1 /*
2  * Copyright (c) 1983 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms are permitted
6  * provided that the above copyright notice and this paragraph are
7  * duplicated in all such forms and that any documentation,
8  * advertising materials, and other materials related to such
9  * distribution and use acknowledge that the software was developed
10  * by the University of California, Berkeley.  The name of the
11  * University may not be used to endorse or promote products derived
12  * from this software without specific prior written permission.
13  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
15  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
16  */
17 
18 /* Several minor changes were made for the NetHack distribution to satisfy
19  * non-BSD compilers (by definition BSD compilers do not need to compile
20  * this file for NetHack).  These changes consisted of:
21  *	- changing the sccsid conditions to nested ifdefs from defined()s
22  *	to accommodate stupid preprocessors
23  *	- giving srandom() type void instead of allowing it to default to int
24  *	- making the first return in initstate() return a value consistent
25  *	with its type (instead of no value)
26  *	- ANSI function prototyping in extern.h - therefore include hack.h
27  *	instead of stdio.h and remove separate declaration of random() from
28  *	the beginning of function srandom
29  *	- moving sccsid after hack.h to allow precompiled headers, which
30  *	means the defined()s would be ok again...
31  *	- change fprintf(stderr, "x(%d)y\n", z) to impossible("x(%d)y", z)
32  *	- remove useless variable `j' from srandom()
33  */
34 
35 #include "hack.h"
36 
37 #ifdef LIBC_SCCS
38 # ifndef lint
39 static char sccsid[] = "@(#)random.c	5.5 (Berkeley) 7/6/88";
40 # endif
41 #endif /* LIBC_SCCS and not lint */
42 
43 /*
44  * random.c:
45  * An improved random number generation package.  In addition to the standard
46  * rand()/srand() like interface, this package also has a special state info
47  * interface.  The initstate() routine is called with a seed, an array of
48  * bytes, and a count of how many bytes are being passed in; this array is then
49  * initialized to contain information for random number generation with that
50  * much state information.  Good sizes for the amount of state information are
51  * 32, 64, 128, and 256 bytes.  The state can be switched by calling the
52  * setstate() routine with the same array as was initiallized with initstate().
53  * By default, the package runs with 128 bytes of state information and
54  * generates far better random numbers than a linear congruential generator.
55  * If the amount of state information is less than 32 bytes, a simple linear
56  * congruential R.N.G. is used.
57  * Internally, the state information is treated as an array of longs; the
58  * zeroeth element of the array is the type of R.N.G. being used (small
59  * integer); the remainder of the array is the state information for the
60  * R.N.G.  Thus, 32 bytes of state information will give 7 longs worth of
61  * state information, which will allow a degree seven polynomial.  (Note: the
62  * zeroeth word of state information also has some other information stored
63  * in it -- see setstate() for details).
64  * The random number generation technique is a linear feedback shift register
65  * approach, employing trinomials (since there are fewer terms to sum up that
66  * way).  In this approach, the least significant bit of all the numbers in
67  * the state table will act as a linear feedback shift register, and will have
68  * period 2^deg - 1 (where deg is the degree of the polynomial being used,
69  * assuming that the polynomial is irreducible and primitive).  The higher
70  * order bits will have longer periods, since their values are also influenced
71  * by pseudo-random carries out of the lower bits.  The total period of the
72  * generator is approximately deg*(2**deg - 1); thus doubling the amount of
73  * state information has a vast influence on the period of the generator.
74  * Note: the deg*(2**deg - 1) is an approximation only good for large deg,
75  * when the period of the shift register is the dominant factor.  With deg
76  * equal to seven, the period is actually much longer than the 7*(2**7 - 1)
77  * predicted by this formula.
78  */
79 
80 
81 
82 /*
83  * For each of the currently supported random number generators, we have a
84  * break value on the amount of state information (you need at least this
85  * many bytes of state info to support this random number generator), a degree
86  * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
87  * the separation between the two lower order coefficients of the trinomial.
88  */
89 
90 #define		TYPE_0		0		/* linear congruential */
91 #define		BREAK_0		8
92 #define		DEG_0		0
93 #define		SEP_0		0
94 
95 #define		TYPE_1		1		/* x**7 + x**3 + 1 */
96 #define		BREAK_1		32
97 #define		DEG_1		7
98 #define		SEP_1		3
99 
100 #define		TYPE_2		2		/* x**15 + x + 1 */
101 #define		BREAK_2		64
102 #define		DEG_2		15
103 #define		SEP_2		1
104 
105 #define		TYPE_3		3		/* x**31 + x**3 + 1 */
106 #define		BREAK_3		128
107 #define		DEG_3		31
108 #define		SEP_3		3
109 
110 #define		TYPE_4		4		/* x**63 + x + 1 */
111 #define		BREAK_4		256
112 #define		DEG_4		63
113 #define		SEP_4		1
114 
115 
116 /*
117  * Array versions of the above information to make code run faster -- relies
118  * on fact that TYPE_i == i.
119  */
120 
121 #define		MAX_TYPES	5		/* max number of types above */
122 
123 static  int		degrees[ MAX_TYPES ]	= { DEG_0, DEG_1, DEG_2,
124 								DEG_3, DEG_4 };
125 
126 static  int		seps[ MAX_TYPES ]	= { SEP_0, SEP_1, SEP_2,
127 								SEP_3, SEP_4 };
128 
129 
130 
131 /*
132  * Initially, everything is set up as if from :
133  *		initstate( 1, &randtbl, 128 );
134  * Note that this initialization takes advantage of the fact that srandom()
135  * advances the front and rear pointers 10*rand_deg times, and hence the
136  * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
137  * element of the state information, which contains info about the current
138  * position of the rear pointer is just
139  *	MAX_TYPES*(rptr - state) + TYPE_3 == TYPE_3.
140  */
141 
142 static  long		randtbl[ DEG_3 + 1 ]	= { TYPE_3,
143 			    0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342,
144 			    0xde3b81e0, 0xdf0a6fb5, 0xf103bc02, 0x48f340fb,
145 			    0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
146 			    0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86,
147 			    0xda672e2a, 0x1588ca88, 0xe369735d, 0x904f35f7,
148 			    0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
149 			    0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b,
150 					0xf5ad9d0e, 0x8999220b, 0x27fb47b9 };
151 
152 /*
153  * fptr and rptr are two pointers into the state info, a front and a rear
154  * pointer.  These two pointers are always rand_sep places aparts, as they cycle
155  * cyclically through the state information.  (Yes, this does mean we could get
156  * away with just one pointer, but the code for random() is more efficient this
157  * way).  The pointers are left positioned as they would be from the call
158  *			initstate( 1, randtbl, 128 )
159  * (The position of the rear pointer, rptr, is really 0 (as explained above
160  * in the initialization of randtbl) because the state table pointer is set
161  * to point to randtbl[1] (as explained below).
162  */
163 
164 static  long		*fptr			= &randtbl[ SEP_3 + 1 ];
165 static  long		*rptr			= &randtbl[ 1 ];
166 
167 
168 
169 /*
170  * The following things are the pointer to the state information table,
171  * the type of the current generator, the degree of the current polynomial
172  * being used, and the separation between the two pointers.
173  * Note that for efficiency of random(), we remember the first location of
174  * the state information, not the zeroeth.  Hence it is valid to access
175  * state[-1], which is used to store the type of the R.N.G.
176  * Also, we remember the last location, since this is more efficient than
177  * indexing every time to find the address of the last element to see if
178  * the front and rear pointers have wrapped.
179  */
180 
181 static  long		*state			= &randtbl[ 1 ];
182 
183 static  int		rand_type		= TYPE_3;
184 static  int		rand_deg		= DEG_3;
185 static  int		rand_sep		= SEP_3;
186 
187 static  long		*end_ptr		= &randtbl[ DEG_3 + 1 ];
188 
189 
190 
191 /*
192  * srandom:
193  * Initialize the random number generator based on the given seed.  If the
194  * type is the trivial no-state-information type, just remember the seed.
195  * Otherwise, initializes state[] based on the given "seed" via a linear
196  * congruential generator.  Then, the pointers are set to known locations
197  * that are exactly rand_sep places apart.  Lastly, it cycles the state
198  * information a given number of times to get rid of any initial dependencies
199  * introduced by the L.C.R.N.G.
200  * Note that the initialization of randtbl[] for default usage relies on
201  * values produced by this routine.
202  */
203 
204 void
srandom(x)205 srandom( x )
206 
207     unsigned		x;
208 {
209     	register  int		i;
210 
211 	if(  rand_type  ==  TYPE_0  )  {
212 	    state[ 0 ] = x;
213 	}
214 	else  {
215 	    state[ 0 ] = x;
216 	    for( i = 1; i < rand_deg; i++ )  {
217 		state[i] = 1103515245*state[i - 1] + 12345;
218 	    }
219 	    fptr = &state[ rand_sep ];
220 	    rptr = &state[ 0 ];
221 	    for( i = 0; i < 10*rand_deg; i++ )  random();
222 	}
223 }
224 
225 
226 
227 /*
228  * initstate:
229  * Initialize the state information in the given array of n bytes for
230  * future random number generation.  Based on the number of bytes we
231  * are given, and the break values for the different R.N.G.'s, we choose
232  * the best (largest) one we can and set things up for it.  srandom() is
233  * then called to initialize the state information.
234  * Note that on return from srandom(), we set state[-1] to be the type
235  * multiplexed with the current value of the rear pointer; this is so
236  * successive calls to initstate() won't lose this information and will
237  * be able to restart with setstate().
238  * Note: the first thing we do is save the current state, if any, just like
239  * setstate() so that it doesn't matter when initstate is called.
240  * Returns a pointer to the old state.
241  */
242 
243 char  *
initstate(seed,arg_state,n)244 initstate( seed, arg_state, n )
245 
246     unsigned		seed;			/* seed for R. N. G. */
247     char		*arg_state;		/* pointer to state array */
248     int			n;			/* # bytes of state info */
249 {
250 	register  char		*ostate		= (char *)( &state[ -1 ] );
251 
252 	if(  rand_type  ==  TYPE_0  )  state[ -1 ] = rand_type;
253 	else  state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
254 	if(  n  <  BREAK_1  )  {
255 	    if(  n  <  BREAK_0  )  {
256 		impossible(
257  "initstate: not enough state (%d bytes) with which to do jack; ignored.", n);
258 		return (char *)0;
259 	    }
260 	    rand_type = TYPE_0;
261 	    rand_deg = DEG_0;
262 	    rand_sep = SEP_0;
263 	}
264 	else  {
265 	    if(  n  <  BREAK_2  )  {
266 		rand_type = TYPE_1;
267 		rand_deg = DEG_1;
268 		rand_sep = SEP_1;
269 	    }
270 	    else  {
271 		if(  n  <  BREAK_3  )  {
272 		    rand_type = TYPE_2;
273 		    rand_deg = DEG_2;
274 		    rand_sep = SEP_2;
275 		}
276 		else  {
277 		    if(  n  <  BREAK_4  )  {
278 			rand_type = TYPE_3;
279 			rand_deg = DEG_3;
280 			rand_sep = SEP_3;
281 		    }
282 		    else  {
283 			rand_type = TYPE_4;
284 			rand_deg = DEG_4;
285 			rand_sep = SEP_4;
286 		    }
287 		}
288 	    }
289 	}
290 	state = &(  ( (long *)arg_state )[1]  );	/* first location */
291 	end_ptr = &state[ rand_deg ];	/* must set end_ptr before srandom */
292 	srandom( seed );
293 	if(  rand_type  ==  TYPE_0  )  state[ -1 ] = rand_type;
294 	else  state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
295 	return( ostate );
296 }
297 
298 
299 
300 /*
301  * setstate:
302  * Restore the state from the given state array.
303  * Note: it is important that we also remember the locations of the pointers
304  * in the current state information, and restore the locations of the pointers
305  * from the old state information.  This is done by multiplexing the pointer
306  * location into the zeroeth word of the state information.
307  * Note that due to the order in which things are done, it is OK to call
308  * setstate() with the same state as the current state.
309  * Returns a pointer to the old state information.
310  */
311 
312 char  *
setstate(arg_state)313 setstate( arg_state )
314 
315     char		*arg_state;
316 {
317 	register  long		*new_state	= (long *)arg_state;
318 	register  int		type		= new_state[0]%MAX_TYPES;
319 	register  int		rear		= new_state[0]/MAX_TYPES;
320 	char			*ostate		= (char *)( &state[ -1 ] );
321 
322 	if(  rand_type  ==  TYPE_0  )  state[ -1 ] = rand_type;
323 	else  state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
324 	switch(  type  )  {
325 	    case  TYPE_0:
326 	    case  TYPE_1:
327 	    case  TYPE_2:
328 	    case  TYPE_3:
329 	    case  TYPE_4:
330 		rand_type = type;
331 		rand_deg = degrees[ type ];
332 		rand_sep = seps[ type ];
333 		break;
334 
335 	    default:
336   impossible("setstate: state info has been munged (%d); not changed.", type);
337 		break;
338 	}
339 	state = &new_state[ 1 ];
340 	if(  rand_type  !=  TYPE_0  )  {
341 	    rptr = &state[ rear ];
342 	    fptr = &state[ (rear + rand_sep)%rand_deg ];
343 	}
344 	end_ptr = &state[ rand_deg ];		/* set end_ptr too */
345 	return( ostate );
346 }
347 
348 
349 
350 /*
351  * random:
352  * If we are using the trivial TYPE_0 R.N.G., just do the old linear
353  * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is the
354  * same in all ther other cases due to all the global variables that have been
355  * set up.  The basic operation is to add the number at the rear pointer into
356  * the one at the front pointer.  Then both pointers are advanced to the next
357  * location cyclically in the table.  The value returned is the sum generated,
358  * reduced to 31 bits by throwing away the "least random" low bit.
359  * Note: the code takes advantage of the fact that both the front and
360  * rear pointers can't wrap on the same call by not testing the rear
361  * pointer if the front one has wrapped.
362  * Returns a 31-bit random number.
363  */
364 
365 long
random()366 random()
367 {
368 	long		i;
369 
370 	if(  rand_type  ==  TYPE_0  )  {
371 	    i = state[0] = ( state[0]*1103515245 + 12345 )&0x7fffffff;
372 	}
373 	else  {
374 	    *fptr += *rptr;
375 	    i = (*fptr >> 1)&0x7fffffff;	/* chucking least random bit */
376 	    if(  ++fptr  >=  end_ptr  )  {
377 		fptr = state;
378 		++rptr;
379 	    }
380 	    else  {
381 		if(  ++rptr  >=  end_ptr  )  rptr = state;
382 	    }
383 	}
384 	return( i );
385 }
386 
387