1 // ****************************************************************************
2 // * This file is part of the xBRZ project. It is distributed under           *
3 // * GNU General Public License: https://www.gnu.org/licenses/gpl-3.0         *
4 // * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved          *
5 // *                                                                          *
6 // * Additionally and as a special exception, the author gives permission     *
7 // * to link the code of this program with the following libraries            *
8 // * (or with modified versions that use the same licenses), and distribute   *
9 // * linked combinations including the two: MAME, FreeFileSync, Snes9x        *
10 // * You must obey the GNU General Public License in all respects for all of  *
11 // * the code used other than MAME, FreeFileSync, Snes9x.                     *
12 // * If you modify this file, you may extend this exception to your version   *
13 // * of the file, but you are not obligated to do so. If you do not wish to   *
14 // * do so, delete this exception statement from your version.                *
15 // ****************************************************************************
16 
17 #include "xbrz.h"
18 #include <cassert>
19 #include <vector>
20 #include <algorithm>
21 #include <cmath> //std::sqrt
22 #include "xbrz_tools.h"
23 
24 using namespace xbrz;
25 
26 
27 namespace
28 {
29 template <unsigned int M, unsigned int N> inline
gradientRGB(uint32_t pixFront,uint32_t pixBack)30 uint32_t gradientRGB(uint32_t pixFront, uint32_t pixBack) //blend front color with opacity M / N over opaque background: http://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending
31 {
32     static_assert(0 < M && M < N && N <= 1000, "");
33 
34     auto calcColor = [](unsigned char colFront, unsigned char colBack) -> unsigned char { return (colFront * M + colBack * (N - M)) / N; };
35 
36     return makePixel(calcColor(getRed  (pixFront), getRed  (pixBack)),
37                      calcColor(getGreen(pixFront), getGreen(pixBack)),
38                      calcColor(getBlue (pixFront), getBlue (pixBack)));
39 }
40 
41 
42 template <unsigned int M, unsigned int N> inline
gradientARGB(uint32_t pixFront,uint32_t pixBack)43 uint32_t gradientARGB(uint32_t pixFront, uint32_t pixBack) //find intermediate color between two colors with alpha channels (=> NO alpha blending!!!)
44 {
45     static_assert(0 < M && M < N && N <= 1000, "");
46 
47     const unsigned int weightFront = getAlpha(pixFront) * M;
48     const unsigned int weightBack  = getAlpha(pixBack) * (N - M);
49     const unsigned int weightSum   = weightFront + weightBack;
50     if (weightSum == 0)
51         return 0;
52 
53     auto calcColor = [=](unsigned char colFront, unsigned char colBack)
54     {
55         return static_cast<unsigned char>((colFront * weightFront + colBack * weightBack) / weightSum);
56     };
57 
58     return makePixel(static_cast<unsigned char>(weightSum / N),
59                      calcColor(getRed  (pixFront), getRed  (pixBack)),
60                      calcColor(getGreen(pixFront), getGreen(pixBack)),
61                      calcColor(getBlue (pixFront), getBlue (pixBack)));
62 }
63 
64 
65 //inline
66 //double fastSqrt(double n)
67 //{
68 //    __asm //speeds up xBRZ by about 9% compared to std::sqrt which internally uses the same assembler instructions but adds some "fluff"
69 //    {
70 //        fld n
71 //        fsqrt
72 //    }
73 //}
74 //
75 
76 
77 enum RotationDegree //clock-wise
78 {
79     ROT_0,
80     ROT_90,
81     ROT_180,
82     ROT_270
83 };
84 
85 //calculate input matrix coordinates after rotation at compile time
86 template <RotationDegree rotDeg, size_t I, size_t J, size_t N>
87 struct MatrixRotation;
88 
89 template <size_t I, size_t J, size_t N>
90 struct MatrixRotation<ROT_0, I, J, N>
91 {
92     static const size_t I_old = I;
93     static const size_t J_old = J;
94 };
95 
96 template <RotationDegree rotDeg, size_t I, size_t J, size_t N> //(i, j) = (row, col) indices, N = size of (square) matrix
97 struct MatrixRotation
98 {
99     static const size_t I_old = N - 1 - MatrixRotation<static_cast<RotationDegree>(rotDeg - 1), I, J, N>::J_old; //old coordinates before rotation!
100     static const size_t J_old =         MatrixRotation<static_cast<RotationDegree>(rotDeg - 1), I, J, N>::I_old; //
101 };
102 
103 
104 template <size_t N, RotationDegree rotDeg>
105 class OutputMatrix
106 {
107 public:
OutputMatrix(uint32_t * out,int outWidth)108     OutputMatrix(uint32_t* out, int outWidth) : //access matrix area, top-left at position "out" for image with given width
109         out_(out),
110         outWidth_(outWidth) {}
111 
112     template <size_t I, size_t J>
ref() const113     uint32_t& ref() const
114     {
115         static const size_t I_old = MatrixRotation<rotDeg, I, J, N>::I_old;
116         static const size_t J_old = MatrixRotation<rotDeg, I, J, N>::J_old;
117         return *(out_ + J_old + I_old * outWidth_);
118     }
119 
120 private:
121     uint32_t* out_;
122     const int outWidth_;
123 };
124 
125 
126 template <class T> inline
square(T value)127 T square(T value) { return value * value; }
128 
129 
130 #if 0
131 inline
132 double distRGB(uint32_t pix1, uint32_t pix2)
133 {
134     const double r_diff = static_cast<int>(getRed  (pix1)) - getRed  (pix2);
135     const double g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2);
136     const double b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2);
137 
138     //euklidean RGB distance
139     return std::sqrt(square(r_diff) + square(g_diff) + square(b_diff));
140 }
141 #endif
142 
143 
144 inline
distYCbCr(uint32_t pix1,uint32_t pix2,double lumaWeight)145 double distYCbCr(uint32_t pix1, uint32_t pix2, double lumaWeight)
146 {
147     //http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion
148     //YCbCr conversion is a matrix multiplication => take advantage of linearity by subtracting first!
149     const int r_diff = static_cast<int>(getRed  (pix1)) - getRed  (pix2); //we may delay division by 255 to after matrix multiplication
150     const int g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2); //
151     const int b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2); //substraction for int is noticeable faster than for double!
152 
153     //const double k_b = 0.0722; //ITU-R BT.709 conversion
154     //const double k_r = 0.2126; //
155     const double k_b = 0.0593; //ITU-R BT.2020 conversion
156     const double k_r = 0.2627; //
157     const double k_g = 1 - k_b - k_r;
158 
159     const double scale_b = 0.5 / (1 - k_b);
160     const double scale_r = 0.5 / (1 - k_r);
161 
162     const double y   = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr!
163     const double c_b = scale_b * (b_diff - y);
164     const double c_r = scale_r * (r_diff - y);
165 
166     //we skip division by 255 to have similar range like other distance functions
167     return std::sqrt(square(lumaWeight * y) + square(c_b) + square(c_r));
168 }
169 
170 
171 inline
distYCbCrBuffered(uint32_t pix1,uint32_t pix2)172 double distYCbCrBuffered(uint32_t pix1, uint32_t pix2)
173 {
174     //30% perf boost compared to plain distYCbCr()!
175     //consumes 64 MB memory; using double is only 2% faster, but takes 128 MB
176     static const std::vector<float> diffToDist = []
177     {
178         std::vector<float> tmp;
179 
180         for (uint32_t i = 0; i < 256 * 256 * 256; ++i) //startup time: 114 ms on Intel Core i5 (four cores)
181         {
182             const int r_diff = getByte<2>(i) * 2 - 0xFF;
183             const int g_diff = getByte<1>(i) * 2 - 0xFF;
184             const int b_diff = getByte<0>(i) * 2 - 0xFF;
185 
186             const double k_b = 0.0593; //ITU-R BT.2020 conversion
187             const double k_r = 0.2627; //
188             const double k_g = 1 - k_b - k_r;
189 
190             const double scale_b = 0.5 / (1 - k_b);
191             const double scale_r = 0.5 / (1 - k_r);
192 
193             const double y   = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr!
194             const double c_b = scale_b * (b_diff - y);
195             const double c_r = scale_r * (r_diff - y);
196 
197             tmp.push_back(static_cast<float>(std::sqrt(square(y) + square(c_b) + square(c_r))));
198         }
199         return tmp;
200     }();
201 
202     //if (pix1 == pix2) -> 8% perf degradation!
203     //    return 0;
204     //if (pix1 < pix2)
205     //    std::swap(pix1, pix2); -> 30% perf degradation!!!
206 #if 1
207     const int r_diff = static_cast<int>(getRed  (pix1)) - getRed  (pix2);
208     const int g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2);
209     const int b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2);
210 
211     return diffToDist[(((r_diff + 0xFF) / 2) << 16) | //slightly reduce precision (division by 2) to squeeze value into single byte
212                                         (((g_diff + 0xFF) / 2) <<  8) |
213                                         (( b_diff + 0xFF) / 2)];
214 #else //not noticeably faster:
215     const int r_diff_tmp = ((pix1 & 0xFF0000) + 0xFF0000 - (pix2 & 0xFF0000)) / 2;
216     const int g_diff_tmp = ((pix1 & 0x00FF00) + 0x00FF00 - (pix2 & 0x00FF00)) / 2; //slightly reduce precision (division by 2) to squeeze value into single byte
217     const int b_diff_tmp = ((pix1 & 0x0000FF) + 0x0000FF - (pix2 & 0x0000FF)) / 2;
218 
219     return diffToDist[(r_diff_tmp & 0xFF0000) | (g_diff_tmp & 0x00FF00) | (b_diff_tmp & 0x0000FF)];
220 #endif
221 }
222 
223 
224 enum BlendType
225 {
226     BLEND_NONE = 0,
227     BLEND_NORMAL,   //a normal indication to blend
228     BLEND_DOMINANT, //a strong indication to blend
229     //attention: BlendType must fit into the value range of 2 bit!!!
230 };
231 
232 struct BlendResult
233 {
234     BlendType
235     /**/blend_f, blend_g,
236     /**/blend_j, blend_k;
237 };
238 
239 
240 struct Kernel_4x4 //kernel for preprocessing step
241 {
242     uint32_t
243     /**/a, b, c, d,
244     /**/e, f, g, h,
245     /**/i, j, k, l,
246     /**/m, n, o, p;
247 };
248 
249 /*
250 input kernel area naming convention:
251 -----------------
252 | A | B | C | D |
253 ----|---|---|---|
254 | E | F | G | H |   //evaluate the four corners between F, G, J, K
255 ----|---|---|---|   //input pixel is at position F
256 | I | J | K | L |
257 ----|---|---|---|
258 | M | N | O | P |
259 -----------------
260 */
261 template <class ColorDistance>
262 alwaysinline //detect blend direction
preProcessCorners(const Kernel_4x4 & ker,const xbrz::ScalerCfg & cfg)263 BlendResult preProcessCorners(const Kernel_4x4& ker, const xbrz::ScalerCfg& cfg) //result: F, G, J, K corners of "GradientType"
264 {
265     BlendResult result = {};
266 
267     if ((ker.f == ker.g &&
268          ker.j == ker.k) ||
269         (ker.f == ker.j &&
270          ker.g == ker.k))
271         return result;
272 
273     auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight); };
274 
275     const int weight = 4;
276     double jg = dist(ker.i, ker.f) + dist(ker.f, ker.c) + dist(ker.n, ker.k) + dist(ker.k, ker.h) + weight * dist(ker.j, ker.g);
277     double fk = dist(ker.e, ker.j) + dist(ker.j, ker.o) + dist(ker.b, ker.g) + dist(ker.g, ker.l) + weight * dist(ker.f, ker.k);
278 
279     if (jg < fk) //test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8
280     {
281         const bool dominantGradient = cfg.dominantDirectionThreshold * jg < fk;
282         if (ker.f != ker.g && ker.f != ker.j)
283             result.blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
284 
285         if (ker.k != ker.j && ker.k != ker.g)
286             result.blend_k = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
287     }
288     else if (fk < jg)
289     {
290         const bool dominantGradient = cfg.dominantDirectionThreshold * fk < jg;
291         if (ker.j != ker.f && ker.j != ker.k)
292             result.blend_j = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
293 
294         if (ker.g != ker.f && ker.g != ker.k)
295             result.blend_g = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
296     }
297     return result;
298 }
299 
300 struct Kernel_3x3
301 {
302     uint32_t
303     /**/a,  b,  c,
304     /**/d,  e,  f,
305     /**/g,  h,  i;
306 };
307 
308 #define DEF_GETTER(x) template <RotationDegree rotDeg> uint32_t inline get_##x(const Kernel_3x3& ker) { return ker.x; }
309 //we cannot and NEED NOT write "ker.##x" since ## concatenates preprocessor tokens but "." is not a token
DEF_GETTER(b)310 DEF_GETTER(a) DEF_GETTER(b) DEF_GETTER(c)
311 DEF_GETTER(d) DEF_GETTER(e) DEF_GETTER(f)
312 DEF_GETTER(g) DEF_GETTER(h) DEF_GETTER(i)
313 #undef DEF_GETTER
314 
315 #define DEF_GETTER(x, y) template <> inline uint32_t get_##x<ROT_90>(const Kernel_3x3& ker) { return ker.y; }
316                  DEF_GETTER(b, d) DEF_GETTER(c, a)
317 DEF_GETTER(d, h) DEF_GETTER(e, e) DEF_GETTER(f, b)
318 DEF_GETTER(g, i) DEF_GETTER(h, f) DEF_GETTER(i, c)
319 #undef DEF_GETTER
320 
321 #define DEF_GETTER(x, y) template <> inline uint32_t get_##x<ROT_180>(const Kernel_3x3& ker) { return ker.y; }
322                  DEF_GETTER(b, h) DEF_GETTER(c, g)
323 DEF_GETTER(d, f) DEF_GETTER(e, e) DEF_GETTER(f, d)
324 DEF_GETTER(g, c) DEF_GETTER(h, b) DEF_GETTER(i, a)
325 #undef DEF_GETTER
326 
327 #define DEF_GETTER(x, y) template <> inline uint32_t get_##x<ROT_270>(const Kernel_3x3& ker) { return ker.y; }
328                  DEF_GETTER(b, f) DEF_GETTER(c, i)
329 DEF_GETTER(d, b) DEF_GETTER(e, e) DEF_GETTER(f, h)
330 DEF_GETTER(g, a) DEF_GETTER(h, d) DEF_GETTER(i, g)
331 #undef DEF_GETTER
332 
333 
334 //compress four blend types into a single byte
335 //inline BlendType getTopL   (unsigned char b) { return static_cast<BlendType>(0x3 & b); }
336 inline BlendType getTopR   (unsigned char b) { return static_cast<BlendType>(0x3 & (b >> 2)); }
getBottomR(unsigned char b)337 inline BlendType getBottomR(unsigned char b) { return static_cast<BlendType>(0x3 & (b >> 4)); }
getBottomL(unsigned char b)338 inline BlendType getBottomL(unsigned char b) { return static_cast<BlendType>(0x3 & (b >> 6)); }
339 
setTopL(unsigned char & b,BlendType bt)340 inline void setTopL   (unsigned char& b, BlendType bt) { b |= bt; } //buffer is assumed to be initialized before preprocessing!
setTopR(unsigned char & b,BlendType bt)341 inline void setTopR   (unsigned char& b, BlendType bt) { b |= (bt << 2); }
setBottomR(unsigned char & b,BlendType bt)342 inline void setBottomR(unsigned char& b, BlendType bt) { b |= (bt << 4); }
setBottomL(unsigned char & b,BlendType bt)343 inline void setBottomL(unsigned char& b, BlendType bt) { b |= (bt << 6); }
344 
blendingNeeded(unsigned char b)345 inline bool blendingNeeded(unsigned char b) { return b != 0; }
346 
347 template <RotationDegree rotDeg> inline
rotateBlendInfo(unsigned char b)348 unsigned char rotateBlendInfo(unsigned char b) { return b; }
rotateBlendInfo(unsigned char b)349 template <> inline unsigned char rotateBlendInfo<ROT_90 >(unsigned char b) { return ((b << 2) | (b >> 6)) & 0xff; }
rotateBlendInfo(unsigned char b)350 template <> inline unsigned char rotateBlendInfo<ROT_180>(unsigned char b) { return ((b << 4) | (b >> 4)) & 0xff; }
rotateBlendInfo(unsigned char b)351 template <> inline unsigned char rotateBlendInfo<ROT_270>(unsigned char b) { return ((b << 6) | (b >> 2)) & 0xff; }
352 
353 #ifdef WIN32
354 #ifndef NDEBUG
355     int debugPixelX = -1;
356     int debugPixelY = 12;
357     __declspec(thread) bool breakIntoDebugger = false;
358 #endif
359 #endif
360 
361 /*
362 input kernel area naming convention:
363 -------------
364 | A | B | C |
365 ----|---|---|
366 | D | E | F | //input pixel is at position E
367 ----|---|---|
368 | G | H | I |
369 -------------
370 */
371 template <class Scaler, class ColorDistance, RotationDegree rotDeg>
372 alwaysinline //perf: quite worth it!
blendPixel(const Kernel_3x3 & ker,uint32_t * target,int trgWidth,unsigned char blendInfo,const xbrz::ScalerCfg & cfg)373 void blendPixel(const Kernel_3x3& ker,
374                 uint32_t* target, int trgWidth,
375                 unsigned char blendInfo, //result of preprocessing all four corners of pixel "e"
376                 const xbrz::ScalerCfg& cfg)
377 {
378 #define a get_a<rotDeg>(ker)
379 #define b get_b<rotDeg>(ker)
380 #define c get_c<rotDeg>(ker)
381 #define d get_d<rotDeg>(ker)
382 #define e get_e<rotDeg>(ker)
383 #define f get_f<rotDeg>(ker)
384 #define g get_g<rotDeg>(ker)
385 #define h get_h<rotDeg>(ker)
386 #define i get_i<rotDeg>(ker)
387 
388 #ifdef WIN32
389 #ifndef NDEBUG
390     if (breakIntoDebugger)
391         __debugbreak(); //__asm int 3;
392 #endif
393 #endif
394 
395     const unsigned char blend = rotateBlendInfo<rotDeg>(blendInfo);
396 
397     if (getBottomR(blend) >= BLEND_NORMAL)
398     {
399         auto eq   = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight) < cfg.equalColorTolerance; };
400         auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight); };
401 
402         const bool doLineBlend = [&]() -> bool
403         {
404             if (getBottomR(blend) >= BLEND_DOMINANT)
405                 return true;
406 
407             //make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes
408             if (getTopR(blend) != BLEND_NONE && !eq(e, g)) //but support double-blending for 90 degree corners
409                 return false;
410             if (getBottomL(blend) != BLEND_NONE && !eq(e, c))
411                 return false;
412 
413             //no full blending for L-shapes; blend corner only (handles "mario mushroom eyes")
414             if (!eq(e, i) && eq(g, h) && eq(h, i) && eq(i, f) && eq(f, c))
415                 return false;
416 
417             return true;
418         }();
419 
420         const uint32_t px = dist(e, f) <= dist(e, h) ? f : h; //choose most similar color
421 
422         OutputMatrix<Scaler::scale, rotDeg> out(target, trgWidth);
423 
424         if (doLineBlend)
425         {
426             const double fg = dist(f, g); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9
427             const double hc = dist(h, c); //
428 
429             const bool haveShallowLine = cfg.steepDirectionThreshold * fg <= hc && e != g && d != g;
430             const bool haveSteepLine   = cfg.steepDirectionThreshold * hc <= fg && e != c && b != c;
431 
432             if (haveShallowLine)
433             {
434                 if (haveSteepLine)
435                     Scaler::blendLineSteepAndShallow(px, out);
436                 else
437                     Scaler::blendLineShallow(px, out);
438             }
439             else
440             {
441                 if (haveSteepLine)
442                     Scaler::blendLineSteep(px, out);
443                 else
444                     Scaler::blendLineDiagonal(px, out);
445             }
446         }
447         else
448             Scaler::blendCorner(px, out);
449     }
450 
451 #undef a
452 #undef b
453 #undef c
454 #undef d
455 #undef e
456 #undef f
457 #undef g
458 #undef h
459 #undef i
460 }
461 
462 
463 template <class Scaler, class ColorDistance> //scaler policy: see "Scaler2x" reference implementation
scaleImage(const uint32_t * src,uint32_t * trg,int srcWidth,int srcHeight,const xbrz::ScalerCfg & cfg,int yFirst,int yLast)464 void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, const xbrz::ScalerCfg& cfg, int yFirst, int yLast)
465 {
466     yFirst = std::max(yFirst, 0);
467     yLast  = std::min(yLast, srcHeight);
468     if (yFirst >= yLast || srcWidth <= 0)
469         return;
470 
471     const int trgWidth = srcWidth * Scaler::scale;
472 
473     //"use" space at the end of the image as temporary buffer for "on the fly preprocessing": we even could use larger area of
474     //"sizeof(uint32_t) * srcWidth * (yLast - yFirst)" bytes without risk of accidental overwriting before accessing
475     const int bufferSize = srcWidth;
476     unsigned char* preProcBuffer = reinterpret_cast<unsigned char*>(trg + yLast * Scaler::scale * trgWidth) - bufferSize;
477     std::fill(preProcBuffer, preProcBuffer + bufferSize, '\0');
478     static_assert(BLEND_NONE == 0, "");
479 
480     //initialize preprocessing buffer for first row of current stripe: detect upper left and right corner blending
481     //this cannot be optimized for adjacent processing stripes; we must not allow for a memory race condition!
482     if (yFirst > 0)
483     {
484         const int y = yFirst - 1;
485 
486         const uint32_t* s_m1 = src + srcWidth * std::max(y - 1, 0);
487         const uint32_t* s_0  = src + srcWidth * y; //center line
488         const uint32_t* s_p1 = src + srcWidth * std::min(y + 1, srcHeight - 1);
489         const uint32_t* s_p2 = src + srcWidth * std::min(y + 2, srcHeight - 1);
490 
491         for (int x = 0; x < srcWidth; ++x)
492         {
493             const int x_m1 = std::max(x - 1, 0);
494             const int x_p1 = std::min(x + 1, srcWidth - 1);
495             const int x_p2 = std::min(x + 2, srcWidth - 1);
496 
497             Kernel_4x4 ker = {}; //perf: initialization is negligible
498             ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible
499             ker.b = s_m1[x];
500             ker.c = s_m1[x_p1];
501             ker.d = s_m1[x_p2];
502 
503             ker.e = s_0[x_m1];
504             ker.f = s_0[x];
505             ker.g = s_0[x_p1];
506             ker.h = s_0[x_p2];
507 
508             ker.i = s_p1[x_m1];
509             ker.j = s_p1[x];
510             ker.k = s_p1[x_p1];
511             ker.l = s_p1[x_p2];
512 
513             ker.m = s_p2[x_m1];
514             ker.n = s_p2[x];
515             ker.o = s_p2[x_p1];
516             ker.p = s_p2[x_p2];
517 
518             const BlendResult res = preProcessCorners<ColorDistance>(ker, cfg);
519             /*
520             preprocessing blend result:
521             ---------
522             | F | G |   //evalute corner between F, G, J, K
523             ----|---|   //input pixel is at position F
524             | J | K |
525             ---------
526             */
527             setTopR(preProcBuffer[x], res.blend_j);
528 
529             if (x + 1 < bufferSize)
530                 setTopL(preProcBuffer[x + 1], res.blend_k);
531         }
532     }
533     //------------------------------------------------------------------------------------
534 
535     for (int y = yFirst; y < yLast; ++y)
536     {
537         uint32_t* out = trg + Scaler::scale * y * trgWidth; //consider MT "striped" access
538 
539         const uint32_t* s_m1 = src + srcWidth * std::max(y - 1, 0);
540         const uint32_t* s_0  = src + srcWidth * y; //center line
541         const uint32_t* s_p1 = src + srcWidth * std::min(y + 1, srcHeight - 1);
542         const uint32_t* s_p2 = src + srcWidth * std::min(y + 2, srcHeight - 1);
543 
544         unsigned char blend_xy1 = 0; //corner blending for current (x, y + 1) position
545 
546         for (int x = 0; x < srcWidth; ++x, out += Scaler::scale)
547         {
548 #ifdef WIN32
549 #ifndef NDEBUG
550             breakIntoDebugger = debugPixelX == x && debugPixelY == y;
551 #endif
552 #endif
553             //all those bounds checks have only insignificant impact on performance!
554             const int x_m1 = std::max(x - 1, 0); //perf: prefer array indexing to additional pointers!
555             const int x_p1 = std::min(x + 1, srcWidth - 1);
556             const int x_p2 = std::min(x + 2, srcWidth - 1);
557 
558             Kernel_4x4 ker4 = {}; //perf: initialization is negligible
559 
560             ker4.a = s_m1[x_m1]; //read sequentially from memory as far as possible
561             ker4.b = s_m1[x];
562             ker4.c = s_m1[x_p1];
563             ker4.d = s_m1[x_p2];
564 
565             ker4.e = s_0[x_m1];
566             ker4.f = s_0[x];
567             ker4.g = s_0[x_p1];
568             ker4.h = s_0[x_p2];
569 
570             ker4.i = s_p1[x_m1];
571             ker4.j = s_p1[x];
572             ker4.k = s_p1[x_p1];
573             ker4.l = s_p1[x_p2];
574 
575             ker4.m = s_p2[x_m1];
576             ker4.n = s_p2[x];
577             ker4.o = s_p2[x_p1];
578             ker4.p = s_p2[x_p2];
579 
580             //evaluate the four corners on bottom-right of current pixel
581             unsigned char blend_xy = 0; //for current (x, y) position
582             {
583                 const BlendResult res = preProcessCorners<ColorDistance>(ker4, cfg);
584                 /*
585                 preprocessing blend result:
586                 ---------
587                 | F | G |   //evalute corner between F, G, J, K
588                 ----|---|   //current input pixel is at position F
589                 | J | K |
590                 ---------
591                 */
592                 blend_xy = preProcBuffer[x];
593                 setBottomR(blend_xy, res.blend_f); //all four corners of (x, y) have been determined at this point due to processing sequence!
594 
595                 setTopR(blend_xy1, res.blend_j); //set 2nd known corner for (x, y + 1)
596                 preProcBuffer[x] = blend_xy1; //store on current buffer position for use on next row
597 
598                 blend_xy1 = 0;
599                 setTopL(blend_xy1, res.blend_k); //set 1st known corner for (x + 1, y + 1) and buffer for use on next column
600 
601                 if (x + 1 < bufferSize) //set 3rd known corner for (x + 1, y)
602                     setBottomL(preProcBuffer[x + 1], res.blend_g);
603             }
604 
605             //fill block of size scale * scale with the given color
606             fillBlock(out, trgWidth * sizeof(uint32_t), ker4.f, Scaler::scale, Scaler::scale);
607             //place *after* preprocessing step, to not overwrite the results while processing the the last pixel!
608 
609             //blend four corners of current pixel
610             if (blendingNeeded(blend_xy)) //good 5% perf-improvement
611             {
612                 Kernel_3x3 ker3 = {}; //perf: initialization is negligible
613 
614                 ker3.a = ker4.a;
615                 ker3.b = ker4.b;
616                 ker3.c = ker4.c;
617 
618                 ker3.d = ker4.e;
619                 ker3.e = ker4.f;
620                 ker3.f = ker4.g;
621 
622                 ker3.g = ker4.i;
623                 ker3.h = ker4.j;
624                 ker3.i = ker4.k;
625 
626                 blendPixel<Scaler, ColorDistance, ROT_0  >(ker3, out, trgWidth, blend_xy, cfg);
627                 blendPixel<Scaler, ColorDistance, ROT_90 >(ker3, out, trgWidth, blend_xy, cfg);
628                 blendPixel<Scaler, ColorDistance, ROT_180>(ker3, out, trgWidth, blend_xy, cfg);
629                 blendPixel<Scaler, ColorDistance, ROT_270>(ker3, out, trgWidth, blend_xy, cfg);
630             }
631         }
632     }
633 }
634 
635 //------------------------------------------------------------------------------------
636 
637 template <class ColorGradient>
638 struct Scaler2x : public ColorGradient
639 {
640     static const int scale = 2;
641 
642     template <unsigned int M, unsigned int N> //bring template function into scope for GCC
alphaGrad__anon56ded9ec0111::Scaler2x643     static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); }
644 
645 
646     template <class OutputMatrix>
blendLineShallow__anon56ded9ec0111::Scaler2x647     static void blendLineShallow(uint32_t col, OutputMatrix& out)
648     {
649         alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
650         alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
651     }
652 
653     template <class OutputMatrix>
blendLineSteep__anon56ded9ec0111::Scaler2x654     static void blendLineSteep(uint32_t col, OutputMatrix& out)
655     {
656         alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
657         alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
658     }
659 
660     template <class OutputMatrix>
blendLineSteepAndShallow__anon56ded9ec0111::Scaler2x661     static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
662     {
663         alphaGrad<1, 4>(out.template ref<1, 0>(), col);
664         alphaGrad<1, 4>(out.template ref<0, 1>(), col);
665         alphaGrad<5, 6>(out.template ref<1, 1>(), col); //[!] fixes 7/8 used in xBR
666     }
667 
668     template <class OutputMatrix>
blendLineDiagonal__anon56ded9ec0111::Scaler2x669     static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
670     {
671         alphaGrad<1, 2>(out.template ref<1, 1>(), col);
672     }
673 
674     template <class OutputMatrix>
blendCorner__anon56ded9ec0111::Scaler2x675     static void blendCorner(uint32_t col, OutputMatrix& out)
676     {
677         //model a round corner
678         alphaGrad<21, 100>(out.template ref<1, 1>(), col); //exact: 1 - pi/4 = 0.2146018366
679     }
680 };
681 
682 
683 template <class ColorGradient>
684 struct Scaler3x : public ColorGradient
685 {
686     static const int scale = 3;
687 
688     template <unsigned int M, unsigned int N> //bring template function into scope for GCC
alphaGrad__anon56ded9ec0111::Scaler3x689     static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); }
690 
691 
692     template <class OutputMatrix>
blendLineShallow__anon56ded9ec0111::Scaler3x693     static void blendLineShallow(uint32_t col, OutputMatrix& out)
694     {
695         alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
696         alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col);
697 
698         alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
699         out.template ref<scale - 1, 2>() = col;
700     }
701 
702     template <class OutputMatrix>
blendLineSteep__anon56ded9ec0111::Scaler3x703     static void blendLineSteep(uint32_t col, OutputMatrix& out)
704     {
705         alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
706         alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col);
707 
708         alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
709         out.template ref<2, scale - 1>() = col;
710     }
711 
712     template <class OutputMatrix>
blendLineSteepAndShallow__anon56ded9ec0111::Scaler3x713     static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
714     {
715         alphaGrad<1, 4>(out.template ref<2, 0>(), col);
716         alphaGrad<1, 4>(out.template ref<0, 2>(), col);
717         alphaGrad<3, 4>(out.template ref<2, 1>(), col);
718         alphaGrad<3, 4>(out.template ref<1, 2>(), col);
719         out.template ref<2, 2>() = col;
720     }
721 
722     template <class OutputMatrix>
blendLineDiagonal__anon56ded9ec0111::Scaler3x723     static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
724     {
725         alphaGrad<1, 8>(out.template ref<1, 2>(), col); //conflict with other rotations for this odd scale
726         alphaGrad<1, 8>(out.template ref<2, 1>(), col);
727         alphaGrad<7, 8>(out.template ref<2, 2>(), col); //
728     }
729 
730     template <class OutputMatrix>
blendCorner__anon56ded9ec0111::Scaler3x731     static void blendCorner(uint32_t col, OutputMatrix& out)
732     {
733         //model a round corner
734         alphaGrad<45, 100>(out.template ref<2, 2>(), col); //exact: 0.4545939598
735         //alphaGrad<7, 256>(out.template ref<2, 1>(), col); //0.02826017254 -> negligible + avoid conflicts with other rotations for this odd scale
736         //alphaGrad<7, 256>(out.template ref<1, 2>(), col); //0.02826017254
737     }
738 };
739 
740 
741 template <class ColorGradient>
742 struct Scaler4x : public ColorGradient
743 {
744     static const int scale = 4;
745 
746     template <unsigned int M, unsigned int N> //bring template function into scope for GCC
alphaGrad__anon56ded9ec0111::Scaler4x747     static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); }
748 
749 
750     template <class OutputMatrix>
blendLineShallow__anon56ded9ec0111::Scaler4x751     static void blendLineShallow(uint32_t col, OutputMatrix& out)
752     {
753         alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
754         alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col);
755 
756         alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
757         alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col);
758 
759         out.template ref<scale - 1, 2>() = col;
760         out.template ref<scale - 1, 3>() = col;
761     }
762 
763     template <class OutputMatrix>
blendLineSteep__anon56ded9ec0111::Scaler4x764     static void blendLineSteep(uint32_t col, OutputMatrix& out)
765     {
766         alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
767         alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col);
768 
769         alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
770         alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col);
771 
772         out.template ref<2, scale - 1>() = col;
773         out.template ref<3, scale - 1>() = col;
774     }
775 
776     template <class OutputMatrix>
blendLineSteepAndShallow__anon56ded9ec0111::Scaler4x777     static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
778     {
779         alphaGrad<3, 4>(out.template ref<3, 1>(), col);
780         alphaGrad<3, 4>(out.template ref<1, 3>(), col);
781         alphaGrad<1, 4>(out.template ref<3, 0>(), col);
782         alphaGrad<1, 4>(out.template ref<0, 3>(), col);
783 
784         alphaGrad<1, 3>(out.template ref<2, 2>(), col); //[!] fixes 1/4 used in xBR
785 
786         out.template ref<3, 3>() = col;
787         out.template ref<3, 2>() = col;
788         out.template ref<2, 3>() = col;
789     }
790 
791     template <class OutputMatrix>
blendLineDiagonal__anon56ded9ec0111::Scaler4x792     static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
793     {
794         alphaGrad<1, 2>(out.template ref<scale - 1, scale / 2    >(), col);
795         alphaGrad<1, 2>(out.template ref<scale - 2, scale / 2 + 1>(), col);
796         out.template ref<scale - 1, scale - 1>() = col;
797     }
798 
799     template <class OutputMatrix>
blendCorner__anon56ded9ec0111::Scaler4x800     static void blendCorner(uint32_t col, OutputMatrix& out)
801     {
802         //model a round corner
803         alphaGrad<68, 100>(out.template ref<3, 3>(), col); //exact: 0.6848532563
804         alphaGrad< 9, 100>(out.template ref<3, 2>(), col); //0.08677704501
805         alphaGrad< 9, 100>(out.template ref<2, 3>(), col); //0.08677704501
806     }
807 };
808 
809 
810 template <class ColorGradient>
811 struct Scaler5x : public ColorGradient
812 {
813     static const int scale = 5;
814 
815     template <unsigned int M, unsigned int N> //bring template function into scope for GCC
alphaGrad__anon56ded9ec0111::Scaler5x816     static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); }
817 
818 
819     template <class OutputMatrix>
blendLineShallow__anon56ded9ec0111::Scaler5x820     static void blendLineShallow(uint32_t col, OutputMatrix& out)
821     {
822         alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
823         alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col);
824         alphaGrad<1, 4>(out.template ref<scale - 3, 4>(), col);
825 
826         alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
827         alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col);
828 
829         out.template ref<scale - 1, 2>() = col;
830         out.template ref<scale - 1, 3>() = col;
831         out.template ref<scale - 1, 4>() = col;
832         out.template ref<scale - 2, 4>() = col;
833     }
834 
835     template <class OutputMatrix>
blendLineSteep__anon56ded9ec0111::Scaler5x836     static void blendLineSteep(uint32_t col, OutputMatrix& out)
837     {
838         alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
839         alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col);
840         alphaGrad<1, 4>(out.template ref<4, scale - 3>(), col);
841 
842         alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
843         alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col);
844 
845         out.template ref<2, scale - 1>() = col;
846         out.template ref<3, scale - 1>() = col;
847         out.template ref<4, scale - 1>() = col;
848         out.template ref<4, scale - 2>() = col;
849     }
850 
851     template <class OutputMatrix>
blendLineSteepAndShallow__anon56ded9ec0111::Scaler5x852     static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
853     {
854         alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
855         alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col);
856         alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
857 
858         alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
859         alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col);
860         alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
861 
862         alphaGrad<2, 3>(out.template ref<3, 3>(), col);
863 
864         out.template ref<2, scale - 1>() = col;
865         out.template ref<3, scale - 1>() = col;
866         out.template ref<4, scale - 1>() = col;
867 
868         out.template ref<scale - 1, 2>() = col;
869         out.template ref<scale - 1, 3>() = col;
870     }
871 
872     template <class OutputMatrix>
blendLineDiagonal__anon56ded9ec0111::Scaler5x873     static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
874     {
875         alphaGrad<1, 8>(out.template ref<scale - 1, scale / 2    >(), col); //conflict with other rotations for this odd scale
876         alphaGrad<1, 8>(out.template ref<scale - 2, scale / 2 + 1>(), col);
877         alphaGrad<1, 8>(out.template ref<scale - 3, scale / 2 + 2>(), col); //
878 
879         alphaGrad<7, 8>(out.template ref<4, 3>(), col);
880         alphaGrad<7, 8>(out.template ref<3, 4>(), col);
881 
882         out.template ref<4, 4>() = col;
883     }
884 
885     template <class OutputMatrix>
blendCorner__anon56ded9ec0111::Scaler5x886     static void blendCorner(uint32_t col, OutputMatrix& out)
887     {
888         //model a round corner
889         alphaGrad<86, 100>(out.template ref<4, 4>(), col); //exact: 0.8631434088
890         alphaGrad<23, 100>(out.template ref<4, 3>(), col); //0.2306749731
891         alphaGrad<23, 100>(out.template ref<3, 4>(), col); //0.2306749731
892         //alphaGrad<1, 64>(out.template ref<4, 2>(), col); //0.01676812367 -> negligible + avoid conflicts with other rotations for this odd scale
893         //alphaGrad<1, 64>(out.template ref<2, 4>(), col); //0.01676812367
894     }
895 };
896 
897 
898 template <class ColorGradient>
899 struct Scaler6x : public ColorGradient
900 {
901     static const int scale = 6;
902 
903     template <unsigned int M, unsigned int N> //bring template function into scope for GCC
alphaGrad__anon56ded9ec0111::Scaler6x904     static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); }
905 
906 
907     template <class OutputMatrix>
blendLineShallow__anon56ded9ec0111::Scaler6x908     static void blendLineShallow(uint32_t col, OutputMatrix& out)
909     {
910         alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
911         alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col);
912         alphaGrad<1, 4>(out.template ref<scale - 3, 4>(), col);
913 
914         alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
915         alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col);
916         alphaGrad<3, 4>(out.template ref<scale - 3, 5>(), col);
917 
918         out.template ref<scale - 1, 2>() = col;
919         out.template ref<scale - 1, 3>() = col;
920         out.template ref<scale - 1, 4>() = col;
921         out.template ref<scale - 1, 5>() = col;
922 
923         out.template ref<scale - 2, 4>() = col;
924         out.template ref<scale - 2, 5>() = col;
925     }
926 
927     template <class OutputMatrix>
blendLineSteep__anon56ded9ec0111::Scaler6x928     static void blendLineSteep(uint32_t col, OutputMatrix& out)
929     {
930         alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
931         alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col);
932         alphaGrad<1, 4>(out.template ref<4, scale - 3>(), col);
933 
934         alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
935         alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col);
936         alphaGrad<3, 4>(out.template ref<5, scale - 3>(), col);
937 
938         out.template ref<2, scale - 1>() = col;
939         out.template ref<3, scale - 1>() = col;
940         out.template ref<4, scale - 1>() = col;
941         out.template ref<5, scale - 1>() = col;
942 
943         out.template ref<4, scale - 2>() = col;
944         out.template ref<5, scale - 2>() = col;
945     }
946 
947     template <class OutputMatrix>
blendLineSteepAndShallow__anon56ded9ec0111::Scaler6x948     static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
949     {
950         alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col);
951         alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col);
952         alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col);
953         alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col);
954 
955         alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col);
956         alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col);
957         alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col);
958         alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col);
959 
960         out.template ref<2, scale - 1>() = col;
961         out.template ref<3, scale - 1>() = col;
962         out.template ref<4, scale - 1>() = col;
963         out.template ref<5, scale - 1>() = col;
964 
965         out.template ref<4, scale - 2>() = col;
966         out.template ref<5, scale - 2>() = col;
967 
968         out.template ref<scale - 1, 2>() = col;
969         out.template ref<scale - 1, 3>() = col;
970     }
971 
972     template <class OutputMatrix>
blendLineDiagonal__anon56ded9ec0111::Scaler6x973     static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
974     {
975         alphaGrad<1, 2>(out.template ref<scale - 1, scale / 2    >(), col);
976         alphaGrad<1, 2>(out.template ref<scale - 2, scale / 2 + 1>(), col);
977         alphaGrad<1, 2>(out.template ref<scale - 3, scale / 2 + 2>(), col);
978 
979         out.template ref<scale - 2, scale - 1>() = col;
980         out.template ref<scale - 1, scale - 1>() = col;
981         out.template ref<scale - 1, scale - 2>() = col;
982     }
983 
984     template <class OutputMatrix>
blendCorner__anon56ded9ec0111::Scaler6x985     static void blendCorner(uint32_t col, OutputMatrix& out)
986     {
987         //model a round corner
988         alphaGrad<97, 100>(out.template ref<5, 5>(), col); //exact: 0.9711013910
989         alphaGrad<42, 100>(out.template ref<4, 5>(), col); //0.4236372243
990         alphaGrad<42, 100>(out.template ref<5, 4>(), col); //0.4236372243
991         alphaGrad< 6, 100>(out.template ref<5, 3>(), col); //0.05652034508
992         alphaGrad< 6, 100>(out.template ref<3, 5>(), col); //0.05652034508
993     }
994 };
995 
996 //------------------------------------------------------------------------------------
997 
998 struct ColorDistanceRGB
999 {
dist__anon56ded9ec0111::ColorDistanceRGB1000     static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight)
1001     {
1002         return distYCbCrBuffered(pix1, pix2);
1003 
1004         //if (pix1 == pix2) //about 4% perf boost
1005         //    return 0;
1006         //return distYCbCr(pix1, pix2, luminanceWeight);
1007     }
1008 };
1009 
1010 struct ColorDistanceARGB
1011 {
dist__anon56ded9ec0111::ColorDistanceARGB1012     static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight)
1013     {
1014         const double a1 = getAlpha(pix1) / 255.0 ;
1015         const double a2 = getAlpha(pix2) / 255.0 ;
1016         /*
1017         Requirements for a color distance handling alpha channel: with a1, a2 in [0, 1]
1018 
1019             1. if a1 = a2, distance should be: a1 * distYCbCr()
1020             2. if a1 = 0,  distance should be: a2 * distYCbCr(black, white) = a2 * 255
1021             3. if a1 = 1,  ??? maybe: 255 * (1 - a2) + a2 * distYCbCr()
1022         */
1023 
1024         //return std::min(a1, a2) * distYCbCrBuffered(pix1, pix2) + 255 * abs(a1 - a2);
1025         //=> following code is 15% faster:
1026         const double d = distYCbCrBuffered(pix1, pix2);
1027         if (a1 < a2)
1028             return a1 * d + 255 * (a2 - a1);
1029         else
1030             return a2 * d + 255 * (a1 - a2);
1031 
1032         //alternative? return std::sqrt(a1 * a2 * square(distYCbCrBuffered(pix1, pix2)) + square(255 * (a1 - a2)));
1033     }
1034 };
1035 
1036 
1037 struct ColorDistanceUnbufferedARGB
1038 {
dist__anon56ded9ec0111::ColorDistanceUnbufferedARGB1039     static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight)
1040     {
1041         const double a1 = getAlpha(pix1) / 255.0 ;
1042         const double a2 = getAlpha(pix2) / 255.0 ;
1043 
1044         const double d = distYCbCr(pix1, pix2, luminanceWeight);
1045         if (a1 < a2)
1046             return a1 * d + 255 * (a2 - a1);
1047         else
1048             return a2 * d + 255 * (a1 - a2);
1049     }
1050 };
1051 
1052 
1053 struct ColorGradientRGB
1054 {
1055     template <unsigned int M, unsigned int N>
alphaGrad__anon56ded9ec0111::ColorGradientRGB1056     static void alphaGrad(uint32_t& pixBack, uint32_t pixFront)
1057     {
1058         pixBack = gradientRGB<M, N>(pixFront, pixBack);
1059     }
1060 };
1061 
1062 struct ColorGradientARGB
1063 {
1064     template <unsigned int M, unsigned int N>
alphaGrad__anon56ded9ec0111::ColorGradientARGB1065     static void alphaGrad(uint32_t& pixBack, uint32_t pixFront)
1066     {
1067         pixBack = gradientARGB<M, N>(pixFront, pixBack);
1068     }
1069 };
1070 }
1071 
1072 
scale(size_t factor,const uint32_t * src,uint32_t * trg,int srcWidth,int srcHeight,ColorFormat colFmt,const xbrz::ScalerCfg & cfg,int yFirst,int yLast)1073 void xbrz::scale(size_t factor, const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, ColorFormat colFmt, const xbrz::ScalerCfg& cfg, int yFirst, int yLast)
1074 {
1075     static_assert(SCALE_FACTOR_MAX == 6, "");
1076     switch (colFmt)
1077     {
1078         case ColorFormat::RGB:
1079             switch (factor)
1080             {
1081                 case 2:
1082                     return scaleImage<Scaler2x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
1083                 case 3:
1084                     return scaleImage<Scaler3x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
1085                 case 4:
1086                     return scaleImage<Scaler4x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
1087                 case 5:
1088                     return scaleImage<Scaler5x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
1089                 case 6:
1090                     return scaleImage<Scaler6x<ColorGradientRGB>, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
1091             }
1092             break;
1093 
1094         case ColorFormat::ARGB:
1095             switch (factor)
1096             {
1097                 case 2:
1098                     return scaleImage<Scaler2x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
1099                 case 3:
1100                     return scaleImage<Scaler3x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
1101                 case 4:
1102                     return scaleImage<Scaler4x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
1103                 case 5:
1104                     return scaleImage<Scaler5x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
1105                 case 6:
1106                     return scaleImage<Scaler6x<ColorGradientARGB>, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
1107             }
1108             break;
1109 
1110         case ColorFormat::ARGB_UNBUFFERED:
1111             switch (factor)
1112             {
1113                 case 2:
1114                     return scaleImage<Scaler2x<ColorGradientARGB>, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
1115                 case 3:
1116                     return scaleImage<Scaler3x<ColorGradientARGB>, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
1117                 case 4:
1118                     return scaleImage<Scaler4x<ColorGradientARGB>, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
1119                 case 5:
1120                     return scaleImage<Scaler5x<ColorGradientARGB>, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
1121                 case 6:
1122                     return scaleImage<Scaler6x<ColorGradientARGB>, ColorDistanceUnbufferedARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
1123             }
1124             break;
1125     }
1126     assert(false);
1127 }
1128 
1129 
equalColorTest(uint32_t col1,uint32_t col2,ColorFormat colFmt,double luminanceWeight,double equalColorTolerance)1130 bool xbrz::equalColorTest(uint32_t col1, uint32_t col2, ColorFormat colFmt, double luminanceWeight, double equalColorTolerance)
1131 {
1132     switch (colFmt)
1133     {
1134         case ColorFormat::RGB:
1135             return ColorDistanceRGB::dist(col1, col2, luminanceWeight) < equalColorTolerance;
1136         case ColorFormat::ARGB:
1137             return ColorDistanceARGB::dist(col1, col2, luminanceWeight) < equalColorTolerance;
1138         case ColorFormat::ARGB_UNBUFFERED:
1139             return ColorDistanceUnbufferedARGB::dist(col1, col2, luminanceWeight) < equalColorTolerance;
1140     }
1141     assert(false);
1142     return false;
1143 }
1144 
1145 
bilinearScale(const uint32_t * src,int srcWidth,int srcHeight,uint32_t * trg,int trgWidth,int trgHeight)1146 void xbrz::bilinearScale(const uint32_t* src, int srcWidth, int srcHeight,
1147                          /**/  uint32_t* trg, int trgWidth, int trgHeight)
1148 {
1149     bilinearScale(src, srcWidth, srcHeight, srcWidth * sizeof(uint32_t),
1150                   trg, trgWidth, trgHeight, trgWidth * sizeof(uint32_t),
1151     0, trgHeight, [](uint32_t pix) { return pix; });
1152 }
1153 
1154 
nearestNeighborScale(const uint32_t * src,int srcWidth,int srcHeight,uint32_t * trg,int trgWidth,int trgHeight)1155 void xbrz::nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight,
1156                                 /**/  uint32_t* trg, int trgWidth, int trgHeight)
1157 {
1158     nearestNeighborScale(src, srcWidth, srcHeight, srcWidth * sizeof(uint32_t),
1159                          trg, trgWidth, trgHeight, trgWidth * sizeof(uint32_t),
1160     0, trgHeight, [](uint32_t pix) { return pix; });
1161 }
1162 
1163 
1164 #if 0
1165 //#include <ppl.h>
1166 void bilinearScaleCpu(const uint32_t* src, int srcWidth, int srcHeight,
1167                       /**/  uint32_t* trg, int trgWidth, int trgHeight)
1168 {
1169     const int TASK_GRANULARITY = 16;
1170 
1171     concurrency::task_group tg;
1172 
1173     for (int i = 0; i < trgHeight; i += TASK_GRANULARITY)
1174         tg.run([=]
1175     {
1176         const int iLast = std::min(i + TASK_GRANULARITY, trgHeight);
1177         xbrz::bilinearScale(src, srcWidth, srcHeight, srcWidth * sizeof(uint32_t),
1178                             trg, trgWidth, trgHeight, trgWidth * sizeof(uint32_t),
1179         i, iLast, [](uint32_t pix) { return pix; });
1180     });
1181     tg.wait();
1182 }
1183 
1184 
1185 //Perf: AMP vs CPU: merely ~10% shorter runtime (scaling 1280x800 -> 1920x1080)
1186 //#include <amp.h>
1187 void bilinearScaleAmp(const uint32_t* src, int srcWidth, int srcHeight, //throw concurrency::runtime_exception
1188                       /**/  uint32_t* trg, int trgWidth, int trgHeight)
1189 {
1190     //C++ AMP reference:       https://msdn.microsoft.com/en-us/library/hh289390.aspx
1191     //introduction to C++ AMP: https://msdn.microsoft.com/en-us/magazine/hh882446.aspx
1192     using namespace concurrency;
1193     //TODO: pitch
1194 
1195     if (srcHeight <= 0 || srcWidth <= 0) return;
1196 
1197     const float scaleX = static_cast<float>(trgWidth ) / srcWidth;
1198     const float scaleY = static_cast<float>(trgHeight) / srcHeight;
1199 
1200     array_view<const uint32_t, 2> srcView(srcHeight, srcWidth, src);
1201     array_view<      uint32_t, 2> trgView(trgHeight, trgWidth, trg);
1202     trgView.discard_data();
1203 
1204     parallel_for_each(trgView.extent, [=](index<2> idx) restrict(amp) //throw ?
1205     {
1206         const int y = idx[0];
1207         const int x = idx[1];
1208         //Perf notes:
1209         //    -> float-based calculation is (almost 2x) faster than double!
1210         //    -> no noticeable improvement via tiling: https://msdn.microsoft.com/en-us/magazine/hh882447.aspx
1211         //    -> no noticeable improvement with restrict(amp,cpu)
1212         //    -> iterating over y-axis only is significantly slower!
1213         //    -> pre-calculating x,y-dependent variables in a buffer + array_view<> is ~ 20 % slower!
1214         const int y1 = srcHeight * y / trgHeight;
1215         int y2 = y1 + 1;
1216         if (y2 == srcHeight) --y2;
1217 
1218         const float yy1 = y / scaleY - y1;
1219         const float y2y = 1 - yy1;
1220         //-------------------------------------
1221         const int x1 = srcWidth * x / trgWidth;
1222         int x2 = x1 + 1;
1223         if (x2 == srcWidth) --x2;
1224 
1225         const float xx1 = x / scaleX - x1;
1226         const float x2x = 1 - xx1;
1227         //-------------------------------------
1228         const float x2xy2y = x2x * y2y;
1229         const float xx1y2y = xx1 * y2y;
1230         const float x2xyy1 = x2x * yy1;
1231         const float xx1yy1 = xx1 * yy1;
1232 
1233         auto interpolate = [=](int offset)
1234         {
1235             /*
1236                 https://en.wikipedia.org/wiki/Bilinear_interpolation
1237                 (c11(x2 - x) + c21(x - x1)) * (y2 - y ) +
1238                 (c12(x2 - x) + c22(x - x1)) * (y  - y1)
1239             */
1240             const auto c11 = (srcView(y1, x1) >> (8 * offset)) & 0xff;
1241             const auto c21 = (srcView(y1, x2) >> (8 * offset)) & 0xff;
1242             const auto c12 = (srcView(y2, x1) >> (8 * offset)) & 0xff;
1243             const auto c22 = (srcView(y2, x2) >> (8 * offset)) & 0xff;
1244 
1245             return c11 * x2xy2y + c21 * xx1y2y +
1246                    c12 * x2xyy1 + c22 * xx1yy1;
1247         };
1248 
1249         const float bi = interpolate(0);
1250         const float gi = interpolate(1);
1251         const float ri = interpolate(2);
1252         const float ai = interpolate(3);
1253 
1254         const auto b = static_cast<uint32_t>(bi + 0.5f);
1255         const auto g = static_cast<uint32_t>(gi + 0.5f);
1256         const auto r = static_cast<uint32_t>(ri + 0.5f);
1257         const auto a = static_cast<uint32_t>(ai + 0.5f);
1258 
1259         trgView(y, x) = (a << 24) | (r << 16) | (g << 8) | b;
1260     });
1261     trgView.synchronize(); //throw ?
1262 }
1263 #endif
1264