1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2015 Google Inc. All rights reserved.
3 // http://ceres-solver.org/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/implicit_schur_complement.h"
32 
33 #include "Eigen/Dense"
34 #include "ceres/block_sparse_matrix.h"
35 #include "ceres/block_structure.h"
36 #include "ceres/internal/eigen.h"
37 #include "ceres/linear_solver.h"
38 #include "ceres/types.h"
39 #include "glog/logging.h"
40 
41 namespace ceres {
42 namespace internal {
43 
ImplicitSchurComplement(const LinearSolver::Options & options)44 ImplicitSchurComplement::ImplicitSchurComplement(
45     const LinearSolver::Options& options)
46     : options_(options),
47       D_(NULL),
48       b_(NULL) {
49 }
50 
~ImplicitSchurComplement()51 ImplicitSchurComplement::~ImplicitSchurComplement() {
52 }
53 
Init(const BlockSparseMatrix & A,const double * D,const double * b)54 void ImplicitSchurComplement::Init(const BlockSparseMatrix& A,
55                                    const double* D,
56                                    const double* b) {
57   // Since initialization is reasonably heavy, perhaps we can save on
58   // constructing a new object everytime.
59   if (A_ == NULL) {
60     A_.reset(PartitionedMatrixViewBase::Create(options_, A));
61   }
62 
63   D_ = D;
64   b_ = b;
65 
66   // Initialize temporary storage and compute the block diagonals of
67   // E'E and F'E.
68   if (block_diagonal_EtE_inverse_ == NULL) {
69     block_diagonal_EtE_inverse_.reset(A_->CreateBlockDiagonalEtE());
70     if (options_.preconditioner_type == JACOBI) {
71       block_diagonal_FtF_inverse_.reset(A_->CreateBlockDiagonalFtF());
72     }
73     rhs_.resize(A_->num_cols_f());
74     rhs_.setZero();
75     tmp_rows_.resize(A_->num_rows());
76     tmp_e_cols_.resize(A_->num_cols_e());
77     tmp_e_cols_2_.resize(A_->num_cols_e());
78     tmp_f_cols_.resize(A_->num_cols_f());
79   } else {
80     A_->UpdateBlockDiagonalEtE(block_diagonal_EtE_inverse_.get());
81     if (options_.preconditioner_type == JACOBI) {
82       A_->UpdateBlockDiagonalFtF(block_diagonal_FtF_inverse_.get());
83     }
84   }
85 
86   // The block diagonals of the augmented linear system contain
87   // contributions from the diagonal D if it is non-null. Add that to
88   // the block diagonals and invert them.
89   AddDiagonalAndInvert(D_, block_diagonal_EtE_inverse_.get());
90   if (options_.preconditioner_type == JACOBI) {
91     AddDiagonalAndInvert((D_ ==  NULL) ? NULL : D_ + A_->num_cols_e(),
92                          block_diagonal_FtF_inverse_.get());
93   }
94 
95   // Compute the RHS of the Schur complement system.
96   UpdateRhs();
97 }
98 
99 // Evaluate the product
100 //
101 //   Sx = [F'F - F'E (E'E)^-1 E'F]x
102 //
103 // By breaking it down into individual matrix vector products
104 // involving the matrices E and F. This is implemented using a
105 // PartitionedMatrixView of the input matrix A.
RightMultiply(const double * x,double * y) const106 void ImplicitSchurComplement::RightMultiply(const double* x, double* y) const {
107   // y1 = F x
108   tmp_rows_.setZero();
109   A_->RightMultiplyF(x, tmp_rows_.data());
110 
111   // y2 = E' y1
112   tmp_e_cols_.setZero();
113   A_->LeftMultiplyE(tmp_rows_.data(), tmp_e_cols_.data());
114 
115   // y3 = -(E'E)^-1 y2
116   tmp_e_cols_2_.setZero();
117   block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(),
118                                              tmp_e_cols_2_.data());
119   tmp_e_cols_2_ *= -1.0;
120 
121   // y1 = y1 + E y3
122   A_->RightMultiplyE(tmp_e_cols_2_.data(), tmp_rows_.data());
123 
124   // y5 = D * x
125   if (D_ != NULL) {
126     ConstVectorRef Dref(D_ + A_->num_cols_e(), num_cols());
127     VectorRef(y, num_cols()) =
128         (Dref.array().square() *
129          ConstVectorRef(x, num_cols()).array()).matrix();
130   } else {
131     VectorRef(y, num_cols()).setZero();
132   }
133 
134   // y = y5 + F' y1
135   A_->LeftMultiplyF(tmp_rows_.data(), y);
136 }
137 
138 // Given a block diagonal matrix and an optional array of diagonal
139 // entries D, add them to the diagonal of the matrix and compute the
140 // inverse of each diagonal block.
AddDiagonalAndInvert(const double * D,BlockSparseMatrix * block_diagonal)141 void ImplicitSchurComplement::AddDiagonalAndInvert(
142     const double* D,
143     BlockSparseMatrix* block_diagonal) {
144   const CompressedRowBlockStructure* block_diagonal_structure =
145       block_diagonal->block_structure();
146   for (int r = 0; r < block_diagonal_structure->rows.size(); ++r) {
147     const int row_block_pos = block_diagonal_structure->rows[r].block.position;
148     const int row_block_size = block_diagonal_structure->rows[r].block.size;
149     const Cell& cell = block_diagonal_structure->rows[r].cells[0];
150     MatrixRef m(block_diagonal->mutable_values() + cell.position,
151                 row_block_size, row_block_size);
152 
153     if (D != NULL) {
154       ConstVectorRef d(D + row_block_pos, row_block_size);
155       m += d.array().square().matrix().asDiagonal();
156     }
157 
158     m = m
159         .selfadjointView<Eigen::Upper>()
160         .llt()
161         .solve(Matrix::Identity(row_block_size, row_block_size));
162   }
163 }
164 
165 // Similar to RightMultiply, use the block structure of the matrix A
166 // to compute y = (E'E)^-1 (E'b - E'F x).
BackSubstitute(const double * x,double * y)167 void ImplicitSchurComplement::BackSubstitute(const double* x, double* y) {
168   const int num_cols_e = A_->num_cols_e();
169   const int num_cols_f = A_->num_cols_f();
170   const int num_cols =  A_->num_cols();
171   const int num_rows = A_->num_rows();
172 
173   // y1 = F x
174   tmp_rows_.setZero();
175   A_->RightMultiplyF(x, tmp_rows_.data());
176 
177   // y2 = b - y1
178   tmp_rows_ = ConstVectorRef(b_, num_rows) - tmp_rows_;
179 
180   // y3 = E' y2
181   tmp_e_cols_.setZero();
182   A_->LeftMultiplyE(tmp_rows_.data(), tmp_e_cols_.data());
183 
184   // y = (E'E)^-1 y3
185   VectorRef(y, num_cols).setZero();
186   block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y);
187 
188   // The full solution vector y has two blocks. The first block of
189   // variables corresponds to the eliminated variables, which we just
190   // computed via back substitution. The second block of variables
191   // corresponds to the Schur complement system, so we just copy those
192   // values from the solution to the Schur complement.
193   VectorRef(y + num_cols_e, num_cols_f) =  ConstVectorRef(x, num_cols_f);
194 }
195 
196 // Compute the RHS of the Schur complement system.
197 //
198 // rhs = F'b - F'E (E'E)^-1 E'b
199 //
200 // Like BackSubstitute, we use the block structure of A to implement
201 // this using a series of matrix vector products.
UpdateRhs()202 void ImplicitSchurComplement::UpdateRhs() {
203   // y1 = E'b
204   tmp_e_cols_.setZero();
205   A_->LeftMultiplyE(b_, tmp_e_cols_.data());
206 
207   // y2 = (E'E)^-1 y1
208   Vector y2 = Vector::Zero(A_->num_cols_e());
209   block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y2.data());
210 
211   // y3 = E y2
212   tmp_rows_.setZero();
213   A_->RightMultiplyE(y2.data(), tmp_rows_.data());
214 
215   // y3 = b - y3
216   tmp_rows_ = ConstVectorRef(b_, A_->num_rows()) - tmp_rows_;
217 
218   // rhs = F' y3
219   rhs_.setZero();
220   A_->LeftMultiplyF(tmp_rows_.data(), rhs_.data());
221 }
222 
223 }  // namespace internal
224 }  // namespace ceres
225