1 /* license:BSD-3-Clause
2  * copyright-holders:Aaron Giles
3 ****************************************************************************
4 
5     huffman.c
6 
7     Static Huffman compression and decompression helpers.
8 
9 ****************************************************************************
10 
11     Maximum codelength is officially (alphabetsize - 1). This would be 255 bits
12     (since we use 1 byte values). However, it is also dependent upon the number
13     of samples used, as follows:
14 
15          2 bits -> 3..4 samples
16          3 bits -> 5..7 samples
17          4 bits -> 8..12 samples
18          5 bits -> 13..20 samples
19          6 bits -> 21..33 samples
20          7 bits -> 34..54 samples
21          8 bits -> 55..88 samples
22          9 bits -> 89..143 samples
23         10 bits -> 144..232 samples
24         11 bits -> 233..376 samples
25         12 bits -> 377..609 samples
26         13 bits -> 610..986 samples
27         14 bits -> 987..1596 samples
28         15 bits -> 1597..2583 samples
29         16 bits -> 2584..4180 samples   -> note that a 4k data size guarantees codelength <= 16 bits
30         17 bits -> 4181..6764 samples
31         18 bits -> 6765..10945 samples
32         19 bits -> 10946..17710 samples
33         20 bits -> 17711..28656 samples
34         21 bits -> 28657..46367 samples
35         22 bits -> 46368..75024 samples
36         23 bits -> 75025..121392 samples
37         24 bits -> 121393..196417 samples
38         25 bits -> 196418..317810 samples
39         26 bits -> 317811..514228 samples
40         27 bits -> 514229..832039 samples
41         28 bits -> 832040..1346268 samples
42         29 bits -> 1346269..2178308 samples
43         30 bits -> 2178309..3524577 samples
44         31 bits -> 3524578..5702886 samples
45         32 bits -> 5702887..9227464 samples
46 
47     Looking at it differently, here is where powers of 2 fall into these buckets:
48 
49           256 samples -> 11 bits max
50           512 samples -> 12 bits max
51            1k samples -> 14 bits max
52            2k samples -> 15 bits max
53            4k samples -> 16 bits max
54            8k samples -> 18 bits max
55           16k samples -> 19 bits max
56           32k samples -> 21 bits max
57           64k samples -> 22 bits max
58          128k samples -> 24 bits max
59          256k samples -> 25 bits max
60          512k samples -> 27 bits max
61            1M samples -> 28 bits max
62            2M samples -> 29 bits max
63            4M samples -> 31 bits max
64            8M samples -> 32 bits max
65 
66 ****************************************************************************
67 
68     Delta-RLE encoding works as follows:
69 
70     Starting value is assumed to be 0. All data is encoded as a delta
71     from the previous value, such that final[i] = final[i - 1] + delta.
72     Long runs of 0s are RLE-encoded as follows:
73 
74         0x100 = repeat count of 8
75         0x101 = repeat count of 9
76         0x102 = repeat count of 10
77         0x103 = repeat count of 11
78         0x104 = repeat count of 12
79         0x105 = repeat count of 13
80         0x106 = repeat count of 14
81         0x107 = repeat count of 15
82         0x108 = repeat count of 16
83         0x109 = repeat count of 32
84         0x10a = repeat count of 64
85         0x10b = repeat count of 128
86         0x10c = repeat count of 256
87         0x10d = repeat count of 512
88         0x10e = repeat count of 1024
89         0x10f = repeat count of 2048
90 
91     Note that repeat counts are reset at the end of a row, so if a 0 run
92     extends to the end of a row, a large repeat count may be used.
93 
94     The reason for starting the run counts at 8 is that 0 is expected to
95     be the most common symbol, and is typically encoded in 1 or 2 bits.
96 
97 ***************************************************************************/
98 
99 #include <stdlib.h>
100 #include <assert.h>
101 #include <stdio.h>
102 #include <string.h>
103 
104 #include "huffman.h"
105 
106 #define MAX(x,y) ((x) > (y) ? (x) : (y))
107 
108 /***************************************************************************
109  *  MACROS
110  ***************************************************************************
111  */
112 
113 #define MAKE_LOOKUP(code,bits)  (((code) << 5) | ((bits) & 0x1f))
114 
115 /***************************************************************************
116  *  IMPLEMENTATION
117  ***************************************************************************
118  */
119 
120 /*-------------------------------------------------
121  *  huffman_context_base - create an encoding/
122  *  decoding context
123  *-------------------------------------------------
124  */
125 
create_huffman_decoder(int numcodes,int maxbits)126 struct huffman_decoder* create_huffman_decoder(int numcodes, int maxbits)
127 {
128 	struct huffman_decoder* decoder = NULL;
129 
130 	/* limit to 24 bits */
131 	if (maxbits > 24)
132 		return NULL;
133 
134 	decoder = (struct huffman_decoder*)malloc(sizeof(struct huffman_decoder));
135 	decoder->numcodes = numcodes;
136 	decoder->maxbits = maxbits;
137 	decoder->lookup = (lookup_value*)malloc(sizeof(lookup_value) * (1 << maxbits));
138 	decoder->huffnode = (struct node_t*)malloc(sizeof(struct node_t) * numcodes);
139 	decoder->datahisto = NULL;
140 	decoder->prevdata = 0;
141 	decoder->rleremaining = 0;
142 	return decoder;
143 }
144 
145 /*-------------------------------------------------
146  *  decode_one - decode a single code from the
147  *  huffman stream
148  *-------------------------------------------------
149  */
150 
huffman_decode_one(struct huffman_decoder * decoder,struct bitstream * bitbuf)151 uint32_t huffman_decode_one(struct huffman_decoder* decoder, struct bitstream* bitbuf)
152 {
153 	/* peek ahead to get maxbits worth of data */
154 	uint32_t bits = bitstream_peek(bitbuf, decoder->maxbits);
155 
156 	/* look it up, then remove the actual number of bits for this code */
157 	lookup_value lookup = decoder->lookup[bits];
158 	bitstream_remove(bitbuf, lookup & 0x1f);
159 
160 	/* return the value */
161 	return lookup >> 5;
162 }
163 
164 /*-------------------------------------------------
165  *  import_tree_rle - import an RLE-encoded
166  *  huffman tree from a source data stream
167  *-------------------------------------------------
168  */
169 
huffman_import_tree_rle(struct huffman_decoder * decoder,struct bitstream * bitbuf)170 enum huffman_error huffman_import_tree_rle(struct huffman_decoder* decoder, struct bitstream* bitbuf)
171 {
172 	int numbits, curnode;
173 	enum huffman_error error;
174 
175 	/* bits per entry depends on the maxbits */
176 	if (decoder->maxbits >= 16)
177 		numbits = 5;
178 	else if (decoder->maxbits >= 8)
179 		numbits = 4;
180 	else
181 		numbits = 3;
182 
183 	/* loop until we read all the nodes */
184 	for (curnode = 0; curnode < decoder->numcodes; )
185 	{
186 		/* a non-one value is just raw */
187 		int nodebits = bitstream_read(bitbuf, numbits);
188 		if (nodebits != 1)
189 			decoder->huffnode[curnode++].numbits = nodebits;
190 
191 		/* a one value is an escape code */
192 		else
193 		{
194 			/* a double 1 is just a single 1 */
195 			nodebits = bitstream_read(bitbuf, numbits);
196 			if (nodebits == 1)
197 				decoder->huffnode[curnode++].numbits = nodebits;
198 
199 			/* otherwise, we need one for value for the repeat count */
200 			else
201 			{
202 				int repcount = bitstream_read(bitbuf, numbits) + 3;
203 				while (repcount--)
204 					decoder->huffnode[curnode++].numbits = nodebits;
205 			}
206 		}
207 	}
208 
209 	/* make sure we ended up with the right number */
210 	if (curnode != decoder->numcodes)
211 		return HUFFERR_INVALID_DATA;
212 
213 	/* assign canonical codes for all nodes based on their code lengths */
214 	error = huffman_assign_canonical_codes(decoder);
215 	if (error != HUFFERR_NONE)
216 		return error;
217 
218 	/* build the lookup table */
219 	huffman_build_lookup_table(decoder);
220 
221 	/* determine final input length and report errors */
222 	return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE;
223 }
224 
225 
226 /*-------------------------------------------------
227  *  import_tree_huffman - import a huffman-encoded
228  *  huffman tree from a source data stream
229  *-------------------------------------------------
230  */
231 
huffman_import_tree_huffman(struct huffman_decoder * decoder,struct bitstream * bitbuf)232 enum huffman_error huffman_import_tree_huffman(struct huffman_decoder* decoder, struct bitstream* bitbuf)
233 {
234 	int start;
235 	int last = 0;
236 	int count = 0;
237 	int index;
238 	int curcode;
239 	uint8_t rlefullbits = 0;
240 	uint32_t temp;
241 	enum huffman_error error;
242 	/* start by parsing the lengths for the small tree */
243 	struct huffman_decoder* smallhuff = create_huffman_decoder(24, 6);
244 	smallhuff->huffnode[0].numbits = bitstream_read(bitbuf, 3);
245 	start = bitstream_read(bitbuf, 3) + 1;
246 	for (index = 1; index < 24; index++)
247 	{
248 		if (index < start || count == 7)
249 			smallhuff->huffnode[index].numbits = 0;
250 		else
251 		{
252 			count = bitstream_read(bitbuf, 3);
253 			smallhuff->huffnode[index].numbits = (count == 7) ? 0 : count;
254 		}
255 	}
256 
257 	/* then regenerate the tree */
258 	error = huffman_assign_canonical_codes(smallhuff);
259 	if (error != HUFFERR_NONE)
260 		return error;
261 	huffman_build_lookup_table(smallhuff);
262 
263 	/* determine the maximum length of an RLE count */
264 	temp = decoder->numcodes - 9;
265 	while (temp != 0)
266 		temp >>= 1, rlefullbits++;
267 
268 	/* now process the rest of the data */
269 	for (curcode = 0; curcode < decoder->numcodes; )
270 	{
271 		int value = huffman_decode_one(smallhuff, bitbuf);
272 		if (value != 0)
273 			decoder->huffnode[curcode++].numbits = last = value - 1;
274 		else
275 		{
276 			int count = bitstream_read(bitbuf, 3) + 2;
277 			if (count == 7+2)
278 				count += bitstream_read(bitbuf, rlefullbits);
279 			for ( ; count != 0 && curcode < decoder->numcodes; count--)
280 				decoder->huffnode[curcode++].numbits = last;
281 		}
282 	}
283 
284 	/* make sure we ended up with the right number */
285 	if (curcode != decoder->numcodes)
286 		return HUFFERR_INVALID_DATA;
287 
288 	/* assign canonical codes for all nodes based on their code lengths */
289 	error = huffman_assign_canonical_codes(decoder);
290 	if (error != HUFFERR_NONE)
291 		return error;
292 
293 	/* build the lookup table */
294 	huffman_build_lookup_table(decoder);
295 
296 	/* determine final input length and report errors */
297 	return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE;
298 }
299 
300 /*-------------------------------------------------
301  *  compute_tree_from_histo - common backend for
302  *  computing a tree based on the data histogram
303  *-------------------------------------------------
304  */
305 
huffman_compute_tree_from_histo(struct huffman_decoder * decoder)306 enum huffman_error huffman_compute_tree_from_histo(struct huffman_decoder* decoder)
307 {
308 	int i;
309 	uint32_t lowerweight;
310 	uint32_t upperweight;
311 	/* compute the number of data items in the histogram */
312 	uint32_t sdatacount = 0;
313 	for (i = 0; i < decoder->numcodes; i++)
314 		sdatacount += decoder->datahisto[i];
315 
316 	/* binary search to achieve the optimum encoding */
317 	lowerweight = 0;
318 	upperweight = sdatacount * 2;
319 	while (1)
320 	{
321 		/* build a tree using the current weight */
322 		uint32_t curweight = (upperweight + lowerweight) / 2;
323 		int curmaxbits = huffman_build_tree(decoder, sdatacount, curweight);
324 
325 		/* apply binary search here */
326 		if (curmaxbits <= decoder->maxbits)
327 		{
328 			lowerweight = curweight;
329 
330 			/* early out if it worked with the raw weights, or if we're done searching */
331 			if (curweight == sdatacount || (upperweight - lowerweight) <= 1)
332 				break;
333 		}
334 		else
335 			upperweight = curweight;
336 	}
337 
338 	/* assign canonical codes for all nodes based on their code lengths */
339 	return huffman_assign_canonical_codes(decoder);
340 }
341 
342 /***************************************************************************
343  *  INTERNAL FUNCTIONS
344  ***************************************************************************
345  */
346 
347 /*-------------------------------------------------
348  *  tree_node_compare - compare two tree nodes
349  *  by weight
350  *-------------------------------------------------
351  */
352 
huffman_tree_node_compare(const void * item1,const void * item2)353 static int huffman_tree_node_compare(const void *item1, const void *item2)
354 {
355 	const struct node_t *node1 = *(const struct node_t **)item1;
356 	const struct node_t *node2 = *(const struct node_t **)item2;
357 	if (node2->weight != node1->weight)
358 		return node2->weight - node1->weight;
359 	if (node2->bits - node1->bits == 0)
360 		fprintf(stderr, "identical node sort keys, should not happen!\n");
361 	return (int)node1->bits - (int)node2->bits;
362 }
363 
364 /*-------------------------------------------------
365  *  build_tree - build a huffman tree based on the
366  *  data distribution
367  *-------------------------------------------------
368  */
369 
huffman_build_tree(struct huffman_decoder * decoder,uint32_t totaldata,uint32_t totalweight)370 int huffman_build_tree(struct huffman_decoder* decoder, uint32_t totaldata, uint32_t totalweight)
371 {
372 	int curcode;
373 	int nextalloc;
374 	int listitems = 0;
375 	int maxbits = 0;
376 	/* make a list of all non-zero nodes */
377 	struct node_t** list = (struct node_t**)malloc(sizeof(struct node_t*) * decoder->numcodes * 2);
378 	memset(decoder->huffnode, 0, decoder->numcodes * sizeof(decoder->huffnode[0]));
379 	for (curcode = 0; curcode < decoder->numcodes; curcode++)
380 		if (decoder->datahisto[curcode] != 0)
381 		{
382 			list[listitems++] = &decoder->huffnode[curcode];
383 			decoder->huffnode[curcode].count = decoder->datahisto[curcode];
384 			decoder->huffnode[curcode].bits = curcode;
385 
386 			/* scale the weight by the current effective length, ensuring we don't go to 0 */
387 			decoder->huffnode[curcode].weight = ((uint64_t)decoder->datahisto[curcode]) * ((uint64_t)totalweight) / ((uint64_t)totaldata);
388 			if (decoder->huffnode[curcode].weight == 0)
389 				decoder->huffnode[curcode].weight = 1;
390 		}
391 
392 #if 0
393         fprintf(stderr, "Pre-sort:\n");
394         for (int i = 0; i < listitems; i++) {
395             fprintf(stderr, "weight: %d code: %d\n", list[i]->m_weight, list[i]->m_bits);
396         }
397 #endif
398 
399 	/* sort the list by weight, largest weight first */
400 	qsort(&list[0], listitems, sizeof(list[0]), huffman_tree_node_compare);
401 
402 #if 0
403         fprintf(stderr, "Post-sort:\n");
404         for (int i = 0; i < listitems; i++) {
405             fprintf(stderr, "weight: %d code: %d\n", list[i]->m_weight, list[i]->m_bits);
406         }
407         fprintf(stderr, "===================\n");
408 #endif
409 
410 	/* now build the tree */
411 	nextalloc = decoder->numcodes;
412 	while (listitems > 1)
413 	{
414 		/* remove lowest two items */
415 		struct node_t* node1 = &(*list[--listitems]);
416 		struct node_t* node0 = &(*list[--listitems]);
417 
418 		/* create new node */
419 		struct node_t* newnode = &decoder->huffnode[nextalloc++];
420 		newnode->parent = NULL;
421 		node0->parent = node1->parent = newnode;
422 		newnode->weight = node0->weight + node1->weight;
423 
424 		/* insert into list at appropriate location */
425 		int curitem;
426 		for (curitem = 0; curitem < listitems; curitem++)
427 			if (newnode->weight > list[curitem]->weight)
428 			{
429 				memmove(&list[curitem+1], &list[curitem], (listitems - curitem) * sizeof(list[0]));
430 				break;
431 			}
432 		list[curitem] = newnode;
433 		listitems++;
434 	}
435 
436 	/* compute the number of bits in each code, and fill in another histogram */
437 	for (curcode = 0; curcode < decoder->numcodes; curcode++)
438 	{
439 		struct node_t* node = &decoder->huffnode[curcode];
440 		node->numbits = 0;
441 		node->bits = 0;
442 
443 		/* if we have a non-zero weight, compute the number of bits */
444 		if (node->weight > 0)
445 		{
446 			/* determine the number of bits for this node */
447 			for (struct node_t *curnode = node; curnode->parent != NULL; curnode = curnode->parent)
448 				node->numbits++;
449 			if (node->numbits == 0)
450 				node->numbits = 1;
451 
452 			/* keep track of the max */
453 			maxbits = MAX(maxbits, ((int)node->numbits));
454 		}
455 	}
456 	return maxbits;
457 }
458 
459 /*-------------------------------------------------
460  *  assign_canonical_codes - assign canonical codes
461  *  to all the nodes based on the number of bits
462  *  in each
463  *-------------------------------------------------
464  */
465 
huffman_assign_canonical_codes(struct huffman_decoder * decoder)466 enum huffman_error huffman_assign_canonical_codes(struct huffman_decoder* decoder)
467 {
468 	int curcode, codelen;
469 	uint32_t curstart = 0;
470 	/* build up a histogram of bit lengths */
471 	uint32_t bithisto[33] = { 0 };
472 	for (curcode = 0; curcode < decoder->numcodes; curcode++)
473 	{
474 		struct node_t* node = &decoder->huffnode[curcode];
475 		if (node->numbits > decoder->maxbits)
476 			return HUFFERR_INTERNAL_INCONSISTENCY;
477 		if (node->numbits <= 32)
478 			bithisto[node->numbits]++;
479 	}
480 
481 	/* for each code length, determine the starting code number */
482 	for (codelen = 32; codelen > 0; codelen--)
483 	{
484 		uint32_t nextstart = (curstart + bithisto[codelen]) >> 1;
485 		if (codelen != 1 && nextstart * 2 != (curstart + bithisto[codelen]))
486 			return HUFFERR_INTERNAL_INCONSISTENCY;
487 		bithisto[codelen] = curstart;
488 		curstart = nextstart;
489 	}
490 
491 	/* now assign canonical codes */
492 	for (curcode = 0; curcode < decoder->numcodes; curcode++)
493 	{
494 		struct node_t* node = &decoder->huffnode[curcode];
495 		if (node->numbits > 0)
496 			node->bits = bithisto[node->numbits]++;
497 	}
498 	return HUFFERR_NONE;
499 }
500 
501 /*-------------------------------------------------
502  *  build_lookup_table - build a lookup table for
503  *  fast decoding
504  *-------------------------------------------------
505  */
506 
huffman_build_lookup_table(struct huffman_decoder * decoder)507 void huffman_build_lookup_table(struct huffman_decoder* decoder)
508 {
509 	int curcode;
510 	/* iterate over all codes */
511 	for (curcode = 0; curcode < decoder->numcodes; curcode++)
512 	{
513 		/* process all nodes which have non-zero bits */
514 		struct node_t* node = &decoder->huffnode[curcode];
515 		if (node->numbits > 0)
516 		{
517 			/* set up the entry */
518 			lookup_value value = MAKE_LOOKUP(curcode, node->numbits);
519 
520 			/* fill all matching entries */
521 			int shift = decoder->maxbits - node->numbits;
522 			lookup_value *dest = &decoder->lookup[node->bits << shift];
523 			lookup_value *destend = &decoder->lookup[((node->bits + 1) << shift) - 1];
524 			while (dest <= destend)
525 				*dest++ = value;
526 		}
527 	}
528 }
529