1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Modified for iPXE by Scott K Logan <logans@cottsay.net> July 2011
5  * Original from Linux kernel 3.0.1
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /**
21  * DOC: Programming Atheros 802.11n analog front end radios
22  *
23  * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
24  * devices have either an external AR2133 analog front end radio for single
25  * band 2.4 GHz communication or an AR5133 analog front end radio for dual
26  * band 2.4 GHz / 5 GHz communication.
27  *
28  * All devices after the AR5416 and AR5418 family starting with the AR9280
29  * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
30  * into a single-chip and require less programming.
31  *
32  * The following single-chips exist with a respective embedded radio:
33  *
34  * AR9280 - 11n dual-band 2x2 MIMO for PCIe
35  * AR9281 - 11n single-band 1x2 MIMO for PCIe
36  * AR9285 - 11n single-band 1x1 for PCIe
37  * AR9287 - 11n single-band 2x2 MIMO for PCIe
38  *
39  * AR9220 - 11n dual-band 2x2 MIMO for PCI
40  * AR9223 - 11n single-band 2x2 MIMO for PCI
41  *
42  * AR9287 - 11n single-band 1x1 MIMO for USB
43  */
44 
45 #include <ipxe/io.h>
46 
47 #include "hw.h"
48 #include "ar9002_phy.h"
49 
50 /**
51  * ar9002_hw_set_channel - set channel on single-chip device
52  * @ah: atheros hardware structure
53  * @chan:
54  *
55  * This is the function to change channel on single-chip devices, that is
56  * all devices after ar9280.
57  *
58  * This function takes the channel value in MHz and sets
59  * hardware channel value. Assumes writes have been enabled to analog bus.
60  *
61  * Actual Expression,
62  *
63  * For 2GHz channel,
64  * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
65  * (freq_ref = 40MHz)
66  *
67  * For 5GHz channel,
68  * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
69  * (freq_ref = 40MHz/(24>>amodeRefSel))
70  */
ar9002_hw_set_channel(struct ath_hw * ah,struct ath9k_channel * chan)71 static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
72 {
73 	u16 bMode, fracMode, aModeRefSel = 0;
74 	u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
75 	struct chan_centers centers;
76 	u32 refDivA = 24;
77 
78 	ath9k_hw_get_channel_centers(ah, chan, &centers);
79 	freq = centers.synth_center;
80 
81 	reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
82 	reg32 &= 0xc0000000;
83 
84 	if (freq < 4800) { /* 2 GHz, fractional mode */
85 		u32 txctl;
86 		unsigned int regWrites = 0;
87 
88 		bMode = 1;
89 		fracMode = 1;
90 		aModeRefSel = 0;
91 		channelSel = CHANSEL_2G(freq);
92 
93 		if (AR_SREV_9287_11_OR_LATER(ah)) {
94 			if (freq == 2484) {
95 				/* Enable channel spreading for channel 14 */
96 				REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
97 						1, regWrites);
98 			} else {
99 				REG_WRITE_ARRAY(&ah->iniCckfirNormal,
100 						1, regWrites);
101 			}
102 		} else {
103 			txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
104 			if (freq == 2484) {
105 				/* Enable channel spreading for channel 14 */
106 				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
107 					  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
108 			} else {
109 				REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
110 					  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
111 			}
112 		}
113 	} else {
114 		bMode = 0;
115 		fracMode = 0;
116 
117 		switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
118 		case 0:
119 			if ((freq % 20) == 0)
120 				aModeRefSel = 3;
121 			else if ((freq % 10) == 0)
122 				aModeRefSel = 2;
123 			if (aModeRefSel)
124 				break;
125 			/* Fall through */
126 		case 1:
127 		default:
128 			aModeRefSel = 0;
129 			/*
130 			 * Enable 2G (fractional) mode for channels
131 			 * which are 5MHz spaced.
132 			 */
133 			fracMode = 1;
134 			refDivA = 1;
135 			channelSel = CHANSEL_5G(freq);
136 
137 			/* RefDivA setting */
138 			REG_RMW_FIELD(ah, AR_AN_SYNTH9,
139 				      AR_AN_SYNTH9_REFDIVA, refDivA);
140 
141 		}
142 
143 		if (!fracMode) {
144 			ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
145 			channelSel = ndiv & 0x1ff;
146 			channelFrac = (ndiv & 0xfffffe00) * 2;
147 			channelSel = (channelSel << 17) | channelFrac;
148 		}
149 	}
150 
151 	reg32 = reg32 |
152 	    (bMode << 29) |
153 	    (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
154 
155 	REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
156 
157 	ah->curchan = chan;
158 	ah->curchan_rad_index = -1;
159 
160 	return 0;
161 }
162 
163 /**
164  * ar9002_hw_spur_mitigate - convert baseband spur frequency
165  * @ah: atheros hardware structure
166  * @chan:
167  *
168  * For single-chip solutions. Converts to baseband spur frequency given the
169  * input channel frequency and compute register settings below.
170  */
ar9002_hw_spur_mitigate(struct ath_hw * ah,struct ath9k_channel * chan)171 static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
172 				    struct ath9k_channel *chan)
173 {
174 	int bb_spur = AR_NO_SPUR;
175 	int freq;
176 	int bin, cur_bin;
177 	int bb_spur_off, spur_subchannel_sd;
178 	int spur_freq_sd;
179 	int spur_delta_phase;
180 	int denominator;
181 	int upper, lower, cur_vit_mask;
182 	int tmp, newVal;
183 	int i;
184 	static const int pilot_mask_reg[4] = {
185 		AR_PHY_TIMING7, AR_PHY_TIMING8,
186 		AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
187 	};
188 	static const int chan_mask_reg[4] = {
189 		AR_PHY_TIMING9, AR_PHY_TIMING10,
190 		AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
191 	};
192 	static const int inc[4] = { 0, 100, 0, 0 };
193 	struct chan_centers centers;
194 
195 	int8_t mask_m[123];
196 	int8_t mask_p[123];
197 	int8_t mask_amt;
198 	int tmp_mask;
199 	int cur_bb_spur;
200 	int is2GHz = IS_CHAN_2GHZ(chan);
201 
202 	memset(&mask_m, 0, sizeof(int8_t) * 123);
203 	memset(&mask_p, 0, sizeof(int8_t) * 123);
204 
205 	ath9k_hw_get_channel_centers(ah, chan, &centers);
206 	freq = centers.synth_center;
207 
208 	ah->config.spurmode = SPUR_ENABLE_EEPROM;
209 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
210 		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
211 
212 		if (AR_NO_SPUR == cur_bb_spur)
213 			break;
214 
215 		if (is2GHz)
216 			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
217 		else
218 			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
219 
220 		cur_bb_spur = cur_bb_spur - freq;
221 
222 		if (IS_CHAN_HT40(chan)) {
223 			if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
224 			    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
225 				bb_spur = cur_bb_spur;
226 				break;
227 			}
228 		} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
229 			   (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
230 			bb_spur = cur_bb_spur;
231 			break;
232 		}
233 	}
234 
235 	if (AR_NO_SPUR == bb_spur) {
236 		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
237 			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
238 		return;
239 	} else {
240 		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
241 			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
242 	}
243 
244 	bin = bb_spur * 320;
245 
246 	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
247 
248 	ENABLE_REGWRITE_BUFFER(ah);
249 
250 	newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
251 			AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
252 			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
253 			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
254 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
255 
256 	newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
257 		  AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
258 		  AR_PHY_SPUR_REG_MASK_RATE_SELECT |
259 		  AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
260 		  SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
261 	REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
262 
263 	if (IS_CHAN_HT40(chan)) {
264 		if (bb_spur < 0) {
265 			spur_subchannel_sd = 1;
266 			bb_spur_off = bb_spur + 10;
267 		} else {
268 			spur_subchannel_sd = 0;
269 			bb_spur_off = bb_spur - 10;
270 		}
271 	} else {
272 		spur_subchannel_sd = 0;
273 		bb_spur_off = bb_spur;
274 	}
275 
276 	if (IS_CHAN_HT40(chan))
277 		spur_delta_phase =
278 			((bb_spur * 262144) /
279 			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
280 	else
281 		spur_delta_phase =
282 			((bb_spur * 524288) /
283 			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
284 
285 	denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
286 	spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
287 
288 	newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
289 		  SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
290 		  SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
291 	REG_WRITE(ah, AR_PHY_TIMING11, newVal);
292 
293 	newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
294 	REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
295 
296 	cur_bin = -6000;
297 	upper = bin + 100;
298 	lower = bin - 100;
299 
300 	for (i = 0; i < 4; i++) {
301 		int pilot_mask = 0;
302 		int chan_mask = 0;
303 		int bp = 0;
304 		for (bp = 0; bp < 30; bp++) {
305 			if ((cur_bin > lower) && (cur_bin < upper)) {
306 				pilot_mask = pilot_mask | 0x1 << bp;
307 				chan_mask = chan_mask | 0x1 << bp;
308 			}
309 			cur_bin += 100;
310 		}
311 		cur_bin += inc[i];
312 		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
313 		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
314 	}
315 
316 	cur_vit_mask = 6100;
317 	upper = bin + 120;
318 	lower = bin - 120;
319 
320 	for (i = 0; i < 123; i++) {
321 		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
322 
323 			/* workaround for gcc bug #37014 */
324 			volatile int tmp_v = abs(cur_vit_mask - bin);
325 
326 			if (tmp_v < 75)
327 				mask_amt = 1;
328 			else
329 				mask_amt = 0;
330 			if (cur_vit_mask < 0)
331 				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
332 			else
333 				mask_p[cur_vit_mask / 100] = mask_amt;
334 		}
335 		cur_vit_mask -= 100;
336 	}
337 
338 	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
339 		| (mask_m[48] << 26) | (mask_m[49] << 24)
340 		| (mask_m[50] << 22) | (mask_m[51] << 20)
341 		| (mask_m[52] << 18) | (mask_m[53] << 16)
342 		| (mask_m[54] << 14) | (mask_m[55] << 12)
343 		| (mask_m[56] << 10) | (mask_m[57] << 8)
344 		| (mask_m[58] << 6) | (mask_m[59] << 4)
345 		| (mask_m[60] << 2) | (mask_m[61] << 0);
346 	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
347 	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
348 
349 	tmp_mask = (mask_m[31] << 28)
350 		| (mask_m[32] << 26) | (mask_m[33] << 24)
351 		| (mask_m[34] << 22) | (mask_m[35] << 20)
352 		| (mask_m[36] << 18) | (mask_m[37] << 16)
353 		| (mask_m[48] << 14) | (mask_m[39] << 12)
354 		| (mask_m[40] << 10) | (mask_m[41] << 8)
355 		| (mask_m[42] << 6) | (mask_m[43] << 4)
356 		| (mask_m[44] << 2) | (mask_m[45] << 0);
357 	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
358 	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
359 
360 	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
361 		| (mask_m[18] << 26) | (mask_m[18] << 24)
362 		| (mask_m[20] << 22) | (mask_m[20] << 20)
363 		| (mask_m[22] << 18) | (mask_m[22] << 16)
364 		| (mask_m[24] << 14) | (mask_m[24] << 12)
365 		| (mask_m[25] << 10) | (mask_m[26] << 8)
366 		| (mask_m[27] << 6) | (mask_m[28] << 4)
367 		| (mask_m[29] << 2) | (mask_m[30] << 0);
368 	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
369 	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
370 
371 	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
372 		| (mask_m[2] << 26) | (mask_m[3] << 24)
373 		| (mask_m[4] << 22) | (mask_m[5] << 20)
374 		| (mask_m[6] << 18) | (mask_m[7] << 16)
375 		| (mask_m[8] << 14) | (mask_m[9] << 12)
376 		| (mask_m[10] << 10) | (mask_m[11] << 8)
377 		| (mask_m[12] << 6) | (mask_m[13] << 4)
378 		| (mask_m[14] << 2) | (mask_m[15] << 0);
379 	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
380 	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
381 
382 	tmp_mask = (mask_p[15] << 28)
383 		| (mask_p[14] << 26) | (mask_p[13] << 24)
384 		| (mask_p[12] << 22) | (mask_p[11] << 20)
385 		| (mask_p[10] << 18) | (mask_p[9] << 16)
386 		| (mask_p[8] << 14) | (mask_p[7] << 12)
387 		| (mask_p[6] << 10) | (mask_p[5] << 8)
388 		| (mask_p[4] << 6) | (mask_p[3] << 4)
389 		| (mask_p[2] << 2) | (mask_p[1] << 0);
390 	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
391 	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
392 
393 	tmp_mask = (mask_p[30] << 28)
394 		| (mask_p[29] << 26) | (mask_p[28] << 24)
395 		| (mask_p[27] << 22) | (mask_p[26] << 20)
396 		| (mask_p[25] << 18) | (mask_p[24] << 16)
397 		| (mask_p[23] << 14) | (mask_p[22] << 12)
398 		| (mask_p[21] << 10) | (mask_p[20] << 8)
399 		| (mask_p[19] << 6) | (mask_p[18] << 4)
400 		| (mask_p[17] << 2) | (mask_p[16] << 0);
401 	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
402 	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
403 
404 	tmp_mask = (mask_p[45] << 28)
405 		| (mask_p[44] << 26) | (mask_p[43] << 24)
406 		| (mask_p[42] << 22) | (mask_p[41] << 20)
407 		| (mask_p[40] << 18) | (mask_p[39] << 16)
408 		| (mask_p[38] << 14) | (mask_p[37] << 12)
409 		| (mask_p[36] << 10) | (mask_p[35] << 8)
410 		| (mask_p[34] << 6) | (mask_p[33] << 4)
411 		| (mask_p[32] << 2) | (mask_p[31] << 0);
412 	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
413 	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
414 
415 	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
416 		| (mask_p[59] << 26) | (mask_p[58] << 24)
417 		| (mask_p[57] << 22) | (mask_p[56] << 20)
418 		| (mask_p[55] << 18) | (mask_p[54] << 16)
419 		| (mask_p[53] << 14) | (mask_p[52] << 12)
420 		| (mask_p[51] << 10) | (mask_p[50] << 8)
421 		| (mask_p[49] << 6) | (mask_p[48] << 4)
422 		| (mask_p[47] << 2) | (mask_p[46] << 0);
423 	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
424 	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
425 
426 	REGWRITE_BUFFER_FLUSH(ah);
427 }
428 
ar9002_olc_init(struct ath_hw * ah)429 static void ar9002_olc_init(struct ath_hw *ah)
430 {
431 	u32 i;
432 
433 	if (!OLC_FOR_AR9280_20_LATER)
434 		return;
435 
436 	if (OLC_FOR_AR9287_10_LATER) {
437 		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
438 				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
439 		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
440 				AR9287_AN_TXPC0_TXPCMODE,
441 				AR9287_AN_TXPC0_TXPCMODE_S,
442 				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
443 		udelay(100);
444 	} else {
445 		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
446 			ah->originalGain[i] =
447 				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
448 						AR_PHY_TX_GAIN);
449 		ah->PDADCdelta = 0;
450 	}
451 }
452 
ar9002_hw_compute_pll_control(struct ath_hw * ah,struct ath9k_channel * chan)453 static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
454 					 struct ath9k_channel *chan)
455 {
456 	u32 pll;
457 
458 	pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
459 
460 	if (chan && IS_CHAN_HALF_RATE(chan))
461 		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
462 	else if (chan && IS_CHAN_QUARTER_RATE(chan))
463 		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
464 
465 	if (chan && IS_CHAN_5GHZ(chan)) {
466 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
467 			pll = 0x142c;
468 		else if (AR_SREV_9280_20(ah))
469 			pll = 0x2850;
470 		else
471 			pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
472 	} else {
473 		pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
474 	}
475 
476 	return pll;
477 }
478 
ar9002_hw_do_getnf(struct ath_hw * ah,int16_t nfarray[NUM_NF_READINGS])479 static void ar9002_hw_do_getnf(struct ath_hw *ah,
480 			      int16_t nfarray[NUM_NF_READINGS])
481 {
482 	int16_t nf;
483 
484 	nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
485 	nfarray[0] = sign_extend32(nf, 8);
486 
487 	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
488 	if (IS_CHAN_HT40(ah->curchan))
489 		nfarray[3] = sign_extend32(nf, 8);
490 
491 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
492 		return;
493 
494 	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
495 	nfarray[1] = sign_extend32(nf, 8);
496 
497 	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
498 	if (IS_CHAN_HT40(ah->curchan))
499 		nfarray[4] = sign_extend32(nf, 8);
500 }
501 
ar9002_hw_set_nf_limits(struct ath_hw * ah)502 static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
503 {
504 	if (AR_SREV_9285(ah)) {
505 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
506 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
507 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
508 	} else if (AR_SREV_9287(ah)) {
509 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
510 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
511 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
512 	} else if (AR_SREV_9271(ah)) {
513 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
514 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
515 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
516 	} else {
517 		ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
518 		ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
519 		ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
520 		ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
521 		ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
522 		ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
523 	}
524 }
525 
ar9002_hw_antdiv_comb_conf_get(struct ath_hw * ah,struct ath_hw_antcomb_conf * antconf)526 static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah,
527 				   struct ath_hw_antcomb_conf *antconf)
528 {
529 	u32 regval;
530 
531 	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
532 	antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >>
533 				  AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S;
534 	antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >>
535 				 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S;
536 	antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >>
537 				  AR_PHY_9285_FAST_DIV_BIAS_S;
538 	antconf->lna1_lna2_delta = -3;
539 	antconf->div_group = 0;
540 }
541 
ar9002_hw_antdiv_comb_conf_set(struct ath_hw * ah,struct ath_hw_antcomb_conf * antconf)542 static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
543 				   struct ath_hw_antcomb_conf *antconf)
544 {
545 	u32 regval;
546 
547 	regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
548 	regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
549 		    AR_PHY_9285_ANT_DIV_ALT_LNACONF |
550 		    AR_PHY_9285_FAST_DIV_BIAS);
551 	regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S)
552 		   & AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
553 	regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S)
554 		   & AR_PHY_9285_ANT_DIV_ALT_LNACONF);
555 	regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S)
556 		   & AR_PHY_9285_FAST_DIV_BIAS);
557 
558 	REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
559 }
560 
ar9002_hw_attach_phy_ops(struct ath_hw * ah)561 void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
562 {
563 	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
564 	struct ath_hw_ops *ops = ath9k_hw_ops(ah);
565 
566 	priv_ops->set_rf_regs = NULL;
567 	priv_ops->rf_alloc_ext_banks = NULL;
568 	priv_ops->rf_free_ext_banks = NULL;
569 	priv_ops->rf_set_freq = ar9002_hw_set_channel;
570 	priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
571 	priv_ops->olc_init = ar9002_olc_init;
572 	priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
573 	priv_ops->do_getnf = ar9002_hw_do_getnf;
574 
575 	ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
576 	ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
577 
578 	ar9002_hw_set_nf_limits(ah);
579 }
580