1 // Boost Lambda Library  ret.hpp -----------------------------------------
2 
3 // Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
4 //
5 // Distributed under the Boost Software License, Version 1.0. (See
6 // accompanying file LICENSE_1_0.txt or copy at
7 // http://www.boost.org/LICENSE_1_0.txt)
8 //
9 // For more information, see www.boost.org
10 
11 
12 #ifndef BOOST_LAMBDA_RET_HPP
13 #define BOOST_LAMBDA_RET_HPP
14 
15 namespace boost {
16 namespace lambda {
17 
18   // TODO:
19 
20 //  Add specializations for function references for ret, protect and unlambda
21 //  e.g void foo(); unlambda(foo); fails, as it would add a const qualifier
22   // for a function type.
23   // on the other hand unlambda(*foo) does work
24 
25 
26 // -- ret -------------------------
27 // the explicit return type template
28 
29   // TODO: It'd be nice to make ret a nop for other than lambda functors
30   // but causes an ambiguiyty with gcc (not with KCC), check what is the
31   // right interpretation.
32 
33   //  // ret for others than lambda functors has no effect
34   // template <class U, class T>
35   // inline const T& ret(const T& t) { return t; }
36 
37 
38 template<class RET, class Arg>
39 inline const
40 lambda_functor<
41   lambda_functor_base<
42     explicit_return_type_action<RET>,
43     tuple<lambda_functor<Arg> >
44   >
45 >
ret(const lambda_functor<Arg> & a1)46 ret(const lambda_functor<Arg>& a1)
47 {
48   return
49     lambda_functor_base<
50       explicit_return_type_action<RET>,
51       tuple<lambda_functor<Arg> >
52     >
53     (tuple<lambda_functor<Arg> >(a1));
54 }
55 
56 // protect ------------------
57 
58   // protecting others than lambda functors has no effect
59 template <class T>
protect(const T & t)60 inline const T& protect(const T& t) { return t; }
61 
62 template<class Arg>
63 inline const
64 lambda_functor<
65   lambda_functor_base<
66     protect_action,
67     tuple<lambda_functor<Arg> >
68   >
69 >
protect(const lambda_functor<Arg> & a1)70 protect(const lambda_functor<Arg>& a1)
71 {
72   return
73       lambda_functor_base<
74         protect_action,
75         tuple<lambda_functor<Arg> >
76       >
77     (tuple<lambda_functor<Arg> >(a1));
78 }
79 
80 // -------------------------------------------------------------------
81 
82 // Hides the lambda functorness of a lambda functor.
83 // After this, the functor is immune to argument substitution, etc.
84 // This can be used, e.g. to make it safe to pass lambda functors as
85 // arguments to functions, which might use them as target functions
86 
87 // note, unlambda and protect are different things. Protect hides the lambda
88 // functor for one application, unlambda for good.
89 
90 template <class LambdaFunctor>
91 class non_lambda_functor
92 {
93   LambdaFunctor lf;
94 public:
95 
96   // This functor defines the result_type typedef.
97   // The result type must be deducible without knowing the arguments
98 
99   template <class SigArgs> struct sig {
100     typedef typename
101       LambdaFunctor::inherited::
102         template sig<typename SigArgs::tail_type>::type type;
103   };
104 
non_lambda_functor(const LambdaFunctor & a)105   explicit non_lambda_functor(const LambdaFunctor& a) : lf(a) {}
106 
107   typename LambdaFunctor::nullary_return_type
operator ()() const108   operator()() const {
109     return lf.template
110       call<typename LambdaFunctor::nullary_return_type>
111         (cnull_type(), cnull_type(), cnull_type(), cnull_type());
112   }
113 
114   template<class A>
115   typename sig<tuple<const non_lambda_functor, A&> >::type
operator ()(A & a) const116   operator()(A& a) const {
117     return lf.template call<typename sig<tuple<const non_lambda_functor, A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
118   }
119 
120   template<class A, class B>
121   typename sig<tuple<const non_lambda_functor, A&, B&> >::type
operator ()(A & a,B & b) const122   operator()(A& a, B& b) const {
123     return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&> >::type >(a, b, cnull_type(), cnull_type());
124   }
125 
126   template<class A, class B, class C>
127   typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type
operator ()(A & a,B & b,C & c) const128   operator()(A& a, B& b, C& c) const {
129     return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type>(a, b, c, cnull_type());
130   }
131 };
132 
133 template <class Arg>
unlambda(const Arg & a)134 inline const Arg& unlambda(const Arg& a) { return a; }
135 
136 template <class Arg>
137 inline const non_lambda_functor<lambda_functor<Arg> >
unlambda(const lambda_functor<Arg> & a)138 unlambda(const lambda_functor<Arg>& a)
139 {
140   return non_lambda_functor<lambda_functor<Arg> >(a);
141 }
142 
143   // Due to a language restriction, lambda functors cannot be made to
144   // accept non-const rvalue arguments. Usually iterators do not return
145   // temporaries, but sometimes they do. That's why a workaround is provided.
146   // Note, that this potentially breaks const correctness, so be careful!
147 
148 // any lambda functor can be turned into a const_incorrect_lambda_functor
149 // The operator() takes arguments as consts and then casts constness
150 // away. So this breaks const correctness!!! but is a necessary workaround
151 // in some cases due to language limitations.
152 // Note, that this is not a lambda_functor anymore, so it can not be used
153 // as a sub lambda expression.
154 
155 template <class LambdaFunctor>
156 struct const_incorrect_lambda_functor {
157   LambdaFunctor lf;
158 public:
159 
const_incorrect_lambda_functorboost::lambda::const_incorrect_lambda_functor160   explicit const_incorrect_lambda_functor(const LambdaFunctor& a) : lf(a) {}
161 
162   template <class SigArgs> struct sig {
163     typedef typename
164       LambdaFunctor::inherited::template
165         sig<typename SigArgs::tail_type>::type type;
166   };
167 
168   // The nullary case is not needed (no arguments, no parameter type problems)
169 
170   template<class A>
171   typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type
operator ()boost::lambda::const_incorrect_lambda_functor172   operator()(const A& a) const {
173     return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type >(const_cast<A&>(a), cnull_type(), cnull_type(), cnull_type());
174   }
175 
176   template<class A, class B>
177   typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type
operator ()boost::lambda::const_incorrect_lambda_functor178   operator()(const A& a, const B& b) const {
179     return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type >(const_cast<A&>(a), const_cast<B&>(b), cnull_type(), cnull_type());
180   }
181 
182   template<class A, class B, class C>
183   typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type
operator ()boost::lambda::const_incorrect_lambda_functor184   operator()(const A& a, const B& b, const C& c) const {
185     return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type>(const_cast<A&>(a), const_cast<B&>(b), const_cast<C&>(c), cnull_type());
186   }
187 };
188 
189 // ------------------------------------------------------------------------
190 // any lambda functor can be turned into a const_parameter_lambda_functor
191 // The operator() takes arguments as const.
192 // This is useful if lambda functors are called with non-const rvalues.
193 // Note, that this is not a lambda_functor anymore, so it can not be used
194 // as a sub lambda expression.
195 
196 template <class LambdaFunctor>
197 struct const_parameter_lambda_functor {
198   LambdaFunctor lf;
199 public:
200 
const_parameter_lambda_functorboost::lambda::const_parameter_lambda_functor201   explicit const_parameter_lambda_functor(const LambdaFunctor& a) : lf(a) {}
202 
203   template <class SigArgs> struct sig {
204     typedef typename
205       LambdaFunctor::inherited::template
206         sig<typename SigArgs::tail_type>::type type;
207   };
208 
209   // The nullary case is not needed: no arguments, no constness problems.
210 
211   template<class A>
212   typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type
operator ()boost::lambda::const_parameter_lambda_functor213   operator()(const A& a) const {
214     return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
215   }
216 
217   template<class A, class B>
218   typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type
operator ()boost::lambda::const_parameter_lambda_functor219   operator()(const A& a, const B& b) const {
220     return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type >(a, b, cnull_type(), cnull_type());
221   }
222 
223   template<class A, class B, class C>
224   typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&>
225 >::type
operator ()boost::lambda::const_parameter_lambda_functor226   operator()(const A& a, const B& b, const C& c) const {
227     return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&> >::type>(a, b, c, cnull_type());
228   }
229 };
230 
231 template <class Arg>
232 inline const const_incorrect_lambda_functor<lambda_functor<Arg> >
break_const(const lambda_functor<Arg> & lf)233 break_const(const lambda_functor<Arg>& lf)
234 {
235   return const_incorrect_lambda_functor<lambda_functor<Arg> >(lf);
236 }
237 
238 
239 template <class Arg>
240 inline const const_parameter_lambda_functor<lambda_functor<Arg> >
const_parameters(const lambda_functor<Arg> & lf)241 const_parameters(const lambda_functor<Arg>& lf)
242 {
243   return const_parameter_lambda_functor<lambda_functor<Arg> >(lf);
244 }
245 
246 // make void ------------------------------------------------
247 // make_void( x ) turns a lambda functor x with some return type y into
248 // another lambda functor, which has a void return type
249 // when called, the original return type is discarded
250 
251 // we use this action. The action class will be called, which means that
252 // the wrapped lambda functor is evaluated, but we just don't do anything
253 // with the result.
254 struct voidifier_action {
applyboost::lambda::voidifier_action255   template<class Ret, class A> static void apply(A&) {}
256 };
257 
258 template<class Args> struct return_type_N<voidifier_action, Args> {
259   typedef void type;
260 };
261 
262 template<class Arg1>
263 inline const
264 lambda_functor<
265   lambda_functor_base<
266     action<1, voidifier_action>,
267     tuple<lambda_functor<Arg1> >
268   >
269 >
make_void(const lambda_functor<Arg1> & a1)270 make_void(const lambda_functor<Arg1>& a1) {
271 return
272     lambda_functor_base<
273       action<1, voidifier_action>,
274       tuple<lambda_functor<Arg1> >
275     >
276   (tuple<lambda_functor<Arg1> > (a1));
277 }
278 
279 // for non-lambda functors, make_void does nothing
280 // (the argument gets evaluated immediately)
281 
282 template<class Arg1>
283 inline const
284 lambda_functor<
285   lambda_functor_base<do_nothing_action, null_type>
286 >
make_void(const Arg1 & a1)287 make_void(const Arg1& a1) {
288 return
289     lambda_functor_base<do_nothing_action, null_type>();
290 }
291 
292 // std_functor -----------------------------------------------------
293 
294 //  The STL uses the result_type typedef as the convention to let binders know
295 //  the return type of a function object.
296 //  LL uses the sig template.
297 //  To let LL know that the function object has the result_type typedef
298 //  defined, it can be wrapped with the std_functor function.
299 
300 
301 // Just inherit form the template parameter (the standard functor),
302 // and provide a sig template. So we have a class which is still the
303 // same functor + the sig template.
304 
305 template<class T>
306 struct result_type_to_sig : public T {
307   template<class Args> struct sig { typedef typename T::result_type type; };
result_type_to_sigboost::lambda::result_type_to_sig308   result_type_to_sig(const T& t) : T(t) {}
309 };
310 
311 template<class F>
std_functor(const F & f)312 inline result_type_to_sig<F> std_functor(const F& f) { return f; }
313 
314 
315 } // namespace lambda
316 } // namespace boost
317 
318 #endif
319 
320 
321 
322 
323 
324 
325 
326