1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/semihosting/semihost.h"
25 #include "sysemu/cpus.h"
26 #include "sysemu/kvm.h"
27 #include "qemu/range.h"
28 #include "qapi/qapi-commands-machine-target.h"
29 #include "qapi/error.h"
30 #include "qemu/guest-random.h"
31 #ifdef CONFIG_TCG
32 #include "arm_ldst.h"
33 #include "exec/cpu_ldst.h"
34 #endif
35 
v7m_msr_xpsr(CPUARMState * env,uint32_t mask,uint32_t reg,uint32_t val)36 static void v7m_msr_xpsr(CPUARMState *env, uint32_t mask,
37                          uint32_t reg, uint32_t val)
38 {
39     /* Only APSR is actually writable */
40     if (!(reg & 4)) {
41         uint32_t apsrmask = 0;
42 
43         if (mask & 8) {
44             apsrmask |= XPSR_NZCV | XPSR_Q;
45         }
46         if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
47             apsrmask |= XPSR_GE;
48         }
49         xpsr_write(env, val, apsrmask);
50     }
51 }
52 
v7m_mrs_xpsr(CPUARMState * env,uint32_t reg,unsigned el)53 static uint32_t v7m_mrs_xpsr(CPUARMState *env, uint32_t reg, unsigned el)
54 {
55     uint32_t mask = 0;
56 
57     if ((reg & 1) && el) {
58         mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
59     }
60     if (!(reg & 4)) {
61         mask |= XPSR_NZCV | XPSR_Q; /* APSR */
62         if (arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
63             mask |= XPSR_GE;
64         }
65     }
66     /* EPSR reads as zero */
67     return xpsr_read(env) & mask;
68 }
69 
v7m_mrs_control(CPUARMState * env,uint32_t secure)70 static uint32_t v7m_mrs_control(CPUARMState *env, uint32_t secure)
71 {
72     uint32_t value = env->v7m.control[secure];
73 
74     if (!secure) {
75         /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */
76         value |= env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK;
77     }
78     return value;
79 }
80 
81 #ifdef CONFIG_USER_ONLY
82 
HELPER(v7m_msr)83 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
84 {
85     uint32_t mask = extract32(maskreg, 8, 4);
86     uint32_t reg = extract32(maskreg, 0, 8);
87 
88     switch (reg) {
89     case 0 ... 7: /* xPSR sub-fields */
90         v7m_msr_xpsr(env, mask, reg, val);
91         break;
92     case 20: /* CONTROL */
93         /* There are no sub-fields that are actually writable from EL0. */
94         break;
95     default:
96         /* Unprivileged writes to other registers are ignored */
97         break;
98     }
99 }
100 
HELPER(v7m_mrs)101 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
102 {
103     switch (reg) {
104     case 0 ... 7: /* xPSR sub-fields */
105         return v7m_mrs_xpsr(env, reg, 0);
106     case 20: /* CONTROL */
107         return v7m_mrs_control(env, 0);
108     default:
109         /* Unprivileged reads others as zero.  */
110         return 0;
111     }
112 }
113 
HELPER(v7m_bxns)114 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
115 {
116     /* translate.c should never generate calls here in user-only mode */
117     g_assert_not_reached();
118 }
119 
HELPER(v7m_blxns)120 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
121 {
122     /* translate.c should never generate calls here in user-only mode */
123     g_assert_not_reached();
124 }
125 
HELPER(v7m_preserve_fp_state)126 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
127 {
128     /* translate.c should never generate calls here in user-only mode */
129     g_assert_not_reached();
130 }
131 
HELPER(v7m_vlstm)132 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
133 {
134     /* translate.c should never generate calls here in user-only mode */
135     g_assert_not_reached();
136 }
137 
HELPER(v7m_vlldm)138 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
139 {
140     /* translate.c should never generate calls here in user-only mode */
141     g_assert_not_reached();
142 }
143 
HELPER(v7m_tt)144 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
145 {
146     /*
147      * The TT instructions can be used by unprivileged code, but in
148      * user-only emulation we don't have the MPU.
149      * Luckily since we know we are NonSecure unprivileged (and that in
150      * turn means that the A flag wasn't specified), all the bits in the
151      * register must be zero:
152      *  IREGION: 0 because IRVALID is 0
153      *  IRVALID: 0 because NS
154      *  S: 0 because NS
155      *  NSRW: 0 because NS
156      *  NSR: 0 because NS
157      *  RW: 0 because unpriv and A flag not set
158      *  R: 0 because unpriv and A flag not set
159      *  SRVALID: 0 because NS
160      *  MRVALID: 0 because unpriv and A flag not set
161      *  SREGION: 0 becaus SRVALID is 0
162      *  MREGION: 0 because MRVALID is 0
163      */
164     return 0;
165 }
166 
167 #else
168 
169 /*
170  * What kind of stack write are we doing? This affects how exceptions
171  * generated during the stacking are treated.
172  */
173 typedef enum StackingMode {
174     STACK_NORMAL,
175     STACK_IGNFAULTS,
176     STACK_LAZYFP,
177 } StackingMode;
178 
v7m_stack_write(ARMCPU * cpu,uint32_t addr,uint32_t value,ARMMMUIdx mmu_idx,StackingMode mode)179 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
180                             ARMMMUIdx mmu_idx, StackingMode mode)
181 {
182     CPUState *cs = CPU(cpu);
183     CPUARMState *env = &cpu->env;
184     MemTxAttrs attrs = {};
185     MemTxResult txres;
186     target_ulong page_size;
187     hwaddr physaddr;
188     int prot;
189     ARMMMUFaultInfo fi = {};
190     ARMCacheAttrs cacheattrs = {};
191     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
192     int exc;
193     bool exc_secure;
194 
195     if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
196                       &attrs, &prot, &page_size, &fi, &cacheattrs)) {
197         /* MPU/SAU lookup failed */
198         if (fi.type == ARMFault_QEMU_SFault) {
199             if (mode == STACK_LAZYFP) {
200                 qemu_log_mask(CPU_LOG_INT,
201                               "...SecureFault with SFSR.LSPERR "
202                               "during lazy stacking\n");
203                 env->v7m.sfsr |= R_V7M_SFSR_LSPERR_MASK;
204             } else {
205                 qemu_log_mask(CPU_LOG_INT,
206                               "...SecureFault with SFSR.AUVIOL "
207                               "during stacking\n");
208                 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
209             }
210             env->v7m.sfsr |= R_V7M_SFSR_SFARVALID_MASK;
211             env->v7m.sfar = addr;
212             exc = ARMV7M_EXCP_SECURE;
213             exc_secure = false;
214         } else {
215             if (mode == STACK_LAZYFP) {
216                 qemu_log_mask(CPU_LOG_INT,
217                               "...MemManageFault with CFSR.MLSPERR\n");
218                 env->v7m.cfsr[secure] |= R_V7M_CFSR_MLSPERR_MASK;
219             } else {
220                 qemu_log_mask(CPU_LOG_INT,
221                               "...MemManageFault with CFSR.MSTKERR\n");
222                 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
223             }
224             exc = ARMV7M_EXCP_MEM;
225             exc_secure = secure;
226         }
227         goto pend_fault;
228     }
229     address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
230                          attrs, &txres);
231     if (txres != MEMTX_OK) {
232         /* BusFault trying to write the data */
233         if (mode == STACK_LAZYFP) {
234             qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.LSPERR\n");
235             env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_LSPERR_MASK;
236         } else {
237             qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
238             env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
239         }
240         exc = ARMV7M_EXCP_BUS;
241         exc_secure = false;
242         goto pend_fault;
243     }
244     return true;
245 
246 pend_fault:
247     /*
248      * By pending the exception at this point we are making
249      * the IMPDEF choice "overridden exceptions pended" (see the
250      * MergeExcInfo() pseudocode). The other choice would be to not
251      * pend them now and then make a choice about which to throw away
252      * later if we have two derived exceptions.
253      * The only case when we must not pend the exception but instead
254      * throw it away is if we are doing the push of the callee registers
255      * and we've already generated a derived exception (this is indicated
256      * by the caller passing STACK_IGNFAULTS). Even in this case we will
257      * still update the fault status registers.
258      */
259     switch (mode) {
260     case STACK_NORMAL:
261         armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
262         break;
263     case STACK_LAZYFP:
264         armv7m_nvic_set_pending_lazyfp(env->nvic, exc, exc_secure);
265         break;
266     case STACK_IGNFAULTS:
267         break;
268     }
269     return false;
270 }
271 
v7m_stack_read(ARMCPU * cpu,uint32_t * dest,uint32_t addr,ARMMMUIdx mmu_idx)272 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
273                            ARMMMUIdx mmu_idx)
274 {
275     CPUState *cs = CPU(cpu);
276     CPUARMState *env = &cpu->env;
277     MemTxAttrs attrs = {};
278     MemTxResult txres;
279     target_ulong page_size;
280     hwaddr physaddr;
281     int prot;
282     ARMMMUFaultInfo fi = {};
283     ARMCacheAttrs cacheattrs = {};
284     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
285     int exc;
286     bool exc_secure;
287     uint32_t value;
288 
289     if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
290                       &attrs, &prot, &page_size, &fi, &cacheattrs)) {
291         /* MPU/SAU lookup failed */
292         if (fi.type == ARMFault_QEMU_SFault) {
293             qemu_log_mask(CPU_LOG_INT,
294                           "...SecureFault with SFSR.AUVIOL during unstack\n");
295             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
296             env->v7m.sfar = addr;
297             exc = ARMV7M_EXCP_SECURE;
298             exc_secure = false;
299         } else {
300             qemu_log_mask(CPU_LOG_INT,
301                           "...MemManageFault with CFSR.MUNSTKERR\n");
302             env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
303             exc = ARMV7M_EXCP_MEM;
304             exc_secure = secure;
305         }
306         goto pend_fault;
307     }
308 
309     value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
310                               attrs, &txres);
311     if (txres != MEMTX_OK) {
312         /* BusFault trying to read the data */
313         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
314         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
315         exc = ARMV7M_EXCP_BUS;
316         exc_secure = false;
317         goto pend_fault;
318     }
319 
320     *dest = value;
321     return true;
322 
323 pend_fault:
324     /*
325      * By pending the exception at this point we are making
326      * the IMPDEF choice "overridden exceptions pended" (see the
327      * MergeExcInfo() pseudocode). The other choice would be to not
328      * pend them now and then make a choice about which to throw away
329      * later if we have two derived exceptions.
330      */
331     armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
332     return false;
333 }
334 
HELPER(v7m_preserve_fp_state)335 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
336 {
337     /*
338      * Preserve FP state (because LSPACT was set and we are about
339      * to execute an FP instruction). This corresponds to the
340      * PreserveFPState() pseudocode.
341      * We may throw an exception if the stacking fails.
342      */
343     ARMCPU *cpu = env_archcpu(env);
344     bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
345     bool negpri = !(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_HFRDY_MASK);
346     bool is_priv = !(env->v7m.fpccr[is_secure] & R_V7M_FPCCR_USER_MASK);
347     bool splimviol = env->v7m.fpccr[is_secure] & R_V7M_FPCCR_SPLIMVIOL_MASK;
348     uint32_t fpcar = env->v7m.fpcar[is_secure];
349     bool stacked_ok = true;
350     bool ts = is_secure && (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
351     bool take_exception;
352 
353     /* Take the iothread lock as we are going to touch the NVIC */
354     qemu_mutex_lock_iothread();
355 
356     /* Check the background context had access to the FPU */
357     if (!v7m_cpacr_pass(env, is_secure, is_priv)) {
358         armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, is_secure);
359         env->v7m.cfsr[is_secure] |= R_V7M_CFSR_NOCP_MASK;
360         stacked_ok = false;
361     } else if (!is_secure && !extract32(env->v7m.nsacr, 10, 1)) {
362         armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
363         env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
364         stacked_ok = false;
365     }
366 
367     if (!splimviol && stacked_ok) {
368         /* We only stack if the stack limit wasn't violated */
369         int i;
370         ARMMMUIdx mmu_idx;
371 
372         mmu_idx = arm_v7m_mmu_idx_all(env, is_secure, is_priv, negpri);
373         for (i = 0; i < (ts ? 32 : 16); i += 2) {
374             uint64_t dn = *aa32_vfp_dreg(env, i / 2);
375             uint32_t faddr = fpcar + 4 * i;
376             uint32_t slo = extract64(dn, 0, 32);
377             uint32_t shi = extract64(dn, 32, 32);
378 
379             if (i >= 16) {
380                 faddr += 8; /* skip the slot for the FPSCR */
381             }
382             stacked_ok = stacked_ok &&
383                 v7m_stack_write(cpu, faddr, slo, mmu_idx, STACK_LAZYFP) &&
384                 v7m_stack_write(cpu, faddr + 4, shi, mmu_idx, STACK_LAZYFP);
385         }
386 
387         stacked_ok = stacked_ok &&
388             v7m_stack_write(cpu, fpcar + 0x40,
389                             vfp_get_fpscr(env), mmu_idx, STACK_LAZYFP);
390     }
391 
392     /*
393      * We definitely pended an exception, but it's possible that it
394      * might not be able to be taken now. If its priority permits us
395      * to take it now, then we must not update the LSPACT or FP regs,
396      * but instead jump out to take the exception immediately.
397      * If it's just pending and won't be taken until the current
398      * handler exits, then we do update LSPACT and the FP regs.
399      */
400     take_exception = !stacked_ok &&
401         armv7m_nvic_can_take_pending_exception(env->nvic);
402 
403     qemu_mutex_unlock_iothread();
404 
405     if (take_exception) {
406         raise_exception_ra(env, EXCP_LAZYFP, 0, 1, GETPC());
407     }
408 
409     env->v7m.fpccr[is_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
410 
411     if (ts) {
412         /* Clear s0 to s31 and the FPSCR */
413         int i;
414 
415         for (i = 0; i < 32; i += 2) {
416             *aa32_vfp_dreg(env, i / 2) = 0;
417         }
418         vfp_set_fpscr(env, 0);
419     }
420     /*
421      * Otherwise s0 to s15 and FPSCR are UNKNOWN; we choose to leave them
422      * unchanged.
423      */
424 }
425 
426 /*
427  * Write to v7M CONTROL.SPSEL bit for the specified security bank.
428  * This may change the current stack pointer between Main and Process
429  * stack pointers if it is done for the CONTROL register for the current
430  * security state.
431  */
write_v7m_control_spsel_for_secstate(CPUARMState * env,bool new_spsel,bool secstate)432 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
433                                                  bool new_spsel,
434                                                  bool secstate)
435 {
436     bool old_is_psp = v7m_using_psp(env);
437 
438     env->v7m.control[secstate] =
439         deposit32(env->v7m.control[secstate],
440                   R_V7M_CONTROL_SPSEL_SHIFT,
441                   R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
442 
443     if (secstate == env->v7m.secure) {
444         bool new_is_psp = v7m_using_psp(env);
445         uint32_t tmp;
446 
447         if (old_is_psp != new_is_psp) {
448             tmp = env->v7m.other_sp;
449             env->v7m.other_sp = env->regs[13];
450             env->regs[13] = tmp;
451         }
452     }
453 }
454 
455 /*
456  * Write to v7M CONTROL.SPSEL bit. This may change the current
457  * stack pointer between Main and Process stack pointers.
458  */
write_v7m_control_spsel(CPUARMState * env,bool new_spsel)459 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
460 {
461     write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
462 }
463 
write_v7m_exception(CPUARMState * env,uint32_t new_exc)464 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
465 {
466     /*
467      * Write a new value to v7m.exception, thus transitioning into or out
468      * of Handler mode; this may result in a change of active stack pointer.
469      */
470     bool new_is_psp, old_is_psp = v7m_using_psp(env);
471     uint32_t tmp;
472 
473     env->v7m.exception = new_exc;
474 
475     new_is_psp = v7m_using_psp(env);
476 
477     if (old_is_psp != new_is_psp) {
478         tmp = env->v7m.other_sp;
479         env->v7m.other_sp = env->regs[13];
480         env->regs[13] = tmp;
481     }
482 }
483 
484 /* Switch M profile security state between NS and S */
switch_v7m_security_state(CPUARMState * env,bool new_secstate)485 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
486 {
487     uint32_t new_ss_msp, new_ss_psp;
488 
489     if (env->v7m.secure == new_secstate) {
490         return;
491     }
492 
493     /*
494      * All the banked state is accessed by looking at env->v7m.secure
495      * except for the stack pointer; rearrange the SP appropriately.
496      */
497     new_ss_msp = env->v7m.other_ss_msp;
498     new_ss_psp = env->v7m.other_ss_psp;
499 
500     if (v7m_using_psp(env)) {
501         env->v7m.other_ss_psp = env->regs[13];
502         env->v7m.other_ss_msp = env->v7m.other_sp;
503     } else {
504         env->v7m.other_ss_msp = env->regs[13];
505         env->v7m.other_ss_psp = env->v7m.other_sp;
506     }
507 
508     env->v7m.secure = new_secstate;
509 
510     if (v7m_using_psp(env)) {
511         env->regs[13] = new_ss_psp;
512         env->v7m.other_sp = new_ss_msp;
513     } else {
514         env->regs[13] = new_ss_msp;
515         env->v7m.other_sp = new_ss_psp;
516     }
517 }
518 
HELPER(v7m_bxns)519 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
520 {
521     /*
522      * Handle v7M BXNS:
523      *  - if the return value is a magic value, do exception return (like BX)
524      *  - otherwise bit 0 of the return value is the target security state
525      */
526     uint32_t min_magic;
527 
528     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
529         /* Covers FNC_RETURN and EXC_RETURN magic */
530         min_magic = FNC_RETURN_MIN_MAGIC;
531     } else {
532         /* EXC_RETURN magic only */
533         min_magic = EXC_RETURN_MIN_MAGIC;
534     }
535 
536     if (dest >= min_magic) {
537         /*
538          * This is an exception return magic value; put it where
539          * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
540          * Note that if we ever add gen_ss_advance() singlestep support to
541          * M profile this should count as an "instruction execution complete"
542          * event (compare gen_bx_excret_final_code()).
543          */
544         env->regs[15] = dest & ~1;
545         env->thumb = dest & 1;
546         HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
547         /* notreached */
548     }
549 
550     /* translate.c should have made BXNS UNDEF unless we're secure */
551     assert(env->v7m.secure);
552 
553     if (!(dest & 1)) {
554         env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
555     }
556     switch_v7m_security_state(env, dest & 1);
557     env->thumb = 1;
558     env->regs[15] = dest & ~1;
559     arm_rebuild_hflags(env);
560 }
561 
HELPER(v7m_blxns)562 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
563 {
564     /*
565      * Handle v7M BLXNS:
566      *  - bit 0 of the destination address is the target security state
567      */
568 
569     /* At this point regs[15] is the address just after the BLXNS */
570     uint32_t nextinst = env->regs[15] | 1;
571     uint32_t sp = env->regs[13] - 8;
572     uint32_t saved_psr;
573 
574     /* translate.c will have made BLXNS UNDEF unless we're secure */
575     assert(env->v7m.secure);
576 
577     if (dest & 1) {
578         /*
579          * Target is Secure, so this is just a normal BLX,
580          * except that the low bit doesn't indicate Thumb/not.
581          */
582         env->regs[14] = nextinst;
583         env->thumb = 1;
584         env->regs[15] = dest & ~1;
585         return;
586     }
587 
588     /* Target is non-secure: first push a stack frame */
589     if (!QEMU_IS_ALIGNED(sp, 8)) {
590         qemu_log_mask(LOG_GUEST_ERROR,
591                       "BLXNS with misaligned SP is UNPREDICTABLE\n");
592     }
593 
594     if (sp < v7m_sp_limit(env)) {
595         raise_exception(env, EXCP_STKOF, 0, 1);
596     }
597 
598     saved_psr = env->v7m.exception;
599     if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
600         saved_psr |= XPSR_SFPA;
601     }
602 
603     /* Note that these stores can throw exceptions on MPU faults */
604     cpu_stl_data_ra(env, sp, nextinst, GETPC());
605     cpu_stl_data_ra(env, sp + 4, saved_psr, GETPC());
606 
607     env->regs[13] = sp;
608     env->regs[14] = 0xfeffffff;
609     if (arm_v7m_is_handler_mode(env)) {
610         /*
611          * Write a dummy value to IPSR, to avoid leaking the current secure
612          * exception number to non-secure code. This is guaranteed not
613          * to cause write_v7m_exception() to actually change stacks.
614          */
615         write_v7m_exception(env, 1);
616     }
617     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
618     switch_v7m_security_state(env, 0);
619     env->thumb = 1;
620     env->regs[15] = dest;
621     arm_rebuild_hflags(env);
622 }
623 
get_v7m_sp_ptr(CPUARMState * env,bool secure,bool threadmode,bool spsel)624 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
625                                 bool spsel)
626 {
627     /*
628      * Return a pointer to the location where we currently store the
629      * stack pointer for the requested security state and thread mode.
630      * This pointer will become invalid if the CPU state is updated
631      * such that the stack pointers are switched around (eg changing
632      * the SPSEL control bit).
633      * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
634      * Unlike that pseudocode, we require the caller to pass us in the
635      * SPSEL control bit value; this is because we also use this
636      * function in handling of pushing of the callee-saves registers
637      * part of the v8M stack frame (pseudocode PushCalleeStack()),
638      * and in the tailchain codepath the SPSEL bit comes from the exception
639      * return magic LR value from the previous exception. The pseudocode
640      * opencodes the stack-selection in PushCalleeStack(), but we prefer
641      * to make this utility function generic enough to do the job.
642      */
643     bool want_psp = threadmode && spsel;
644 
645     if (secure == env->v7m.secure) {
646         if (want_psp == v7m_using_psp(env)) {
647             return &env->regs[13];
648         } else {
649             return &env->v7m.other_sp;
650         }
651     } else {
652         if (want_psp) {
653             return &env->v7m.other_ss_psp;
654         } else {
655             return &env->v7m.other_ss_msp;
656         }
657     }
658 }
659 
arm_v7m_load_vector(ARMCPU * cpu,int exc,bool targets_secure,uint32_t * pvec)660 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
661                                 uint32_t *pvec)
662 {
663     CPUState *cs = CPU(cpu);
664     CPUARMState *env = &cpu->env;
665     MemTxResult result;
666     uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
667     uint32_t vector_entry;
668     MemTxAttrs attrs = {};
669     ARMMMUIdx mmu_idx;
670     bool exc_secure;
671 
672     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
673 
674     /*
675      * We don't do a get_phys_addr() here because the rules for vector
676      * loads are special: they always use the default memory map, and
677      * the default memory map permits reads from all addresses.
678      * Since there's no easy way to pass through to pmsav8_mpu_lookup()
679      * that we want this special case which would always say "yes",
680      * we just do the SAU lookup here followed by a direct physical load.
681      */
682     attrs.secure = targets_secure;
683     attrs.user = false;
684 
685     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
686         V8M_SAttributes sattrs = {};
687 
688         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
689         if (sattrs.ns) {
690             attrs.secure = false;
691         } else if (!targets_secure) {
692             /*
693              * NS access to S memory: the underlying exception which we escalate
694              * to HardFault is SecureFault, which always targets Secure.
695              */
696             exc_secure = true;
697             goto load_fail;
698         }
699     }
700 
701     vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
702                                      attrs, &result);
703     if (result != MEMTX_OK) {
704         /*
705          * Underlying exception is BusFault: its target security state
706          * depends on BFHFNMINS.
707          */
708         exc_secure = !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
709         goto load_fail;
710     }
711     *pvec = vector_entry;
712     return true;
713 
714 load_fail:
715     /*
716      * All vector table fetch fails are reported as HardFault, with
717      * HFSR.VECTTBL and .FORCED set. (FORCED is set because
718      * technically the underlying exception is a SecureFault or BusFault
719      * that is escalated to HardFault.) This is a terminal exception,
720      * so we will either take the HardFault immediately or else enter
721      * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
722      * The HardFault is Secure if BFHFNMINS is 0 (meaning that all HFs are
723      * secure); otherwise it targets the same security state as the
724      * underlying exception.
725      */
726     if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
727         exc_secure = true;
728     }
729     env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
730     armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
731     return false;
732 }
733 
v7m_integrity_sig(CPUARMState * env,uint32_t lr)734 static uint32_t v7m_integrity_sig(CPUARMState *env, uint32_t lr)
735 {
736     /*
737      * Return the integrity signature value for the callee-saves
738      * stack frame section. @lr is the exception return payload/LR value
739      * whose FType bit forms bit 0 of the signature if FP is present.
740      */
741     uint32_t sig = 0xfefa125a;
742 
743     if (!cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))
744         || (lr & R_V7M_EXCRET_FTYPE_MASK)) {
745         sig |= 1;
746     }
747     return sig;
748 }
749 
v7m_push_callee_stack(ARMCPU * cpu,uint32_t lr,bool dotailchain,bool ignore_faults)750 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
751                                   bool ignore_faults)
752 {
753     /*
754      * For v8M, push the callee-saves register part of the stack frame.
755      * Compare the v8M pseudocode PushCalleeStack().
756      * In the tailchaining case this may not be the current stack.
757      */
758     CPUARMState *env = &cpu->env;
759     uint32_t *frame_sp_p;
760     uint32_t frameptr;
761     ARMMMUIdx mmu_idx;
762     bool stacked_ok;
763     uint32_t limit;
764     bool want_psp;
765     uint32_t sig;
766     StackingMode smode = ignore_faults ? STACK_IGNFAULTS : STACK_NORMAL;
767 
768     if (dotailchain) {
769         bool mode = lr & R_V7M_EXCRET_MODE_MASK;
770         bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
771             !mode;
772 
773         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
774         frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
775                                     lr & R_V7M_EXCRET_SPSEL_MASK);
776         want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
777         if (want_psp) {
778             limit = env->v7m.psplim[M_REG_S];
779         } else {
780             limit = env->v7m.msplim[M_REG_S];
781         }
782     } else {
783         mmu_idx = arm_mmu_idx(env);
784         frame_sp_p = &env->regs[13];
785         limit = v7m_sp_limit(env);
786     }
787 
788     frameptr = *frame_sp_p - 0x28;
789     if (frameptr < limit) {
790         /*
791          * Stack limit failure: set SP to the limit value, and generate
792          * STKOF UsageFault. Stack pushes below the limit must not be
793          * performed. It is IMPDEF whether pushes above the limit are
794          * performed; we choose not to.
795          */
796         qemu_log_mask(CPU_LOG_INT,
797                       "...STKOF during callee-saves register stacking\n");
798         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
799         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
800                                 env->v7m.secure);
801         *frame_sp_p = limit;
802         return true;
803     }
804 
805     /*
806      * Write as much of the stack frame as we can. A write failure may
807      * cause us to pend a derived exception.
808      */
809     sig = v7m_integrity_sig(env, lr);
810     stacked_ok =
811         v7m_stack_write(cpu, frameptr, sig, mmu_idx, smode) &&
812         v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, smode) &&
813         v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, smode) &&
814         v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, smode) &&
815         v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, smode) &&
816         v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, smode) &&
817         v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, smode) &&
818         v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, smode) &&
819         v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, smode);
820 
821     /* Update SP regardless of whether any of the stack accesses failed. */
822     *frame_sp_p = frameptr;
823 
824     return !stacked_ok;
825 }
826 
v7m_exception_taken(ARMCPU * cpu,uint32_t lr,bool dotailchain,bool ignore_stackfaults)827 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
828                                 bool ignore_stackfaults)
829 {
830     /*
831      * Do the "take the exception" parts of exception entry,
832      * but not the pushing of state to the stack. This is
833      * similar to the pseudocode ExceptionTaken() function.
834      */
835     CPUARMState *env = &cpu->env;
836     uint32_t addr;
837     bool targets_secure;
838     int exc;
839     bool push_failed = false;
840 
841     armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
842     qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
843                   targets_secure ? "secure" : "nonsecure", exc);
844 
845     if (dotailchain) {
846         /* Sanitize LR FType and PREFIX bits */
847         if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
848             lr |= R_V7M_EXCRET_FTYPE_MASK;
849         }
850         lr = deposit32(lr, 24, 8, 0xff);
851     }
852 
853     if (arm_feature(env, ARM_FEATURE_V8)) {
854         if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
855             (lr & R_V7M_EXCRET_S_MASK)) {
856             /*
857              * The background code (the owner of the registers in the
858              * exception frame) is Secure. This means it may either already
859              * have or now needs to push callee-saves registers.
860              */
861             if (targets_secure) {
862                 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
863                     /*
864                      * We took an exception from Secure to NonSecure
865                      * (which means the callee-saved registers got stacked)
866                      * and are now tailchaining to a Secure exception.
867                      * Clear DCRS so eventual return from this Secure
868                      * exception unstacks the callee-saved registers.
869                      */
870                     lr &= ~R_V7M_EXCRET_DCRS_MASK;
871                 }
872             } else {
873                 /*
874                  * We're going to a non-secure exception; push the
875                  * callee-saves registers to the stack now, if they're
876                  * not already saved.
877                  */
878                 if (lr & R_V7M_EXCRET_DCRS_MASK &&
879                     !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
880                     push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
881                                                         ignore_stackfaults);
882                 }
883                 lr |= R_V7M_EXCRET_DCRS_MASK;
884             }
885         }
886 
887         lr &= ~R_V7M_EXCRET_ES_MASK;
888         if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
889             lr |= R_V7M_EXCRET_ES_MASK;
890         }
891         lr &= ~R_V7M_EXCRET_SPSEL_MASK;
892         if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
893             lr |= R_V7M_EXCRET_SPSEL_MASK;
894         }
895 
896         /*
897          * Clear registers if necessary to prevent non-secure exception
898          * code being able to see register values from secure code.
899          * Where register values become architecturally UNKNOWN we leave
900          * them with their previous values.
901          */
902         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
903             if (!targets_secure) {
904                 /*
905                  * Always clear the caller-saved registers (they have been
906                  * pushed to the stack earlier in v7m_push_stack()).
907                  * Clear callee-saved registers if the background code is
908                  * Secure (in which case these regs were saved in
909                  * v7m_push_callee_stack()).
910                  */
911                 int i;
912 
913                 for (i = 0; i < 13; i++) {
914                     /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
915                     if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
916                         env->regs[i] = 0;
917                     }
918                 }
919                 /* Clear EAPSR */
920                 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
921             }
922         }
923     }
924 
925     if (push_failed && !ignore_stackfaults) {
926         /*
927          * Derived exception on callee-saves register stacking:
928          * we might now want to take a different exception which
929          * targets a different security state, so try again from the top.
930          */
931         qemu_log_mask(CPU_LOG_INT,
932                       "...derived exception on callee-saves register stacking");
933         v7m_exception_taken(cpu, lr, true, true);
934         return;
935     }
936 
937     if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
938         /* Vector load failed: derived exception */
939         qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
940         v7m_exception_taken(cpu, lr, true, true);
941         return;
942     }
943 
944     /*
945      * Now we've done everything that might cause a derived exception
946      * we can go ahead and activate whichever exception we're going to
947      * take (which might now be the derived exception).
948      */
949     armv7m_nvic_acknowledge_irq(env->nvic);
950 
951     /* Switch to target security state -- must do this before writing SPSEL */
952     switch_v7m_security_state(env, targets_secure);
953     write_v7m_control_spsel(env, 0);
954     arm_clear_exclusive(env);
955     /* Clear SFPA and FPCA (has no effect if no FPU) */
956     env->v7m.control[M_REG_S] &=
957         ~(R_V7M_CONTROL_FPCA_MASK | R_V7M_CONTROL_SFPA_MASK);
958     /* Clear IT bits */
959     env->condexec_bits = 0;
960     env->regs[14] = lr;
961     env->regs[15] = addr & 0xfffffffe;
962     env->thumb = addr & 1;
963     arm_rebuild_hflags(env);
964 }
965 
v7m_update_fpccr(CPUARMState * env,uint32_t frameptr,bool apply_splim)966 static void v7m_update_fpccr(CPUARMState *env, uint32_t frameptr,
967                              bool apply_splim)
968 {
969     /*
970      * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR
971      * that we will need later in order to do lazy FP reg stacking.
972      */
973     bool is_secure = env->v7m.secure;
974     void *nvic = env->nvic;
975     /*
976      * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits
977      * are banked and we want to update the bit in the bank for the
978      * current security state; and in one case we want to specifically
979      * update the NS banked version of a bit even if we are secure.
980      */
981     uint32_t *fpccr_s = &env->v7m.fpccr[M_REG_S];
982     uint32_t *fpccr_ns = &env->v7m.fpccr[M_REG_NS];
983     uint32_t *fpccr = &env->v7m.fpccr[is_secure];
984     bool hfrdy, bfrdy, mmrdy, ns_ufrdy, s_ufrdy, sfrdy, monrdy;
985 
986     env->v7m.fpcar[is_secure] = frameptr & ~0x7;
987 
988     if (apply_splim && arm_feature(env, ARM_FEATURE_V8)) {
989         bool splimviol;
990         uint32_t splim = v7m_sp_limit(env);
991         bool ign = armv7m_nvic_neg_prio_requested(nvic, is_secure) &&
992             (env->v7m.ccr[is_secure] & R_V7M_CCR_STKOFHFNMIGN_MASK);
993 
994         splimviol = !ign && frameptr < splim;
995         *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, SPLIMVIOL, splimviol);
996     }
997 
998     *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, LSPACT, 1);
999 
1000     *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, S, is_secure);
1001 
1002     *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, USER, arm_current_el(env) == 0);
1003 
1004     *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, THREAD,
1005                         !arm_v7m_is_handler_mode(env));
1006 
1007     hfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_HARD, false);
1008     *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
1009 
1010     bfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_BUS, false);
1011     *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
1012 
1013     mmrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_MEM, is_secure);
1014     *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, MMRDY, mmrdy);
1015 
1016     ns_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, false);
1017     *fpccr_ns = FIELD_DP32(*fpccr_ns, V7M_FPCCR, UFRDY, ns_ufrdy);
1018 
1019     monrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_DEBUG, false);
1020     *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, MONRDY, monrdy);
1021 
1022     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1023         s_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, true);
1024         *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, UFRDY, s_ufrdy);
1025 
1026         sfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_SECURE, false);
1027         *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, SFRDY, sfrdy);
1028     }
1029 }
1030 
HELPER(v7m_vlstm)1031 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
1032 {
1033     /* fptr is the value of Rn, the frame pointer we store the FP regs to */
1034     bool s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
1035     bool lspact = env->v7m.fpccr[s] & R_V7M_FPCCR_LSPACT_MASK;
1036     uintptr_t ra = GETPC();
1037 
1038     assert(env->v7m.secure);
1039 
1040     if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1041         return;
1042     }
1043 
1044     /* Check access to the coprocessor is permitted */
1045     if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
1046         raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
1047     }
1048 
1049     if (lspact) {
1050         /* LSPACT should not be active when there is active FP state */
1051         raise_exception_ra(env, EXCP_LSERR, 0, 1, GETPC());
1052     }
1053 
1054     if (fptr & 7) {
1055         raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
1056     }
1057 
1058     /*
1059      * Note that we do not use v7m_stack_write() here, because the
1060      * accesses should not set the FSR bits for stacking errors if they
1061      * fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK
1062      * or AccType_LAZYFP). Faults in cpu_stl_data_ra() will throw exceptions
1063      * and longjmp out.
1064      */
1065     if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
1066         bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
1067         int i;
1068 
1069         for (i = 0; i < (ts ? 32 : 16); i += 2) {
1070             uint64_t dn = *aa32_vfp_dreg(env, i / 2);
1071             uint32_t faddr = fptr + 4 * i;
1072             uint32_t slo = extract64(dn, 0, 32);
1073             uint32_t shi = extract64(dn, 32, 32);
1074 
1075             if (i >= 16) {
1076                 faddr += 8; /* skip the slot for the FPSCR */
1077             }
1078             cpu_stl_data_ra(env, faddr, slo, ra);
1079             cpu_stl_data_ra(env, faddr + 4, shi, ra);
1080         }
1081         cpu_stl_data_ra(env, fptr + 0x40, vfp_get_fpscr(env), ra);
1082 
1083         /*
1084          * If TS is 0 then s0 to s15 and FPSCR are UNKNOWN; we choose to
1085          * leave them unchanged, matching our choice in v7m_preserve_fp_state.
1086          */
1087         if (ts) {
1088             for (i = 0; i < 32; i += 2) {
1089                 *aa32_vfp_dreg(env, i / 2) = 0;
1090             }
1091             vfp_set_fpscr(env, 0);
1092         }
1093     } else {
1094         v7m_update_fpccr(env, fptr, false);
1095     }
1096 
1097     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
1098 }
1099 
HELPER(v7m_vlldm)1100 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
1101 {
1102     uintptr_t ra = GETPC();
1103 
1104     /* fptr is the value of Rn, the frame pointer we load the FP regs from */
1105     assert(env->v7m.secure);
1106 
1107     if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1108         return;
1109     }
1110 
1111     /* Check access to the coprocessor is permitted */
1112     if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
1113         raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
1114     }
1115 
1116     if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
1117         /* State in FP is still valid */
1118         env->v7m.fpccr[M_REG_S] &= ~R_V7M_FPCCR_LSPACT_MASK;
1119     } else {
1120         bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
1121         int i;
1122         uint32_t fpscr;
1123 
1124         if (fptr & 7) {
1125             raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
1126         }
1127 
1128         for (i = 0; i < (ts ? 32 : 16); i += 2) {
1129             uint32_t slo, shi;
1130             uint64_t dn;
1131             uint32_t faddr = fptr + 4 * i;
1132 
1133             if (i >= 16) {
1134                 faddr += 8; /* skip the slot for the FPSCR */
1135             }
1136 
1137             slo = cpu_ldl_data_ra(env, faddr, ra);
1138             shi = cpu_ldl_data_ra(env, faddr + 4, ra);
1139 
1140             dn = (uint64_t) shi << 32 | slo;
1141             *aa32_vfp_dreg(env, i / 2) = dn;
1142         }
1143         fpscr = cpu_ldl_data_ra(env, fptr + 0x40, ra);
1144         vfp_set_fpscr(env, fpscr);
1145     }
1146 
1147     env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
1148 }
1149 
v7m_push_stack(ARMCPU * cpu)1150 static bool v7m_push_stack(ARMCPU *cpu)
1151 {
1152     /*
1153      * Do the "set up stack frame" part of exception entry,
1154      * similar to pseudocode PushStack().
1155      * Return true if we generate a derived exception (and so
1156      * should ignore further stack faults trying to process
1157      * that derived exception.)
1158      */
1159     bool stacked_ok = true, limitviol = false;
1160     CPUARMState *env = &cpu->env;
1161     uint32_t xpsr = xpsr_read(env);
1162     uint32_t frameptr = env->regs[13];
1163     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
1164     uint32_t framesize;
1165     bool nsacr_cp10 = extract32(env->v7m.nsacr, 10, 1);
1166 
1167     if ((env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) &&
1168         (env->v7m.secure || nsacr_cp10)) {
1169         if (env->v7m.secure &&
1170             env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK) {
1171             framesize = 0xa8;
1172         } else {
1173             framesize = 0x68;
1174         }
1175     } else {
1176         framesize = 0x20;
1177     }
1178 
1179     /* Align stack pointer if the guest wants that */
1180     if ((frameptr & 4) &&
1181         (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
1182         frameptr -= 4;
1183         xpsr |= XPSR_SPREALIGN;
1184     }
1185 
1186     xpsr &= ~XPSR_SFPA;
1187     if (env->v7m.secure &&
1188         (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1189         xpsr |= XPSR_SFPA;
1190     }
1191 
1192     frameptr -= framesize;
1193 
1194     if (arm_feature(env, ARM_FEATURE_V8)) {
1195         uint32_t limit = v7m_sp_limit(env);
1196 
1197         if (frameptr < limit) {
1198             /*
1199              * Stack limit failure: set SP to the limit value, and generate
1200              * STKOF UsageFault. Stack pushes below the limit must not be
1201              * performed. It is IMPDEF whether pushes above the limit are
1202              * performed; we choose not to.
1203              */
1204             qemu_log_mask(CPU_LOG_INT,
1205                           "...STKOF during stacking\n");
1206             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
1207             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1208                                     env->v7m.secure);
1209             env->regs[13] = limit;
1210             /*
1211              * We won't try to perform any further memory accesses but
1212              * we must continue through the following code to check for
1213              * permission faults during FPU state preservation, and we
1214              * must update FPCCR if lazy stacking is enabled.
1215              */
1216             limitviol = true;
1217             stacked_ok = false;
1218         }
1219     }
1220 
1221     /*
1222      * Write as much of the stack frame as we can. If we fail a stack
1223      * write this will result in a derived exception being pended
1224      * (which may be taken in preference to the one we started with
1225      * if it has higher priority).
1226      */
1227     stacked_ok = stacked_ok &&
1228         v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, STACK_NORMAL) &&
1229         v7m_stack_write(cpu, frameptr + 4, env->regs[1],
1230                         mmu_idx, STACK_NORMAL) &&
1231         v7m_stack_write(cpu, frameptr + 8, env->regs[2],
1232                         mmu_idx, STACK_NORMAL) &&
1233         v7m_stack_write(cpu, frameptr + 12, env->regs[3],
1234                         mmu_idx, STACK_NORMAL) &&
1235         v7m_stack_write(cpu, frameptr + 16, env->regs[12],
1236                         mmu_idx, STACK_NORMAL) &&
1237         v7m_stack_write(cpu, frameptr + 20, env->regs[14],
1238                         mmu_idx, STACK_NORMAL) &&
1239         v7m_stack_write(cpu, frameptr + 24, env->regs[15],
1240                         mmu_idx, STACK_NORMAL) &&
1241         v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, STACK_NORMAL);
1242 
1243     if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) {
1244         /* FPU is active, try to save its registers */
1245         bool fpccr_s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
1246         bool lspact = env->v7m.fpccr[fpccr_s] & R_V7M_FPCCR_LSPACT_MASK;
1247 
1248         if (lspact && arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1249             qemu_log_mask(CPU_LOG_INT,
1250                           "...SecureFault because LSPACT and FPCA both set\n");
1251             env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1252             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1253         } else if (!env->v7m.secure && !nsacr_cp10) {
1254             qemu_log_mask(CPU_LOG_INT,
1255                           "...Secure UsageFault with CFSR.NOCP because "
1256                           "NSACR.CP10 prevents stacking FP regs\n");
1257             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
1258             env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
1259         } else {
1260             if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
1261                 /* Lazy stacking disabled, save registers now */
1262                 int i;
1263                 bool cpacr_pass = v7m_cpacr_pass(env, env->v7m.secure,
1264                                                  arm_current_el(env) != 0);
1265 
1266                 if (stacked_ok && !cpacr_pass) {
1267                     /*
1268                      * Take UsageFault if CPACR forbids access. The pseudocode
1269                      * here does a full CheckCPEnabled() but we know the NSACR
1270                      * check can never fail as we have already handled that.
1271                      */
1272                     qemu_log_mask(CPU_LOG_INT,
1273                                   "...UsageFault with CFSR.NOCP because "
1274                                   "CPACR.CP10 prevents stacking FP regs\n");
1275                     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1276                                             env->v7m.secure);
1277                     env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
1278                     stacked_ok = false;
1279                 }
1280 
1281                 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
1282                     uint64_t dn = *aa32_vfp_dreg(env, i / 2);
1283                     uint32_t faddr = frameptr + 0x20 + 4 * i;
1284                     uint32_t slo = extract64(dn, 0, 32);
1285                     uint32_t shi = extract64(dn, 32, 32);
1286 
1287                     if (i >= 16) {
1288                         faddr += 8; /* skip the slot for the FPSCR */
1289                     }
1290                     stacked_ok = stacked_ok &&
1291                         v7m_stack_write(cpu, faddr, slo,
1292                                         mmu_idx, STACK_NORMAL) &&
1293                         v7m_stack_write(cpu, faddr + 4, shi,
1294                                         mmu_idx, STACK_NORMAL);
1295                 }
1296                 stacked_ok = stacked_ok &&
1297                     v7m_stack_write(cpu, frameptr + 0x60,
1298                                     vfp_get_fpscr(env), mmu_idx, STACK_NORMAL);
1299                 if (cpacr_pass) {
1300                     for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
1301                         *aa32_vfp_dreg(env, i / 2) = 0;
1302                     }
1303                     vfp_set_fpscr(env, 0);
1304                 }
1305             } else {
1306                 /* Lazy stacking enabled, save necessary info to stack later */
1307                 v7m_update_fpccr(env, frameptr + 0x20, true);
1308             }
1309         }
1310     }
1311 
1312     /*
1313      * If we broke a stack limit then SP was already updated earlier;
1314      * otherwise we update SP regardless of whether any of the stack
1315      * accesses failed or we took some other kind of fault.
1316      */
1317     if (!limitviol) {
1318         env->regs[13] = frameptr;
1319     }
1320 
1321     return !stacked_ok;
1322 }
1323 
do_v7m_exception_exit(ARMCPU * cpu)1324 static void do_v7m_exception_exit(ARMCPU *cpu)
1325 {
1326     CPUARMState *env = &cpu->env;
1327     uint32_t excret;
1328     uint32_t xpsr, xpsr_mask;
1329     bool ufault = false;
1330     bool sfault = false;
1331     bool return_to_sp_process;
1332     bool return_to_handler;
1333     bool rettobase = false;
1334     bool exc_secure = false;
1335     bool return_to_secure;
1336     bool ftype;
1337     bool restore_s16_s31;
1338 
1339     /*
1340      * If we're not in Handler mode then jumps to magic exception-exit
1341      * addresses don't have magic behaviour. However for the v8M
1342      * security extensions the magic secure-function-return has to
1343      * work in thread mode too, so to avoid doing an extra check in
1344      * the generated code we allow exception-exit magic to also cause the
1345      * internal exception and bring us here in thread mode. Correct code
1346      * will never try to do this (the following insn fetch will always
1347      * fault) so we the overhead of having taken an unnecessary exception
1348      * doesn't matter.
1349      */
1350     if (!arm_v7m_is_handler_mode(env)) {
1351         return;
1352     }
1353 
1354     /*
1355      * In the spec pseudocode ExceptionReturn() is called directly
1356      * from BXWritePC() and gets the full target PC value including
1357      * bit zero. In QEMU's implementation we treat it as a normal
1358      * jump-to-register (which is then caught later on), and so split
1359      * the target value up between env->regs[15] and env->thumb in
1360      * gen_bx(). Reconstitute it.
1361      */
1362     excret = env->regs[15];
1363     if (env->thumb) {
1364         excret |= 1;
1365     }
1366 
1367     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
1368                   " previous exception %d\n",
1369                   excret, env->v7m.exception);
1370 
1371     if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
1372         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
1373                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
1374                       excret);
1375     }
1376 
1377     ftype = excret & R_V7M_EXCRET_FTYPE_MASK;
1378 
1379     if (!ftype && !cpu_isar_feature(aa32_vfp_simd, cpu)) {
1380         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero FTYPE in exception "
1381                       "exit PC value 0x%" PRIx32 " is UNPREDICTABLE "
1382                       "if FPU not present\n",
1383                       excret);
1384         ftype = true;
1385     }
1386 
1387     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1388         /*
1389          * EXC_RETURN.ES validation check (R_SMFL). We must do this before
1390          * we pick which FAULTMASK to clear.
1391          */
1392         if (!env->v7m.secure &&
1393             ((excret & R_V7M_EXCRET_ES_MASK) ||
1394              !(excret & R_V7M_EXCRET_DCRS_MASK))) {
1395             sfault = 1;
1396             /* For all other purposes, treat ES as 0 (R_HXSR) */
1397             excret &= ~R_V7M_EXCRET_ES_MASK;
1398         }
1399         exc_secure = excret & R_V7M_EXCRET_ES_MASK;
1400     }
1401 
1402     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
1403         /*
1404          * Auto-clear FAULTMASK on return from other than NMI.
1405          * If the security extension is implemented then this only
1406          * happens if the raw execution priority is >= 0; the
1407          * value of the ES bit in the exception return value indicates
1408          * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
1409          */
1410         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1411             if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
1412                 env->v7m.faultmask[exc_secure] = 0;
1413             }
1414         } else {
1415             env->v7m.faultmask[M_REG_NS] = 0;
1416         }
1417     }
1418 
1419     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
1420                                      exc_secure)) {
1421     case -1:
1422         /* attempt to exit an exception that isn't active */
1423         ufault = true;
1424         break;
1425     case 0:
1426         /* still an irq active now */
1427         break;
1428     case 1:
1429         /*
1430          * We returned to base exception level, no nesting.
1431          * (In the pseudocode this is written using "NestedActivation != 1"
1432          * where we have 'rettobase == false'.)
1433          */
1434         rettobase = true;
1435         break;
1436     default:
1437         g_assert_not_reached();
1438     }
1439 
1440     return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
1441     return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
1442     return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
1443         (excret & R_V7M_EXCRET_S_MASK);
1444 
1445     if (arm_feature(env, ARM_FEATURE_V8)) {
1446         if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1447             /*
1448              * UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
1449              * we choose to take the UsageFault.
1450              */
1451             if ((excret & R_V7M_EXCRET_S_MASK) ||
1452                 (excret & R_V7M_EXCRET_ES_MASK) ||
1453                 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
1454                 ufault = true;
1455             }
1456         }
1457         if (excret & R_V7M_EXCRET_RES0_MASK) {
1458             ufault = true;
1459         }
1460     } else {
1461         /* For v7M we only recognize certain combinations of the low bits */
1462         switch (excret & 0xf) {
1463         case 1: /* Return to Handler */
1464             break;
1465         case 13: /* Return to Thread using Process stack */
1466         case 9: /* Return to Thread using Main stack */
1467             /*
1468              * We only need to check NONBASETHRDENA for v7M, because in
1469              * v8M this bit does not exist (it is RES1).
1470              */
1471             if (!rettobase &&
1472                 !(env->v7m.ccr[env->v7m.secure] &
1473                   R_V7M_CCR_NONBASETHRDENA_MASK)) {
1474                 ufault = true;
1475             }
1476             break;
1477         default:
1478             ufault = true;
1479         }
1480     }
1481 
1482     /*
1483      * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
1484      * Handler mode (and will be until we write the new XPSR.Interrupt
1485      * field) this does not switch around the current stack pointer.
1486      * We must do this before we do any kind of tailchaining, including
1487      * for the derived exceptions on integrity check failures, or we will
1488      * give the guest an incorrect EXCRET.SPSEL value on exception entry.
1489      */
1490     write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
1491 
1492     /*
1493      * Clear scratch FP values left in caller saved registers; this
1494      * must happen before any kind of tail chaining.
1495      */
1496     if ((env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_CLRONRET_MASK) &&
1497         (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
1498         if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
1499             env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1500             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1501             qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1502                           "stackframe: error during lazy state deactivation\n");
1503             v7m_exception_taken(cpu, excret, true, false);
1504             return;
1505         } else {
1506             /* Clear s0..s15 and FPSCR */
1507             int i;
1508 
1509             for (i = 0; i < 16; i += 2) {
1510                 *aa32_vfp_dreg(env, i / 2) = 0;
1511             }
1512             vfp_set_fpscr(env, 0);
1513         }
1514     }
1515 
1516     if (sfault) {
1517         env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
1518         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1519         qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1520                       "stackframe: failed EXC_RETURN.ES validity check\n");
1521         v7m_exception_taken(cpu, excret, true, false);
1522         return;
1523     }
1524 
1525     if (ufault) {
1526         /*
1527          * Bad exception return: instead of popping the exception
1528          * stack, directly take a usage fault on the current stack.
1529          */
1530         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1531         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
1532         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1533                       "stackframe: failed exception return integrity check\n");
1534         v7m_exception_taken(cpu, excret, true, false);
1535         return;
1536     }
1537 
1538     /*
1539      * Tailchaining: if there is currently a pending exception that
1540      * is high enough priority to preempt execution at the level we're
1541      * about to return to, then just directly take that exception now,
1542      * avoiding an unstack-and-then-stack. Note that now we have
1543      * deactivated the previous exception by calling armv7m_nvic_complete_irq()
1544      * our current execution priority is already the execution priority we are
1545      * returning to -- none of the state we would unstack or set based on
1546      * the EXCRET value affects it.
1547      */
1548     if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
1549         qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
1550         v7m_exception_taken(cpu, excret, true, false);
1551         return;
1552     }
1553 
1554     switch_v7m_security_state(env, return_to_secure);
1555 
1556     {
1557         /*
1558          * The stack pointer we should be reading the exception frame from
1559          * depends on bits in the magic exception return type value (and
1560          * for v8M isn't necessarily the stack pointer we will eventually
1561          * end up resuming execution with). Get a pointer to the location
1562          * in the CPU state struct where the SP we need is currently being
1563          * stored; we will use and modify it in place.
1564          * We use this limited C variable scope so we don't accidentally
1565          * use 'frame_sp_p' after we do something that makes it invalid.
1566          */
1567         uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
1568                                               return_to_secure,
1569                                               !return_to_handler,
1570                                               return_to_sp_process);
1571         uint32_t frameptr = *frame_sp_p;
1572         bool pop_ok = true;
1573         ARMMMUIdx mmu_idx;
1574         bool return_to_priv = return_to_handler ||
1575             !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
1576 
1577         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
1578                                                         return_to_priv);
1579 
1580         if (!QEMU_IS_ALIGNED(frameptr, 8) &&
1581             arm_feature(env, ARM_FEATURE_V8)) {
1582             qemu_log_mask(LOG_GUEST_ERROR,
1583                           "M profile exception return with non-8-aligned SP "
1584                           "for destination state is UNPREDICTABLE\n");
1585         }
1586 
1587         /* Do we need to pop callee-saved registers? */
1588         if (return_to_secure &&
1589             ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
1590              (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
1591             uint32_t actual_sig;
1592 
1593             pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
1594 
1595             if (pop_ok && v7m_integrity_sig(env, excret) != actual_sig) {
1596                 /* Take a SecureFault on the current stack */
1597                 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
1598                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1599                 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1600                               "stackframe: failed exception return integrity "
1601                               "signature check\n");
1602                 v7m_exception_taken(cpu, excret, true, false);
1603                 return;
1604             }
1605 
1606             pop_ok = pop_ok &&
1607                 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
1608                 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
1609                 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
1610                 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
1611                 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
1612                 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
1613                 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
1614                 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
1615 
1616             frameptr += 0x28;
1617         }
1618 
1619         /* Pop registers */
1620         pop_ok = pop_ok &&
1621             v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
1622             v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
1623             v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
1624             v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
1625             v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
1626             v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
1627             v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
1628             v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
1629 
1630         if (!pop_ok) {
1631             /*
1632              * v7m_stack_read() pended a fault, so take it (as a tail
1633              * chained exception on the same stack frame)
1634              */
1635             qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
1636             v7m_exception_taken(cpu, excret, true, false);
1637             return;
1638         }
1639 
1640         /*
1641          * Returning from an exception with a PC with bit 0 set is defined
1642          * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
1643          * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
1644          * the lsbit, and there are several RTOSes out there which incorrectly
1645          * assume the r15 in the stack frame should be a Thumb-style "lsbit
1646          * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
1647          * complain about the badly behaved guest.
1648          */
1649         if (env->regs[15] & 1) {
1650             env->regs[15] &= ~1U;
1651             if (!arm_feature(env, ARM_FEATURE_V8)) {
1652                 qemu_log_mask(LOG_GUEST_ERROR,
1653                               "M profile return from interrupt with misaligned "
1654                               "PC is UNPREDICTABLE on v7M\n");
1655             }
1656         }
1657 
1658         if (arm_feature(env, ARM_FEATURE_V8)) {
1659             /*
1660              * For v8M we have to check whether the xPSR exception field
1661              * matches the EXCRET value for return to handler/thread
1662              * before we commit to changing the SP and xPSR.
1663              */
1664             bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
1665             if (return_to_handler != will_be_handler) {
1666                 /*
1667                  * Take an INVPC UsageFault on the current stack.
1668                  * By this point we will have switched to the security state
1669                  * for the background state, so this UsageFault will target
1670                  * that state.
1671                  */
1672                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1673                                         env->v7m.secure);
1674                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1675                 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1676                               "stackframe: failed exception return integrity "
1677                               "check\n");
1678                 v7m_exception_taken(cpu, excret, true, false);
1679                 return;
1680             }
1681         }
1682 
1683         if (!ftype) {
1684             /* FP present and we need to handle it */
1685             if (!return_to_secure &&
1686                 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK)) {
1687                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1688                 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1689                 qemu_log_mask(CPU_LOG_INT,
1690                               "...taking SecureFault on existing stackframe: "
1691                               "Secure LSPACT set but exception return is "
1692                               "not to secure state\n");
1693                 v7m_exception_taken(cpu, excret, true, false);
1694                 return;
1695             }
1696 
1697             restore_s16_s31 = return_to_secure &&
1698                 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
1699 
1700             if (env->v7m.fpccr[return_to_secure] & R_V7M_FPCCR_LSPACT_MASK) {
1701                 /* State in FPU is still valid, just clear LSPACT */
1702                 env->v7m.fpccr[return_to_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
1703             } else {
1704                 int i;
1705                 uint32_t fpscr;
1706                 bool cpacr_pass, nsacr_pass;
1707 
1708                 cpacr_pass = v7m_cpacr_pass(env, return_to_secure,
1709                                             return_to_priv);
1710                 nsacr_pass = return_to_secure ||
1711                     extract32(env->v7m.nsacr, 10, 1);
1712 
1713                 if (!cpacr_pass) {
1714                     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1715                                             return_to_secure);
1716                     env->v7m.cfsr[return_to_secure] |= R_V7M_CFSR_NOCP_MASK;
1717                     qemu_log_mask(CPU_LOG_INT,
1718                                   "...taking UsageFault on existing "
1719                                   "stackframe: CPACR.CP10 prevents unstacking "
1720                                   "FP regs\n");
1721                     v7m_exception_taken(cpu, excret, true, false);
1722                     return;
1723                 } else if (!nsacr_pass) {
1724                     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true);
1725                     env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_INVPC_MASK;
1726                     qemu_log_mask(CPU_LOG_INT,
1727                                   "...taking Secure UsageFault on existing "
1728                                   "stackframe: NSACR.CP10 prevents unstacking "
1729                                   "FP regs\n");
1730                     v7m_exception_taken(cpu, excret, true, false);
1731                     return;
1732                 }
1733 
1734                 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
1735                     uint32_t slo, shi;
1736                     uint64_t dn;
1737                     uint32_t faddr = frameptr + 0x20 + 4 * i;
1738 
1739                     if (i >= 16) {
1740                         faddr += 8; /* Skip the slot for the FPSCR */
1741                     }
1742 
1743                     pop_ok = pop_ok &&
1744                         v7m_stack_read(cpu, &slo, faddr, mmu_idx) &&
1745                         v7m_stack_read(cpu, &shi, faddr + 4, mmu_idx);
1746 
1747                     if (!pop_ok) {
1748                         break;
1749                     }
1750 
1751                     dn = (uint64_t)shi << 32 | slo;
1752                     *aa32_vfp_dreg(env, i / 2) = dn;
1753                 }
1754                 pop_ok = pop_ok &&
1755                     v7m_stack_read(cpu, &fpscr, frameptr + 0x60, mmu_idx);
1756                 if (pop_ok) {
1757                     vfp_set_fpscr(env, fpscr);
1758                 }
1759                 if (!pop_ok) {
1760                     /*
1761                      * These regs are 0 if security extension present;
1762                      * otherwise merely UNKNOWN. We zero always.
1763                      */
1764                     for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
1765                         *aa32_vfp_dreg(env, i / 2) = 0;
1766                     }
1767                     vfp_set_fpscr(env, 0);
1768                 }
1769             }
1770         }
1771         env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
1772                                                V7M_CONTROL, FPCA, !ftype);
1773 
1774         /* Commit to consuming the stack frame */
1775         frameptr += 0x20;
1776         if (!ftype) {
1777             frameptr += 0x48;
1778             if (restore_s16_s31) {
1779                 frameptr += 0x40;
1780             }
1781         }
1782         /*
1783          * Undo stack alignment (the SPREALIGN bit indicates that the original
1784          * pre-exception SP was not 8-aligned and we added a padding word to
1785          * align it, so we undo this by ORing in the bit that increases it
1786          * from the current 8-aligned value to the 8-unaligned value. (Adding 4
1787          * would work too but a logical OR is how the pseudocode specifies it.)
1788          */
1789         if (xpsr & XPSR_SPREALIGN) {
1790             frameptr |= 4;
1791         }
1792         *frame_sp_p = frameptr;
1793     }
1794 
1795     xpsr_mask = ~(XPSR_SPREALIGN | XPSR_SFPA);
1796     if (!arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
1797         xpsr_mask &= ~XPSR_GE;
1798     }
1799     /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
1800     xpsr_write(env, xpsr, xpsr_mask);
1801 
1802     if (env->v7m.secure) {
1803         bool sfpa = xpsr & XPSR_SFPA;
1804 
1805         env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
1806                                                V7M_CONTROL, SFPA, sfpa);
1807     }
1808 
1809     /*
1810      * The restored xPSR exception field will be zero if we're
1811      * resuming in Thread mode. If that doesn't match what the
1812      * exception return excret specified then this is a UsageFault.
1813      * v7M requires we make this check here; v8M did it earlier.
1814      */
1815     if (return_to_handler != arm_v7m_is_handler_mode(env)) {
1816         /*
1817          * Take an INVPC UsageFault by pushing the stack again;
1818          * we know we're v7M so this is never a Secure UsageFault.
1819          */
1820         bool ignore_stackfaults;
1821 
1822         assert(!arm_feature(env, ARM_FEATURE_V8));
1823         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
1824         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1825         ignore_stackfaults = v7m_push_stack(cpu);
1826         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
1827                       "failed exception return integrity check\n");
1828         v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
1829         return;
1830     }
1831 
1832     /* Otherwise, we have a successful exception exit. */
1833     arm_clear_exclusive(env);
1834     arm_rebuild_hflags(env);
1835     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
1836 }
1837 
do_v7m_function_return(ARMCPU * cpu)1838 static bool do_v7m_function_return(ARMCPU *cpu)
1839 {
1840     /*
1841      * v8M security extensions magic function return.
1842      * We may either:
1843      *  (1) throw an exception (longjump)
1844      *  (2) return true if we successfully handled the function return
1845      *  (3) return false if we failed a consistency check and have
1846      *      pended a UsageFault that needs to be taken now
1847      *
1848      * At this point the magic return value is split between env->regs[15]
1849      * and env->thumb. We don't bother to reconstitute it because we don't
1850      * need it (all values are handled the same way).
1851      */
1852     CPUARMState *env = &cpu->env;
1853     uint32_t newpc, newpsr, newpsr_exc;
1854 
1855     qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
1856 
1857     {
1858         bool threadmode, spsel;
1859         TCGMemOpIdx oi;
1860         ARMMMUIdx mmu_idx;
1861         uint32_t *frame_sp_p;
1862         uint32_t frameptr;
1863 
1864         /* Pull the return address and IPSR from the Secure stack */
1865         threadmode = !arm_v7m_is_handler_mode(env);
1866         spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
1867 
1868         frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
1869         frameptr = *frame_sp_p;
1870 
1871         /*
1872          * These loads may throw an exception (for MPU faults). We want to
1873          * do them as secure, so work out what MMU index that is.
1874          */
1875         mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
1876         oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
1877         newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
1878         newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
1879 
1880         /* Consistency checks on new IPSR */
1881         newpsr_exc = newpsr & XPSR_EXCP;
1882         if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
1883               (env->v7m.exception == 1 && newpsr_exc != 0))) {
1884             /* Pend the fault and tell our caller to take it */
1885             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1886             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1887                                     env->v7m.secure);
1888             qemu_log_mask(CPU_LOG_INT,
1889                           "...taking INVPC UsageFault: "
1890                           "IPSR consistency check failed\n");
1891             return false;
1892         }
1893 
1894         *frame_sp_p = frameptr + 8;
1895     }
1896 
1897     /* This invalidates frame_sp_p */
1898     switch_v7m_security_state(env, true);
1899     env->v7m.exception = newpsr_exc;
1900     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
1901     if (newpsr & XPSR_SFPA) {
1902         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
1903     }
1904     xpsr_write(env, 0, XPSR_IT);
1905     env->thumb = newpc & 1;
1906     env->regs[15] = newpc & ~1;
1907     arm_rebuild_hflags(env);
1908 
1909     qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
1910     return true;
1911 }
1912 
v7m_read_half_insn(ARMCPU * cpu,ARMMMUIdx mmu_idx,uint32_t addr,uint16_t * insn)1913 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1914                                uint32_t addr, uint16_t *insn)
1915 {
1916     /*
1917      * Load a 16-bit portion of a v7M instruction, returning true on success,
1918      * or false on failure (in which case we will have pended the appropriate
1919      * exception).
1920      * We need to do the instruction fetch's MPU and SAU checks
1921      * like this because there is no MMU index that would allow
1922      * doing the load with a single function call. Instead we must
1923      * first check that the security attributes permit the load
1924      * and that they don't mismatch on the two halves of the instruction,
1925      * and then we do the load as a secure load (ie using the security
1926      * attributes of the address, not the CPU, as architecturally required).
1927      */
1928     CPUState *cs = CPU(cpu);
1929     CPUARMState *env = &cpu->env;
1930     V8M_SAttributes sattrs = {};
1931     MemTxAttrs attrs = {};
1932     ARMMMUFaultInfo fi = {};
1933     ARMCacheAttrs cacheattrs = {};
1934     MemTxResult txres;
1935     target_ulong page_size;
1936     hwaddr physaddr;
1937     int prot;
1938 
1939     v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
1940     if (!sattrs.nsc || sattrs.ns) {
1941         /*
1942          * This must be the second half of the insn, and it straddles a
1943          * region boundary with the second half not being S&NSC.
1944          */
1945         env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
1946         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1947         qemu_log_mask(CPU_LOG_INT,
1948                       "...really SecureFault with SFSR.INVEP\n");
1949         return false;
1950     }
1951     if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, &physaddr,
1952                       &attrs, &prot, &page_size, &fi, &cacheattrs)) {
1953         /* the MPU lookup failed */
1954         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
1955         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
1956         qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
1957         return false;
1958     }
1959     *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
1960                                  attrs, &txres);
1961     if (txres != MEMTX_OK) {
1962         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
1963         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
1964         qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
1965         return false;
1966     }
1967     return true;
1968 }
1969 
v7m_handle_execute_nsc(ARMCPU * cpu)1970 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
1971 {
1972     /*
1973      * Check whether this attempt to execute code in a Secure & NS-Callable
1974      * memory region is for an SG instruction; if so, then emulate the
1975      * effect of the SG instruction and return true. Otherwise pend
1976      * the correct kind of exception and return false.
1977      */
1978     CPUARMState *env = &cpu->env;
1979     ARMMMUIdx mmu_idx;
1980     uint16_t insn;
1981 
1982     /*
1983      * We should never get here unless get_phys_addr_pmsav8() caused
1984      * an exception for NS executing in S&NSC memory.
1985      */
1986     assert(!env->v7m.secure);
1987     assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
1988 
1989     /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
1990     mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
1991 
1992     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
1993         return false;
1994     }
1995 
1996     if (!env->thumb) {
1997         goto gen_invep;
1998     }
1999 
2000     if (insn != 0xe97f) {
2001         /*
2002          * Not an SG instruction first half (we choose the IMPDEF
2003          * early-SG-check option).
2004          */
2005         goto gen_invep;
2006     }
2007 
2008     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
2009         return false;
2010     }
2011 
2012     if (insn != 0xe97f) {
2013         /*
2014          * Not an SG instruction second half (yes, both halves of the SG
2015          * insn have the same hex value)
2016          */
2017         goto gen_invep;
2018     }
2019 
2020     /*
2021      * OK, we have confirmed that we really have an SG instruction.
2022      * We know we're NS in S memory so don't need to repeat those checks.
2023      */
2024     qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
2025                   ", executing it\n", env->regs[15]);
2026     env->regs[14] &= ~1;
2027     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
2028     switch_v7m_security_state(env, true);
2029     xpsr_write(env, 0, XPSR_IT);
2030     env->regs[15] += 4;
2031     arm_rebuild_hflags(env);
2032     return true;
2033 
2034 gen_invep:
2035     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
2036     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2037     qemu_log_mask(CPU_LOG_INT,
2038                   "...really SecureFault with SFSR.INVEP\n");
2039     return false;
2040 }
2041 
arm_v7m_cpu_do_interrupt(CPUState * cs)2042 void arm_v7m_cpu_do_interrupt(CPUState *cs)
2043 {
2044     ARMCPU *cpu = ARM_CPU(cs);
2045     CPUARMState *env = &cpu->env;
2046     uint32_t lr;
2047     bool ignore_stackfaults;
2048 
2049     arm_log_exception(cs->exception_index);
2050 
2051     /*
2052      * For exceptions we just mark as pending on the NVIC, and let that
2053      * handle it.
2054      */
2055     switch (cs->exception_index) {
2056     case EXCP_UDEF:
2057         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2058         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
2059         break;
2060     case EXCP_NOCP:
2061     {
2062         /*
2063          * NOCP might be directed to something other than the current
2064          * security state if this fault is because of NSACR; we indicate
2065          * the target security state using exception.target_el.
2066          */
2067         int target_secstate;
2068 
2069         if (env->exception.target_el == 3) {
2070             target_secstate = M_REG_S;
2071         } else {
2072             target_secstate = env->v7m.secure;
2073         }
2074         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, target_secstate);
2075         env->v7m.cfsr[target_secstate] |= R_V7M_CFSR_NOCP_MASK;
2076         break;
2077     }
2078     case EXCP_INVSTATE:
2079         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2080         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
2081         break;
2082     case EXCP_STKOF:
2083         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2084         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
2085         break;
2086     case EXCP_LSERR:
2087         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2088         env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
2089         break;
2090     case EXCP_UNALIGNED:
2091         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2092         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNALIGNED_MASK;
2093         break;
2094     case EXCP_SWI:
2095         /* The PC already points to the next instruction.  */
2096         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
2097         break;
2098     case EXCP_PREFETCH_ABORT:
2099     case EXCP_DATA_ABORT:
2100         /*
2101          * Note that for M profile we don't have a guest facing FSR, but
2102          * the env->exception.fsr will be populated by the code that
2103          * raises the fault, in the A profile short-descriptor format.
2104          */
2105         switch (env->exception.fsr & 0xf) {
2106         case M_FAKE_FSR_NSC_EXEC:
2107             /*
2108              * Exception generated when we try to execute code at an address
2109              * which is marked as Secure & Non-Secure Callable and the CPU
2110              * is in the Non-Secure state. The only instruction which can
2111              * be executed like this is SG (and that only if both halves of
2112              * the SG instruction have the same security attributes.)
2113              * Everything else must generate an INVEP SecureFault, so we
2114              * emulate the SG instruction here.
2115              */
2116             if (v7m_handle_execute_nsc(cpu)) {
2117                 return;
2118             }
2119             break;
2120         case M_FAKE_FSR_SFAULT:
2121             /*
2122              * Various flavours of SecureFault for attempts to execute or
2123              * access data in the wrong security state.
2124              */
2125             switch (cs->exception_index) {
2126             case EXCP_PREFETCH_ABORT:
2127                 if (env->v7m.secure) {
2128                     env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
2129                     qemu_log_mask(CPU_LOG_INT,
2130                                   "...really SecureFault with SFSR.INVTRAN\n");
2131                 } else {
2132                     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
2133                     qemu_log_mask(CPU_LOG_INT,
2134                                   "...really SecureFault with SFSR.INVEP\n");
2135                 }
2136                 break;
2137             case EXCP_DATA_ABORT:
2138                 /* This must be an NS access to S memory */
2139                 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
2140                 qemu_log_mask(CPU_LOG_INT,
2141                               "...really SecureFault with SFSR.AUVIOL\n");
2142                 break;
2143             }
2144             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2145             break;
2146         case 0x8: /* External Abort */
2147             switch (cs->exception_index) {
2148             case EXCP_PREFETCH_ABORT:
2149                 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
2150                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
2151                 break;
2152             case EXCP_DATA_ABORT:
2153                 env->v7m.cfsr[M_REG_NS] |=
2154                     (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
2155                 env->v7m.bfar = env->exception.vaddress;
2156                 qemu_log_mask(CPU_LOG_INT,
2157                               "...with CFSR.PRECISERR and BFAR 0x%x\n",
2158                               env->v7m.bfar);
2159                 break;
2160             }
2161             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
2162             break;
2163         default:
2164             /*
2165              * All other FSR values are either MPU faults or "can't happen
2166              * for M profile" cases.
2167              */
2168             switch (cs->exception_index) {
2169             case EXCP_PREFETCH_ABORT:
2170                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
2171                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
2172                 break;
2173             case EXCP_DATA_ABORT:
2174                 env->v7m.cfsr[env->v7m.secure] |=
2175                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
2176                 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
2177                 qemu_log_mask(CPU_LOG_INT,
2178                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
2179                               env->v7m.mmfar[env->v7m.secure]);
2180                 break;
2181             }
2182             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
2183                                     env->v7m.secure);
2184             break;
2185         }
2186         break;
2187     case EXCP_SEMIHOST:
2188         qemu_log_mask(CPU_LOG_INT,
2189                       "...handling as semihosting call 0x%x\n",
2190                       env->regs[0]);
2191         env->regs[0] = do_arm_semihosting(env);
2192         env->regs[15] += env->thumb ? 2 : 4;
2193         return;
2194     case EXCP_BKPT:
2195         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
2196         break;
2197     case EXCP_IRQ:
2198         break;
2199     case EXCP_EXCEPTION_EXIT:
2200         if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
2201             /* Must be v8M security extension function return */
2202             assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
2203             assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
2204             if (do_v7m_function_return(cpu)) {
2205                 return;
2206             }
2207         } else {
2208             do_v7m_exception_exit(cpu);
2209             return;
2210         }
2211         break;
2212     case EXCP_LAZYFP:
2213         /*
2214          * We already pended the specific exception in the NVIC in the
2215          * v7m_preserve_fp_state() helper function.
2216          */
2217         break;
2218     default:
2219         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
2220         return; /* Never happens.  Keep compiler happy.  */
2221     }
2222 
2223     if (arm_feature(env, ARM_FEATURE_V8)) {
2224         lr = R_V7M_EXCRET_RES1_MASK |
2225             R_V7M_EXCRET_DCRS_MASK;
2226         /*
2227          * The S bit indicates whether we should return to Secure
2228          * or NonSecure (ie our current state).
2229          * The ES bit indicates whether we're taking this exception
2230          * to Secure or NonSecure (ie our target state). We set it
2231          * later, in v7m_exception_taken().
2232          * The SPSEL bit is also set in v7m_exception_taken() for v8M.
2233          * This corresponds to the ARM ARM pseudocode for v8M setting
2234          * some LR bits in PushStack() and some in ExceptionTaken();
2235          * the distinction matters for the tailchain cases where we
2236          * can take an exception without pushing the stack.
2237          */
2238         if (env->v7m.secure) {
2239             lr |= R_V7M_EXCRET_S_MASK;
2240         }
2241     } else {
2242         lr = R_V7M_EXCRET_RES1_MASK |
2243             R_V7M_EXCRET_S_MASK |
2244             R_V7M_EXCRET_DCRS_MASK |
2245             R_V7M_EXCRET_ES_MASK;
2246         if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
2247             lr |= R_V7M_EXCRET_SPSEL_MASK;
2248         }
2249     }
2250     if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
2251         lr |= R_V7M_EXCRET_FTYPE_MASK;
2252     }
2253     if (!arm_v7m_is_handler_mode(env)) {
2254         lr |= R_V7M_EXCRET_MODE_MASK;
2255     }
2256 
2257     ignore_stackfaults = v7m_push_stack(cpu);
2258     v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
2259 }
2260 
HELPER(v7m_mrs)2261 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2262 {
2263     unsigned el = arm_current_el(env);
2264 
2265     /* First handle registers which unprivileged can read */
2266     switch (reg) {
2267     case 0 ... 7: /* xPSR sub-fields */
2268         return v7m_mrs_xpsr(env, reg, el);
2269     case 20: /* CONTROL */
2270         return v7m_mrs_control(env, env->v7m.secure);
2271     case 0x94: /* CONTROL_NS */
2272         /*
2273          * We have to handle this here because unprivileged Secure code
2274          * can read the NS CONTROL register.
2275          */
2276         if (!env->v7m.secure) {
2277             return 0;
2278         }
2279         return env->v7m.control[M_REG_NS] |
2280             (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK);
2281     }
2282 
2283     if (el == 0) {
2284         return 0; /* unprivileged reads others as zero */
2285     }
2286 
2287     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2288         switch (reg) {
2289         case 0x88: /* MSP_NS */
2290             if (!env->v7m.secure) {
2291                 return 0;
2292             }
2293             return env->v7m.other_ss_msp;
2294         case 0x89: /* PSP_NS */
2295             if (!env->v7m.secure) {
2296                 return 0;
2297             }
2298             return env->v7m.other_ss_psp;
2299         case 0x8a: /* MSPLIM_NS */
2300             if (!env->v7m.secure) {
2301                 return 0;
2302             }
2303             return env->v7m.msplim[M_REG_NS];
2304         case 0x8b: /* PSPLIM_NS */
2305             if (!env->v7m.secure) {
2306                 return 0;
2307             }
2308             return env->v7m.psplim[M_REG_NS];
2309         case 0x90: /* PRIMASK_NS */
2310             if (!env->v7m.secure) {
2311                 return 0;
2312             }
2313             return env->v7m.primask[M_REG_NS];
2314         case 0x91: /* BASEPRI_NS */
2315             if (!env->v7m.secure) {
2316                 return 0;
2317             }
2318             return env->v7m.basepri[M_REG_NS];
2319         case 0x93: /* FAULTMASK_NS */
2320             if (!env->v7m.secure) {
2321                 return 0;
2322             }
2323             return env->v7m.faultmask[M_REG_NS];
2324         case 0x98: /* SP_NS */
2325         {
2326             /*
2327              * This gives the non-secure SP selected based on whether we're
2328              * currently in handler mode or not, using the NS CONTROL.SPSEL.
2329              */
2330             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
2331 
2332             if (!env->v7m.secure) {
2333                 return 0;
2334             }
2335             if (!arm_v7m_is_handler_mode(env) && spsel) {
2336                 return env->v7m.other_ss_psp;
2337             } else {
2338                 return env->v7m.other_ss_msp;
2339             }
2340         }
2341         default:
2342             break;
2343         }
2344     }
2345 
2346     switch (reg) {
2347     case 8: /* MSP */
2348         return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
2349     case 9: /* PSP */
2350         return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
2351     case 10: /* MSPLIM */
2352         if (!arm_feature(env, ARM_FEATURE_V8)) {
2353             goto bad_reg;
2354         }
2355         return env->v7m.msplim[env->v7m.secure];
2356     case 11: /* PSPLIM */
2357         if (!arm_feature(env, ARM_FEATURE_V8)) {
2358             goto bad_reg;
2359         }
2360         return env->v7m.psplim[env->v7m.secure];
2361     case 16: /* PRIMASK */
2362         return env->v7m.primask[env->v7m.secure];
2363     case 17: /* BASEPRI */
2364     case 18: /* BASEPRI_MAX */
2365         return env->v7m.basepri[env->v7m.secure];
2366     case 19: /* FAULTMASK */
2367         return env->v7m.faultmask[env->v7m.secure];
2368     default:
2369     bad_reg:
2370         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
2371                                        " register %d\n", reg);
2372         return 0;
2373     }
2374 }
2375 
HELPER(v7m_msr)2376 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
2377 {
2378     /*
2379      * We're passed bits [11..0] of the instruction; extract
2380      * SYSm and the mask bits.
2381      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
2382      * we choose to treat them as if the mask bits were valid.
2383      * NB that the pseudocode 'mask' variable is bits [11..10],
2384      * whereas ours is [11..8].
2385      */
2386     uint32_t mask = extract32(maskreg, 8, 4);
2387     uint32_t reg = extract32(maskreg, 0, 8);
2388     int cur_el = arm_current_el(env);
2389 
2390     if (cur_el == 0 && reg > 7 && reg != 20) {
2391         /*
2392          * only xPSR sub-fields and CONTROL.SFPA may be written by
2393          * unprivileged code
2394          */
2395         return;
2396     }
2397 
2398     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2399         switch (reg) {
2400         case 0x88: /* MSP_NS */
2401             if (!env->v7m.secure) {
2402                 return;
2403             }
2404             env->v7m.other_ss_msp = val;
2405             return;
2406         case 0x89: /* PSP_NS */
2407             if (!env->v7m.secure) {
2408                 return;
2409             }
2410             env->v7m.other_ss_psp = val;
2411             return;
2412         case 0x8a: /* MSPLIM_NS */
2413             if (!env->v7m.secure) {
2414                 return;
2415             }
2416             env->v7m.msplim[M_REG_NS] = val & ~7;
2417             return;
2418         case 0x8b: /* PSPLIM_NS */
2419             if (!env->v7m.secure) {
2420                 return;
2421             }
2422             env->v7m.psplim[M_REG_NS] = val & ~7;
2423             return;
2424         case 0x90: /* PRIMASK_NS */
2425             if (!env->v7m.secure) {
2426                 return;
2427             }
2428             env->v7m.primask[M_REG_NS] = val & 1;
2429             return;
2430         case 0x91: /* BASEPRI_NS */
2431             if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
2432                 return;
2433             }
2434             env->v7m.basepri[M_REG_NS] = val & 0xff;
2435             return;
2436         case 0x93: /* FAULTMASK_NS */
2437             if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
2438                 return;
2439             }
2440             env->v7m.faultmask[M_REG_NS] = val & 1;
2441             return;
2442         case 0x94: /* CONTROL_NS */
2443             if (!env->v7m.secure) {
2444                 return;
2445             }
2446             write_v7m_control_spsel_for_secstate(env,
2447                                                  val & R_V7M_CONTROL_SPSEL_MASK,
2448                                                  M_REG_NS);
2449             if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
2450                 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
2451                 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
2452             }
2453             /*
2454              * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0,
2455              * RES0 if the FPU is not present, and is stored in the S bank
2456              */
2457             if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env)) &&
2458                 extract32(env->v7m.nsacr, 10, 1)) {
2459                 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
2460                 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
2461             }
2462             return;
2463         case 0x98: /* SP_NS */
2464         {
2465             /*
2466              * This gives the non-secure SP selected based on whether we're
2467              * currently in handler mode or not, using the NS CONTROL.SPSEL.
2468              */
2469             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
2470             bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
2471             uint32_t limit;
2472 
2473             if (!env->v7m.secure) {
2474                 return;
2475             }
2476 
2477             limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
2478 
2479             if (val < limit) {
2480                 CPUState *cs = env_cpu(env);
2481 
2482                 cpu_restore_state(cs, GETPC(), true);
2483                 raise_exception(env, EXCP_STKOF, 0, 1);
2484             }
2485 
2486             if (is_psp) {
2487                 env->v7m.other_ss_psp = val;
2488             } else {
2489                 env->v7m.other_ss_msp = val;
2490             }
2491             return;
2492         }
2493         default:
2494             break;
2495         }
2496     }
2497 
2498     switch (reg) {
2499     case 0 ... 7: /* xPSR sub-fields */
2500         v7m_msr_xpsr(env, mask, reg, val);
2501         break;
2502     case 8: /* MSP */
2503         if (v7m_using_psp(env)) {
2504             env->v7m.other_sp = val;
2505         } else {
2506             env->regs[13] = val;
2507         }
2508         break;
2509     case 9: /* PSP */
2510         if (v7m_using_psp(env)) {
2511             env->regs[13] = val;
2512         } else {
2513             env->v7m.other_sp = val;
2514         }
2515         break;
2516     case 10: /* MSPLIM */
2517         if (!arm_feature(env, ARM_FEATURE_V8)) {
2518             goto bad_reg;
2519         }
2520         env->v7m.msplim[env->v7m.secure] = val & ~7;
2521         break;
2522     case 11: /* PSPLIM */
2523         if (!arm_feature(env, ARM_FEATURE_V8)) {
2524             goto bad_reg;
2525         }
2526         env->v7m.psplim[env->v7m.secure] = val & ~7;
2527         break;
2528     case 16: /* PRIMASK */
2529         env->v7m.primask[env->v7m.secure] = val & 1;
2530         break;
2531     case 17: /* BASEPRI */
2532         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2533             goto bad_reg;
2534         }
2535         env->v7m.basepri[env->v7m.secure] = val & 0xff;
2536         break;
2537     case 18: /* BASEPRI_MAX */
2538         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2539             goto bad_reg;
2540         }
2541         val &= 0xff;
2542         if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
2543                          || env->v7m.basepri[env->v7m.secure] == 0)) {
2544             env->v7m.basepri[env->v7m.secure] = val;
2545         }
2546         break;
2547     case 19: /* FAULTMASK */
2548         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2549             goto bad_reg;
2550         }
2551         env->v7m.faultmask[env->v7m.secure] = val & 1;
2552         break;
2553     case 20: /* CONTROL */
2554         /*
2555          * Writing to the SPSEL bit only has an effect if we are in
2556          * thread mode; other bits can be updated by any privileged code.
2557          * write_v7m_control_spsel() deals with updating the SPSEL bit in
2558          * env->v7m.control, so we only need update the others.
2559          * For v7M, we must just ignore explicit writes to SPSEL in handler
2560          * mode; for v8M the write is permitted but will have no effect.
2561          * All these bits are writes-ignored from non-privileged code,
2562          * except for SFPA.
2563          */
2564         if (cur_el > 0 && (arm_feature(env, ARM_FEATURE_V8) ||
2565                            !arm_v7m_is_handler_mode(env))) {
2566             write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
2567         }
2568         if (cur_el > 0 && arm_feature(env, ARM_FEATURE_M_MAIN)) {
2569             env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
2570             env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
2571         }
2572         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
2573             /*
2574              * SFPA is RAZ/WI from NS or if no FPU.
2575              * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present.
2576              * Both are stored in the S bank.
2577              */
2578             if (env->v7m.secure) {
2579                 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
2580                 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_SFPA_MASK;
2581             }
2582             if (cur_el > 0 &&
2583                 (env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_SECURITY) ||
2584                  extract32(env->v7m.nsacr, 10, 1))) {
2585                 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
2586                 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
2587             }
2588         }
2589         break;
2590     default:
2591     bad_reg:
2592         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
2593                                        " register %d\n", reg);
2594         return;
2595     }
2596 }
2597 
HELPER(v7m_tt)2598 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
2599 {
2600     /* Implement the TT instruction. op is bits [7:6] of the insn. */
2601     bool forceunpriv = op & 1;
2602     bool alt = op & 2;
2603     V8M_SAttributes sattrs = {};
2604     uint32_t tt_resp;
2605     bool r, rw, nsr, nsrw, mrvalid;
2606     int prot;
2607     ARMMMUFaultInfo fi = {};
2608     MemTxAttrs attrs = {};
2609     hwaddr phys_addr;
2610     ARMMMUIdx mmu_idx;
2611     uint32_t mregion;
2612     bool targetpriv;
2613     bool targetsec = env->v7m.secure;
2614     bool is_subpage;
2615 
2616     /*
2617      * Work out what the security state and privilege level we're
2618      * interested in is...
2619      */
2620     if (alt) {
2621         targetsec = !targetsec;
2622     }
2623 
2624     if (forceunpriv) {
2625         targetpriv = false;
2626     } else {
2627         targetpriv = arm_v7m_is_handler_mode(env) ||
2628             !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
2629     }
2630 
2631     /* ...and then figure out which MMU index this is */
2632     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
2633 
2634     /*
2635      * We know that the MPU and SAU don't care about the access type
2636      * for our purposes beyond that we don't want to claim to be
2637      * an insn fetch, so we arbitrarily call this a read.
2638      */
2639 
2640     /*
2641      * MPU region info only available for privileged or if
2642      * inspecting the other MPU state.
2643      */
2644     if (arm_current_el(env) != 0 || alt) {
2645         /* We can ignore the return value as prot is always set */
2646         pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
2647                           &phys_addr, &attrs, &prot, &is_subpage,
2648                           &fi, &mregion);
2649         if (mregion == -1) {
2650             mrvalid = false;
2651             mregion = 0;
2652         } else {
2653             mrvalid = true;
2654         }
2655         r = prot & PAGE_READ;
2656         rw = prot & PAGE_WRITE;
2657     } else {
2658         r = false;
2659         rw = false;
2660         mrvalid = false;
2661         mregion = 0;
2662     }
2663 
2664     if (env->v7m.secure) {
2665         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
2666         nsr = sattrs.ns && r;
2667         nsrw = sattrs.ns && rw;
2668     } else {
2669         sattrs.ns = true;
2670         nsr = false;
2671         nsrw = false;
2672     }
2673 
2674     tt_resp = (sattrs.iregion << 24) |
2675         (sattrs.irvalid << 23) |
2676         ((!sattrs.ns) << 22) |
2677         (nsrw << 21) |
2678         (nsr << 20) |
2679         (rw << 19) |
2680         (r << 18) |
2681         (sattrs.srvalid << 17) |
2682         (mrvalid << 16) |
2683         (sattrs.sregion << 8) |
2684         mregion;
2685 
2686     return tt_resp;
2687 }
2688 
2689 #endif /* !CONFIG_USER_ONLY */
2690 
arm_v7m_mmu_idx_all(CPUARMState * env,bool secstate,bool priv,bool negpri)2691 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2692                               bool secstate, bool priv, bool negpri)
2693 {
2694     ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2695 
2696     if (priv) {
2697         mmu_idx |= ARM_MMU_IDX_M_PRIV;
2698     }
2699 
2700     if (negpri) {
2701         mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2702     }
2703 
2704     if (secstate) {
2705         mmu_idx |= ARM_MMU_IDX_M_S;
2706     }
2707 
2708     return mmu_idx;
2709 }
2710 
arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState * env,bool secstate,bool priv)2711 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2712                                                 bool secstate, bool priv)
2713 {
2714     bool negpri = armv7m_nvic_neg_prio_requested(env->nvic, secstate);
2715 
2716     return arm_v7m_mmu_idx_all(env, secstate, priv, negpri);
2717 }
2718 
2719 /* Return the MMU index for a v7M CPU in the specified security state */
arm_v7m_mmu_idx_for_secstate(CPUARMState * env,bool secstate)2720 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
2721 {
2722     bool priv = arm_v7m_is_handler_mode(env) ||
2723         !(env->v7m.control[secstate] & 1);
2724 
2725     return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2726 }
2727