1 /* license:BSD-3-Clause
2  * copyright-holders:Aaron Giles
3  ***************************************************************************
4 
5     huffman.c
6 
7     Static Huffman compression and decompression helpers.
8 
9 ****************************************************************************
10 
11     Maximum codelength is officially (alphabetsize - 1). This would be 255 bits
12     (since we use 1 byte values). However, it is also dependent upon the number
13     of samples used, as follows:
14 
15          2 bits -> 3..4 samples
16          3 bits -> 5..7 samples
17          4 bits -> 8..12 samples
18          5 bits -> 13..20 samples
19          6 bits -> 21..33 samples
20          7 bits -> 34..54 samples
21          8 bits -> 55..88 samples
22          9 bits -> 89..143 samples
23         10 bits -> 144..232 samples
24         11 bits -> 233..376 samples
25         12 bits -> 377..609 samples
26         13 bits -> 610..986 samples
27         14 bits -> 987..1596 samples
28         15 bits -> 1597..2583 samples
29         16 bits -> 2584..4180 samples   -> note that a 4k data size guarantees codelength <= 16 bits
30         17 bits -> 4181..6764 samples
31         18 bits -> 6765..10945 samples
32         19 bits -> 10946..17710 samples
33         20 bits -> 17711..28656 samples
34         21 bits -> 28657..46367 samples
35         22 bits -> 46368..75024 samples
36         23 bits -> 75025..121392 samples
37         24 bits -> 121393..196417 samples
38         25 bits -> 196418..317810 samples
39         26 bits -> 317811..514228 samples
40         27 bits -> 514229..832039 samples
41         28 bits -> 832040..1346268 samples
42         29 bits -> 1346269..2178308 samples
43         30 bits -> 2178309..3524577 samples
44         31 bits -> 3524578..5702886 samples
45         32 bits -> 5702887..9227464 samples
46 
47     Looking at it differently, here is where powers of 2 fall into these buckets:
48 
49           256 samples -> 11 bits max
50           512 samples -> 12 bits max
51            1k samples -> 14 bits max
52            2k samples -> 15 bits max
53            4k samples -> 16 bits max
54            8k samples -> 18 bits max
55           16k samples -> 19 bits max
56           32k samples -> 21 bits max
57           64k samples -> 22 bits max
58          128k samples -> 24 bits max
59          256k samples -> 25 bits max
60          512k samples -> 27 bits max
61            1M samples -> 28 bits max
62            2M samples -> 29 bits max
63            4M samples -> 31 bits max
64            8M samples -> 32 bits max
65 
66 ****************************************************************************
67 
68     Delta-RLE encoding works as follows:
69 
70     Starting value is assumed to be 0. All data is encoded as a delta
71     from the previous value, such that final[i] = final[i - 1] + delta.
72     Long runs of 0s are RLE-encoded as follows:
73 
74         0x100 = repeat count of 8
75         0x101 = repeat count of 9
76         0x102 = repeat count of 10
77         0x103 = repeat count of 11
78         0x104 = repeat count of 12
79         0x105 = repeat count of 13
80         0x106 = repeat count of 14
81         0x107 = repeat count of 15
82         0x108 = repeat count of 16
83         0x109 = repeat count of 32
84         0x10a = repeat count of 64
85         0x10b = repeat count of 128
86         0x10c = repeat count of 256
87         0x10d = repeat count of 512
88         0x10e = repeat count of 1024
89         0x10f = repeat count of 2048
90 
91     Note that repeat counts are reset at the end of a row, so if a 0 run
92     extends to the end of a row, a large repeat count may be used.
93 
94     The reason for starting the run counts at 8 is that 0 is expected to
95     be the most common symbol, and is typically encoded in 1 or 2 bits.
96 
97 ***************************************************************************/
98 
99 #include <stdlib.h>
100 #include <assert.h>
101 #include <stdio.h>
102 #include <string.h>
103 
104 #include "huffman.h"
105 
106 #define MAX(x,y) ((x) > (y) ? (x) : (y))
107 
108 /***************************************************************************
109  *  MACROS
110  ***************************************************************************
111  */
112 
113 #define MAKE_LOOKUP(code,bits)  (((code) << 5) | ((bits) & 0x1f))
114 
115 
116 /***************************************************************************
117  *  IMPLEMENTATION
118  * **************************************************************************
119  */
120 
121 /*-------------------------------------------------
122  *  huffman_context_base - create an encoding/
123  *  decoding context
124  *-------------------------------------------------
125  */
126 
create_huffman_decoder(int numcodes,int maxbits)127 struct huffman_decoder* create_huffman_decoder(int numcodes, int maxbits)
128 {
129    struct huffman_decoder* decoder;
130 	/* limit to 24 bits */
131 	if (maxbits > 24)
132 		return NULL;
133 
134 	decoder = (struct huffman_decoder*)malloc(sizeof(struct huffman_decoder));
135 	decoder->numcodes = numcodes;
136 	decoder->maxbits = maxbits;
137 	decoder->lookup = (lookup_value*)malloc(sizeof(lookup_value) * (1 << maxbits));
138 	decoder->huffnode = (struct node_t*)malloc(sizeof(struct node_t) * numcodes);
139 	decoder->datahisto = NULL;
140 	decoder->prevdata = 0;
141 	decoder->rleremaining = 0;
142 	return decoder;
143 }
144 
delete_huffman_decoder(struct huffman_decoder * decoder)145 void delete_huffman_decoder(struct huffman_decoder* decoder)
146 {
147 	if (decoder != NULL)
148 	{
149 		if (decoder->lookup != NULL)
150 			free(decoder->lookup);
151 		if (decoder->huffnode != NULL)
152 			free(decoder->huffnode);
153 		free(decoder);
154 	}
155 }
156 
157 /*-------------------------------------------------
158  *  decode_one - decode a single code from the
159  *  huffman stream
160  *-------------------------------------------------
161  */
162 
huffman_decode_one(struct huffman_decoder * decoder,struct bitstream * bitbuf)163 uint32_t huffman_decode_one(struct huffman_decoder* decoder, struct bitstream* bitbuf)
164 {
165 	/* peek ahead to get maxbits worth of data */
166 	uint32_t bits = bitstream_peek(bitbuf, decoder->maxbits);
167 
168 	/* look it up, then remove the actual number of bits for this code */
169 	lookup_value lookup = decoder->lookup[bits];
170 	bitstream_remove(bitbuf, lookup & 0x1f);
171 
172 	/* return the value */
173 	return lookup >> 5;
174 }
175 
176 /*-------------------------------------------------
177  *  import_tree_rle - import an RLE-encoded
178  *  huffman tree from a source data stream
179  *-------------------------------------------------
180  */
181 
huffman_import_tree_rle(struct huffman_decoder * decoder,struct bitstream * bitbuf)182 enum huffman_error huffman_import_tree_rle(struct huffman_decoder* decoder, struct bitstream* bitbuf)
183 {
184    enum huffman_error error;
185 	/* bits per entry depends on the maxbits */
186 	int numbits;
187 	int curnode;
188 	if (decoder->maxbits >= 16)
189 		numbits = 5;
190 	else if (decoder->maxbits >= 8)
191 		numbits = 4;
192 	else
193 		numbits = 3;
194 
195 	/* loop until we read all the nodes */
196 	for (curnode = 0; curnode < decoder->numcodes; )
197 	{
198 		/* a non-one value is just raw */
199 		int nodebits = bitstream_read(bitbuf, numbits);
200 		if (nodebits != 1)
201 			decoder->huffnode[curnode++].numbits = nodebits;
202 
203 		/* a one value is an escape code */
204 		else
205 		{
206 			/* a double 1 is just a single 1 */
207 			nodebits = bitstream_read(bitbuf, numbits);
208 			if (nodebits == 1)
209 				decoder->huffnode[curnode++].numbits = nodebits;
210 
211 			/* otherwise, we need one for value for the repeat count */
212 			else
213 			{
214 				int repcount = bitstream_read(bitbuf, numbits) + 3;
215 				while (repcount--)
216 					decoder->huffnode[curnode++].numbits = nodebits;
217 			}
218 		}
219 	}
220 
221 	/* make sure we ended up with the right number */
222 	if (curnode != decoder->numcodes)
223 		return HUFFERR_INVALID_DATA;
224 
225 	/* assign canonical codes for all nodes based on their code lengths */
226 	error = huffman_assign_canonical_codes(decoder);
227 	if (error != HUFFERR_NONE)
228 		return error;
229 
230 	/* build the lookup table */
231 	huffman_build_lookup_table(decoder);
232 
233 	/* determine final input length and report errors */
234 	return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE;
235 }
236 
237 
238 /*-------------------------------------------------
239  *  import_tree_huffman - import a huffman-encoded
240  *  huffman tree from a source data stream
241  *-------------------------------------------------
242  */
243 
huffman_import_tree_huffman(struct huffman_decoder * decoder,struct bitstream * bitbuf)244 enum huffman_error huffman_import_tree_huffman(struct huffman_decoder* decoder, struct bitstream* bitbuf)
245 {
246 	int last = 0;
247 	int curcode;
248    uint32_t temp;
249    enum huffman_error error;
250 	uint8_t rlefullbits = 0;
251 	int index, count = 0;
252    int start;
253 	/* start by parsing the lengths for the small tree */
254 	struct huffman_decoder* smallhuff = create_huffman_decoder(24, 6);
255 
256 	smallhuff->huffnode[0].numbits = bitstream_read(bitbuf, 3);
257 	start = bitstream_read(bitbuf, 3) + 1;
258 
259 	for (index = 1; index < 24; index++)
260 	{
261 		if (index < start || count == 7)
262 			smallhuff->huffnode[index].numbits = 0;
263 		else
264 		{
265 			count = bitstream_read(bitbuf, 3);
266 			smallhuff->huffnode[index].numbits = (count == 7) ? 0 : count;
267 		}
268 	}
269 
270 	/* then regenerate the tree */
271 	error = huffman_assign_canonical_codes(smallhuff);
272 	if (error != HUFFERR_NONE)
273 		return error;
274 	huffman_build_lookup_table(smallhuff);
275 
276 	/* determine the maximum length of an RLE count */
277 	temp = decoder->numcodes - 9;
278 	while (temp != 0)
279 		temp >>= 1, rlefullbits++;
280 
281 	/* now process the rest of the data */
282 	for (curcode = 0; curcode < decoder->numcodes; )
283 	{
284 		int value = huffman_decode_one(smallhuff, bitbuf);
285 		if (value != 0)
286 			decoder->huffnode[curcode++].numbits = last = value - 1;
287 		else
288 		{
289 			int count = bitstream_read(bitbuf, 3) + 2;
290 			if (count == 7+2)
291 				count += bitstream_read(bitbuf, rlefullbits);
292 			for ( ; count != 0 && curcode < decoder->numcodes; count--)
293 				decoder->huffnode[curcode++].numbits = last;
294 		}
295 	}
296 
297 	/* make sure we ended up with the right number */
298 	if (curcode != decoder->numcodes)
299 		return HUFFERR_INVALID_DATA;
300 
301 	/* assign canonical codes for all nodes based on their code lengths */
302 	error = huffman_assign_canonical_codes(decoder);
303 	if (error != HUFFERR_NONE)
304 		return error;
305 
306 	/* build the lookup table */
307 	huffman_build_lookup_table(decoder);
308 
309 	/* determine final input length and report errors */
310 	return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE;
311 }
312 
313 
314 /*-------------------------------------------------
315  *  compute_tree_from_histo - common backend for
316  *  computing a tree based on the data histogram
317  *-------------------------------------------------
318  */
319 
huffman_compute_tree_from_histo(struct huffman_decoder * decoder)320 enum huffman_error huffman_compute_tree_from_histo(struct huffman_decoder* decoder)
321 {
322 	/* compute the number of data items in the histogram */
323 	int i;
324    uint32_t upperweight;
325 	uint32_t lowerweight = 0;
326 	uint32_t sdatacount = 0;
327 	for (i = 0; i < decoder->numcodes; i++)
328 		sdatacount += decoder->datahisto[i];
329 
330 	/* binary search to achieve the optimum encoding */
331 	upperweight = sdatacount * 2;
332 	while (1)
333 	{
334 		/* build a tree using the current weight */
335 		uint32_t curweight = (upperweight + lowerweight) / 2;
336 		int curmaxbits = huffman_build_tree(decoder, sdatacount, curweight);
337 
338 		/* apply binary search here */
339 		if (curmaxbits <= decoder->maxbits)
340 		{
341 			lowerweight = curweight;
342 
343 			/* early out if it worked with the raw weights, or if we're done searching */
344 			if (curweight == sdatacount || (upperweight - lowerweight) <= 1)
345 				break;
346 		}
347 		else
348 			upperweight = curweight;
349 	}
350 
351 	/* assign canonical codes for all nodes based on their code lengths */
352 	return huffman_assign_canonical_codes(decoder);
353 }
354 
355 
356 
357 /***************************************************************************
358  *  INTERNAL FUNCTIONS
359  ***************************************************************************
360  */
361 
362 /*-------------------------------------------------
363  *  tree_node_compare - compare two tree nodes
364  *  by weight
365  *-------------------------------------------------
366  */
367 
huffman_tree_node_compare(const void * item1,const void * item2)368 static int huffman_tree_node_compare(const void *item1, const void *item2)
369 {
370 	const struct node_t *node1 = *(const struct node_t **)item1;
371 	const struct node_t *node2 = *(const struct node_t **)item2;
372 	if (node2->weight != node1->weight)
373 		return node2->weight - node1->weight;
374 	if (node2->bits - node1->bits == 0)
375 		fprintf(stderr, "identical node sort keys, should not happen!\n");
376 	return (int)node1->bits - (int)node2->bits;
377 }
378 
379 
380 /*-------------------------------------------------
381  *  build_tree - build a huffman tree based on the
382  *  data distribution
383  *-------------------------------------------------
384  */
385 
huffman_build_tree(struct huffman_decoder * decoder,uint32_t totaldata,uint32_t totalweight)386 int huffman_build_tree(struct huffman_decoder* decoder, uint32_t totaldata, uint32_t totalweight)
387 {
388    int nextalloc;
389 	int maxbits = 0;
390 	/* make a list of all non-zero nodes */
391 	struct node_t** list = (struct node_t**)malloc(sizeof(struct node_t*) * decoder->numcodes * 2);
392 	int curcode, listitems = 0;
393 	memset(decoder->huffnode, 0, decoder->numcodes * sizeof(decoder->huffnode[0]));
394 	for (curcode = 0; curcode < decoder->numcodes; curcode++)
395 		if (decoder->datahisto[curcode] != 0)
396 		{
397 			list[listitems++] = &decoder->huffnode[curcode];
398 			decoder->huffnode[curcode].count = decoder->datahisto[curcode];
399 			decoder->huffnode[curcode].bits = curcode;
400 
401 			/* scale the weight by the current effective length, ensuring we don't go to 0 */
402 			decoder->huffnode[curcode].weight = ((uint64_t)decoder->datahisto[curcode]) * ((uint64_t)totalweight) / ((uint64_t)totaldata);
403 			if (decoder->huffnode[curcode].weight == 0)
404 				decoder->huffnode[curcode].weight = 1;
405 		}
406 /*
407         fprintf(stderr, "Pre-sort:\n");
408         for (int i = 0; i < listitems; i++) {
409             fprintf(stderr, "weight: %d code: %d\n", list[i]->m_weight, list[i]->m_bits);
410         }
411 */
412 	/* sort the list by weight, largest weight first */
413 	qsort(&list[0], listitems, sizeof(list[0]), huffman_tree_node_compare);
414 /*
415         fprintf(stderr, "Post-sort:\n");
416         for (int i = 0; i < listitems; i++) {
417             fprintf(stderr, "weight: %d code: %d\n", list[i]->m_weight, list[i]->m_bits);
418         }
419         fprintf(stderr, "===================\n");
420 */
421 	/* now build the tree */
422 	nextalloc = decoder->numcodes;
423 
424 	while (listitems > 1)
425 	{
426 		int curitem;
427 		/* remove lowest two items */
428 		struct node_t* node1 = &(*list[--listitems]);
429 		struct node_t* node0 = &(*list[--listitems]);
430 
431 		/* create new node */
432 		struct node_t* newnode = &decoder->huffnode[nextalloc++];
433 		newnode->parent = NULL;
434 		node0->parent = node1->parent = newnode;
435 		newnode->weight = node0->weight + node1->weight;
436 
437 		/* insert into list at appropriate location */
438 		for (curitem = 0; curitem < listitems; curitem++)
439 			if (newnode->weight > list[curitem]->weight)
440 			{
441 				memmove(&list[curitem+1], &list[curitem], (listitems - curitem) * sizeof(list[0]));
442 				break;
443 			}
444 		list[curitem] = newnode;
445 		listitems++;
446 	}
447 
448 	/* compute the number of bits in each code, and fill in another histogram */
449 	for (curcode = 0; curcode < decoder->numcodes; curcode++)
450 	{
451 		struct node_t *curnode;
452 		struct node_t* node = &decoder->huffnode[curcode];
453 		node->numbits = 0;
454 		node->bits = 0;
455 
456 		// if we have a non-zero weight, compute the number of bits
457 		if (node->weight > 0)
458 		{
459 			/* determine the number of bits for this node */
460 			for (curnode = node; curnode->parent != NULL; curnode = curnode->parent)
461 				node->numbits++;
462 			if (node->numbits == 0)
463 				node->numbits = 1;
464 
465 			/* keep track of the max */
466 			maxbits = MAX(maxbits, ((int)node->numbits));
467 		}
468 	}
469 	return maxbits;
470 }
471 
472 
473 /*-------------------------------------------------
474  *  assign_canonical_codes - assign canonical codes
475  *  to all the nodes based on the number of bits
476  *  in each
477  *-------------------------------------------------
478  */
479 
huffman_assign_canonical_codes(struct huffman_decoder * decoder)480 enum huffman_error huffman_assign_canonical_codes(struct huffman_decoder* decoder)
481 {
482 	uint32_t curstart = 0;
483 	/* build up a histogram of bit lengths */
484 	int curcode, codelen;
485 	uint32_t bithisto[33] = { 0 };
486 	for (curcode = 0; curcode < decoder->numcodes; curcode++)
487 	{
488 		struct node_t* node = &decoder->huffnode[curcode];
489 		if (node->numbits > decoder->maxbits)
490 			return HUFFERR_INTERNAL_INCONSISTENCY;
491 		if (node->numbits <= 32)
492 			bithisto[node->numbits]++;
493 	}
494 
495 	/* for each code length, determine the starting code number */
496 	for (codelen = 32; codelen > 0; codelen--)
497 	{
498 		uint32_t nextstart = (curstart + bithisto[codelen]) >> 1;
499 		if (codelen != 1 && nextstart * 2 != (curstart + bithisto[codelen]))
500 			return HUFFERR_INTERNAL_INCONSISTENCY;
501 		bithisto[codelen] = curstart;
502 		curstart = nextstart;
503 	}
504 
505 	/* now assign canonical codes */
506 	for (curcode = 0; curcode < decoder->numcodes; curcode++)
507 	{
508 		struct node_t* node = &decoder->huffnode[curcode];
509 		if (node->numbits > 0)
510 			node->bits = bithisto[node->numbits]++;
511 	}
512 	return HUFFERR_NONE;
513 }
514 
515 
516 /*-------------------------------------------------
517  *  build_lookup_table - build a lookup table for
518  *  fast decoding
519  *-------------------------------------------------
520  */
521 
huffman_build_lookup_table(struct huffman_decoder * decoder)522 void huffman_build_lookup_table(struct huffman_decoder* decoder)
523 {
524 	/* iterate over all codes */
525 	int curcode;
526 	for (curcode = 0; curcode < decoder->numcodes; curcode++)
527 	{
528 		/* process all nodes which have non-zero bits */
529 		struct node_t* node = &decoder->huffnode[curcode];
530 		if (node->numbits > 0)
531 		{
532          int shift;
533          lookup_value *dest;
534          lookup_value *destend;
535 			/* set up the entry */
536 			lookup_value value = MAKE_LOOKUP(curcode, node->numbits);
537 
538 			/* fill all matching entries */
539 			shift = decoder->maxbits - node->numbits;
540 			dest = &decoder->lookup[node->bits << shift];
541 			destend = &decoder->lookup[((node->bits + 1) << shift) - 1];
542 			while (dest <= destend)
543 				*dest++ = value;
544 		}
545 	}
546 }
547