1 /*	SCCS Id: @(#)vision.c	3.4	1999/02/18	*/
2 /* Copyright (c) Dean Luick, with acknowledgements to Dave Cohrs, 1990.	*/
3 /* NetHack may be freely redistributed.  See license for details.	*/
4 
5 #include "hack.h"
6 
7 /* Circles ==================================================================*/
8 
9 /*
10  * These numbers are limit offsets for one quadrant of a circle of a given
11  * radius (the first number of each line) from the source.  The number in
12  * the comment is the element number (so pointers can be set up).  Each
13  * "circle" has as many elements as its radius+1.  The radius is the number
14  * of points away from the source that the limit exists.  The radius of the
15  * offset on the same row as the source *is* included so we don't have to
16  * make an extra check.  For example, a circle of radius 4 has offsets:
17  *
18  *				XXX	+2
19  *				...X	+3
20  *				....X	+4
21  *				....X	+4
22  *				@...X   +4
23  *
24  */
25 char circle_data[] = {
26 /*  0*/	 1, 1,
27 /*  2*/	 2, 2, 1,
28 /*  5*/	 3, 3, 2, 1,
29 /*  9*/	 4, 4, 4, 3, 2,
30 /* 14*/	 5, 5, 5, 4, 3, 2,
31 /* 20*/	 6, 6, 6, 5, 5, 4, 2,
32 /* 27*/	 7, 7, 7, 6, 6, 5, 4, 2,
33 /* 35*/	 8, 8, 8, 7, 7, 6, 6, 4, 2,
34 /* 44*/	 9, 9, 9, 9, 8, 8, 7, 6, 5, 3,
35 /* 54*/	10,10,10,10, 9, 9, 8, 7, 6, 5, 3,
36 /* 65*/	11,11,11,11,10,10, 9, 9, 8, 7, 5, 3,
37 /* 77*/	12,12,12,12,11,11,10,10, 9, 8, 7, 5, 3,
38 /* 90*/	13,13,13,13,12,12,12,11,10,10, 9, 7, 6, 3,
39 /*104*/	14,14,14,14,13,13,13,12,12,11,10, 9, 8, 6, 3,
40 /*119*/	15,15,15,15,14,14,14,13,13,12,11,10, 9, 8, 6, 3,
41 /*135*/ 16 /* should be MAX_RADIUS+1; used to terminate range loops -dlc */
42 };
43 
44 /*
45  * These are the starting indexes into the circle_data[] array for a
46  * circle of a given radius.
47  */
48 char circle_start[] = {
49 /*  */	  0,	/* circles of radius zero are not used */
50 /* 1*/    0,
51 /* 2*/	  2,
52 /* 3*/	  5,
53 /* 4*/	  9,
54 /* 5*/	 14,
55 /* 6*/	 20,
56 /* 7*/	 27,
57 /* 8*/	 35,
58 /* 9*/	 44,
59 /*10*/	 54,
60 /*11*/	 65,
61 /*12*/	 77,
62 /*13*/	 90,
63 /*14*/	104,
64 /*15*/	119,
65 };
66 
67 
68 /*===========================================================================*/
69 /* Vision (arbitrary line of sight) =========================================*/
70 
71 /*------ global variables ------*/
72 
73 #if 0	/* (moved to decl.c) */
74 /* True if we need to run a full vision recalculation. */
75 boolean	vision_full_recalc = 0;
76 
77 /* Pointers to the current vision array. */
78 char	**viz_array;
79 #endif
80 char	*viz_rmin, *viz_rmax;		/* current vision cs bounds */
81 
82 
83 /*------ local variables ------*/
84 
85 
86 static char could_see[2][ROWNO][COLNO];		/* vision work space */
87 static char *cs_rows0[ROWNO], *cs_rows1[ROWNO];
88 static char  cs_rmin0[ROWNO],  cs_rmax0[ROWNO];
89 static char  cs_rmin1[ROWNO],  cs_rmax1[ROWNO];
90 
91 static char  viz_clear[ROWNO][COLNO];		/* vision clear/blocked map */
92 static char *viz_clear_rows[ROWNO];
93 
94 static char  left_ptrs[ROWNO][COLNO];		/* LOS algorithm helpers */
95 static char right_ptrs[ROWNO][COLNO];
96 
97 /* Forward declarations. */
98 STATIC_DCL void FDECL(fill_point, (int,int));
99 STATIC_DCL void FDECL(dig_point, (int,int));
100 STATIC_DCL void NDECL(view_init);
101 STATIC_DCL void FDECL(view_from,(int,int,char **,char *,char *,int,
102 			     void (*)(int,int,genericptr_t),genericptr_t));
103 STATIC_DCL void FDECL(get_unused_cs, (char ***,char **,char **));
104 #ifdef REINCARNATION
105 STATIC_DCL void FDECL(rogue_vision, (char **,char *,char *));
106 #endif
107 
108 /* Macro definitions that I can't find anywhere. */
109 #define sign(z) ((z) < 0 ? -1 : ((z) ? 1 : 0 ))
110 #define v_abs(z)  ((z) < 0 ? -(z) : (z))	/* don't use abs -- it may exist */
111 
112 /*
113  * vision_init()
114  *
115  * The one-time vision initialization routine.
116  *
117  * This must be called before mklev() is called in newgame() [allmain.c],
118  * or before a game restore.   Else we die a horrible death.
119  */
120 void
vision_init()121 vision_init()
122 {
123     int i;
124 
125     /* Set up the pointers. */
126     for (i = 0; i < ROWNO; i++) {
127 	cs_rows0[i] = could_see[0][i];
128 	cs_rows1[i] = could_see[1][i];
129 	viz_clear_rows[i] = viz_clear[i];
130     }
131 
132     /* Start out with cs0 as our current array */
133     viz_array = cs_rows0;
134     viz_rmin  = cs_rmin0;
135     viz_rmax  = cs_rmax0;
136 
137     vision_full_recalc = 0;
138     (void) memset((genericptr_t) could_see, 0, sizeof(could_see));
139 
140     /* Initialize the vision algorithm (currently C or D). */
141     view_init();
142 
143 #ifdef VISION_TABLES
144     /* Note:  this initializer doesn't do anything except guarantee that
145 	      we're linked properly.
146     */
147     vis_tab_init();
148 #endif
149 }
150 
151 /*
152  * does_block()
153  *
154  * Returns true if the level feature, object, or monster at (x,y) blocks
155  * sight.
156  */
157 int
does_block(x,y,lev)158 does_block(x,y,lev)
159     int x, y;
160     register struct rm    *lev;
161 {
162     struct obj   *obj;
163     struct monst *mon;
164 
165     /* Features that block . . */
166     if (IS_ROCK(lev->typ) || lev->typ == TREE || (IS_DOOR(lev->typ) &&
167 			    (lev->doormask & (D_CLOSED|D_LOCKED|D_TRAPPED) )))
168 	return 1;
169 
170     if (lev->typ == CLOUD || lev->typ == WATER ||
171 			(lev->typ == MOAT && Underwater))
172 	return 1;
173 
174     /* Boulders block light. */
175     for (obj = level.objects[x][y]; obj; obj = obj->nexthere)
176 	if (obj->otyp == BOULDER) return 1;
177 
178     /* Mimics mimicing a door or boulder block light. */
179     if ((mon = m_at(x,y)) && (!mon->minvis || See_invisible) &&
180 	  ((mon->m_ap_type == M_AP_FURNITURE &&
181 	  (mon->mappearance == S_hcdoor || mon->mappearance == S_vcdoor)) ||
182 	  (mon->m_ap_type == M_AP_OBJECT && mon->mappearance == BOULDER)))
183 	return 1;
184 
185     return 0;
186 }
187 
188 /*
189  * vision_reset()
190  *
191  * This must be called *after* the levl[][] structure is set with the new
192  * level and the level monsters and objects are in place.
193  */
194 void
vision_reset()195 vision_reset()
196 {
197     int y;
198     register int x, i, dig_left, block;
199     register struct rm    *lev;
200 
201     /* Start out with cs0 as our current array */
202     viz_array = cs_rows0;
203     viz_rmin  = cs_rmin0;
204     viz_rmax  = cs_rmax0;
205 
206     (void) memset((genericptr_t) could_see, 0, sizeof(could_see));
207 
208     /* Reset the pointers and clear so that we have a "full" dungeon. */
209     (void) memset((genericptr_t) viz_clear,        0, sizeof(viz_clear));
210 
211     /* Dig the level */
212     for (y = 0; y < ROWNO; y++) {
213 	dig_left = 0;
214 	block = TRUE;	/* location (0,y) is always stone; it's !isok() */
215 	lev = &levl[1][y];
216 	for (x = 1; x < COLNO; x++, lev += ROWNO)
217 	    if (block != (IS_ROCK(lev->typ) || does_block(x,y,lev))) {
218 		if(block) {
219 		    for(i=dig_left; i<x; i++) {
220 			left_ptrs [y][i] = dig_left;
221 			right_ptrs[y][i] = x-1;
222 		    }
223 		} else {
224 		    i = dig_left;
225 		    if(dig_left) dig_left--; /* point at first blocked point */
226 		    for(; i<x; i++) {
227 			left_ptrs [y][i] = dig_left;
228 			right_ptrs[y][i] = x;
229 			viz_clear[y][i] = 1;
230 		    }
231 		}
232 		dig_left = x;
233 		block = !block;
234 	    }
235 	/* handle right boundary; almost identical for blocked/unblocked */
236 	i = dig_left;
237 	if(!block && dig_left) dig_left--; /* point at first blocked point */
238 	for(; i<COLNO; i++) {
239 	    left_ptrs [y][i] = dig_left;
240 	    right_ptrs[y][i] = (COLNO-1);
241 	    viz_clear[y][i] = !block;
242 	}
243     }
244 
245     iflags.vision_inited = 1;	/* vision is ready */
246     vision_full_recalc = 1;	/* we want to run vision_recalc() */
247 }
248 
249 
250 /*
251  * get_unused_cs()
252  *
253  * Called from vision_recalc() and at least one light routine.  Get pointers
254  * to the unused vision work area.
255  */
256 STATIC_OVL void
get_unused_cs(rows,rmin,rmax)257 get_unused_cs(rows, rmin, rmax)
258     char ***rows;
259     char **rmin, **rmax;
260 {
261     register int  row;
262     register char *nrmin, *nrmax;
263 
264     if (viz_array == cs_rows0) {
265 	*rows = cs_rows1;
266 	*rmin = cs_rmin1;
267 	*rmax = cs_rmax1;
268     } else {
269 	*rows = cs_rows0;
270 	*rmin = cs_rmin0;
271 	*rmax = cs_rmax0;
272     }
273 
274     /* return an initialized, unused work area */
275     nrmin = *rmin;
276     nrmax = *rmax;
277 
278     (void) memset((genericptr_t)**rows, 0, ROWNO*COLNO);  /* we see nothing */
279     for (row = 0; row < ROWNO; row++) {		/* set row min & max */
280 	*nrmin++ = COLNO-1;
281 	*nrmax++ = 0;
282     }
283 }
284 
285 
286 #ifdef REINCARNATION
287 /*
288  * rogue_vision()
289  *
290  * Set the "could see" and in sight bits so vision acts just like the old
291  * rogue game:
292  *
293  *	+ If in a room, the hero can see to the room boundaries.
294  *	+ The hero can always see adjacent squares.
295  *
296  * We set the in_sight bit here as well to escape a bug that shows up
297  * due to the one-sided lit wall hack.
298  */
299 STATIC_OVL void
rogue_vision(next,rmin,rmax)300 rogue_vision(next, rmin, rmax)
301     char **next;	/* could_see array pointers */
302     char *rmin, *rmax;
303 {
304     int rnum = levl[u.ux][u.uy].roomno - ROOMOFFSET; /* no SHARED... */
305     int start, stop, in_door, xhi, xlo, yhi, ylo;
306     register int zx, zy;
307 
308     /* If in a lit room, we are able to see to its boundaries. */
309     /* If dark, set COULD_SEE so various spells work -dlc */
310     if (rnum >= 0) {
311 	for (zy = rooms[rnum].ly-1; zy <= rooms[rnum].hy+1; zy++) {
312 	    rmin[zy] = start = rooms[rnum].lx-1;
313 	    rmax[zy] = stop  = rooms[rnum].hx+1;
314 
315 	    for (zx = start; zx <= stop; zx++) {
316 		if (rooms[rnum].rlit) {
317 		    next[zy][zx] = COULD_SEE | IN_SIGHT;
318 		    levl[zx][zy].seenv = SVALL;	/* see the walls */
319 		} else
320 		    next[zy][zx] = COULD_SEE;
321 	    }
322 	}
323     }
324 
325     in_door = levl[u.ux][u.uy].typ == DOOR;
326 
327     /* Can always see adjacent. */
328     ylo = max(u.uy - 1, 0);
329     yhi = min(u.uy + 1, ROWNO - 1);
330     xlo = max(u.ux - 1, 1);
331     xhi = min(u.ux + 1, COLNO - 1);
332     for (zy = ylo; zy <= yhi; zy++) {
333 	if (xlo < rmin[zy]) rmin[zy] = xlo;
334 	if (xhi > rmax[zy]) rmax[zy] = xhi;
335 
336 	for (zx = xlo; zx <= xhi; zx++) {
337 	    next[zy][zx] = COULD_SEE | IN_SIGHT;
338 	    /*
339 	     * Yuck, update adjacent non-diagonal positions when in a doorway.
340 	     * We need to do this to catch the case when we first step into
341 	     * a room.  The room's walls were not seen from the outside, but
342 	     * now are seen (the seen bits are set just above).  However, the
343 	     * positions are not updated because they were already in sight.
344 	     * So, we have to do it here.
345 	     */
346 	    if (in_door && (zx == u.ux || zy == u.uy)) newsym(zx,zy);
347 	}
348     }
349 }
350 #endif /* REINCARNATION */
351 
352 /*#define EXTEND_SPINE*/	/* possibly better looking wall-angle */
353 
354 #ifdef EXTEND_SPINE
355 
356 STATIC_DCL int FDECL(new_angle, (struct rm *, unsigned char *, int, int));
357 /*
358  * new_angle()
359  *
360  * Return the new angle seen by the hero for this location.  The angle
361  * bit is given in the value pointed at by sv.
362  *
363  * For T walls and crosswall, just setting the angle bit, even though
364  * it is technically correct, doesn't look good.  If we can see the
365  * next position beyond the current one and it is a wall that we can
366  * see, then we want to extend a spine of the T to connect with the wall
367  * that is beyond.  Example:
368  *
369  *	 Correct, but ugly			   Extend T spine
370  *
371  *		| ...					| ...
372  *		| ...	<-- wall beyond & floor -->	| ...
373  *		| ...					| ...
374  * Unseen   -->   ...					| ...
375  * spine	+-...	<-- trwall & doorway	-->	+-...
376  *		| ...					| ...
377  *
378  *
379  *		   @	<-- hero		-->	   @
380  *
381  *
382  * We fake the above check by only checking if the horizontal &
383  * vertical positions adjacent to the crosswall and T wall are
384  * unblocked.  Then, _in general_ we can see beyond.  Generally,
385  * this is good enough.
386  *
387  *	+ When this function is called we don't have all of the seen
388  *	  information (we're doing a top down scan in vision_recalc).
389  *	  We would need to scan once to set all IN_SIGHT and COULD_SEE
390  *	  bits, then again to correctly set the seenv bits.
391  *	+ I'm trying to make this as cheap as possible.  The display &
392  *	  vision eat up too much CPU time.
393  *
394  *
395  * Note:  Even as I write this, I'm still not convinced.  There are too
396  *	  many exceptions.  I may have to bite the bullet and do more
397  *	  checks.	- Dean 2/11/93
398  */
399 STATIC_OVL int
new_angle(lev,sv,row,col)400 new_angle(lev, sv, row, col)
401     struct rm *lev;
402     unsigned char *sv;
403     int row, col;
404 {
405     register int res = *sv;
406 
407     /*
408      * Do extra checks for crosswalls and T walls if we see them from
409      * an angle.
410      */
411     if (lev->typ >= CROSSWALL && lev->typ <= TRWALL) {
412 	switch (res) {
413 	    case SV0:
414 		if (col > 0	  && viz_clear[row][col-1]) res |= SV7;
415 		if (row > 0	  && viz_clear[row-1][col]) res |= SV1;
416 		break;
417 	    case SV2:
418 		if (row > 0	  && viz_clear[row-1][col]) res |= SV1;
419 		if (col < COLNO-1 && viz_clear[row][col+1]) res |= SV3;
420 		break;
421 	    case SV4:
422 		if (col < COLNO-1 && viz_clear[row][col+1]) res |= SV3;
423 		if (row < ROWNO-1 && viz_clear[row+1][col]) res |= SV5;
424 		break;
425 	    case SV6:
426 		if (row < ROWNO-1 && viz_clear[row+1][col]) res |= SV5;
427 		if (col > 0	  && viz_clear[row][col-1]) res |= SV7;
428 		break;
429 	}
430     }
431     return res;
432 }
433 #else
434 /*
435  * new_angle()
436  *
437  * Return the new angle seen by the hero for this location.  The angle
438  * bit is given in the value pointed at by sv.
439  *
440  * The other parameters are not used.
441  */
442 #define new_angle(lev, sv, row, col) (*sv)
443 
444 #endif
445 
446 
447 /*
448  * vision_recalc()
449  *
450  * Do all of the heavy vision work.  Recalculate all locations that could
451  * possibly be seen by the hero --- if the location were lit, etc.  Note
452  * which locations are actually seen because of lighting.  Then add to
453  * this all locations that be seen by hero due to night vision and x-ray
454  * vision.  Finally, compare with what the hero was able to see previously.
455  * Update the difference.
456  *
457  * This function is usually called only when the variable 'vision_full_recalc'
458  * is set.  The following is a list of places where this function is called,
459  * with three valid values for the control flag parameter:
460  *
461  * Control flag = 0.  A complete vision recalculation.  Generate the vision
462  * tables from scratch.  This is necessary to correctly set what the hero
463  * can see.  (1) and (2) call this routine for synchronization purposes, (3)
464  * calls this routine so it can operate correctly.
465  *
466  *	+ After the monster move, before input from the player. [moveloop()]
467  *	+ At end of moveloop. [moveloop() ??? not sure why this is here]
468  *	+ Right before something is printed. [pline()]
469  *	+ Right before we do a vision based operation. [do_clear_area()]
470  *	+ screen redraw, so we can renew all positions in sight. [docrt()]
471  *
472  * Control flag = 1.  An adjacent vision recalculation.  The hero has moved
473  * one square.  Knowing this, it might be possible to optimize the vision
474  * recalculation using the current knowledge.  This is presently unimplemented
475  * and is treated as a control = 0 call.
476  *
477  *	+ Right after the hero moves. [domove()]
478  *
479  * Control flag = 2.  Turn off the vision system.  Nothing new will be
480  * displayed, since nothing is seen.  This is usually done when you need
481  * a newsym() run on all locations in sight, or on some locations but you
482  * don't know which ones.
483  *
484  *	+ Before a screen redraw, so all positions are renewed. [docrt()]
485  *	+ Right before the hero arrives on a new level. [goto_level()]
486  *	+ Right after a scroll of light is read. [litroom()]
487  *	+ After an option has changed that affects vision [parseoptions()]
488  *	+ Right after the hero is swallowed. [gulpmu()]
489  *	+ Just before bubbles are moved. [movebubbles()]
490  */
491 void
vision_recalc(control)492 vision_recalc(control)
493     int control;
494 {
495     char **temp_array;	/* points to the old vision array */
496     char **next_array;	/* points to the new vision array */
497     char *next_row;	/* row pointer for the new array */
498     char *old_row;	/* row pointer for the old array */
499     char *next_rmin;	/* min pointer for the new array */
500     char *next_rmax;	/* max pointer for the new array */
501     char *ranges;	/* circle ranges -- used for xray & night vision */
502     int row;		/* row counter (outer loop)  */
503     int start, stop;	/* inner loop starting/stopping index */
504     int dx, dy;		/* one step from a lit door or lit wall (see below) */
505     register int col;	/* inner loop counter */
506     register struct rm *lev;	/* pointer to current pos */
507     struct rm *flev;	/* pointer to position in "front" of current pos */
508     extern unsigned char seenv_matrix[3][3];	/* from display.c */
509     static unsigned char colbump[COLNO+1];	/* cols to bump sv */
510     unsigned char *sv;				/* ptr to seen angle bits */
511     int oldseenv;				/* previous seenv value */
512 
513     vision_full_recalc = 0;			/* reset flag */
514     if (in_mklev || !iflags.vision_inited) return;
515 
516 #ifdef GCC_WARN
517     row = 0;
518 #endif
519 
520     /*
521      * Either the light sources have been taken care of, or we must
522      * recalculate them here.
523      */
524 
525     /* Get the unused could see, row min, and row max arrays. */
526     get_unused_cs(&next_array, &next_rmin, &next_rmax);
527 
528     /* You see nothing, nothing can see you --- if swallowed or refreshing. */
529     if (u.uswallow || control == 2) {
530 	/* do nothing -- get_unused_cs() nulls out the new work area */
531 
532     } else if (Blind) {
533 	/*
534 	 * Calculate the could_see array even when blind so that monsters
535 	 * can see you, even if you can't see them.  Note that the current
536 	 * setup allows:
537 	 *
538 	 *	+ Monsters to see with the "new" vision, even on the rogue
539 	 *	  level.
540 	 *
541 	 *	+ Monsters can see you even when you're in a pit.
542 	 */
543 	view_from(u.uy, u.ux, next_array, next_rmin, next_rmax,
544 		0, (void FDECL((*),(int,int,genericptr_t)))0, (genericptr_t)0);
545 
546 	/*
547 	 * Our own version of the update loop below.  We know we can't see
548 	 * anything, so we only need update positions we used to be able
549 	 * to see.
550 	 */
551 	temp_array = viz_array;	/* set viz_array so newsym() will work */
552 	viz_array = next_array;
553 
554 	for (row = 0; row < ROWNO; row++) {
555 	    old_row = temp_array[row];
556 
557 	    /* Find the min and max positions on the row. */
558 	    start = min(viz_rmin[row], next_rmin[row]);
559 	    stop  = max(viz_rmax[row], next_rmax[row]);
560 
561 	    for (col = start; col <= stop; col++)
562 		if (old_row[col] & IN_SIGHT) newsym(col,row);
563 	}
564 
565 	/* skip the normal update loop */
566 	goto skip;
567     }
568 #ifdef REINCARNATION
569     else if (Is_rogue_level(&u.uz)) {
570 	rogue_vision(next_array,next_rmin,next_rmax);
571     }
572 #endif
573     else {
574 	int has_night_vision = 1;	/* hero has night vision */
575 
576 	if (Underwater && !Is_waterlevel(&u.uz)) {
577 	    /*
578 	     * The hero is under water.  Only see surrounding locations if
579 	     * they are also underwater.  This overrides night vision but
580 	     * does not override x-ray vision.
581 	     */
582 	    has_night_vision = 0;
583 
584 	    for (row = u.uy-1; row <= u.uy+1; row++)
585 		for (col = u.ux-1; col <= u.ux+1; col++) {
586 		    if (!isok(col,row) || !is_pool(col,row)) continue;
587 
588 		    next_rmin[row] = min(next_rmin[row], col);
589 		    next_rmax[row] = max(next_rmax[row], col);
590 		    next_array[row][col] = IN_SIGHT | COULD_SEE;
591 		}
592 	}
593 
594 	/* if in a pit, just update for immediate locations */
595 	else if (u.utrap && u.utraptype == TT_PIT) {
596 	    for (row = u.uy-1; row <= u.uy+1; row++) {
597 		if (row < 0) continue;	if (row >= ROWNO) break;
598 
599 		next_rmin[row] = max(      0, u.ux - 1);
600 		next_rmax[row] = min(COLNO-1, u.ux + 1);
601 		next_row = next_array[row];
602 
603 		for(col=next_rmin[row]; col <= next_rmax[row]; col++)
604 		    next_row[col] = IN_SIGHT | COULD_SEE;
605 	    }
606 	} else
607 	    view_from(u.uy, u.ux, next_array, next_rmin, next_rmax,
608 		0, (void FDECL((*),(int,int,genericptr_t)))0, (genericptr_t)0);
609 
610 	/*
611 	 * Set the IN_SIGHT bit for xray and night vision.
612 	 */
613 	if (u.xray_range >= 0) {
614 	    if (u.xray_range) {
615 		ranges = circle_ptr(u.xray_range);
616 
617 		for (row = u.uy-u.xray_range; row <= u.uy+u.xray_range; row++) {
618 		    if (row < 0) continue;	if (row >= ROWNO) break;
619 		    dy = v_abs(u.uy-row);	next_row = next_array[row];
620 
621 		    start = max(      0, u.ux - ranges[dy]);
622 		    stop  = min(COLNO-1, u.ux + ranges[dy]);
623 
624 		    for (col = start; col <= stop; col++) {
625 			char old_row_val = next_row[col];
626 			next_row[col] |= IN_SIGHT;
627 			oldseenv = levl[col][row].seenv;
628 			levl[col][row].seenv = SVALL;	/* see all! */
629 			/* Update if previously not in sight or new angle. */
630 			if (!(old_row_val & IN_SIGHT) || oldseenv != SVALL)
631 			    newsym(col,row);
632 		    }
633 
634 		    next_rmin[row] = min(start, next_rmin[row]);
635 		    next_rmax[row] = max(stop, next_rmax[row]);
636 		}
637 
638 	    } else {	/* range is 0 */
639 		next_array[u.uy][u.ux] |= IN_SIGHT;
640 		levl[u.ux][u.uy].seenv = SVALL;
641 		next_rmin[u.uy] = min(u.ux, next_rmin[u.uy]);
642 		next_rmax[u.uy] = max(u.ux, next_rmax[u.uy]);
643 	    }
644 	}
645 
646 	if (has_night_vision && u.xray_range < u.nv_range) {
647 	    if (!u.nv_range) {	/* range is 0 */
648 		next_array[u.uy][u.ux] |= IN_SIGHT;
649 		levl[u.ux][u.uy].seenv = SVALL;
650 		next_rmin[u.uy] = min(u.ux, next_rmin[u.uy]);
651 		next_rmax[u.uy] = max(u.ux, next_rmax[u.uy]);
652 	    } else if (u.nv_range > 0) {
653 		ranges = circle_ptr(u.nv_range);
654 
655 		for (row = u.uy-u.nv_range; row <= u.uy+u.nv_range; row++) {
656 		    if (row < 0) continue;	if (row >= ROWNO) break;
657 		    dy = v_abs(u.uy-row);	next_row = next_array[row];
658 
659 		    start = max(      0, u.ux - ranges[dy]);
660 		    stop  = min(COLNO-1, u.ux + ranges[dy]);
661 
662 		    for (col = start; col <= stop; col++)
663 			if (next_row[col]) next_row[col] |= IN_SIGHT;
664 
665 		    next_rmin[row] = min(start, next_rmin[row]);
666 		    next_rmax[row] = max(stop, next_rmax[row]);
667 		}
668 	    }
669 	}
670     }
671 
672     /* Set the correct bits for all light sources. */
673     do_light_sources(next_array);
674 
675 
676     /*
677      * Make the viz_array the new array so that cansee() will work correctly.
678      */
679     temp_array = viz_array;
680     viz_array = next_array;
681 
682     /*
683      * The main update loop.  Here we do two things:
684      *
685      *	    + Set the IN_SIGHT bit for places that we could see and are lit.
686      *	    + Reset changed places.
687      *
688      * There is one thing that make deciding what the hero can see
689      * difficult:
690      *
691      *  1.  Directional lighting.  Items that block light create problems.
692      *      The worst offenders are doors.  Suppose a door to a lit room
693      *      is closed.  It is lit on one side, but not on the other.  How
694      *      do you know?  You have to check the closest adjacent position.
695      *	    Even so, that is not entirely correct.  But it seems close
696      *	    enough for now.
697      */
698     colbump[u.ux] = colbump[u.ux+1] = 1;
699     for (row = 0; row < ROWNO; row++) {
700 	dy = u.uy - row;                dy = sign(dy);
701 	next_row = next_array[row];     old_row = temp_array[row];
702 
703 	/* Find the min and max positions on the row. */
704 	start = min(viz_rmin[row], next_rmin[row]);
705 	stop  = max(viz_rmax[row], next_rmax[row]);
706 	lev = &levl[start][row];
707 
708 	sv = &seenv_matrix[dy+1][start < u.ux ? 0 : (start > u.ux ? 2:1)];
709 
710 	for (col = start; col <= stop;
711 				lev += ROWNO, sv += (int) colbump[++col]) {
712 	    if (next_row[col] & IN_SIGHT) {
713 		/*
714 		 * We see this position because of night- or xray-vision.
715 		 */
716 		oldseenv = lev->seenv;
717 		lev->seenv |= new_angle(lev,sv,row,col); /* update seen angle */
718 
719 		/* Update pos if previously not in sight or new angle. */
720 		if ( !(old_row[col] & IN_SIGHT) || oldseenv != lev->seenv)
721 		    newsym(col,row);
722 	    }
723 
724 	    else if ((next_row[col] & COULD_SEE)
725 				&& (lev->lit || (next_row[col] & TEMP_LIT))) {
726 		/*
727 		 * We see this position because it is lit.
728 		 */
729 		if ((IS_DOOR(lev->typ) || lev->typ == SDOOR ||
730 		     IS_WALL(lev->typ)) && !viz_clear[row][col]) {
731 		    /*
732 		     * Make sure doors, walls, boulders or mimics don't show up
733 		     * at the end of dark hallways.  We do this by checking
734 		     * the adjacent position.  If it is lit, then we can see
735 		     * the door or wall, otherwise we can't.
736 		     */
737 		    dx = u.ux - col;	dx = sign(dx);
738 		    flev = &(levl[col+dx][row+dy]);
739 		    if (flev->lit || next_array[row+dy][col+dx] & TEMP_LIT) {
740 			next_row[col] |= IN_SIGHT;	/* we see it */
741 
742 			oldseenv = lev->seenv;
743 			lev->seenv |= new_angle(lev,sv,row,col);
744 
745 			/* Update pos if previously not in sight or new angle.*/
746 			if (!(old_row[col] & IN_SIGHT) || oldseenv!=lev->seenv)
747 			    newsym(col,row);
748 		    } else
749 			goto not_in_sight;	/* we don't see it */
750 
751 		} else {
752 		    next_row[col] |= IN_SIGHT;	/* we see it */
753 
754 		    oldseenv = lev->seenv;
755 		    lev->seenv |= new_angle(lev,sv,row,col);
756 
757 		    /* Update pos if previously not in sight or new angle. */
758 		    if ( !(old_row[col] & IN_SIGHT) || oldseenv != lev->seenv)
759 			newsym(col,row);
760 		}
761 	    } else if ((next_row[col] & COULD_SEE) && lev->waslit) {
762 		/*
763 		 * If we make it here, the hero _could see_ the location,
764 		 * but doesn't see it (location is not lit).
765 		 * However, the hero _remembers_ it as lit (waslit is true).
766 		 * The hero can now see that it is not lit, so change waslit
767 		 * and update the location.
768 		 */
769 		lev->waslit = 0; /* remember lit condition */
770 		newsym(col,row);
771 	    }
772 	    /*
773 	     * At this point we know that the row position is *not* in normal
774 	     * sight.  That is, the position is could be seen, but is dark
775 	     * or LOS is just plain blocked.
776 	     *
777 	     * Update the position if:
778 	     * o If the old one *was* in sight.  We may need to clean up
779 	     *   the glyph -- E.g. darken room spot, etc.
780 	     * o If we now could see the location (yet the location is not
781 	     *   lit), but previously we couldn't see the location, or vice
782 	     *   versa.  Update the spot because there there may be an infared
783 	     *   monster there.
784 	     */
785 	    else {
786 not_in_sight:
787 		if ((old_row[col] & IN_SIGHT)
788 			|| ((next_row[col] & COULD_SEE)
789 				^ (old_row[col] & COULD_SEE)))
790 		    newsym(col,row);
791 	    }
792 
793 	} /* end for col . . */
794     }	/* end for row . .  */
795     colbump[u.ux] = colbump[u.ux+1] = 0;
796 
797 skip:
798     /* This newsym() caused a crash delivering msg about failure to open
799      * dungeon file init_dungeons() -> panic() -> done(11) ->
800      * vision_recalc(2) -> newsym() -> crash!  u.ux and u.uy are 0 and
801      * program_state.panicking == 1 under those circumstances
802      */
803     if (!program_state.panicking)
804 	newsym(u.ux, u.uy);		/* Make sure the hero shows up! */
805 
806     /* Set the new min and max pointers. */
807     viz_rmin  = next_rmin;
808     viz_rmax = next_rmax;
809 }
810 
811 
812 /*
813  * block_point()
814  *
815  * Make the location opaque to light.
816  */
817 void
block_point(x,y)818 block_point(x,y)
819     int x, y;
820 {
821     fill_point(y,x);
822 
823     /* recalc light sources here? */
824 
825     /*
826      * We have to do a full vision recalculation if we "could see" the
827      * location.  Why? Suppose some monster opened a way so that the
828      * hero could see a lit room.  However, the position of the opening
829      * was out of night-vision range of the hero.  Suddenly the hero should
830      * see the lit room.
831      */
832     if (viz_array[y][x]) vision_full_recalc = 1;
833 }
834 
835 /*
836  * unblock_point()
837  *
838  * Make the location transparent to light.
839  */
840 void
unblock_point(x,y)841 unblock_point(x,y)
842     int x, y;
843 {
844     dig_point(y,x);
845 
846     /* recalc light sources here? */
847 
848     if (viz_array[y][x]) vision_full_recalc = 1;
849 }
850 
851 
852 /*===========================================================================*\
853  |									     |
854  |	Everything below this line uses (y,x) instead of (x,y) --- the	     |
855  |	algorithms are faster if they are less recursive and can scan	     |
856  |	on a row longer.						     |
857  |									     |
858 \*===========================================================================*/
859 
860 
861 /* ========================================================================= *\
862 			Left and Right Pointer Updates
863 \* ========================================================================= */
864 
865 /*
866  *			LEFT and RIGHT pointer rules
867  *
868  *
869  * **NOTE**  The rules changed on 4/4/90.  This comment reflects the
870  * new rules.  The change was so that the stone-wall optimization
871  * would work.
872  *
873  * OK, now the tough stuff.  We must maintain our left and right
874  * row pointers.  The rules are as follows:
875  *
876  * Left Pointers:
877  * ______________
878  *
879  * + If you are a clear spot, your left will point to the first
880  *   stone to your left.  If there is none, then point the first
881  *   legal position in the row (0).
882  *
883  * + If you are a blocked spot, then your left will point to the
884  *   left-most blocked spot to your left that is connected to you.
885  *   This means that a left-edge (a blocked spot that has an open
886  *   spot on its left) will point to itself.
887  *
888  *
889  * Right Pointers:
890  * ---------------
891  * + If you are a clear spot, your right will point to the first
892  *   stone to your right.  If there is none, then point the last
893  *   legal position in the row (COLNO-1).
894  *
895  * + If you are a blocked spot, then your right will point to the
896  *   right-most blocked spot to your right that is connected to you.
897  *   This means that a right-edge (a blocked spot that has an open
898  *    spot on its right) will point to itself.
899  */
900 STATIC_OVL void
dig_point(row,col)901 dig_point(row,col)
902     int row,col;
903 {
904     int i;
905 
906     if (viz_clear[row][col]) return;		/* already done */
907 
908     viz_clear[row][col] = 1;
909 
910     /*
911      * Boundary cases first.
912      */
913     if (col == 0) {				/* left edge */
914 	if (viz_clear[row][1]) {
915 	    right_ptrs[row][0] = right_ptrs[row][1];
916 	} else {
917 	    right_ptrs[row][0] = 1;
918 	    for (i = 1; i <= right_ptrs[row][1]; i++)
919 		left_ptrs[row][i] = 1;
920 	}
921     } else if (col == (COLNO-1)) {		/* right edge */
922 
923 	if (viz_clear[row][COLNO-2]) {
924 	    left_ptrs[row][COLNO-1] = left_ptrs[row][COLNO-2];
925 	} else {
926 	    left_ptrs[row][COLNO-1] = COLNO-2;
927 	    for (i = left_ptrs[row][COLNO-2]; i < COLNO-1; i++)
928 		right_ptrs[row][i] = COLNO-2;
929 	}
930     }
931 
932     /*
933      * At this point, we know we aren't on the boundaries.
934      */
935     else if (viz_clear[row][col-1] && viz_clear[row][col+1]) {
936 	/* Both sides clear */
937 	for (i = left_ptrs[row][col-1]; i <= col; i++) {
938 	    if (!viz_clear[row][i]) continue;	/* catch non-end case */
939 	    right_ptrs[row][i] = right_ptrs[row][col+1];
940 	}
941 	for (i = col; i <= right_ptrs[row][col+1]; i++) {
942 	    if (!viz_clear[row][i]) continue;	/* catch non-end case */
943 	    left_ptrs[row][i] = left_ptrs[row][col-1];
944 	}
945 
946     } else if (viz_clear[row][col-1]) {
947 	/* Left side clear, right side blocked. */
948 	for (i = col+1; i <= right_ptrs[row][col+1]; i++)
949 	    left_ptrs[row][i] = col+1;
950 
951 	for (i = left_ptrs[row][col-1]; i <= col; i++) {
952 	    if (!viz_clear[row][i]) continue;	/* catch non-end case */
953 	    right_ptrs[row][i] = col+1;
954 	}
955 	left_ptrs[row][col] = left_ptrs[row][col-1];
956 
957     } else if (viz_clear[row][col+1]) {
958 	/* Right side clear, left side blocked. */
959 	for (i = left_ptrs[row][col-1]; i < col; i++)
960 	    right_ptrs[row][i] = col-1;
961 
962 	for (i = col; i <= right_ptrs[row][col+1]; i++) {
963 	    if (!viz_clear[row][i]) continue;	/* catch non-end case */
964 	    left_ptrs[row][i] = col-1;
965 	}
966 	right_ptrs[row][col] = right_ptrs[row][col+1];
967 
968     } else {
969 	/* Both sides blocked */
970 	for (i = left_ptrs[row][col-1]; i < col; i++)
971 	    right_ptrs[row][i] = col-1;
972 
973 	for (i = col+1; i <= right_ptrs[row][col+1]; i++)
974 	    left_ptrs[row][i] = col+1;
975 
976 	left_ptrs[row][col]  = col-1;
977 	right_ptrs[row][col] = col+1;
978     }
979 }
980 
981 STATIC_OVL void
fill_point(row,col)982 fill_point(row,col)
983     int row, col;
984 {
985     int i;
986 
987     if (!viz_clear[row][col]) return;
988 
989     viz_clear[row][col] = 0;
990 
991     if (col == 0) {
992 	if (viz_clear[row][1]) {			/* adjacent is clear */
993 	    right_ptrs[row][0] = 0;
994 	} else {
995 	    right_ptrs[row][0] = right_ptrs[row][1];
996 	    for (i = 1; i <= right_ptrs[row][1]; i++)
997 		left_ptrs[row][i] = 0;
998 	}
999     } else if (col == COLNO-1) {
1000 	if (viz_clear[row][COLNO-2]) {		/* adjacent is clear */
1001 	    left_ptrs[row][COLNO-1] = COLNO-1;
1002 	} else {
1003 	    left_ptrs[row][COLNO-1] = left_ptrs[row][COLNO-2];
1004 	    for (i = left_ptrs[row][COLNO-2]; i < COLNO-1; i++)
1005 		right_ptrs[row][i] = COLNO-1;
1006 	}
1007     }
1008 
1009     /*
1010      * Else we know that we are not on an edge.
1011      */
1012     else if (viz_clear[row][col-1] && viz_clear[row][col+1]) {
1013 	/* Both sides clear */
1014 	for (i = left_ptrs[row][col-1]+1; i <= col; i++)
1015 	    right_ptrs[row][i] = col;
1016 
1017 	if (!left_ptrs[row][col-1])		/* catch the end case */
1018 	    right_ptrs[row][0] = col;
1019 
1020 	for (i = col; i < right_ptrs[row][col+1]; i++)
1021 	    left_ptrs[row][i] = col;
1022 
1023 	if (right_ptrs[row][col+1] == COLNO-1)	/* catch the end case */
1024 	    left_ptrs[row][COLNO-1] = col;
1025 
1026     } else if (viz_clear[row][col-1]) {
1027 	/* Left side clear, right side blocked. */
1028 	for (i = col; i <= right_ptrs[row][col+1]; i++)
1029 	    left_ptrs[row][i] = col;
1030 
1031 	for (i = left_ptrs[row][col-1]+1; i < col; i++)
1032 	    right_ptrs[row][i] = col;
1033 
1034 	if (!left_ptrs[row][col-1])		/* catch the end case */
1035 	    right_ptrs[row][i] = col;
1036 
1037 	right_ptrs[row][col] = right_ptrs[row][col+1];
1038 
1039     } else if (viz_clear[row][col+1]) {
1040 	/* Right side clear, left side blocked. */
1041 	for (i = left_ptrs[row][col-1]; i <= col; i++)
1042 	    right_ptrs[row][i] = col;
1043 
1044 	for (i = col+1; i < right_ptrs[row][col+1]; i++)
1045 	    left_ptrs[row][i] = col;
1046 
1047 	if (right_ptrs[row][col+1] == COLNO-1)	/* catch the end case */
1048 	    left_ptrs[row][i] = col;
1049 
1050 	left_ptrs[row][col] = left_ptrs[row][col-1];
1051 
1052     } else {
1053 	/* Both sides blocked */
1054 	for (i = left_ptrs[row][col-1]; i <= col; i++)
1055 	    right_ptrs[row][i] = right_ptrs[row][col+1];
1056 
1057 	for (i = col; i <= right_ptrs[row][col+1]; i++)
1058 	    left_ptrs[row][i] = left_ptrs[row][col-1];
1059     }
1060 }
1061 
1062 
1063 /*===========================================================================*/
1064 /*===========================================================================*/
1065 /* Use either algorithm C or D.  See the config.h for more details. =========*/
1066 
1067 /*
1068  * Variables local to both Algorithms C and D.
1069  */
1070 static int  start_row;
1071 static int  start_col;
1072 static int  step;
1073 static char **cs_rows;
1074 static char *cs_left;
1075 static char *cs_right;
1076 
1077 static void FDECL((*vis_func), (int,int,genericptr_t));
1078 static genericptr_t varg;
1079 
1080 /*
1081  * Both Algorithms C and D use the following macros.
1082  *
1083  *      good_row(z)	  - Return TRUE if the argument is a legal row.
1084  *      set_cs(rowp,col)  - Set the local could see array.
1085  *      set_min(z)	  - Save the min value of the argument and the current
1086  *			      row minimum.
1087  *      set_max(z)	  - Save the max value of the argument and the current
1088  *			      row maximum.
1089  *
1090  * The last three macros depend on having local pointers row_min, row_max,
1091  * and rowp being set correctly.
1092  */
1093 #define set_cs(rowp,col) (rowp[col] = COULD_SEE)
1094 #define good_row(z) ((z) >= 0 && (z) < ROWNO)
1095 #define set_min(z) if (*row_min > (z)) *row_min = (z)
1096 #define set_max(z) if (*row_max < (z)) *row_max = (z)
1097 #define is_clear(row,col) viz_clear_rows[row][col]
1098 
1099 /*
1100  * clear_path()		expanded into 4 macros/functions:
1101  *
1102  *	q1_path()
1103  *	q2_path()
1104  *	q3_path()
1105  *	q4_path()
1106  *
1107  * "Draw" a line from the start to the given location.  Stop if we hit
1108  * something that blocks light.  The start and finish points themselves are
1109  * not checked, just the points between them.  These routines do _not_
1110  * expect to be called with the same starting and stopping point.
1111  *
1112  * These routines use the generalized integer Bresenham's algorithm (fast
1113  * line drawing) for all quadrants.  The algorithm was taken from _Procedural
1114  * Elements for Computer Graphics_, by David F. Rogers.  McGraw-Hill, 1985.
1115  */
1116 #ifdef MACRO_CPATH	/* quadrant calls are macros */
1117 
1118 /*
1119  * When called, the result is in "result".
1120  * The first two arguments (srow,scol) are one end of the path.  The next
1121  * two arguments (row,col) are the destination.  The last argument is
1122  * used as a C language label.  This means that it must be different
1123  * in each pair of calls.
1124  */
1125 
1126 /*
1127  *  Quadrant I (step < 0).
1128  */
1129 #define q1_path(srow,scol,y2,x2,label)			\
1130 {							\
1131     int dx, dy;						\
1132     register int k, err, x, y, dxs, dys;		\
1133 							\
1134     x  = (scol);	y  = (srow);			\
1135     dx = (x2) - x;	dy = y - (y2);			\
1136 							\
1137     result = 0;		 /* default to a blocked path */\
1138 							\
1139     dxs = dx << 1;	   /* save the shifted values */\
1140     dys = dy << 1;					\
1141     if (dy > dx) {					\
1142 	err = dxs - dy;					\
1143 							\
1144 	for (k = dy-1; k; k--) {			\
1145 	    if (err >= 0) {				\
1146 		x++;					\
1147 		err -= dys;				\
1148 	    }						\
1149 	    y--;					\
1150 	    err += dxs;					\
1151 	    if (!is_clear(y,x)) goto label;/* blocked */\
1152 	}						\
1153     } else {						\
1154 	err = dys - dx;					\
1155 							\
1156 	for (k = dx-1; k; k--) {			\
1157 	    if (err >= 0) {				\
1158 		y--;					\
1159 		err -= dxs;				\
1160 	    }						\
1161 	    x++;					\
1162 	    err += dys;					\
1163 	    if (!is_clear(y,x)) goto label;/* blocked */\
1164 	}						\
1165     }							\
1166 							\
1167     result = 1;						\
1168 }
1169 
1170 /*
1171  * Quadrant IV (step > 0).
1172  */
1173 #define q4_path(srow,scol,y2,x2,label)			\
1174 {							\
1175     int dx, dy;						\
1176     register int k, err, x, y, dxs, dys;		\
1177 							\
1178     x  = (scol);	y  = (srow);			\
1179     dx = (x2) - x;	dy = (y2) - y;			\
1180 							\
1181     result = 0;		 /* default to a blocked path */\
1182 							\
1183     dxs = dx << 1;	   /* save the shifted values */\
1184     dys = dy << 1;					\
1185     if (dy > dx) {					\
1186 	err = dxs - dy;					\
1187 							\
1188 	for (k = dy-1; k; k--) {			\
1189 	    if (err >= 0) {				\
1190 		x++;					\
1191 		err -= dys;				\
1192 	    }						\
1193 	    y++;					\
1194 	    err += dxs;					\
1195 	    if (!is_clear(y,x)) goto label;/* blocked */\
1196 	}						\
1197 							\
1198     } else {						\
1199 	err = dys - dx;					\
1200 							\
1201 	for (k = dx-1; k; k--) {			\
1202 	    if (err >= 0) {				\
1203 		y++;					\
1204 		err -= dxs;				\
1205 	    }						\
1206 	    x++;					\
1207 	    err += dys;					\
1208 	    if (!is_clear(y,x)) goto label;/* blocked */\
1209 	}						\
1210     }							\
1211 							\
1212     result = 1;						\
1213 }
1214 
1215 /*
1216  * Quadrant II (step < 0).
1217  */
1218 #define q2_path(srow,scol,y2,x2,label)			\
1219 {							\
1220     int dx, dy;						\
1221     register int k, err, x, y, dxs, dys;		\
1222 							\
1223     x  = (scol);	y  = (srow);			\
1224     dx = x - (x2);	dy = y - (y2);			\
1225 							\
1226     result = 0;		 /* default to a blocked path */\
1227 							\
1228     dxs = dx << 1;	   /* save the shifted values */\
1229     dys = dy << 1;					\
1230     if (dy > dx) {					\
1231 	err = dxs - dy;					\
1232 							\
1233 	for (k = dy-1; k; k--) {			\
1234 	    if (err >= 0) {				\
1235 		x--;					\
1236 		err -= dys;				\
1237 	    }						\
1238 	    y--;					\
1239 	    err += dxs;					\
1240 	    if (!is_clear(y,x)) goto label;/* blocked */\
1241 	}						\
1242     } else {						\
1243 	err = dys - dx;					\
1244 							\
1245 	for (k = dx-1; k; k--) {			\
1246 	    if (err >= 0) {				\
1247 		y--;					\
1248 		err -= dxs;				\
1249 	    }						\
1250 	    x--;					\
1251 	    err += dys;					\
1252 	    if (!is_clear(y,x)) goto label;/* blocked */\
1253 	}						\
1254     }							\
1255 							\
1256     result = 1;						\
1257 }
1258 
1259 /*
1260  * Quadrant III (step > 0).
1261  */
1262 #define q3_path(srow,scol,y2,x2,label)			\
1263 {							\
1264     int dx, dy;						\
1265     register int k, err, x, y, dxs, dys;		\
1266 							\
1267     x  = (scol);	y  = (srow);			\
1268     dx = x - (x2);	dy = (y2) - y;			\
1269 							\
1270     result = 0;		 /* default to a blocked path */\
1271 							\
1272     dxs = dx << 1;	   /* save the shifted values */\
1273     dys = dy << 1;					\
1274     if (dy > dx) {					\
1275 	err = dxs - dy;					\
1276 							\
1277 	for (k = dy-1; k; k--) {			\
1278 	    if (err >= 0) {				\
1279 		x--;					\
1280 		err -= dys;				\
1281 	    }						\
1282 	    y++;					\
1283 	    err += dxs;					\
1284 	    if (!is_clear(y,x)) goto label;/* blocked */\
1285 	}						\
1286 							\
1287     } else {						\
1288 	err = dys - dx;					\
1289 							\
1290 	for (k = dx-1; k; k--) {			\
1291 	    if (err >= 0) {				\
1292 		y++;					\
1293 		err -= dxs;				\
1294 	    }						\
1295 	    x--;					\
1296 	    err += dys;					\
1297 	    if (!is_clear(y,x)) goto label;/* blocked */\
1298 	}						\
1299     }							\
1300 							\
1301     result = 1;						\
1302 }
1303 
1304 #else   /* quadrants are really functions */
1305 
1306 STATIC_DCL int FDECL(_q1_path, (int,int,int,int));
1307 STATIC_DCL int FDECL(_q2_path, (int,int,int,int));
1308 STATIC_DCL int FDECL(_q3_path, (int,int,int,int));
1309 STATIC_DCL int FDECL(_q4_path, (int,int,int,int));
1310 
1311 #define q1_path(sy,sx,y,x,dummy) result = _q1_path(sy,sx,y,x)
1312 #define q2_path(sy,sx,y,x,dummy) result = _q2_path(sy,sx,y,x)
1313 #define q3_path(sy,sx,y,x,dummy) result = _q3_path(sy,sx,y,x)
1314 #define q4_path(sy,sx,y,x,dummy) result = _q4_path(sy,sx,y,x)
1315 
1316 /*
1317  * Quadrant I (step < 0).
1318  */
1319 STATIC_OVL int
_q1_path(srow,scol,y2,x2)1320 _q1_path(srow,scol,y2,x2)
1321     int scol, srow, y2, x2;
1322 {
1323     int dx, dy;
1324     register int k, err, x, y, dxs, dys;
1325 
1326     x  = scol;		y  = srow;
1327     dx = x2 - x;	dy = y - y2;
1328 
1329     dxs = dx << 1;	   /* save the shifted values */
1330     dys = dy << 1;
1331     if (dy > dx) {
1332 	err = dxs - dy;
1333 
1334 	for (k = dy-1; k; k--) {
1335 	    if (err >= 0) {
1336 		x++;
1337 		err -= dys;
1338 	    }
1339 	    y--;
1340 	    err += dxs;
1341 	    if (!is_clear(y,x)) return 0; /* blocked */
1342 	}
1343     } else {
1344 	err = dys - dx;
1345 
1346 	for (k = dx-1; k; k--) {
1347 	    if (err >= 0) {
1348 		y--;
1349 		err -= dxs;
1350 	    }
1351 	    x++;
1352 	    err += dys;
1353 	    if (!is_clear(y,x)) return 0;/* blocked */
1354 	}
1355     }
1356 
1357     return 1;
1358 }
1359 
1360 /*
1361  * Quadrant IV (step > 0).
1362  */
1363 STATIC_OVL int
_q4_path(srow,scol,y2,x2)1364 _q4_path(srow,scol,y2,x2)
1365     int scol, srow, y2, x2;
1366 {
1367     int dx, dy;
1368     register int k, err, x, y, dxs, dys;
1369 
1370     x  = scol;		y  = srow;
1371     dx = x2 - x;	dy = y2 - y;
1372 
1373     dxs = dx << 1;	   /* save the shifted values */
1374     dys = dy << 1;
1375     if (dy > dx) {
1376 	err = dxs - dy;
1377 
1378 	for (k = dy-1; k; k--) {
1379 	    if (err >= 0) {
1380 		x++;
1381 		err -= dys;
1382 	    }
1383 	    y++;
1384 	    err += dxs;
1385 	    if (!is_clear(y,x)) return 0; /* blocked */
1386 	}
1387     } else {
1388 	err = dys - dx;
1389 
1390 	for (k = dx-1; k; k--) {
1391 	    if (err >= 0) {
1392 		y++;
1393 		err -= dxs;
1394 	    }
1395 	    x++;
1396 	    err += dys;
1397 	    if (!is_clear(y,x)) return 0;/* blocked */
1398 	}
1399     }
1400 
1401     return 1;
1402 }
1403 
1404 /*
1405  * Quadrant II (step < 0).
1406  */
1407 STATIC_OVL int
_q2_path(srow,scol,y2,x2)1408 _q2_path(srow,scol,y2,x2)
1409     int scol, srow, y2, x2;
1410 {
1411     int dx, dy;
1412     register int k, err, x, y, dxs, dys;
1413 
1414     x  = scol;		y  = srow;
1415     dx = x - x2;	dy = y - y2;
1416 
1417     dxs = dx << 1;	   /* save the shifted values */
1418     dys = dy << 1;
1419     if (dy > dx) {
1420 	err = dxs - dy;
1421 
1422 	for (k = dy-1; k; k--) {
1423 	    if (err >= 0) {
1424 		x--;
1425 		err -= dys;
1426 	    }
1427 	    y--;
1428 	    err += dxs;
1429 	    if (!is_clear(y,x)) return 0; /* blocked */
1430 	}
1431     } else {
1432 	err = dys - dx;
1433 
1434 	for (k = dx-1; k; k--) {
1435 	    if (err >= 0) {
1436 		y--;
1437 		err -= dxs;
1438 	    }
1439 	    x--;
1440 	    err += dys;
1441 	    if (!is_clear(y,x)) return 0;/* blocked */
1442 	}
1443     }
1444 
1445     return 1;
1446 }
1447 
1448 /*
1449  * Quadrant III (step > 0).
1450  */
1451 STATIC_OVL int
_q3_path(srow,scol,y2,x2)1452 _q3_path(srow,scol,y2,x2)
1453     int scol, srow, y2, x2;
1454 {
1455     int dx, dy;
1456     register int k, err, x, y, dxs, dys;
1457 
1458     x  = scol;		y  = srow;
1459     dx = x - x2;	dy = y2 - y;
1460 
1461     dxs = dx << 1;	   /* save the shifted values */
1462     dys = dy << 1;
1463     if (dy > dx) {
1464 	err = dxs - dy;
1465 
1466 	for (k = dy-1; k; k--) {
1467 	    if (err >= 0) {
1468 		x--;
1469 		err -= dys;
1470 	    }
1471 	    y++;
1472 	    err += dxs;
1473 	    if (!is_clear(y,x)) return 0; /* blocked */
1474 	}
1475     } else {
1476 	err = dys - dx;
1477 
1478 	for (k = dx-1; k; k--) {
1479 	    if (err >= 0) {
1480 		y++;
1481 		err -= dxs;
1482 	    }
1483 	    x--;
1484 	    err += dys;
1485 	    if (!is_clear(y,x)) return 0;/* blocked */
1486 	}
1487     }
1488 
1489     return 1;
1490 }
1491 
1492 #endif	/* quadrants are functions */
1493 
1494 /*
1495  * Use vision tables to determine if there is a clear path from
1496  * (col1,row1) to (col2,row2).  This is used by:
1497  *		m_cansee()
1498  *		m_canseeu()
1499  *		do_light_sources()
1500  */
1501 boolean
clear_path(col1,row1,col2,row2)1502 clear_path(col1,row1,col2,row2)
1503     int col1, row1, col2, row2;
1504 {
1505     int result;
1506 
1507     if(col1 < col2) {
1508 	if(row1 > row2) {
1509 	    q1_path(row1,col1,row2,col2,cleardone);
1510 	} else {
1511 	    q4_path(row1,col1,row2,col2,cleardone);
1512 	}
1513     } else {
1514 	if(row1 > row2) {
1515 	    q2_path(row1,col1,row2,col2,cleardone);
1516 	} else if(row1 == row2 && col1 == col2) {
1517 	    result = 1;
1518 	} else {
1519 	    q3_path(row1,col1,row2,col2,cleardone);
1520 	}
1521     }
1522 #ifdef MACRO_CPATH
1523 cleardone:
1524 #endif
1525     return((boolean)result);
1526 }
1527 
1528 #ifdef VISION_TABLES
1529 /*===========================================================================*\
1530 			    GENERAL LINE OF SIGHT
1531 				Algorithm D
1532 \*===========================================================================*/
1533 
1534 
1535 /*
1536  * Indicate caller for the shadow routines.
1537  */
1538 #define FROM_RIGHT 0
1539 #define FROM_LEFT  1
1540 
1541 
1542 /*
1543  * Include the table definitions.
1544  */
1545 #include "vis_tab.h"
1546 
1547 
1548 /* 3D table pointers. */
1549 static close2d *close_dy[CLOSE_MAX_BC_DY];
1550 static far2d   *far_dy[FAR_MAX_BC_DY];
1551 
1552 STATIC_DCL void FDECL(right_side, (int,int,int,int,int,int,int,char*));
1553 STATIC_DCL void FDECL(left_side, (int,int,int,int,int,int,int,char*));
1554 STATIC_DCL int FDECL(close_shadow, (int,int,int,int));
1555 STATIC_DCL int FDECL(far_shadow, (int,int,int,int));
1556 
1557 /*
1558  * Initialize algorithm D's table pointers.  If we don't have these,
1559  * then we do 3D table lookups.  Verrrry slow.
1560  */
1561 STATIC_OVL void
view_init()1562 view_init()
1563 {
1564     int i;
1565 
1566     for (i = 0; i < CLOSE_MAX_BC_DY; i++)
1567 	close_dy[i] = &close_table[i];
1568 
1569     for (i = 0; i < FAR_MAX_BC_DY; i++)
1570 	far_dy[i] = &far_table[i];
1571 }
1572 
1573 
1574 /*
1575  * If the far table has an entry of OFF_TABLE, then the far block prevents
1576  * us from seeing the location just above/below it.  I.e. the first visible
1577  * location is one *before* the block.
1578  */
1579 #define OFF_TABLE 0xff
1580 
1581 STATIC_OVL int
close_shadow(side,this_row,block_row,block_col)1582 close_shadow(side,this_row,block_row,block_col)
1583     int side,this_row,block_row,block_col;
1584 {
1585     register int sdy, sdx, pdy, offset;
1586 
1587     /*
1588      * If on the same column (block_row = -1), then we can see it.
1589      */
1590     if (block_row < 0) return block_col;
1591 
1592     /* Take explicit absolute values.  Adjust. */
1593     if ((sdy = (start_row-block_row)) < 0) sdy = -sdy; --sdy;	/* src   dy */
1594     if ((sdx = (start_col-block_col)) < 0) sdx = -sdx;		/* src   dx */
1595     if ((pdy = (block_row-this_row))  < 0) pdy = -pdy;		/* point dy */
1596 
1597     if (sdy < 0 || sdy >= CLOSE_MAX_SB_DY || sdx >= CLOSE_MAX_SB_DX ||
1598 						    pdy >= CLOSE_MAX_BC_DY) {
1599 	impossible("close_shadow:  bad value");
1600 	return block_col;
1601     }
1602     offset = close_dy[sdy]->close[sdx][pdy];
1603     if (side == FROM_RIGHT)
1604 	return block_col + offset;
1605 
1606     return block_col - offset;
1607 }
1608 
1609 
1610 STATIC_OVL int
far_shadow(side,this_row,block_row,block_col)1611 far_shadow(side,this_row,block_row,block_col)
1612     int side,this_row,block_row,block_col;
1613 {
1614     register int sdy, sdx, pdy, offset;
1615 
1616     /*
1617      * Take care of a bug that shows up only on the borders.
1618      *
1619      * If the block is beyond the border, then the row is negative.  Return
1620      * the block's column number (should be 0 or COLNO-1).
1621      *
1622      * Could easily have the column be -1, but then wouldn't know if it was
1623      * the left or right border.
1624      */
1625     if (block_row < 0) return block_col;
1626 
1627     /* Take explicit absolute values.  Adjust. */
1628     if ((sdy = (start_row-block_row)) < 0) sdy = -sdy;		/* src   dy */
1629     if ((sdx = (start_col-block_col)) < 0) sdx = -sdx; --sdx;	/* src   dx */
1630     if ((pdy = (block_row-this_row))  < 0) pdy = -pdy; --pdy;	/* point dy */
1631 
1632     if (sdy >= FAR_MAX_SB_DY || sdx < 0 || sdx >= FAR_MAX_SB_DX ||
1633 					    pdy < 0 || pdy >= FAR_MAX_BC_DY) {
1634 	impossible("far_shadow:  bad value");
1635 	return block_col;
1636     }
1637     if ((offset = far_dy[sdy]->far_q[sdx][pdy]) == OFF_TABLE) offset = -1;
1638     if (side == FROM_RIGHT)
1639 	return block_col + offset;
1640 
1641     return block_col - offset;
1642 }
1643 
1644 
1645 /*
1646  * right_side()
1647  *
1648  * Figure out what could be seen on the right side of the source.
1649  */
1650 STATIC_OVL void
right_side(row,cb_row,cb_col,fb_row,fb_col,left,right_mark,limits)1651 right_side(row, cb_row, cb_col, fb_row, fb_col, left, right_mark, limits)
1652     int row;		/* current row */
1653     int	cb_row, cb_col;	/* close block row and col */
1654     int	fb_row, fb_col;	/* far block row and col */
1655     int left;		/* left mark of the previous row */
1656     int	right_mark;	/* right mark of previous row */
1657     char *limits;	/* points at range limit for current row, or NULL */
1658 {
1659     register int  i;
1660     register char *rowp;
1661     int  hit_stone = 0;
1662     int  left_shadow, right_shadow, loc_right;
1663     int  lblock_col;		/* local block column (current row) */
1664     int  nrow, deeper;
1665     char *row_min;		/* left most */
1666     char *row_max;		/* right most */
1667     int		  lim_max;	/* right most limit of circle */
1668 
1669 #ifdef GCC_WARN
1670     rowp = 0;
1671 #endif
1672     nrow    = row + step;
1673     deeper  = good_row(nrow) && (!limits || (*limits >= *(limits+1)));
1674     if(!vis_func) {
1675 	rowp    = cs_rows[row];
1676 	row_min = &cs_left[row];
1677 	row_max = &cs_right[row];
1678     }
1679     if(limits) {
1680 	lim_max = start_col + *limits;
1681 	if(lim_max > COLNO-1) lim_max = COLNO-1;
1682 	if(right_mark > lim_max) right_mark = lim_max;
1683 	limits++; /* prepare for next row */
1684     } else
1685 	lim_max = COLNO-1;
1686 
1687     /*
1688      * Get the left shadow from the close block.  This value could be
1689      * illegal.
1690      */
1691     left_shadow = close_shadow(FROM_RIGHT,row,cb_row,cb_col);
1692 
1693     /*
1694      * Mark all stone walls as seen before the left shadow.  All this work
1695      * for a special case.
1696      *
1697      * NOTE.  With the addition of this code in here, it is now *required*
1698      * for the algorithm to work correctly.  If this is commented out,
1699      * change the above assignment so that left and not left_shadow is the
1700      * variable that gets the shadow.
1701      */
1702     while (left <= right_mark) {
1703 	loc_right = right_ptrs[row][left];
1704 	if(loc_right > lim_max) loc_right = lim_max;
1705 	if (viz_clear_rows[row][left]) {
1706 	    if (loc_right >= left_shadow) {
1707 		left = left_shadow;	/* opening ends beyond shadow */
1708 		break;
1709 	    }
1710 	    left = loc_right;
1711 	    loc_right = right_ptrs[row][left];
1712 	    if(loc_right > lim_max) loc_right = lim_max;
1713 	    if (left == loc_right) return;	/* boundary */
1714 
1715 	    /* Shadow covers opening, beyond right mark */
1716 	    if (left == right_mark && left_shadow > right_mark) return;
1717 	}
1718 
1719 	if (loc_right > right_mark)	/* can't see stone beyond the mark */
1720 	    loc_right = right_mark;
1721 
1722 	if(vis_func) {
1723 	    for (i = left; i <= loc_right; i++) (*vis_func)(i, row, varg);
1724 	} else {
1725 	    for (i = left; i <= loc_right; i++) set_cs(rowp,i);
1726 	    set_min(left);	set_max(loc_right);
1727 	}
1728 
1729 	if (loc_right == right_mark) return;	/* all stone */
1730 	if (loc_right >= left_shadow) hit_stone = 1;
1731 	left = loc_right + 1;
1732     }
1733 
1734     /*
1735      * At this point we are at the first visible clear spot on or beyond
1736      * the left shadow, unless the left shadow is an illegal value.  If we
1737      * have "hit stone" then we have a stone wall just to our left.
1738      */
1739 
1740     /*
1741      * Get the right shadow.  Make sure that it is a legal value.
1742      */
1743     if ((right_shadow = far_shadow(FROM_RIGHT,row,fb_row,fb_col)) >= COLNO)
1744 	right_shadow = COLNO-1;
1745     /*
1746      * Make vertical walls work the way we want them.  In this case, we
1747      * note when the close block blocks the column just above/beneath
1748      * it (right_shadow < fb_col [actually right_shadow == fb_col-1]).  If
1749      * the location is filled, then we want to see it, so we put the
1750      * right shadow back (same as fb_col).
1751      */
1752     if (right_shadow < fb_col && !viz_clear_rows[row][fb_col])
1753 	right_shadow = fb_col;
1754     if(right_shadow > lim_max) right_shadow = lim_max;
1755 
1756     /*
1757      * Main loop.  Within the range of sight of the previous row, mark all
1758      * stone walls as seen.  Follow open areas recursively.
1759      */
1760     while (left <= right_mark) {
1761 	/* Get the far right of the opening or wall */
1762 	loc_right = right_ptrs[row][left];
1763 	if(loc_right > lim_max) loc_right = lim_max;
1764 
1765 	if (!viz_clear_rows[row][left]) {
1766 	    hit_stone = 1;	/* use stone on this row as close block */
1767 	    /*
1768 	     * We can see all of the wall until the next open spot or the
1769 	     * start of the shadow caused by the far block (right).
1770 	     *
1771 	     * Can't see stone beyond the right mark.
1772 	     */
1773 	    if (loc_right > right_mark) loc_right = right_mark;
1774 
1775 	    if(vis_func) {
1776 		for (i = left; i <= loc_right; i++) (*vis_func)(i, row, varg);
1777 	    } else {
1778 		for (i = left; i <= loc_right; i++) set_cs(rowp,i);
1779 		set_min(left);	set_max(loc_right);
1780 	    }
1781 
1782 	    if (loc_right == right_mark) return;	/* hit the end */
1783 	    left = loc_right + 1;
1784 	    loc_right = right_ptrs[row][left];
1785 	    if(loc_right > lim_max) loc_right = lim_max;
1786 	    /* fall through... we know at least one position is visible */
1787 	}
1788 
1789 	/*
1790 	 * We are in an opening.
1791 	 *
1792 	 * If this is the first open spot since the could see area  (this is
1793 	 * true if we have hit stone), get the shadow generated by the wall
1794 	 * just to our left.
1795 	 */
1796 	if (hit_stone) {
1797 	    lblock_col = left-1;	/* local block column */
1798 	    left = close_shadow(FROM_RIGHT,row,row,lblock_col);
1799 	    if (left > lim_max) break;		/* off the end */
1800 	}
1801 
1802 	/*
1803 	 * Check if the shadow covers the opening.  If it does, then
1804 	 * move to end of the opening.  A shadow generated on from a
1805 	 * wall on this row does *not* cover the wall on the right
1806 	 * of the opening.
1807 	 */
1808 	if (left >= loc_right) {
1809 	    if (loc_right == lim_max) {		/* boundary */
1810 		if (left == lim_max) {
1811 		    if(vis_func) (*vis_func)(lim_max, row, varg);
1812 		    else {
1813 			set_cs(rowp,lim_max);	/* last pos */
1814 			set_max(lim_max);
1815 		    }
1816 		}
1817 		return;					/* done */
1818 	    }
1819 	    left = loc_right;
1820 	    continue;
1821 	}
1822 
1823 	/*
1824 	 * If the far wall of the opening (loc_right) is closer than the
1825 	 * shadow limit imposed by the far block (right) then use the far
1826 	 * wall as our new far block when we recurse.
1827 	 *
1828 	 * If the limits are the the same, and the far block really exists
1829 	 * (fb_row >= 0) then do the same as above.
1830 	 *
1831 	 * Normally, the check would be for the far wall being closer OR EQUAL
1832 	 * to the shadow limit.  However, there is a bug that arises from the
1833 	 * fact that the clear area pointers end in an open space (if it
1834 	 * exists) on a boundary.  This then makes a far block exist where it
1835 	 * shouldn't --- on a boundary.  To get around that, I had to
1836 	 * introduce the concept of a non-existent far block (when the
1837 	 * row < 0).  Next I have to check for it.  Here is where that check
1838 	 * exists.
1839 	 */
1840 	if ((loc_right < right_shadow) ||
1841 				(fb_row >= 0 && loc_right == right_shadow)) {
1842 	    if(vis_func) {
1843 		for (i = left; i <= loc_right; i++) (*vis_func)(i, row, varg);
1844 	    } else {
1845 		for (i = left; i <= loc_right; i++) set_cs(rowp,i);
1846 		set_min(left);	set_max(loc_right);
1847 	    }
1848 
1849 	    if (deeper) {
1850 		if (hit_stone)
1851 		    right_side(nrow,row,lblock_col,row,loc_right,
1852 							left,loc_right,limits);
1853 		else
1854 		    right_side(nrow,cb_row,cb_col,row,loc_right,
1855 							left,loc_right,limits);
1856 	    }
1857 
1858 	    /*
1859 	     * The following line, setting hit_stone, is needed for those
1860 	     * walls that are only 1 wide.  If hit stone is *not* set and
1861 	     * the stone is only one wide, then the close block is the old
1862 	     * one instead one on the current row.  A way around having to
1863 	     * set it here is to make left = loc_right (not loc_right+1) and
1864 	     * let the outer loop take care of it.  However, if we do that
1865 	     * then we then have to check for boundary conditions here as
1866 	     * well.
1867 	     */
1868 	    hit_stone = 1;
1869 
1870 	    left = loc_right+1;
1871 	}
1872 	/*
1873 	 * The opening extends beyond the right mark.  This means that
1874 	 * the next far block is the current far block.
1875 	 */
1876 	else {
1877 	    if(vis_func) {
1878 		for (i=left; i <= right_shadow; i++) (*vis_func)(i, row, varg);
1879 	    } else {
1880 		for (i = left; i <= right_shadow; i++) set_cs(rowp,i);
1881 		set_min(left);	set_max(right_shadow);
1882 	    }
1883 
1884 	    if (deeper) {
1885 		if (hit_stone)
1886 		    right_side(nrow,   row,lblock_col,fb_row,fb_col,
1887 						     left,right_shadow,limits);
1888 		else
1889 		    right_side(nrow,cb_row,    cb_col,fb_row,fb_col,
1890 						     left,right_shadow,limits);
1891 	    }
1892 
1893 	    return;	/* we're outta here */
1894 	}
1895     }
1896 }
1897 
1898 
1899 /*
1900  * left_side()
1901  *
1902  * This routine is the mirror image of right_side().  Please see right_side()
1903  * for blow by blow comments.
1904  */
1905 STATIC_OVL void
left_side(row,cb_row,cb_col,fb_row,fb_col,left_mark,right,limits)1906 left_side(row, cb_row, cb_col, fb_row, fb_col, left_mark, right, limits)
1907     int row;		/* the current row */
1908     int	cb_row, cb_col;	/* close block row and col */
1909     int	fb_row, fb_col;	/* far block row and col */
1910     int	left_mark;	/* left mark of previous row */
1911     int right;		/* right mark of the previous row */
1912     char *limits;
1913 {
1914     register int  i;
1915     register char *rowp;
1916     int  hit_stone = 0;
1917     int  left_shadow, right_shadow, loc_left;
1918     int  lblock_col;		/* local block column (current row) */
1919     int  nrow, deeper;
1920     char *row_min;		/* left most */
1921     char *row_max;		/* right most */
1922     int		  lim_min;
1923 
1924 #ifdef GCC_WARN
1925     rowp = 0;
1926 #endif
1927     nrow    = row + step;
1928     deeper  = good_row(nrow) && (!limits || (*limits >= *(limits+1)));
1929     if(!vis_func) {
1930 	rowp    = cs_rows[row];
1931 	row_min = &cs_left[row];
1932 	row_max = &cs_right[row];
1933     }
1934     if(limits) {
1935 	lim_min = start_col - *limits;
1936 	if(lim_min < 0) lim_min = 0;
1937 	if(left_mark < lim_min) left_mark = lim_min;
1938 	limits++; /* prepare for next row */
1939     } else
1940 	lim_min = 0;
1941 
1942     /* This value could be illegal. */
1943     right_shadow = close_shadow(FROM_LEFT,row,cb_row,cb_col);
1944 
1945     while ( right >= left_mark ) {
1946 	loc_left = left_ptrs[row][right];
1947 	if(loc_left < lim_min) loc_left = lim_min;
1948 	if (viz_clear_rows[row][right]) {
1949 	    if (loc_left <= right_shadow) {
1950 		right = right_shadow;	/* opening ends beyond shadow */
1951 		break;
1952 	    }
1953 	    right = loc_left;
1954 	    loc_left = left_ptrs[row][right];
1955 	    if(loc_left < lim_min) loc_left = lim_min;
1956 	    if (right == loc_left) return;	/* boundary */
1957 	}
1958 
1959 	if (loc_left < left_mark)	/* can't see beyond the left mark */
1960 	    loc_left = left_mark;
1961 
1962 	if(vis_func) {
1963 	    for (i = loc_left; i <= right; i++) (*vis_func)(i, row, varg);
1964 	} else {
1965 	    for (i = loc_left; i <= right; i++) set_cs(rowp,i);
1966 	    set_min(loc_left);	set_max(right);
1967 	}
1968 
1969 	if (loc_left == left_mark) return;	/* all stone */
1970 	if (loc_left <= right_shadow) hit_stone = 1;
1971 	right = loc_left - 1;
1972     }
1973 
1974     /* At first visible clear spot on or beyond the right shadow. */
1975 
1976     if ((left_shadow = far_shadow(FROM_LEFT,row,fb_row,fb_col)) < 0)
1977 	left_shadow = 0;
1978 
1979     /* Do vertical walls as we want. */
1980     if (left_shadow > fb_col && !viz_clear_rows[row][fb_col])
1981 	left_shadow = fb_col;
1982     if(left_shadow < lim_min) left_shadow = lim_min;
1983 
1984     while (right >= left_mark) {
1985 	loc_left = left_ptrs[row][right];
1986 
1987 	if (!viz_clear_rows[row][right]) {
1988 	    hit_stone = 1;	/* use stone on this row as close block */
1989 
1990 	    /* We can only see walls until the left mark */
1991 	    if (loc_left < left_mark) loc_left = left_mark;
1992 
1993 	    if(vis_func) {
1994 		for (i = loc_left; i <= right; i++) (*vis_func)(i, row, varg);
1995 	    } else {
1996 		for (i = loc_left; i <= right; i++) set_cs(rowp,i);
1997 		set_min(loc_left);	set_max(right);
1998 	    }
1999 
2000 	    if (loc_left == left_mark) return;	/* hit end */
2001 	    right = loc_left - 1;
2002 	    loc_left = left_ptrs[row][right];
2003 	    if (loc_left < lim_min) loc_left = lim_min;
2004 	    /* fall through...*/
2005 	}
2006 
2007 	/* We are in an opening. */
2008 	if (hit_stone) {
2009 	    lblock_col = right+1;	/* stone block (local) */
2010 	    right = close_shadow(FROM_LEFT,row,row,lblock_col);
2011 	    if (right < lim_min) return;	/* off the end */
2012 	}
2013 
2014 	/*  Check if the shadow covers the opening. */
2015 	if (right <= loc_left) {
2016 	    /*  Make a boundary condition work. */
2017 	    if (loc_left == lim_min) {	/* at boundary */
2018 		if (right == lim_min) {
2019 		    if(vis_func) (*vis_func)(lim_min, row, varg);
2020 		    else {
2021 			set_cs(rowp,lim_min);	/* caught the last pos */
2022 			set_min(lim_min);
2023 		    }
2024 		}
2025 		return;			/* and break out the loop */
2026 	    }
2027 
2028 	    right = loc_left;
2029 	    continue;
2030 	}
2031 
2032 	/* If the far wall of the opening is closer than the shadow limit. */
2033 	if ((loc_left > left_shadow) ||
2034 				    (fb_row >= 0 && loc_left == left_shadow)) {
2035 	    if(vis_func) {
2036 		for (i = loc_left; i <= right; i++) (*vis_func)(i, row, varg);
2037 	    } else {
2038 		for (i = loc_left; i <= right; i++) set_cs(rowp,i);
2039 		set_min(loc_left);	set_max(right);
2040 	    }
2041 
2042 	    if (deeper) {
2043 		if (hit_stone)
2044 		    left_side(nrow,row,lblock_col,row,loc_left,
2045 							loc_left,right,limits);
2046 		else
2047 		    left_side(nrow,cb_row,cb_col,row,loc_left,
2048 							loc_left,right,limits);
2049 	    }
2050 
2051 	    hit_stone = 1;	/* needed for walls of width 1 */
2052 	    right = loc_left-1;
2053 	}
2054 	/*  The opening extends beyond the left mark. */
2055 	else {
2056 	    if(vis_func) {
2057 		for (i=left_shadow; i <= right; i++) (*vis_func)(i, row, varg);
2058 	    } else {
2059 		for (i = left_shadow; i <= right; i++) set_cs(rowp,i);
2060 		set_min(left_shadow);	set_max(right);
2061 	    }
2062 
2063 	    if (deeper) {
2064 		if (hit_stone)
2065 		    left_side(nrow,row,lblock_col,fb_row,fb_col,
2066 						     left_shadow,right,limits);
2067 		else
2068 		    left_side(nrow,cb_row,cb_col,fb_row,fb_col,
2069 						     left_shadow,right,limits);
2070 	    }
2071 
2072 	    return;	/* we're outta here */
2073 	}
2074 
2075     }
2076 }
2077 
2078 /*
2079  * view_from
2080  *
2081  * Calculate a view from the given location.  Initialize and fill a
2082  * ROWNOxCOLNO array (could_see) with all the locations that could be
2083  * seen from the source location.  Initialize and fill the left most
2084  * and right most boundaries of what could be seen.
2085  */
2086 STATIC_OVL void
view_from(srow,scol,loc_cs_rows,left_most,right_most,range,func,arg)2087 view_from(srow,scol,loc_cs_rows,left_most,right_most, range, func, arg)
2088     int  srow, scol;			/* source row and column */
2089     char **loc_cs_rows;			/* could_see array (row pointers) */
2090     char *left_most, *right_most;	/* limits of what could be seen */
2091     int range;		/* 0 if unlimited */
2092     void FDECL((*func), (int,int,genericptr_t));
2093     genericptr_t arg;
2094 {
2095     register int i;
2096     char	 *rowp;
2097     int		 nrow, left, right, left_row, right_row;
2098     char	 *limits;
2099 
2100     /* Set globals for near_shadow(), far_shadow(), etc. to use. */
2101     start_col = scol;
2102     start_row = srow;
2103     cs_rows   = loc_cs_rows;
2104     cs_left   = left_most;
2105     cs_right  = right_most;
2106     vis_func = func;
2107     varg = arg;
2108 
2109     /*  Find the left and right limits of sight on the starting row. */
2110     if (viz_clear_rows[srow][scol]) {
2111 	left  = left_ptrs[srow][scol];
2112 	right = right_ptrs[srow][scol];
2113     } else {
2114 	left  = (!scol) ? 0 :
2115 	    (viz_clear_rows[srow][scol-1] ?  left_ptrs[srow][scol-1] : scol-1);
2116 	right = (scol == COLNO-1) ? COLNO-1 :
2117 	    (viz_clear_rows[srow][scol+1] ? right_ptrs[srow][scol+1] : scol+1);
2118     }
2119 
2120     if(range) {
2121 	if(range > MAX_RADIUS || range < 1)
2122 	    panic("view_from called with range %d", range);
2123 	limits = circle_ptr(range) + 1; /* start at next row */
2124 	if(left < scol - range) left = scol - range;
2125 	if(right > scol + range) right = scol + range;
2126     } else
2127 	limits = (char*) 0;
2128 
2129     if(func) {
2130 	for (i = left; i <= right; i++) (*func)(i, srow, arg);
2131     } else {
2132 	/* Row optimization */
2133 	rowp = cs_rows[srow];
2134 
2135 	/* We know that we can see our row. */
2136 	for (i = left; i <= right; i++) set_cs(rowp,i);
2137 	cs_left[srow]  = left;
2138 	cs_right[srow] = right;
2139     }
2140 
2141     /* The far block has a row number of -1 if we are on an edge. */
2142     right_row = (right == COLNO-1) ? -1 : srow;
2143     left_row  = (!left)		   ? -1 : srow;
2144 
2145     /*
2146      *  Check what could be seen in quadrants.
2147      */
2148     if ( (nrow = srow+1) < ROWNO ) {
2149 	step =  1;	/* move down */
2150 	if (scol<COLNO-1)
2151 	    right_side(nrow,-1,scol,right_row,right,scol,right,limits);
2152 	if (scol)
2153 	    left_side(nrow,-1,scol,left_row, left, left, scol,limits);
2154     }
2155 
2156     if ( (nrow = srow-1) >= 0 ) {
2157 	step = -1;	/* move up */
2158 	if (scol<COLNO-1)
2159 	    right_side(nrow,-1,scol,right_row,right,scol,right,limits);
2160 	if (scol)
2161 	    left_side(nrow,-1,scol,left_row, left, left, scol,limits);
2162     }
2163 }
2164 
2165 
2166 #else	/*===== End of algorithm D =====*/
2167 
2168 
2169 /*===========================================================================*\
2170 			    GENERAL LINE OF SIGHT
2171 				Algorithm C
2172 \*===========================================================================*/
2173 
2174 /*
2175  * Defines local to Algorithm C.
2176  */
2177 STATIC_DCL void FDECL(right_side, (int,int,int,char*));
2178 STATIC_DCL void FDECL(left_side, (int,int,int,char*));
2179 
2180 /* Initialize algorithm C (nothing). */
2181 STATIC_OVL void
view_init()2182 view_init()
2183 {
2184 }
2185 
2186 /*
2187  * Mark positions as visible on one quadrant of the right side.  The
2188  * quadrant is determined by the value of the global variable step.
2189  */
2190 STATIC_OVL void
right_side(row,left,right_mark,limits)2191 right_side(row, left, right_mark, limits)
2192     int row;		/* current row */
2193     int left;		/* first (left side) visible spot on prev row */
2194     int right_mark;	/* last (right side) visible spot on prev row */
2195     char *limits;	/* points at range limit for current row, or NULL */
2196 {
2197     int		  right;	/* right limit of "could see" */
2198     int		  right_edge;	/* right edge of an opening */
2199     int		  nrow;		/* new row (calculate once) */
2200     int		  deeper;	/* if TRUE, call self as needed */
2201     int		  result;	/* set by q?_path() */
2202     register int  i;		/* loop counter */
2203     register char *rowp;	/* row optimization */
2204     char	  *row_min;	/* left most  [used by macro set_min()] */
2205     char	  *row_max;	/* right most [used by macro set_max()] */
2206     int		  lim_max;	/* right most limit of circle */
2207 
2208 #ifdef GCC_WARN
2209     rowp = row_min = row_max = 0;
2210 #endif
2211     nrow    = row + step;
2212     /*
2213      * Can go deeper if the row is in bounds and the next row is within
2214      * the circle's limit.  We tell the latter by checking to see if the next
2215      * limit value is the start of a new circle radius (meaning we depend
2216      * on the structure of circle_data[]).
2217      */
2218     deeper  = good_row(nrow) && (!limits || (*limits >= *(limits+1)));
2219     if(!vis_func) {
2220 	rowp    = cs_rows[row];	/* optimization */
2221 	row_min = &cs_left[row];
2222 	row_max = &cs_right[row];
2223     }
2224     if(limits) {
2225 	lim_max = start_col + *limits;
2226 	if(lim_max > COLNO-1) lim_max = COLNO-1;
2227 	if(right_mark > lim_max) right_mark = lim_max;
2228 	limits++; /* prepare for next row */
2229     } else
2230 	lim_max = COLNO-1;
2231 
2232     while (left <= right_mark) {
2233 	right_edge = right_ptrs[row][left];
2234 	if(right_edge > lim_max) right_edge = lim_max;
2235 
2236 	if (!is_clear(row,left)) {
2237 	    /*
2238 	     * Jump to the far side of a stone wall.  We can set all
2239 	     * the points in between as seen.
2240 	     *
2241 	     * If the right edge goes beyond the right mark, check to see
2242 	     * how much we can see.
2243 	     */
2244 	    if (right_edge > right_mark) {
2245 		/*
2246 		 * If the mark on the previous row was a clear position,
2247 		 * the odds are that we can actually see part of the wall
2248 		 * beyond the mark on this row.  If so, then see one beyond
2249 		 * the mark.  Otherwise don't.  This is a kludge so corners
2250 		 * with an adjacent doorway show up in nethack.
2251 		 */
2252 		right_edge = is_clear(row-step,right_mark) ?
2253 						    right_mark+1 : right_mark;
2254 	    }
2255 	    if(vis_func) {
2256 		for (i = left; i <= right_edge; i++) (*vis_func)(i, row, varg);
2257 	    } else {
2258 		for (i = left; i <= right_edge; i++) set_cs(rowp,i);
2259 		set_min(left);      set_max(right_edge);
2260 	    }
2261 	    left = right_edge + 1; /* no limit check necessary */
2262 	    continue;
2263 	}
2264 
2265 	/* No checking needed if our left side is the start column. */
2266 	if (left != start_col) {
2267 	    /*
2268 	     * Find the left side.  Move right until we can see it or we run
2269 	     * into a wall.
2270 	     */
2271 	    for (; left <= right_edge; left++) {
2272 		if (step < 0) {
2273 		    q1_path(start_row,start_col,row,left,rside1);
2274 		} else {
2275 		    q4_path(start_row,start_col,row,left,rside1);
2276 		}
2277 rside1:					/* used if q?_path() is a macro */
2278 		if (result) break;
2279 	    }
2280 
2281 	    /*
2282 	     * Check for boundary conditions.  We *need* check (2) to break
2283 	     * an infinite loop where:
2284 	     *
2285 	     *		left == right_edge == right_mark == lim_max.
2286 	     *
2287 	     */
2288 	    if (left > lim_max) return;	/* check (1) */
2289 	    if (left == lim_max) {	/* check (2) */
2290 		if(vis_func) (*vis_func)(lim_max, row, varg);
2291 		else {
2292 		    set_cs(rowp,lim_max);
2293 		    set_max(lim_max);
2294 		}
2295 		return;
2296 	    }
2297 	    /*
2298 	     * Check if we can see any spots in the opening.  We might
2299 	     * (left == right_edge) or might not (left == right_edge+1) have
2300 	     * been able to see the far wall.  Make sure we *can* see the
2301 	     * wall (remember, we can see the spot above/below this one)
2302 	     * by backing up.
2303 	     */
2304 	    if (left >= right_edge) {
2305 		left = right_edge;	/* for the case left == right_edge+1 */
2306 		continue;
2307 	    }
2308 	}
2309 
2310 	/*
2311 	 * Find the right side.  If the marker from the previous row is
2312 	 * closer than the edge on this row, then we have to check
2313 	 * how far we can see around the corner (under the overhang).  Stop
2314 	 * at the first non-visible spot or we actually hit the far wall.
2315 	 *
2316 	 * Otherwise, we know we can see the right edge of the current row.
2317 	 *
2318 	 * This must be a strict less than so that we can always see a
2319 	 * horizontal wall, even if it is adjacent to us.
2320 	 */
2321 	if (right_mark < right_edge) {
2322 	    for (right = right_mark; right <= right_edge; right++) {
2323 		if (step < 0) {
2324 		    q1_path(start_row,start_col,row,right,rside2);
2325 		} else {
2326 		    q4_path(start_row,start_col,row,right,rside2);
2327 		}
2328 rside2:					/* used if q?_path() is a macro */
2329 		if (!result) break;
2330 	    }
2331 	    --right;	/* get rid of the last increment */
2332 	}
2333 	else
2334 	    right = right_edge;
2335 
2336 	/*
2337 	 * We have the range that we want.  Set the bits.  Note that
2338 	 * there is no else --- we no longer handle splinters.
2339 	 */
2340 	if (left <= right) {
2341 	    /*
2342 	     * An ugly special case.  If you are adjacent to a vertical wall
2343 	     * and it has a break in it, then the right mark is set to be
2344 	     * start_col.  We *want* to be able to see adjacent vertical
2345 	     * walls, so we have to set it back.
2346 	     */
2347 	    if (left == right && left == start_col &&
2348 			start_col < (COLNO-1) && !is_clear(row,start_col+1))
2349 		right = start_col+1;
2350 
2351 	    if(right > lim_max) right = lim_max;
2352 	    /* set the bits */
2353 	    if(vis_func)
2354 		for (i = left; i <= right; i++) (*vis_func)(i, row, varg);
2355 	    else {
2356 		for (i = left; i <= right; i++) set_cs(rowp,i);
2357 		set_min(left);      set_max(right);
2358 	    }
2359 
2360 	    /* recursive call for next finger of light */
2361 	    if (deeper) right_side(nrow,left,right,limits);
2362 	    left = right + 1; /* no limit check necessary */
2363 	}
2364     }
2365 }
2366 
2367 
2368 /*
2369  * This routine is the mirror image of right_side().  See right_side() for
2370  * extensive comments.
2371  */
2372 STATIC_OVL void
left_side(row,left_mark,right,limits)2373 left_side(row, left_mark, right, limits)
2374     int row, left_mark, right;
2375     char *limits;
2376 {
2377     int		  left, left_edge, nrow, deeper, result;
2378     register int  i;
2379     register char *rowp;
2380     char	  *row_min, *row_max;
2381     int		  lim_min;
2382 
2383 #ifdef GCC_WARN
2384     rowp = row_min = row_max = 0;
2385 #endif
2386     nrow    = row+step;
2387     deeper  = good_row(nrow) && (!limits || (*limits >= *(limits+1)));
2388     if(!vis_func) {
2389 	rowp    = cs_rows[row];
2390 	row_min = &cs_left[row];
2391 	row_max = &cs_right[row];
2392     }
2393     if(limits) {
2394 	lim_min = start_col - *limits;
2395 	if(lim_min < 0) lim_min = 0;
2396 	if(left_mark < lim_min) left_mark = lim_min;
2397 	limits++; /* prepare for next row */
2398     } else
2399 	lim_min = 0;
2400 
2401     while (right >= left_mark) {
2402 	left_edge = left_ptrs[row][right];
2403 	if(left_edge < lim_min) left_edge = lim_min;
2404 
2405 	if (!is_clear(row,right)) {
2406 	    /* Jump to the far side of a stone wall. */
2407 	    if (left_edge < left_mark) {
2408 		/* Maybe see more (kludge). */
2409 		left_edge = is_clear(row-step,left_mark) ?
2410 						    left_mark-1 : left_mark;
2411 	    }
2412 	    if(vis_func) {
2413 		for (i = left_edge; i <= right; i++) (*vis_func)(i, row, varg);
2414 	    } else {
2415 		for (i = left_edge; i <= right; i++) set_cs(rowp,i);
2416 		set_min(left_edge); set_max(right);
2417 	    }
2418 	    right = left_edge - 1; /* no limit check necessary */
2419 	    continue;
2420 	}
2421 
2422 	if (right != start_col) {
2423 	    /* Find the right side. */
2424 	    for (; right >= left_edge; right--) {
2425 		if (step < 0) {
2426 		    q2_path(start_row,start_col,row,right,lside1);
2427 		} else {
2428 		    q3_path(start_row,start_col,row,right,lside1);
2429 		}
2430 lside1:					/* used if q?_path() is a macro */
2431 		if (result) break;
2432 	    }
2433 
2434 	    /* Check for boundary conditions. */
2435 	    if (right < lim_min) return;
2436 	    if (right == lim_min) {
2437 		if(vis_func) (*vis_func)(lim_min, row, varg);
2438 		else {
2439 		    set_cs(rowp,lim_min);
2440 		    set_min(lim_min);
2441 		}
2442 		return;
2443 	    }
2444 	    /* Check if we can see any spots in the opening. */
2445 	    if (right <= left_edge) {
2446 		right = left_edge;
2447 		continue;
2448 	    }
2449 	}
2450 
2451 	/* Find the left side. */
2452 	if (left_mark > left_edge) {
2453 	    for (left = left_mark; left >= left_edge; --left) {
2454 		if (step < 0) {
2455 		    q2_path(start_row,start_col,row,left,lside2);
2456 		} else {
2457 		    q3_path(start_row,start_col,row,left,lside2);
2458 		}
2459 lside2:					/* used if q?_path() is a macro */
2460 		if (!result) break;
2461 	    }
2462 	    left++;	/* get rid of the last decrement */
2463 	}
2464 	else
2465 	    left = left_edge;
2466 
2467 	if (left <= right) {
2468 	    /* An ugly special case. */
2469 	    if (left == right && right == start_col &&
2470 			    start_col > 0 && !is_clear(row,start_col-1))
2471 		left = start_col-1;
2472 
2473 	    if(left < lim_min) left = lim_min;
2474 	    if(vis_func)
2475 		for (i = left; i <= right; i++) (*vis_func)(i, row, varg);
2476 	    else {
2477 		for (i = left; i <= right; i++) set_cs(rowp,i);
2478 		set_min(left);      set_max(right);
2479 	    }
2480 
2481 	    /* Recurse */
2482 	    if (deeper) left_side(nrow,left,right,limits);
2483 	    right = left - 1; /* no limit check necessary */
2484 	}
2485     }
2486 }
2487 
2488 
2489 /*
2490  * Calculate all possible visible locations from the given location
2491  * (srow,scol).  NOTE this is (y,x)!  Mark the visible locations in the
2492  * array provided.
2493  */
2494 STATIC_OVL void
view_from(srow,scol,loc_cs_rows,left_most,right_most,range,func,arg)2495 view_from(srow, scol, loc_cs_rows, left_most, right_most, range, func, arg)
2496     int  srow, scol;	/* starting row and column */
2497     char **loc_cs_rows;	/* pointers to the rows of the could_see array */
2498     char *left_most;	/* min mark on each row */
2499     char *right_most;	/* max mark on each row */
2500     int range;		/* 0 if unlimited */
2501     void FDECL((*func), (int,int,genericptr_t));
2502     genericptr_t arg;
2503 {
2504     register int i;		/* loop counter */
2505     char         *rowp;		/* optimization for setting could_see */
2506     int		 nrow;		/* the next row */
2507     int		 left;		/* the left-most visible column */
2508     int		 right;		/* the right-most visible column */
2509     char	 *limits;	/* range limit for next row */
2510 
2511     /* Set globals for q?_path(), left_side(), and right_side() to use. */
2512     start_col = scol;
2513     start_row = srow;
2514     cs_rows   = loc_cs_rows;	/* 'could see' rows */
2515     cs_left   = left_most;
2516     cs_right  = right_most;
2517     vis_func = func;
2518     varg = arg;
2519 
2520     /*
2521      * Determine extent of sight on the starting row.
2522      */
2523     if (is_clear(srow,scol)) {
2524 	left =  left_ptrs[srow][scol];
2525 	right = right_ptrs[srow][scol];
2526     } else {
2527 	/*
2528 	 * When in stone, you can only see your adjacent squares, unless
2529 	 * you are on an array boundary or a stone/clear boundary.
2530 	 */
2531 	left  = (!scol) ? 0 :
2532 		(is_clear(srow,scol-1) ? left_ptrs[srow][scol-1] : scol-1);
2533 	right = (scol == COLNO-1) ? COLNO-1 :
2534 		(is_clear(srow,scol+1) ? right_ptrs[srow][scol+1] : scol+1);
2535     }
2536 
2537     if(range) {
2538 	if(range > MAX_RADIUS || range < 1)
2539 	    panic("view_from called with range %d", range);
2540 	limits = circle_ptr(range) + 1; /* start at next row */
2541 	if(left < scol - range) left = scol - range;
2542 	if(right > scol + range) right = scol + range;
2543     } else
2544 	limits = (char*) 0;
2545 
2546     if(func) {
2547 	for (i = left; i <= right; i++) (*func)(i, srow, arg);
2548     } else {
2549 	/* Row pointer optimization. */
2550 	rowp = cs_rows[srow];
2551 
2552 	/* We know that we can see our row. */
2553 	for (i = left; i <= right; i++) set_cs(rowp,i);
2554 	cs_left[srow]  = left;
2555 	cs_right[srow] = right;
2556     }
2557 
2558     /*
2559      * Check what could be seen in quadrants.  We need to check for valid
2560      * rows here, since we don't do it in the routines right_side() and
2561      * left_side() [ugliness to remove extra routine calls].
2562      */
2563     if ( (nrow = srow+1) < ROWNO ) {	/* move down */
2564 	step =  1;
2565 	if (scol < COLNO-1) right_side(nrow, scol, right, limits);
2566 	if (scol)	    left_side (nrow, left,  scol, limits);
2567     }
2568 
2569     if ( (nrow = srow-1) >= 0 ) {	/* move up */
2570 	step = -1;
2571 	if (scol < COLNO-1) right_side(nrow, scol, right, limits);
2572 	if (scol)	    left_side (nrow, left,  scol, limits);
2573     }
2574 }
2575 
2576 #endif	/*===== End of algorithm C =====*/
2577 
2578 /*
2579  * AREA OF EFFECT "ENGINE"
2580  *
2581  * Calculate all possible visible locations as viewed from the given location
2582  * (srow,scol) within the range specified. Perform "func" with (x, y) args and
2583  * additional argument "arg" for each square.
2584  *
2585  * If not centered on the hero, just forward arguments to view_from(); it
2586  * will call "func" when necessary.  If the hero is the center, use the
2587  * vision matrix and reduce extra work.
2588  */
2589 void
do_clear_area(scol,srow,range,func,arg)2590 do_clear_area(scol,srow,range,func,arg)
2591     int scol, srow, range;
2592     void FDECL((*func), (int,int,genericptr_t));
2593     genericptr_t arg;
2594 {
2595 	/* If not centered on hero, do the hard work of figuring the area */
2596 	if (scol != u.ux || srow != u.uy)
2597 	    view_from(srow, scol, (char **)0, (char *)0, (char *)0,
2598 							range, func, arg);
2599 	else {
2600 	    register int x;
2601 	    int y, min_x, max_x, max_y, offset;
2602 	    char *limits;
2603 
2604 	    if (range > MAX_RADIUS || range < 1)
2605 		panic("do_clear_area:  illegal range %d", range);
2606 	    if(vision_full_recalc)
2607 		vision_recalc(0);	/* recalc vision if dirty */
2608 	    limits = circle_ptr(range);
2609 	    if ((max_y = (srow + range)) >= ROWNO) max_y = ROWNO-1;
2610 	    if ((y = (srow - range)) < 0) y = 0;
2611 	    for (; y <= max_y; y++) {
2612 		offset = limits[v_abs(y-srow)];
2613 		if((min_x = (scol - offset)) < 0) min_x = 0;
2614 		if((max_x = (scol + offset)) >= COLNO) max_x = COLNO-1;
2615 		for (x = min_x; x <= max_x; x++)
2616 		    if (couldsee(x, y))
2617 			(*func)(x, y, arg);
2618 	    }
2619 	}
2620 }
2621 
2622 /*vision.c*/
2623