map_dptr(n, data_size, req);
989     if (status) {
990         goto invalid;
991     }
992 
993     block_acct_start(blk_get_stats(blk), &req->acct, data_size, acct);
994     if (req->qsg.sg) {
995         if (acct == BLOCK_ACCT_WRITE) {
996             req->aiocb = dma_blk_write(blk, &req->qsg, data_offset,
997                                        BDRV_SECTOR_SIZE, nvme_rw_cb, req);
998         } else {
999             req->aiocb = dma_blk_read(blk, &req->qsg, data_offset,
1000                                       BDRV_SECTOR_SIZE, nvme_rw_cb, req);
1001         }
1002     } else {
1003         if (acct == BLOCK_ACCT_WRITE) {
1004             req->aiocb = blk_aio_pwritev(blk, data_offset, &req->iov, 0,
1005                                          nvme_rw_cb, req);
1006         } else {
1007             req->aiocb = blk_aio_preadv(blk, data_offset, &req->iov, 0,
1008                                         nvme_rw_cb, req);
1009         }
1010     }
1011     return NVME_NO_COMPLETE;
1012 
1013 invalid:
1014     block_acct_invalid(blk_get_stats(ns->blkconf.blk), acct);
1015     return status;
1016 }
1017 
nvme_io_cmd(NvmeCtrl * n,NvmeRequest * req)1018 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
1019 {
1020     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
1021 
1022     trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
1023                           req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
1024 
1025     if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_ADMIN_ONLY) {
1026         return NVME_INVALID_OPCODE | NVME_DNR;
1027     }
1028 
1029     if (!nvme_nsid_valid(n, nsid)) {
1030         return NVME_INVALID_NSID | NVME_DNR;
1031     }
1032 
1033     req->ns = nvme_ns(n, nsid);
1034     if (unlikely(!req->ns)) {
1035         return NVME_INVALID_FIELD | NVME_DNR;
1036     }
1037 
1038     switch (req->cmd.opcode) {
1039     case NVME_CMD_FLUSH:
1040         return nvme_flush(n, req);
1041     case NVME_CMD_WRITE_ZEROES:
1042         return nvme_write_zeroes(n, req);
1043     case NVME_CMD_WRITE:
1044     case NVME_CMD_READ:
1045         return nvme_rw(n, req);
1046     default:
1047         trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
1048         return NVME_INVALID_OPCODE | NVME_DNR;
1049     }
1050 }
1051 
nvme_free_sq(NvmeSQueue * sq,NvmeCtrl * n)1052 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
1053 {
1054     n->sq[sq->sqid] = NULL;
1055     timer_del(sq->timer);
1056     timer_free(sq->timer);
1057     g_free(sq->io_req);
1058     if (sq->sqid) {
1059         g_free(sq);
1060     }
1061 }
1062 
nvme_del_sq(NvmeCtrl * n,NvmeRequest * req)1063 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
1064 {
1065     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
1066     NvmeRequest *r, *next;
1067     NvmeSQueue *sq;
1068     NvmeCQueue *cq;
1069     uint16_t qid = le16_to_cpu(c->qid);
1070 
1071     if (unlikely(!qid || nvme_check_sqid(n, qid))) {
1072         trace_pci_nvme_err_invalid_del_sq(qid);
1073         return NVME_INVALID_QID | NVME_DNR;
1074     }
1075 
1076     trace_pci_nvme_del_sq(qid);
1077 
1078     sq = n->sq[qid];
1079     while (!QTAILQ_EMPTY(&sq->out_req_list)) {
1080         r = QTAILQ_FIRST(&sq->out_req_list);
1081         assert(r->aiocb);
1082         blk_aio_cancel(r->aiocb);
1083     }
1084     if (!nvme_check_cqid(n, sq->cqid)) {
1085         cq = n->cq[sq->cqid];
1086         QTAILQ_REMOVE(&cq->sq_list, sq, entry);
1087 
1088         nvme_post_cqes(cq);
1089         QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
1090             if (r->sq == sq) {
1091                 QTAILQ_REMOVE(&cq->req_list, r, entry);
1092                 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
1093             }
1094         }
1095     }
1096 
1097     nvme_free_sq(sq, n);
1098     return NVME_SUCCESS;
1099 }
1100 
nvme_init_sq(NvmeSQueue * sq,NvmeCtrl * n,uint64_t dma_addr,uint16_t sqid,uint16_t cqid,uint16_t size)1101 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
1102                          uint16_t sqid, uint16_t cqid, uint16_t size)
1103 {
1104     int i;
1105     NvmeCQueue *cq;
1106 
1107     sq->ctrl = n;
1108     sq->dma_addr = dma_addr;
1109     sq->sqid = sqid;
1110     sq->size = size;
1111     sq->cqid = cqid;
1112     sq->head = sq->tail = 0;
1113     sq->io_req = g_new0(NvmeRequest, sq->size);
1114 
1115     QTAILQ_INIT(&sq->req_list);
1116     QTAILQ_INIT(&sq->out_req_list);
1117     for (i = 0; i < sq->size; i++) {
1118         sq->io_req[i].sq = sq;
1119         QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
1120     }
1121     sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
1122 
1123     assert(n->cq[cqid]);
1124     cq = n->cq[cqid];
1125     QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
1126     n->sq[sqid] = sq;
1127 }
1128 
nvme_create_sq(NvmeCtrl * n,NvmeRequest * req)1129 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
1130 {
1131     NvmeSQueue *sq;
1132     NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
1133 
1134     uint16_t cqid = le16_to_cpu(c->cqid);
1135     uint16_t sqid = le16_to_cpu(c->sqid);
1136     uint16_t qsize = le16_to_cpu(c->qsize);
1137     uint16_t qflags = le16_to_cpu(c->sq_flags);
1138     uint64_t prp1 = le64_to_cpu(c->prp1);
1139 
1140     trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
1141 
1142     if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
1143         trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
1144         return NVME_INVALID_CQID | NVME_DNR;
1145     }
1146     if (unlikely(!sqid || sqid > n->params.max_ioqpairs ||
1147         n->sq[sqid] != NULL)) {
1148         trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
1149         return NVME_INVALID_QID | NVME_DNR;
1150     }
1151     if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
1152         trace_pci_nvme_err_invalid_create_sq_size(qsize);
1153         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
1154     }
1155     if (unlikely(prp1 & (n->page_size - 1))) {
1156         trace_pci_nvme_err_invalid_create_sq_addr(prp1);
1157         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
1158     }
1159     if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
1160         trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
1161         return NVME_INVALID_FIELD | NVME_DNR;
1162     }
1163     sq = g_malloc0(sizeof(*sq));
1164     nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
1165     return NVME_SUCCESS;
1166 }
1167 
1168 struct nvme_stats {
1169     uint64_t units_read;
1170     uint64_t units_written;
1171     uint64_t read_commands;
1172     uint64_t write_commands;
1173 };
1174 
nvme_set_blk_stats(NvmeNamespace * ns,struct nvme_stats * stats)1175 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
1176 {
1177     BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
1178 
1179     stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
1180     stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
1181     stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
1182     stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
1183 }
1184 
nvme_smart_info(NvmeCtrl * n,uint8_t rae,uint32_t buf_len,uint64_t off,NvmeRequest * req)1185 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
1186                                 uint64_t off, NvmeRequest *req)
1187 {
1188     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
1189     struct nvme_stats stats = { 0 };
1190     NvmeSmartLog smart = { 0 };
1191     uint32_t trans_len;
1192     NvmeNamespace *ns;
1193     time_t current_ms;
1194 
1195     if (off >= sizeof(smart)) {
1196         return NVME_INVALID_FIELD | NVME_DNR;
1197     }
1198 
1199     if (nsid != 0xffffffff) {
1200         ns = nvme_ns(n, nsid);
1201         if (!ns) {
1202             return NVME_INVALID_NSID | NVME_DNR;
1203         }
1204         nvme_set_blk_stats(ns, &stats);
1205     } else {
1206         int i;
1207 
1208         for (i = 1; i <= n->num_namespaces; i++) {
1209             ns = nvme_ns(n, i);
1210             if (!ns) {
1211                 continue;
1212             }
1213             nvme_set_blk_stats(ns, &stats);
1214         }
1215     }
1216 
1217     trans_len = MIN(sizeof(smart) - off, buf_len);
1218 
1219     smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
1220                                                         1000));
1221     smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
1222                                                            1000));
1223     smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
1224     smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
1225 
1226     smart.temperature = cpu_to_le16(n->temperature);
1227 
1228     if ((n->temperature >= n->features.temp_thresh_hi) ||
1229         (n->temperature <= n->features.temp_thresh_low)) {
1230         smart.critical_warning |= NVME_SMART_TEMPERATURE;
1231     }
1232 
1233     current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
1234     smart.power_on_hours[0] =
1235         cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
1236 
1237     if (!rae) {
1238         nvme_clear_events(n, NVME_AER_TYPE_SMART);
1239     }
1240 
1241     return nvme_dma(n, (uint8_t *) &smart + off, trans_len,
1242                     DMA_DIRECTION_FROM_DEVICE, req);
1243 }
1244 
nvme_fw_log_info(NvmeCtrl * n,uint32_t buf_len,uint64_t off,NvmeRequest * req)1245 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
1246                                  NvmeRequest *req)
1247 {
1248     uint32_t trans_len;
1249     NvmeFwSlotInfoLog fw_log = {
1250         .afi = 0x1,
1251     };
1252 
1253     if (off >= sizeof(fw_log)) {
1254         return NVME_INVALID_FIELD | NVME_DNR;
1255     }
1256 
1257     strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
1258     trans_len = MIN(sizeof(fw_log) - off, buf_len);
1259 
1260     return nvme_dma(n, (uint8_t *) &fw_log + off, trans_len,
1261                     DMA_DIRECTION_FROM_DEVICE, req);
1262 }
1263 
nvme_error_info(NvmeCtrl * n,uint8_t rae,uint32_t buf_len,uint64_t off,NvmeRequest * req)1264 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
1265                                 uint64_t off, NvmeRequest *req)
1266 {
1267     uint32_t trans_len;
1268     NvmeErrorLog errlog;
1269 
1270     if (off >= sizeof(errlog)) {
1271         return NVME_INVALID_FIELD | NVME_DNR;
1272     }
1273 
1274     if (!rae) {
1275         nvme_clear_events(n, NVME_AER_TYPE_ERROR);
1276     }
1277 
1278     memset(&errlog, 0x0, sizeof(errlog));
1279     trans_len = MIN(sizeof(errlog) - off, buf_len);
1280 
1281     return nvme_dma(n, (uint8_t *)&errlog, trans_len,
1282                     DMA_DIRECTION_FROM_DEVICE, req);
1283 }
1284 
nvme_get_log(NvmeCtrl * n,NvmeRequest * req)1285 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
1286 {
1287     NvmeCmd *cmd = &req->cmd;
1288 
1289     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
1290     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
1291     uint32_t dw12 = le32_to_cpu(cmd->cdw12);
1292     uint32_t dw13 = le32_to_cpu(cmd->cdw13);
1293     uint8_t  lid = dw10 & 0xff;
1294     uint8_t  lsp = (dw10 >> 8) & 0xf;
1295     uint8_t  rae = (dw10 >> 15) & 0x1;
1296     uint32_t numdl, numdu;
1297     uint64_t off, lpol, lpou;
1298     size_t   len;
1299     uint16_t status;
1300 
1301     numdl = (dw10 >> 16);
1302     numdu = (dw11 & 0xffff);
1303     lpol = dw12;
1304     lpou = dw13;
1305 
1306     len = (((numdu << 16) | numdl) + 1) << 2;
1307     off = (lpou << 32ULL) | lpol;
1308 
1309     if (off & 0x3) {
1310         return NVME_INVALID_FIELD | NVME_DNR;
1311     }
1312 
1313     trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
1314 
1315     status = nvme_check_mdts(n, len);
1316     if (status) {
1317         trace_pci_nvme_err_mdts(nvme_cid(req), len);
1318         return status;
1319     }
1320 
1321     switch (lid) {
1322     case NVME_LOG_ERROR_INFO:
1323         return nvme_error_info(n, rae, len, off, req);
1324     case NVME_LOG_SMART_INFO:
1325         return nvme_smart_info(n, rae, len, off, req);
1326     case NVME_LOG_FW_SLOT_INFO:
1327         return nvme_fw_log_info(n, len, off, req);
1328     default:
1329         trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
1330         return NVME_INVALID_FIELD | NVME_DNR;
1331     }
1332 }
1333 
nvme_free_cq(NvmeCQueue * cq,NvmeCtrl * n)1334 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
1335 {
1336     n->cq[cq->cqid] = NULL;
1337     timer_del(cq->timer);
1338     timer_free(cq->timer);
1339     msix_vector_unuse(&n->parent_obj, cq->vector);
1340     if (cq->cqid) {
1341         g_free(cq);
1342     }
1343 }
1344 
nvme_del_cq(NvmeCtrl * n,NvmeRequest * req)1345 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
1346 {
1347     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
1348     NvmeCQueue *cq;
1349     uint16_t qid = le16_to_cpu(c->qid);
1350 
1351     if (unlikely(!qid || nvme_check_cqid(n, qid))) {
1352         trace_pci_nvme_err_invalid_del_cq_cqid(qid);
1353         return NVME_INVALID_CQID | NVME_DNR;
1354     }
1355 
1356     cq = n->cq[qid];
1357     if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
1358         trace_pci_nvme_err_invalid_del_cq_notempty(qid);
1359         return NVME_INVALID_QUEUE_DEL;
1360     }
1361     nvme_irq_deassert(n, cq);
1362     trace_pci_nvme_del_cq(qid);
1363     nvme_free_cq(cq, n);
1364     return NVME_SUCCESS;
1365 }
1366 
nvme_init_cq(NvmeCQueue * cq,NvmeCtrl * n,uint64_t dma_addr,uint16_t cqid,uint16_t vector,uint16_t size,uint16_t irq_enabled)1367 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
1368                          uint16_t cqid, uint16_t vector, uint16_t size,
1369                          uint16_t irq_enabled)
1370 {
1371     int ret;
1372 
1373     ret = msix_vector_use(&n->parent_obj, vector);
1374     assert(ret == 0);
1375     cq->ctrl = n;
1376     cq->cqid = cqid;
1377     cq->size = size;
1378     cq->dma_addr = dma_addr;
1379     cq->phase = 1;
1380     cq->irq_enabled = irq_enabled;
1381     cq->vector = vector;
1382     cq->head = cq->tail = 0;
1383     QTAILQ_INIT(&cq->req_list);
1384     QTAILQ_INIT(&cq->sq_list);
1385     n->cq[cqid] = cq;
1386     cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
1387 }
1388 
nvme_create_cq(NvmeCtrl * n,NvmeRequest * req)1389 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
1390 {
1391     NvmeCQueue *cq;
1392     NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
1393     uint16_t cqid = le16_to_cpu(c->cqid);
1394     uint16_t vector = le16_to_cpu(c->irq_vector);
1395     uint16_t qsize = le16_to_cpu(c->qsize);
1396     uint16_t qflags = le16_to_cpu(c->cq_flags);
1397     uint64_t prp1 = le64_to_cpu(c->prp1);
1398 
1399     trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
1400                              NVME_CQ_FLAGS_IEN(qflags) != 0);
1401 
1402     if (unlikely(!cqid || cqid > n->params.max_ioqpairs ||
1403         n->cq[cqid] != NULL)) {
1404         trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
1405         return NVME_INVALID_QID | NVME_DNR;
1406     }
1407     if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
1408         trace_pci_nvme_err_invalid_create_cq_size(qsize);
1409         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
1410     }
1411     if (unlikely(prp1 & (n->page_size - 1))) {
1412         trace_pci_nvme_err_invalid_create_cq_addr(prp1);
1413         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
1414     }
1415     if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
1416         trace_pci_nvme_err_invalid_create_cq_vector(vector);
1417         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
1418     }
1419     if (unlikely(vector >= n->params.msix_qsize)) {
1420         trace_pci_nvme_err_invalid_create_cq_vector(vector);
1421         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
1422     }
1423     if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
1424         trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
1425         return NVME_INVALID_FIELD | NVME_DNR;
1426     }
1427 
1428     cq = g_malloc0(sizeof(*cq));
1429     nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
1430                  NVME_CQ_FLAGS_IEN(qflags));
1431 
1432     /*
1433      * It is only required to set qs_created when creating a completion queue;
1434      * creating a submission queue without a matching completion queue will
1435      * fail.
1436      */
1437     n->qs_created = true;
1438     return NVME_SUCCESS;
1439 }
1440 
nvme_identify_ctrl(NvmeCtrl * n,NvmeRequest * req)1441 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
1442 {
1443     trace_pci_nvme_identify_ctrl();
1444 
1445     return nvme_dma(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
1446                     DMA_DIRECTION_FROM_DEVICE, req);
1447 }
1448 
nvme_identify_ns(NvmeCtrl * n,NvmeRequest * req)1449 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req)
1450 {
1451     NvmeNamespace *ns;
1452     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1453     NvmeIdNs *id_ns, inactive = { 0 };
1454     uint32_t nsid = le32_to_cpu(c->nsid);
1455 
1456     trace_pci_nvme_identify_ns(nsid);
1457 
1458     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
1459         return NVME_INVALID_NSID | NVME_DNR;
1460     }
1461 
1462     ns = nvme_ns(n, nsid);
1463     if (unlikely(!ns)) {
1464         id_ns = &inactive;
1465     } else {
1466         id_ns = &ns->id_ns;
1467     }
1468 
1469     return nvme_dma(n, (uint8_t *)id_ns, sizeof(NvmeIdNs),
1470                     DMA_DIRECTION_FROM_DEVICE, req);
1471 }
1472 
nvme_identify_nslist(NvmeCtrl * n,NvmeRequest * req)1473 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req)
1474 {
1475     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1476     static const int data_len = NVME_IDENTIFY_DATA_SIZE;
1477     uint32_t min_nsid = le32_to_cpu(c->nsid);
1478     uint32_t *list;
1479     uint16_t ret;
1480     int j = 0;
1481 
1482     trace_pci_nvme_identify_nslist(min_nsid);
1483 
1484     /*
1485      * Both 0xffffffff (NVME_NSID_BROADCAST) and 0xfffffffe are invalid values
1486      * since the Active Namespace ID List should return namespaces with ids
1487      * *higher* than the NSID specified in the command. This is also specified
1488      * in the spec (NVM Express v1.3d, Section 5.15.4).
1489      */
1490     if (min_nsid >= NVME_NSID_BROADCAST - 1) {
1491         return NVME_INVALID_NSID | NVME_DNR;
1492     }
1493 
1494     list = g_malloc0(data_len);
1495     for (int i = 1; i <= n->num_namespaces; i++) {
1496         if (i <= min_nsid || !nvme_ns(n, i)) {
1497             continue;
1498         }
1499         list[j++] = cpu_to_le32(i);
1500         if (j == data_len / sizeof(uint32_t)) {
1501             break;
1502         }
1503     }
1504     ret = nvme_dma(n, (uint8_t *)list, data_len, DMA_DIRECTION_FROM_DEVICE,
1505                    req);
1506     g_free(list);
1507     return ret;
1508 }
1509 
nvme_identify_ns_descr_list(NvmeCtrl * n,NvmeRequest * req)1510 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
1511 {
1512     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1513     uint32_t nsid = le32_to_cpu(c->nsid);
1514     uint8_t list[NVME_IDENTIFY_DATA_SIZE];
1515 
1516     struct data {
1517         struct {
1518             NvmeIdNsDescr hdr;
1519             uint8_t v[16];
1520         } uuid;
1521     };
1522 
1523     struct data *ns_descrs = (struct data *)list;
1524 
1525     trace_pci_nvme_identify_ns_descr_list(nsid);
1526 
1527     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
1528         return NVME_INVALID_NSID | NVME_DNR;
1529     }
1530 
1531     if (unlikely(!nvme_ns(n, nsid))) {
1532         return NVME_INVALID_FIELD | NVME_DNR;
1533     }
1534 
1535     memset(list, 0x0, sizeof(list));
1536 
1537     /*
1538      * Because the NGUID and EUI64 fields are 0 in the Identify Namespace data
1539      * structure, a Namespace UUID (nidt = 0x3) must be reported in the
1540      * Namespace Identification Descriptor. Add a very basic Namespace UUID
1541      * here.
1542      */
1543     ns_descrs->uuid.hdr.nidt = NVME_NIDT_UUID;
1544     ns_descrs->uuid.hdr.nidl = NVME_NIDT_UUID_LEN;
1545     stl_be_p(&ns_descrs->uuid.v, nsid);
1546 
1547     return nvme_dma(n, list, NVME_IDENTIFY_DATA_SIZE,
1548                     DMA_DIRECTION_FROM_DEVICE, req);
1549 }
1550 
nvme_identify(NvmeCtrl * n,NvmeRequest * req)1551 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
1552 {
1553     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
1554 
1555     switch (le32_to_cpu(c->cns)) {
1556     case NVME_ID_CNS_NS:
1557         return nvme_identify_ns(n, req);
1558     case NVME_ID_CNS_CTRL:
1559         return nvme_identify_ctrl(n, req);
1560     case NVME_ID_CNS_NS_ACTIVE_LIST:
1561         return nvme_identify_nslist(n, req);
1562     case NVME_ID_CNS_NS_DESCR_LIST:
1563         return nvme_identify_ns_descr_list(n, req);
1564     default:
1565         trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
1566         return NVME_INVALID_FIELD | NVME_DNR;
1567     }
1568 }
1569 
nvme_abort(NvmeCtrl * n,NvmeRequest * req)1570 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
1571 {
1572     uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
1573 
1574     req->cqe.result = 1;
1575     if (nvme_check_sqid(n, sqid)) {
1576         return NVME_INVALID_FIELD | NVME_DNR;
1577     }
1578 
1579     return NVME_SUCCESS;
1580 }
1581 
nvme_set_timestamp(NvmeCtrl * n,uint64_t ts)1582 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
1583 {
1584     trace_pci_nvme_setfeat_timestamp(ts);
1585 
1586     n->host_timestamp = le64_to_cpu(ts);
1587     n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
1588 }
1589 
nvme_get_timestamp(const NvmeCtrl * n)1590 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
1591 {
1592     uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
1593     uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
1594 
1595     union nvme_timestamp {
1596         struct {
1597             uint64_t timestamp:48;
1598             uint64_t sync:1;
1599             uint64_t origin:3;
1600             uint64_t rsvd1:12;
1601         };
1602         uint64_t all;
1603     };
1604 
1605     union nvme_timestamp ts;
1606     ts.all = 0;
1607     ts.timestamp = n->host_timestamp + elapsed_time;
1608 
1609     /* If the host timestamp is non-zero, set the timestamp origin */
1610     ts.origin = n->host_timestamp ? 0x01 : 0x00;
1611 
1612     trace_pci_nvme_getfeat_timestamp(ts.all);
1613 
1614     return cpu_to_le64(ts.all);
1615 }
1616 
nvme_get_feature_timestamp(NvmeCtrl * n,NvmeRequest * req)1617 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
1618 {
1619     uint64_t timestamp = nvme_get_timestamp(n);
1620 
1621     return nvme_dma(n, (uint8_t *)&timestamp, sizeof(timestamp),
1622                     DMA_DIRECTION_FROM_DEVICE, req);
1623 }
1624 
nvme_get_feature(NvmeCtrl * n,NvmeRequest * req)1625 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
1626 {
1627     NvmeCmd *cmd = &req->cmd;
1628     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
1629     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
1630     uint32_t nsid = le32_to_cpu(cmd->nsid);
1631     uint32_t result;
1632     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
1633     NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
1634     uint16_t iv;
1635 
1636     static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
1637         [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
1638     };
1639 
1640     trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
1641 
1642     if (!nvme_feature_support[fid]) {
1643         return NVME_INVALID_FIELD | NVME_DNR;
1644     }
1645 
1646     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
1647         if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
1648             /*
1649              * The Reservation Notification Mask and Reservation Persistence
1650              * features require a status code of Invalid Field in Command when
1651              * NSID is 0xFFFFFFFF. Since the device does not support those
1652              * features we can always return Invalid Namespace or Format as we
1653              * should do for all other features.
1654              */
1655             return NVME_INVALID_NSID | NVME_DNR;
1656         }
1657 
1658         if (!nvme_ns(n, nsid)) {
1659             return NVME_INVALID_FIELD | NVME_DNR;
1660         }
1661     }
1662 
1663     switch (sel) {
1664     case NVME_GETFEAT_SELECT_CURRENT:
1665         break;
1666     case NVME_GETFEAT_SELECT_SAVED:
1667         /* no features are saveable by the controller; fallthrough */
1668     case NVME_GETFEAT_SELECT_DEFAULT:
1669         goto defaults;
1670     case NVME_GETFEAT_SELECT_CAP:
1671         result = nvme_feature_cap[fid];
1672         goto out;
1673     }
1674 
1675     switch (fid) {
1676     case NVME_TEMPERATURE_THRESHOLD:
1677         result = 0;
1678 
1679         /*
1680          * The controller only implements the Composite Temperature sensor, so
1681          * return 0 for all other sensors.
1682          */
1683         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
1684             goto out;
1685         }
1686 
1687         switch (NVME_TEMP_THSEL(dw11)) {
1688         case NVME_TEMP_THSEL_OVER:
1689             result = n->features.temp_thresh_hi;
1690             goto out;
1691         case NVME_TEMP_THSEL_UNDER:
1692             result = n->features.temp_thresh_low;
1693             goto out;
1694         }
1695 
1696         return NVME_INVALID_FIELD | NVME_DNR;
1697     case NVME_VOLATILE_WRITE_CACHE:
1698         result = n->features.vwc;
1699         trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
1700         goto out;
1701     case NVME_ASYNCHRONOUS_EVENT_CONF:
1702         result = n->features.async_config;
1703         goto out;
1704     case NVME_TIMESTAMP:
1705         return nvme_get_feature_timestamp(n, req);
1706     default:
1707         break;
1708     }
1709 
1710 defaults:
1711     switch (fid) {
1712     case NVME_TEMPERATURE_THRESHOLD:
1713         result = 0;
1714 
1715         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
1716             break;
1717         }
1718 
1719         if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
1720             result = NVME_TEMPERATURE_WARNING;
1721         }
1722 
1723         break;
1724     case NVME_NUMBER_OF_QUEUES:
1725         result = (n->params.max_ioqpairs - 1) |
1726             ((n->params.max_ioqpairs - 1) << 16);
1727         trace_pci_nvme_getfeat_numq(result);
1728         break;
1729     case NVME_INTERRUPT_VECTOR_CONF:
1730         iv = dw11 & 0xffff;
1731         if (iv >= n->params.max_ioqpairs + 1) {
1732             return NVME_INVALID_FIELD | NVME_DNR;
1733         }
1734 
1735         result = iv;
1736         if (iv == n->admin_cq.vector) {
1737             result |= NVME_INTVC_NOCOALESCING;
1738         }
1739 
1740         break;
1741     default:
1742         result = nvme_feature_default[fid];
1743         break;
1744     }
1745 
1746 out:
1747     req->cqe.result = cpu_to_le32(result);
1748     return NVME_SUCCESS;
1749 }
1750 
nvme_set_feature_timestamp(NvmeCtrl * n,NvmeRequest * req)1751 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
1752 {
1753     uint16_t ret;
1754     uint64_t timestamp;
1755 
1756     ret = nvme_dma(n, (uint8_t *)&timestamp, sizeof(timestamp),
1757                    DMA_DIRECTION_TO_DEVICE, req);
1758     if (ret != NVME_SUCCESS) {
1759         return ret;
1760     }
1761 
1762     nvme_set_timestamp(n, timestamp);
1763 
1764     return NVME_SUCCESS;
1765 }
1766 
nvme_set_feature(NvmeCtrl * n,NvmeRequest * req)1767 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
1768 {
1769     NvmeNamespace *ns;
1770 
1771     NvmeCmd *cmd = &req->cmd;
1772     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
1773     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
1774     uint32_t nsid = le32_to_cpu(cmd->nsid);
1775     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
1776     uint8_t save = NVME_SETFEAT_SAVE(dw10);
1777 
1778     trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
1779 
1780     if (save) {
1781         return NVME_FID_NOT_SAVEABLE | NVME_DNR;
1782     }
1783 
1784     if (!nvme_feature_support[fid]) {
1785         return NVME_INVALID_FIELD | NVME_DNR;
1786     }
1787 
1788     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
1789         if (nsid != NVME_NSID_BROADCAST) {
1790             if (!nvme_nsid_valid(n, nsid)) {
1791                 return NVME_INVALID_NSID | NVME_DNR;
1792             }
1793 
1794             ns = nvme_ns(n, nsid);
1795             if (unlikely(!ns)) {
1796                 return NVME_INVALID_FIELD | NVME_DNR;
1797             }
1798         }
1799     } else if (nsid && nsid != NVME_NSID_BROADCAST) {
1800         if (!nvme_nsid_valid(n, nsid)) {
1801             return NVME_INVALID_NSID | NVME_DNR;
1802         }
1803 
1804         return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
1805     }
1806 
1807     if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
1808         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
1809     }
1810 
1811     switch (fid) {
1812     case NVME_TEMPERATURE_THRESHOLD:
1813         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
1814             break;
1815         }
1816 
1817         switch (NVME_TEMP_THSEL(dw11)) {
1818         case NVME_TEMP_THSEL_OVER:
1819             n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
1820             break;
1821         case NVME_TEMP_THSEL_UNDER:
1822             n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
1823             break;
1824         default:
1825             return NVME_INVALID_FIELD | NVME_DNR;
1826         }
1827 
1828         if (((n->temperature >= n->features.temp_thresh_hi) ||
1829              (n->temperature <= n->features.temp_thresh_low)) &&
1830             NVME_AEC_SMART(n->features.async_config) & NVME_SMART_TEMPERATURE) {
1831             nvme_enqueue_event(n, NVME_AER_TYPE_SMART,
1832                                NVME_AER_INFO_SMART_TEMP_THRESH,
1833                                NVME_LOG_SMART_INFO);
1834         }
1835 
1836         break;
1837     case NVME_VOLATILE_WRITE_CACHE:
1838         n->features.vwc = dw11 & 0x1;
1839 
1840         for (int i = 1; i <= n->num_namespaces; i++) {
1841             ns = nvme_ns(n, i);
1842             if (!ns) {
1843                 continue;
1844             }
1845 
1846             if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
1847                 blk_flush(ns->blkconf.blk);
1848             }
1849 
1850             blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
1851         }
1852 
1853         break;
1854 
1855     case NVME_NUMBER_OF_QUEUES:
1856         if (n->qs_created) {
1857             return NVME_CMD_SEQ_ERROR | NVME_DNR;
1858         }
1859 
1860         /*
1861          * NVMe v1.3, Section 5.21.1.7: 0xffff is not an allowed value for NCQR
1862          * and NSQR.
1863          */
1864         if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
1865             return NVME_INVALID_FIELD | NVME_DNR;
1866         }
1867 
1868         trace_pci_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
1869                                     ((dw11 >> 16) & 0xFFFF) + 1,
1870                                     n->params.max_ioqpairs,
1871                                     n->params.max_ioqpairs);
1872         req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) |
1873                                       ((n->params.max_ioqpairs - 1) << 16));
1874         break;
1875     case NVME_ASYNCHRONOUS_EVENT_CONF:
1876         n->features.async_config = dw11;
1877         break;
1878     case NVME_TIMESTAMP:
1879         return nvme_set_feature_timestamp(n, req);
1880     default:
1881         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
1882     }
1883     return NVME_SUCCESS;
1884 }
1885 
nvme_aer(NvmeCtrl * n,NvmeRequest * req)1886 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
1887 {
1888     trace_pci_nvme_aer(nvme_cid(req));
1889 
1890     if (n->outstanding_aers > n->params.aerl) {
1891         trace_pci_nvme_aer_aerl_exceeded();
1892         return NVME_AER_LIMIT_EXCEEDED;
1893     }
1894 
1895     n->aer_reqs[n->outstanding_aers] = req;
1896     n->outstanding_aers++;
1897 
1898     if (!QTAILQ_EMPTY(&n->aer_queue)) {
1899         nvme_process_aers(n);
1900     }
1901 
1902     return NVME_NO_COMPLETE;
1903 }
1904 
nvme_admin_cmd(NvmeCtrl * n,NvmeRequest * req)1905 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
1906 {
1907     trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
1908                              nvme_adm_opc_str(req->cmd.opcode));
1909 
1910     switch (req->cmd.opcode) {
1911     case NVME_ADM_CMD_DELETE_SQ:
1912         return nvme_del_sq(n, req);
1913     case NVME_ADM_CMD_CREATE_SQ:
1914         return nvme_create_sq(n, req);
1915     case NVME_ADM_CMD_GET_LOG_PAGE:
1916         return nvme_get_log(n, req);
1917     case NVME_ADM_CMD_DELETE_CQ:
1918         return nvme_del_cq(n, req);
1919     case NVME_ADM_CMD_CREATE_CQ:
1920         return nvme_create_cq(n, req);
1921     case NVME_ADM_CMD_IDENTIFY:
1922         return nvme_identify(n, req);
1923     case NVME_ADM_CMD_ABORT:
1924         return nvme_abort(n, req);
1925     case NVME_ADM_CMD_SET_FEATURES:
1926         return nvme_set_feature(n, req);
1927     case NVME_ADM_CMD_GET_FEATURES:
1928         return nvme_get_feature(n, req);
1929     case NVME_ADM_CMD_ASYNC_EV_REQ:
1930         return nvme_aer(n, req);
1931     default:
1932         trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
1933         return NVME_INVALID_OPCODE | NVME_DNR;
1934     }
1935 }
1936 
nvme_process_sq(void * opaque)1937 static void nvme_process_sq(void *opaque)
1938 {
1939     NvmeSQueue *sq = opaque;
1940     NvmeCtrl *n = sq->ctrl;
1941     NvmeCQueue *cq = n->cq[sq->cqid];
1942 
1943     uint16_t status;
1944     hwaddr addr;
1945     NvmeCmd cmd;
1946     NvmeRequest *req;
1947 
1948     while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
1949         addr = sq->dma_addr + sq->head * n->sqe_size;
1950         if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
1951             trace_pci_nvme_err_addr_read(addr);
1952             trace_pci_nvme_err_cfs();
1953             n->bar.csts = NVME_CSTS_FAILED;
1954             break;
1955         }
1956         nvme_inc_sq_head(sq);
1957 
1958         req = QTAILQ_FIRST(&sq->req_list);
1959         QTAILQ_REMOVE(&sq->req_list, req, entry);
1960         QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
1961         nvme_req_clear(req);
1962         req->cqe.cid = cmd.cid;
1963         memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
1964 
1965         status = sq->sqid ? nvme_io_cmd(n, req) :
1966             nvme_admin_cmd(n, req);
1967         if (status != NVME_NO_COMPLETE) {
1968             req->status = status;
1969             nvme_enqueue_req_completion(cq, req);
1970         }
1971     }
1972 }
1973 
nvme_clear_ctrl(NvmeCtrl * n)1974 static void nvme_clear_ctrl(NvmeCtrl *n)
1975 {
1976     NvmeNamespace *ns;
1977     int i;
1978 
1979     for (i = 1; i <= n->num_namespaces; i++) {
1980         ns = nvme_ns(n, i);
1981         if (!ns) {
1982             continue;
1983         }
1984 
1985         nvme_ns_drain(ns);
1986     }
1987 
1988     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
1989         if (n->sq[i] != NULL) {
1990             nvme_free_sq(n->sq[i], n);
1991         }
1992     }
1993     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
1994         if (n->cq[i] != NULL) {
1995             nvme_free_cq(n->cq[i], n);
1996         }
1997     }
1998 
1999     while (!QTAILQ_EMPTY(&n->aer_queue)) {
2000         NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
2001         QTAILQ_REMOVE(&n->aer_queue, event, entry);
2002         g_free(event);
2003     }
2004 
2005     n->aer_queued = 0;
2006     n->outstanding_aers = 0;
2007     n->qs_created = false;
2008 
2009     for (i = 1; i <= n->num_namespaces; i++) {
2010         ns = nvme_ns(n, i);
2011         if (!ns) {
2012             continue;
2013         }
2014 
2015         nvme_ns_flush(ns);
2016     }
2017 
2018     n->bar.cc = 0;
2019 }
2020 
nvme_start_ctrl(NvmeCtrl * n)2021 static int nvme_start_ctrl(NvmeCtrl *n)
2022 {
2023     uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
2024     uint32_t page_size = 1 << page_bits;
2025 
2026     if (unlikely(n->cq[0])) {
2027         trace_pci_nvme_err_startfail_cq();
2028         return -1;
2029     }
2030     if (unlikely(n->sq[0])) {
2031         trace_pci_nvme_err_startfail_sq();
2032         return -1;
2033     }
2034     if (unlikely(!n->bar.asq)) {
2035         trace_pci_nvme_err_startfail_nbarasq();
2036         return -1;
2037     }
2038     if (unlikely(!n->bar.acq)) {
2039         trace_pci_nvme_err_startfail_nbaracq();
2040         return -1;
2041     }
2042     if (unlikely(n->bar.asq & (page_size - 1))) {
2043         trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq);
2044         return -1;
2045     }
2046     if (unlikely(n->bar.acq & (page_size - 1))) {
2047         trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq);
2048         return -1;
2049     }
2050     if (unlikely(!(NVME_CAP_CSS(n->bar.cap) & (1 << NVME_CC_CSS(n->bar.cc))))) {
2051         trace_pci_nvme_err_startfail_css(NVME_CC_CSS(n->bar.cc));
2052         return -1;
2053     }
2054     if (unlikely(NVME_CC_MPS(n->bar.cc) <
2055                  NVME_CAP_MPSMIN(n->bar.cap))) {
2056         trace_pci_nvme_err_startfail_page_too_small(
2057                     NVME_CC_MPS(n->bar.cc),
2058                     NVME_CAP_MPSMIN(n->bar.cap));
2059         return -1;
2060     }
2061     if (unlikely(NVME_CC_MPS(n->bar.cc) >
2062                  NVME_CAP_MPSMAX(n->bar.cap))) {
2063         trace_pci_nvme_err_startfail_page_too_large(
2064                     NVME_CC_MPS(n->bar.cc),
2065                     NVME_CAP_MPSMAX(n->bar.cap));
2066         return -1;
2067     }
2068     if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
2069                  NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
2070         trace_pci_nvme_err_startfail_cqent_too_small(
2071                     NVME_CC_IOCQES(n->bar.cc),
2072                     NVME_CTRL_CQES_MIN(n->bar.cap));
2073         return -1;
2074     }
2075     if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
2076                  NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
2077         trace_pci_nvme_err_startfail_cqent_too_large(
2078                     NVME_CC_IOCQES(n->bar.cc),
2079                     NVME_CTRL_CQES_MAX(n->bar.cap));
2080         return -1;
2081     }
2082     if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
2083                  NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
2084         trace_pci_nvme_err_startfail_sqent_too_small(
2085                     NVME_CC_IOSQES(n->bar.cc),
2086                     NVME_CTRL_SQES_MIN(n->bar.cap));
2087         return -1;
2088     }
2089     if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
2090                  NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
2091         trace_pci_nvme_err_startfail_sqent_too_large(
2092                     NVME_CC_IOSQES(n->bar.cc),
2093                     NVME_CTRL_SQES_MAX(n->bar.cap));
2094         return -1;
2095     }
2096     if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
2097         trace_pci_nvme_err_startfail_asqent_sz_zero();
2098         return -1;
2099     }
2100     if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
2101         trace_pci_nvme_err_startfail_acqent_sz_zero();
2102         return -1;
2103     }
2104 
2105     n->page_bits = page_bits;
2106     n->page_size = page_size;
2107     n->max_prp_ents = n->page_size / sizeof(uint64_t);
2108     n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
2109     n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
2110     nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
2111                  NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
2112     nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
2113                  NVME_AQA_ASQS(n->bar.aqa) + 1);
2114 
2115     nvme_set_timestamp(n, 0ULL);
2116 
2117     QTAILQ_INIT(&n->aer_queue);
2118 
2119     return 0;
2120 }
2121 
nvme_write_bar(NvmeCtrl * n,hwaddr offset,uint64_t data,unsigned size)2122 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
2123                            unsigned size)
2124 {
2125     if (unlikely(offset & (sizeof(uint32_t) - 1))) {
2126         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
2127                        "MMIO write not 32-bit aligned,"
2128                        " offset=0x%"PRIx64"", offset);
2129         /* should be ignored, fall through for now */
2130     }
2131 
2132     if (unlikely(size < sizeof(uint32_t))) {
2133         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
2134                        "MMIO write smaller than 32-bits,"
2135                        " offset=0x%"PRIx64", size=%u",
2136                        offset, size);
2137         /* should be ignored, fall through for now */
2138     }
2139 
2140     switch (offset) {
2141     case 0xc:   /* INTMS */
2142         if (unlikely(msix_enabled(&(n->parent_obj)))) {
2143             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
2144                            "undefined access to interrupt mask set"
2145                            " when MSI-X is enabled");
2146             /* should be ignored, fall through for now */
2147         }
2148         n->bar.intms |= data & 0xffffffff;
2149         n->bar.intmc = n->bar.intms;
2150         trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc);
2151         nvme_irq_check(n);
2152         break;
2153     case 0x10:  /* INTMC */
2154         if (unlikely(msix_enabled(&(n->parent_obj)))) {
2155             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
2156                            "undefined access to interrupt mask clr"
2157                            " when MSI-X is enabled");
2158             /* should be ignored, fall through for now */
2159         }
2160         n->bar.intms &= ~(data & 0xffffffff);
2161         n->bar.intmc = n->bar.intms;
2162         trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc);
2163         nvme_irq_check(n);
2164         break;
2165     case 0x14:  /* CC */
2166         trace_pci_nvme_mmio_cfg(data & 0xffffffff);
2167         /* Windows first sends data, then sends enable bit */
2168         if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
2169             !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
2170         {
2171             n->bar.cc = data;
2172         }
2173 
2174         if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
2175             n->bar.cc = data;
2176             if (unlikely(nvme_start_ctrl(n))) {
2177                 trace_pci_nvme_err_startfail();
2178                 n->bar.csts = NVME_CSTS_FAILED;
2179             } else {
2180                 trace_pci_nvme_mmio_start_success();
2181                 n->bar.csts = NVME_CSTS_READY;
2182             }
2183         } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
2184             trace_pci_nvme_mmio_stopped();
2185             nvme_clear_ctrl(n);
2186             n->bar.csts &= ~NVME_CSTS_READY;
2187         }
2188         if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
2189             trace_pci_nvme_mmio_shutdown_set();
2190             nvme_clear_ctrl(n);
2191             n->bar.cc = data;
2192             n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
2193         } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
2194             trace_pci_nvme_mmio_shutdown_cleared();
2195             n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
2196             n->bar.cc = data;
2197         }
2198         break;
2199     case 0x1C:  /* CSTS */
2200         if (data & (1 << 4)) {
2201             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
2202                            "attempted to W1C CSTS.NSSRO"
2203                            " but CAP.NSSRS is zero (not supported)");
2204         } else if (data != 0) {
2205             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
2206                            "attempted to set a read only bit"
2207                            " of controller status");
2208         }
2209         break;
2210     case 0x20:  /* NSSR */
2211         if (data == 0x4E564D65) {
2212             trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
2213         } else {
2214             /* The spec says that writes of other values have no effect */
2215             return;
2216         }
2217         break;
2218     case 0x24:  /* AQA */
2219         n->bar.aqa = data & 0xffffffff;
2220         trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
2221         break;
2222     case 0x28:  /* ASQ */
2223         n->bar.asq = data;
2224         trace_pci_nvme_mmio_asqaddr(data);
2225         break;
2226     case 0x2c:  /* ASQ hi */
2227         n->bar.asq |= data << 32;
2228         trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq);
2229         break;
2230     case 0x30:  /* ACQ */
2231         trace_pci_nvme_mmio_acqaddr(data);
2232         n->bar.acq = data;
2233         break;
2234     case 0x34:  /* ACQ hi */
2235         n->bar.acq |= data << 32;
2236         trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq);
2237         break;
2238     case 0x38:  /* CMBLOC */
2239         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
2240                        "invalid write to reserved CMBLOC"
2241                        " when CMBSZ is zero, ignored");
2242         return;
2243     case 0x3C:  /* CMBSZ */
2244         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
2245                        "invalid write to read only CMBSZ, ignored");
2246         return;
2247     case 0xE00: /* PMRCAP */
2248         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
2249                        "invalid write to PMRCAP register, ignored");
2250         return;
2251     case 0xE04: /* TODO PMRCTL */
2252         break;
2253     case 0xE08: /* PMRSTS */
2254         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
2255                        "invalid write to PMRSTS register, ignored");
2256         return;
2257     case 0xE0C: /* PMREBS */
2258         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
2259                        "invalid write to PMREBS register, ignored");
2260         return;
2261     case 0xE10: /* PMRSWTP */
2262         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
2263                        "invalid write to PMRSWTP register, ignored");
2264         return;
2265     case 0xE14: /* TODO PMRMSC */
2266         break;
2267     default:
2268         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
2269                        "invalid MMIO write,"
2270                        " offset=0x%"PRIx64", data=%"PRIx64"",
2271                        offset, data);
2272         break;
2273     }
2274 }
2275 
nvme_mmio_read(void * opaque,hwaddr addr,unsigned size)2276 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
2277 {
2278     NvmeCtrl *n = (NvmeCtrl *)opaque;
2279     uint8_t *ptr = (uint8_t *)&n->bar;
2280     uint64_t val = 0;
2281 
2282     trace_pci_nvme_mmio_read(addr);
2283 
2284     if (unlikely(addr & (sizeof(uint32_t) - 1))) {
2285         NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
2286                        "MMIO read not 32-bit aligned,"
2287                        " offset=0x%"PRIx64"", addr);
2288         /* should RAZ, fall through for now */
2289     } else if (unlikely(size < sizeof(uint32_t))) {
2290         NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
2291                        "MMIO read smaller than 32-bits,"
2292                        " offset=0x%"PRIx64"", addr);
2293         /* should RAZ, fall through for now */
2294     }
2295 
2296     if (addr < sizeof(n->bar)) {
2297         /*
2298          * When PMRWBM bit 1 is set then read from
2299          * from PMRSTS should ensure prior writes
2300          * made it to persistent media
2301          */
2302         if (addr == 0xE08 &&
2303             (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
2304             memory_region_msync(&n->pmrdev->mr, 0, n->pmrdev->size);
2305         }
2306         memcpy(&val, ptr + addr, size);
2307     } else {
2308         NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
2309                        "MMIO read beyond last register,"
2310                        " offset=0x%"PRIx64", returning 0", addr);
2311     }
2312 
2313     return val;
2314 }
2315 
nvme_process_db(NvmeCtrl * n,hwaddr addr,int val)2316 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
2317 {
2318     uint32_t qid;
2319 
2320     if (unlikely(addr & ((1 << 2) - 1))) {
2321         NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
2322                        "doorbell write not 32-bit aligned,"
2323                        " offset=0x%"PRIx64", ignoring", addr);
2324         return;
2325     }
2326 
2327     if (((addr - 0x1000) >> 2) & 1) {
2328         /* Completion queue doorbell write */
2329 
2330         uint16_t new_head = val & 0xffff;
2331         int start_sqs;
2332         NvmeCQueue *cq;
2333 
2334         qid = (addr - (0x1000 + (1 << 2))) >> 3;
2335         if (unlikely(nvme_check_cqid(n, qid))) {
2336             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
2337                            "completion queue doorbell write"
2338                            " for nonexistent queue,"
2339                            " sqid=%"PRIu32", ignoring", qid);
2340 
2341             /*
2342              * NVM Express v1.3d, Section 4.1 state: "If host software writes
2343              * an invalid value to the Submission Queue Tail Doorbell or
2344              * Completion Queue Head Doorbell regiter and an Asynchronous Event
2345              * Request command is outstanding, then an asynchronous event is
2346              * posted to the Admin Completion Queue with a status code of
2347              * Invalid Doorbell Write Value."
2348              *
2349              * Also note that the spec includes the "Invalid Doorbell Register"
2350              * status code, but nowhere does it specify when to use it.
2351              * However, it seems reasonable to use it here in a similar
2352              * fashion.
2353              */
2354             if (n->outstanding_aers) {
2355                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2356                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
2357                                    NVME_LOG_ERROR_INFO);
2358             }
2359 
2360             return;
2361         }
2362 
2363         cq = n->cq[qid];
2364         if (unlikely(new_head >= cq->size)) {
2365             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
2366                            "completion queue doorbell write value"
2367                            " beyond queue size, sqid=%"PRIu32","
2368                            " new_head=%"PRIu16", ignoring",
2369                            qid, new_head);
2370 
2371             if (n->outstanding_aers) {
2372                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2373                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
2374                                    NVME_LOG_ERROR_INFO);
2375             }
2376 
2377             return;
2378         }
2379 
2380         trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
2381 
2382         start_sqs = nvme_cq_full(cq) ? 1 : 0;
2383         cq->head = new_head;
2384         if (start_sqs) {
2385             NvmeSQueue *sq;
2386             QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
2387                 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
2388             }
2389             timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
2390         }
2391 
2392         if (cq->tail == cq->head) {
2393             nvme_irq_deassert(n, cq);
2394         }
2395     } else {
2396         /* Submission queue doorbell write */
2397 
2398         uint16_t new_tail = val & 0xffff;
2399         NvmeSQueue *sq;
2400 
2401         qid = (addr - 0x1000) >> 3;
2402         if (unlikely(nvme_check_sqid(n, qid))) {
2403             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
2404                            "submission queue doorbell write"
2405                            " for nonexistent queue,"
2406                            " sqid=%"PRIu32", ignoring", qid);
2407 
2408             if (n->outstanding_aers) {
2409                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2410                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
2411                                    NVME_LOG_ERROR_INFO);
2412             }
2413 
2414             return;
2415         }
2416 
2417         sq = n->sq[qid];
2418         if (unlikely(new_tail >= sq->size)) {
2419             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
2420                            "submission queue doorbell write value"
2421                            " beyond queue size, sqid=%"PRIu32","
2422                            " new_tail=%"PRIu16", ignoring",
2423                            qid, new_tail);
2424 
2425             if (n->outstanding_aers) {
2426                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
2427                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
2428                                    NVME_LOG_ERROR_INFO);
2429             }
2430 
2431             return;
2432         }
2433 
2434         trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
2435 
2436         sq->tail = new_tail;
2437         timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
2438     }
2439 }
2440 
nvme_mmio_write(void * opaque,hwaddr addr,uint64_t data,unsigned size)2441 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
2442                             unsigned size)
2443 {
2444     NvmeCtrl *n = (NvmeCtrl *)opaque;
2445 
2446     trace_pci_nvme_mmio_write(addr, data);
2447 
2448     if (addr < sizeof(n->bar)) {
2449         nvme_write_bar(n, addr, data, size);
2450     } else {
2451         nvme_process_db(n, addr, data);
2452     }
2453 }
2454 
2455 static const MemoryRegionOps nvme_mmio_ops = {
2456     .read = nvme_mmio_read,
2457     .write = nvme_mmio_write,
2458     .endianness = DEVICE_LITTLE_ENDIAN,
2459     .impl = {
2460         .min_access_size = 2,
2461         .max_access_size = 8,
2462     },
2463 };
2464 
nvme_cmb_write(void * opaque,hwaddr addr,uint64_t data,unsigned size)2465 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
2466                            unsigned size)
2467 {
2468     NvmeCtrl *n = (NvmeCtrl *)opaque;
2469     stn_le_p(&n->cmbuf[addr], size, data);
2470 }
2471 
nvme_cmb_read(void * opaque,hwaddr addr,unsigned size)2472 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
2473 {
2474     NvmeCtrl *n = (NvmeCtrl *)opaque;
2475     return ldn_le_p(&n->cmbuf[addr], size);
2476 }
2477 
2478 static const MemoryRegionOps nvme_cmb_ops = {
2479     .read = nvme_cmb_read,
2480     .write = nvme_cmb_write,
2481     .endianness = DEVICE_LITTLE_ENDIAN,
2482     .impl = {
2483         .min_access_size = 1,
2484         .max_access_size = 8,
2485     },
2486 };
2487 
nvme_check_constraints(NvmeCtrl * n,Error ** errp)2488 static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
2489 {
2490     NvmeParams *params = &n->params;
2491 
2492     if (params->num_queues) {
2493         warn_report("num_queues is deprecated; please use max_ioqpairs "
2494                     "instead");
2495 
2496         params->max_ioqpairs = params->num_queues - 1;
2497     }
2498 
2499     if (n->conf.blk) {
2500         warn_report("drive property is deprecated; "
2501                     "please use an nvme-ns device instead");
2502     }
2503 
2504     if (params->max_ioqpairs < 1 ||
2505         params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
2506         error_setg(errp, "max_ioqpairs must be between 1 and %d",
2507                    NVME_MAX_IOQPAIRS);
2508         return;
2509     }
2510 
2511     if (params->msix_qsize < 1 ||
2512         params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
2513         error_setg(errp, "msix_qsize must be between 1 and %d",
2514                    PCI_MSIX_FLAGS_QSIZE + 1);
2515         return;
2516     }
2517 
2518     if (!params->serial) {
2519         error_setg(errp, "serial property not set");
2520         return;
2521     }
2522 
2523     if (!n->params.cmb_size_mb && n->pmrdev) {
2524         if (host_memory_backend_is_mapped(n->pmrdev)) {
2525             error_setg(errp, "can't use already busy memdev: %s",
2526                        object_get_canonical_path_component(OBJECT(n->pmrdev)));
2527             return;
2528         }
2529 
2530         if (!is_power_of_2(n->pmrdev->size)) {
2531             error_setg(errp, "pmr backend size needs to be power of 2 in size");
2532             return;
2533         }
2534 
2535         host_memory_backend_set_mapped(n->pmrdev, true);
2536     }
2537 }
2538 
nvme_init_state(NvmeCtrl * n)2539 static void nvme_init_state(NvmeCtrl *n)
2540 {
2541     n->num_namespaces = NVME_MAX_NAMESPACES;
2542     /* add one to max_ioqpairs to account for the admin queue pair */
2543     n->reg_size = pow2ceil(sizeof(NvmeBar) +
2544                            2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE);
2545     n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
2546     n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
2547     n->temperature = NVME_TEMPERATURE;
2548     n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
2549     n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
2550     n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
2551 }
2552 
nvme_register_namespace(NvmeCtrl * n,NvmeNamespace * ns,Error ** errp)2553 int nvme_register_namespace(NvmeCtrl *n, NvmeNamespace *ns, Error **errp)
2554 {
2555     uint32_t nsid = nvme_nsid(ns);
2556 
2557     if (nsid > NVME_MAX_NAMESPACES) {
2558         error_setg(errp, "invalid namespace id (must be between 0 and %d)",
2559                    NVME_MAX_NAMESPACES);
2560         return -1;
2561     }
2562 
2563     if (!nsid) {
2564         for (int i = 1; i <= n->num_namespaces; i++) {
2565             if (!nvme_ns(n, i)) {
2566                 nsid = ns->params.nsid = i;
2567                 break;
2568             }
2569         }
2570 
2571         if (!nsid) {
2572             error_setg(errp, "no free namespace id");
2573             return -1;
2574         }
2575     } else {
2576         if (n->namespaces[nsid - 1]) {
2577             error_setg(errp, "namespace id '%d' is already in use", nsid);
2578             return -1;
2579         }
2580     }
2581 
2582     trace_pci_nvme_register_namespace(nsid);
2583 
2584     n->namespaces[nsid - 1] = ns;
2585 
2586     return 0;
2587 }
2588 
nvme_init_cmb(NvmeCtrl * n,PCIDevice * pci_dev)2589 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
2590 {
2591     NVME_CMBLOC_SET_BIR(n->bar.cmbloc, NVME_CMB_BIR);
2592     NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
2593 
2594     NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
2595     NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
2596     NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 1);
2597     NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
2598     NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
2599     NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
2600     NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb);
2601 
2602     n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
2603     memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
2604                           "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
2605     pci_register_bar(pci_dev, NVME_CMBLOC_BIR(n->bar.cmbloc),
2606                      PCI_BASE_ADDRESS_SPACE_MEMORY |
2607                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
2608                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
2609 }
2610 
nvme_init_pmr(NvmeCtrl * n,PCIDevice * pci_dev)2611 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
2612 {
2613     /* Controller Capabilities register */
2614     NVME_CAP_SET_PMRS(n->bar.cap, 1);
2615 
2616     /* PMR Capabities register */
2617     n->bar.pmrcap = 0;
2618     NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 0);
2619     NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 0);
2620     NVME_PMRCAP_SET_BIR(n->bar.pmrcap, NVME_PMR_BIR);
2621     NVME_PMRCAP_SET_PMRTU(n->bar.pmrcap, 0);
2622     /* Turn on bit 1 support */
2623     NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
2624     NVME_PMRCAP_SET_PMRTO(n->bar.pmrcap, 0);
2625     NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 0);
2626 
2627     /* PMR Control register */
2628     n->bar.pmrctl = 0;
2629     NVME_PMRCTL_SET_EN(n->bar.pmrctl, 0);
2630 
2631     /* PMR Status register */
2632     n->bar.pmrsts = 0;
2633     NVME_PMRSTS_SET_ERR(n->bar.pmrsts, 0);
2634     NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 0);
2635     NVME_PMRSTS_SET_HSTS(n->bar.pmrsts, 0);
2636     NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 0);
2637 
2638     /* PMR Elasticity Buffer Size register */
2639     n->bar.pmrebs = 0;
2640     NVME_PMREBS_SET_PMRSZU(n->bar.pmrebs, 0);
2641     NVME_PMREBS_SET_RBB(n->bar.pmrebs, 0);
2642     NVME_PMREBS_SET_PMRWBZ(n->bar.pmrebs, 0);
2643 
2644     /* PMR Sustained Write Throughput register */
2645     n->bar.pmrswtp = 0;
2646     NVME_PMRSWTP_SET_PMRSWTU(n->bar.pmrswtp, 0);
2647     NVME_PMRSWTP_SET_PMRSWTV(n->bar.pmrswtp, 0);
2648 
2649     /* PMR Memory Space Control register */
2650     n->bar.pmrmsc = 0;
2651     NVME_PMRMSC_SET_CMSE(n->bar.pmrmsc, 0);
2652     NVME_PMRMSC_SET_CBA(n->bar.pmrmsc, 0);
2653 
2654     pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
2655                      PCI_BASE_ADDRESS_SPACE_MEMORY |
2656                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
2657                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmrdev->mr);
2658 }
2659 
nvme_init_pci(NvmeCtrl * n,PCIDevice * pci_dev,Error ** errp)2660 static void nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
2661 {
2662     uint8_t *pci_conf = pci_dev->config;
2663 
2664     pci_conf[PCI_INTERRUPT_PIN] = 1;
2665     pci_config_set_prog_interface(pci_conf, 0x2);
2666 
2667     if (n->params.use_intel_id) {
2668         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
2669         pci_config_set_device_id(pci_conf, 0x5845);
2670     } else {
2671         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
2672         pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
2673     }
2674 
2675     pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
2676     pcie_endpoint_cap_init(pci_dev, 0x80);
2677 
2678     memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
2679                           n->reg_size);
2680     pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
2681                      PCI_BASE_ADDRESS_MEM_TYPE_64, &n->iomem);
2682     if (msix_init_exclusive_bar(pci_dev, n->params.msix_qsize, 4, errp)) {
2683         return;
2684     }
2685 
2686     if (n->params.cmb_size_mb) {
2687         nvme_init_cmb(n, pci_dev);
2688     } else if (n->pmrdev) {
2689         nvme_init_pmr(n, pci_dev);
2690     }
2691 }
2692 
nvme_init_ctrl(NvmeCtrl * n,PCIDevice * pci_dev)2693 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
2694 {
2695     NvmeIdCtrl *id = &n->id_ctrl;
2696     uint8_t *pci_conf = pci_dev->config;
2697     char *subnqn;
2698 
2699     id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
2700     id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
2701     strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
2702     strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
2703     strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
2704     id->rab = 6;
2705     id->ieee[0] = 0x00;
2706     id->ieee[1] = 0x02;
2707     id->ieee[2] = 0xb3;
2708     id->mdts = n->params.mdts;
2709     id->ver = cpu_to_le32(NVME_SPEC_VER);
2710     id->oacs = cpu_to_le16(0);
2711 
2712     /*
2713      * Because the controller always completes the Abort command immediately,
2714      * there can never be more than one concurrently executing Abort command,
2715      * so this value is never used for anything. Note that there can easily be
2716      * many Abort commands in the queues, but they are not considered
2717      * "executing" until processed by nvme_abort.
2718      *
2719      * The specification recommends a value of 3 for Abort Command Limit (four
2720      * concurrently outstanding Abort commands), so lets use that though it is
2721      * inconsequential.
2722      */
2723     id->acl = 3;
2724     id->aerl = n->params.aerl;
2725     id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
2726     id->lpa = NVME_LPA_NS_SMART | NVME_LPA_EXTENDED;
2727 
2728     /* recommended default value (~70 C) */
2729     id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
2730     id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
2731 
2732     id->sqes = (0x6 << 4) | 0x6;
2733     id->cqes = (0x4 << 4) | 0x4;
2734     id->nn = cpu_to_le32(n->num_namespaces);
2735     id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
2736                            NVME_ONCS_FEATURES);
2737 
2738     id->vwc = 0x1;
2739     id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN |
2740                            NVME_CTRL_SGLS_BITBUCKET);
2741 
2742     subnqn = g_strdup_printf("nqn.2019-08.org.qemu:%s", n->params.serial);
2743     strpadcpy((char *)id->subnqn, sizeof(id->subnqn), subnqn, '\0');
2744     g_free(subnqn);
2745 
2746     id->psd[0].mp = cpu_to_le16(0x9c4);
2747     id->psd[0].enlat = cpu_to_le32(0x10);
2748     id->psd[0].exlat = cpu_to_le32(0x4);
2749 
2750     n->bar.cap = 0;
2751     NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
2752     NVME_CAP_SET_CQR(n->bar.cap, 1);
2753     NVME_CAP_SET_TO(n->bar.cap, 0xf);
2754     NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_NVM);
2755     NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_ADMIN_ONLY);
2756     NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
2757 
2758     n->bar.vs = NVME_SPEC_VER;
2759     n->bar.intmc = n->bar.intms = 0;
2760 }
2761 
nvme_realize(PCIDevice * pci_dev,Error ** errp)2762 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
2763 {
2764     NvmeCtrl *n = NVME(pci_dev);
2765     NvmeNamespace *ns;
2766     Error *local_err = NULL;
2767 
2768     nvme_check_constraints(n, &local_err);
2769     if (local_err) {
2770         error_propagate(errp, local_err);
2771         return;
2772     }
2773 
2774     qbus_create_inplace(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
2775                         &pci_dev->qdev, n->parent_obj.qdev.id);
2776 
2777     nvme_init_state(n);
2778     nvme_init_pci(n, pci_dev, &local_err);
2779     if (local_err) {
2780         error_propagate(errp, local_err);
2781         return;
2782     }
2783 
2784     nvme_init_ctrl(n, pci_dev);
2785 
2786     /* setup a namespace if the controller drive property was given */
2787     if (n->namespace.blkconf.blk) {
2788         ns = &n->namespace;
2789         ns->params.nsid = 1;
2790 
2791         if (nvme_ns_setup(n, ns, errp)) {
2792             return;
2793         }
2794     }
2795 }
2796 
nvme_exit(PCIDevice * pci_dev)2797 static void nvme_exit(PCIDevice *pci_dev)
2798 {
2799     NvmeCtrl *n = NVME(pci_dev);
2800 
2801     nvme_clear_ctrl(n);
2802     g_free(n->cq);
2803     g_free(n->sq);
2804     g_free(n->aer_reqs);
2805 
2806     if (n->params.cmb_size_mb) {
2807         g_free(n->cmbuf);
2808     }
2809 
2810     if (n->pmrdev) {
2811         host_memory_backend_set_mapped(n->pmrdev, false);
2812     }
2813     msix_uninit_exclusive_bar(pci_dev);
2814 }
2815 
2816 static Property nvme_props[] = {
2817     DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
2818     DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmrdev, TYPE_MEMORY_BACKEND,
2819                      HostMemoryBackend *),
2820     DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
2821     DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
2822     DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
2823     DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
2824     DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
2825     DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
2826     DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
2827     DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
2828     DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
2829     DEFINE_PROP_END_OF_LIST(),
2830 };
2831 
2832 static const VMStateDescription nvme_vmstate = {
2833     .name = "nvme",
2834     .unmigratable = 1,
2835 };
2836 
nvme_class_init(ObjectClass * oc,void * data)2837 static void nvme_class_init(ObjectClass *oc, void *data)
2838 {
2839     DeviceClass *dc = DEVICE_CLASS(oc);
2840     PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
2841 
2842     pc->realize = nvme_realize;
2843     pc->exit = nvme_exit;
2844     pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
2845     pc->revision = 2;
2846 
2847     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2848     dc->desc = "Non-Volatile Memory Express";
2849     device_class_set_props(dc, nvme_props);
2850     dc->vmsd = &nvme_vmstate;
2851 }
2852 
nvme_instance_init(Object * obj)2853 static void nvme_instance_init(Object *obj)
2854 {
2855     NvmeCtrl *s = NVME(obj);
2856 
2857     if (s->namespace.blkconf.blk) {
2858         device_add_bootindex_property(obj, &s->namespace.blkconf.bootindex,
2859                                       "bootindex", "/namespace@1,0",
2860                                       DEVICE(obj));
2861     }
2862 }
2863 
2864 static const TypeInfo nvme_info = {
2865     .name          = TYPE_NVME,
2866     .parent        = TYPE_PCI_DEVICE,
2867     .instance_size = sizeof(NvmeCtrl),
2868     .instance_init = nvme_instance_init,
2869     .class_init    = nvme_class_init,
2870     .interfaces = (InterfaceInfo[]) {
2871         { INTERFACE_PCIE_DEVICE },
2872         { }
2873     },
2874 };
2875 
2876 static const TypeInfo nvme_bus_info = {
2877     .name = TYPE_NVME_BUS,
2878     .parent = TYPE_BUS,
2879     .instance_size = sizeof(NvmeBus),
2880 };
2881 
nvme_register_types(void)2882 static void nvme_register_types(void)
2883 {
2884     type_register_static(&nvme_info);
2885     type_register_static(&nvme_bus_info);
2886 }
2887 
2888 type_init(nvme_register_types)
2889