1 /* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
2 /* cairo - a vector graphics library with display and print output
3  *
4  * Copyright © 2002 University of Southern California
5  * Copyright © 2011 Intel Corporation
6  *
7  * This library is free software; you can redistribute it and/or
8  * modify it either under the terms of the GNU Lesser General Public
9  * License version 2.1 as published by the Free Software Foundation
10  * (the "LGPL") or, at your option, under the terms of the Mozilla
11  * Public License Version 1.1 (the "MPL"). If you do not alter this
12  * notice, a recipient may use your version of this file under either
13  * the MPL or the LGPL.
14  *
15  * You should have received a copy of the LGPL along with this library
16  * in the file COPYING-LGPL-2.1; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
18  * You should have received a copy of the MPL along with this library
19  * in the file COPYING-MPL-1.1
20  *
21  * The contents of this file are subject to the Mozilla Public License
22  * Version 1.1 (the "License"); you may not use this file except in
23  * compliance with the License. You may obtain a copy of the License at
24  * http://www.mozilla.org/MPL/
25  *
26  * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
27  * OF ANY KIND, either express or implied. See the LGPL or the MPL for
28  * the specific language governing rights and limitations.
29  *
30  * The Original Code is the cairo graphics library.
31  *
32  * The Initial Developer of the Original Code is University of Southern
33  * California.
34  *
35  * Contributor(s):
36  *	Carl D. Worth <cworth@cworth.org>
37  *	Chris Wilson <chris@chris-wilson.co.uk>
38  */
39 
40 #define _DEFAULT_SOURCE /* for hypot() */
41 #include "cairoint.h"
42 
43 #include "cairo-box-inline.h"
44 #include "cairo-boxes-private.h"
45 #include "cairo-error-private.h"
46 #include "cairo-path-fixed-private.h"
47 #include "cairo-slope-private.h"
48 #include "cairo-tristrip-private.h"
49 
50 struct stroker {
51     cairo_stroke_style_t style;
52 
53     cairo_tristrip_t *strip;
54 
55     const cairo_matrix_t *ctm;
56     const cairo_matrix_t *ctm_inverse;
57     double tolerance;
58     cairo_bool_t ctm_det_positive;
59 
60     cairo_pen_t pen;
61 
62     cairo_bool_t has_sub_path;
63 
64     cairo_point_t first_point;
65 
66     cairo_bool_t has_current_face;
67     cairo_stroke_face_t current_face;
68 
69     cairo_bool_t has_first_face;
70     cairo_stroke_face_t first_face;
71 
72     cairo_box_t limit;
73     cairo_bool_t has_limits;
74 };
75 
76 static inline double
77 normalize_slope (double *dx, double *dy);
78 
79 static void
80 compute_face (const cairo_point_t *point,
81 	      const cairo_slope_t *dev_slope,
82 	      struct stroker *stroker,
83 	      cairo_stroke_face_t *face);
84 
85 static void
translate_point(cairo_point_t * point,const cairo_point_t * offset)86 translate_point (cairo_point_t *point, const cairo_point_t *offset)
87 {
88     point->x += offset->x;
89     point->y += offset->y;
90 }
91 
92 static int
slope_compare_sgn(double dx1,double dy1,double dx2,double dy2)93 slope_compare_sgn (double dx1, double dy1, double dx2, double dy2)
94 {
95     double  c = (dx1 * dy2 - dx2 * dy1);
96 
97     if (c > 0) return 1;
98     if (c < 0) return -1;
99     return 0;
100 }
101 
102 static inline int
range_step(int i,int step,int max)103 range_step (int i, int step, int max)
104 {
105     i += step;
106     if (i < 0)
107 	i = max - 1;
108     if (i >= max)
109 	i = 0;
110     return i;
111 }
112 
113 /*
114  * Construct a fan around the midpoint using the vertices from pen between
115  * inpt and outpt.
116  */
117 static void
add_fan(struct stroker * stroker,const cairo_slope_t * in_vector,const cairo_slope_t * out_vector,const cairo_point_t * midpt,const cairo_point_t * inpt,const cairo_point_t * outpt,cairo_bool_t clockwise)118 add_fan (struct stroker *stroker,
119 	 const cairo_slope_t *in_vector,
120 	 const cairo_slope_t *out_vector,
121 	 const cairo_point_t *midpt,
122 	 const cairo_point_t *inpt,
123 	 const cairo_point_t *outpt,
124 	 cairo_bool_t clockwise)
125 {
126     int start, stop, step, i, npoints;
127 
128     if (clockwise) {
129 	step  = 1;
130 
131 	start = _cairo_pen_find_active_cw_vertex_index (&stroker->pen,
132 							in_vector);
133 	if (_cairo_slope_compare (&stroker->pen.vertices[start].slope_cw,
134 				  in_vector) < 0)
135 	    start = range_step (start, 1, stroker->pen.num_vertices);
136 
137 	stop  = _cairo_pen_find_active_cw_vertex_index (&stroker->pen,
138 							out_vector);
139 	if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_ccw,
140 				  out_vector) > 0)
141 	{
142 	    stop = range_step (stop, -1, stroker->pen.num_vertices);
143 	    if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_cw,
144 				      in_vector) < 0)
145 		return;
146 	}
147 
148 	npoints = stop - start;
149     } else {
150 	step  = -1;
151 
152 	start = _cairo_pen_find_active_ccw_vertex_index (&stroker->pen,
153 							 in_vector);
154 	if (_cairo_slope_compare (&stroker->pen.vertices[start].slope_ccw,
155 				  in_vector) < 0)
156 	    start = range_step (start, -1, stroker->pen.num_vertices);
157 
158 	stop  = _cairo_pen_find_active_ccw_vertex_index (&stroker->pen,
159 							 out_vector);
160 	if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_cw,
161 				  out_vector) > 0)
162 	{
163 	    stop = range_step (stop, 1, stroker->pen.num_vertices);
164 	    if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_ccw,
165 				      in_vector) < 0)
166 		return;
167 	}
168 
169 	npoints = start - stop;
170     }
171     stop = range_step (stop, step, stroker->pen.num_vertices);
172     if (npoints < 0)
173 	npoints += stroker->pen.num_vertices;
174     if (npoints <= 1)
175 	return;
176 
177     for (i = start;
178 	 i != stop;
179 	i = range_step (i, step, stroker->pen.num_vertices))
180     {
181 	cairo_point_t p = *midpt;
182 	translate_point (&p, &stroker->pen.vertices[i].point);
183 	//contour_add_point (stroker, c, &p);
184     }
185 }
186 
187 static int
join_is_clockwise(const cairo_stroke_face_t * in,const cairo_stroke_face_t * out)188 join_is_clockwise (const cairo_stroke_face_t *in,
189 		   const cairo_stroke_face_t *out)
190 {
191     return _cairo_slope_compare (&in->dev_vector, &out->dev_vector) < 0;
192 }
193 
194 static void
inner_join(struct stroker * stroker,const cairo_stroke_face_t * in,const cairo_stroke_face_t * out,int clockwise)195 inner_join (struct stroker *stroker,
196 	    const cairo_stroke_face_t *in,
197 	    const cairo_stroke_face_t *out,
198 	    int clockwise)
199 {
200     const cairo_point_t *outpt;
201 
202     if (clockwise) {
203 	outpt = &out->ccw;
204     } else {
205 	outpt = &out->cw;
206     }
207     //contour_add_point (stroker, inner, &in->point);
208     //contour_add_point (stroker, inner, outpt);
209 }
210 
211 static void
inner_close(struct stroker * stroker,const cairo_stroke_face_t * in,cairo_stroke_face_t * out)212 inner_close (struct stroker *stroker,
213 	     const cairo_stroke_face_t *in,
214 	     cairo_stroke_face_t *out)
215 {
216     const cairo_point_t *inpt;
217 
218     if (join_is_clockwise (in, out)) {
219 	inpt = &out->ccw;
220     } else {
221 	inpt = &out->cw;
222     }
223 
224     //contour_add_point (stroker, inner, &in->point);
225     //contour_add_point (stroker, inner, inpt);
226     //*_cairo_contour_first_point (&inner->contour) =
227 	//*_cairo_contour_last_point (&inner->contour);
228 }
229 
230 static void
outer_close(struct stroker * stroker,const cairo_stroke_face_t * in,const cairo_stroke_face_t * out)231 outer_close (struct stroker *stroker,
232 	     const cairo_stroke_face_t *in,
233 	     const cairo_stroke_face_t *out)
234 {
235     const cairo_point_t	*inpt, *outpt;
236     int	clockwise;
237 
238     if (in->cw.x == out->cw.x && in->cw.y == out->cw.y &&
239 	in->ccw.x == out->ccw.x && in->ccw.y == out->ccw.y)
240     {
241 	return;
242     }
243     clockwise = join_is_clockwise (in, out);
244     if (clockwise) {
245 	inpt = &in->cw;
246 	outpt = &out->cw;
247     } else {
248 	inpt = &in->ccw;
249 	outpt = &out->ccw;
250     }
251 
252     switch (stroker->style.line_join) {
253     case CAIRO_LINE_JOIN_ROUND:
254 	/* construct a fan around the common midpoint */
255 	add_fan (stroker,
256 		 &in->dev_vector,
257 		 &out->dev_vector,
258 		 &in->point, inpt, outpt,
259 		 clockwise);
260 	break;
261 
262     case CAIRO_LINE_JOIN_MITER:
263     default: {
264 	/* dot product of incoming slope vector with outgoing slope vector */
265 	double	in_dot_out = -in->usr_vector.x * out->usr_vector.x +
266 			     -in->usr_vector.y * out->usr_vector.y;
267 	double	ml = stroker->style.miter_limit;
268 
269 	/* Check the miter limit -- lines meeting at an acute angle
270 	 * can generate long miters, the limit converts them to bevel
271 	 *
272 	 * Consider the miter join formed when two line segments
273 	 * meet at an angle psi:
274 	 *
275 	 *	   /.\
276 	 *	  /. .\
277 	 *	 /./ \.\
278 	 *	/./psi\.\
279 	 *
280 	 * We can zoom in on the right half of that to see:
281 	 *
282 	 *	    |\
283 	 *	    | \ psi/2
284 	 *	    |  \
285 	 *	    |   \
286 	 *	    |    \
287 	 *	    |     \
288 	 *	  miter    \
289 	 *	 length     \
290 	 *	    |        \
291 	 *	    |        .\
292 	 *	    |    .     \
293 	 *	    |.   line   \
294 	 *	     \    width  \
295 	 *	      \           \
296 	 *
297 	 *
298 	 * The right triangle in that figure, (the line-width side is
299 	 * shown faintly with three '.' characters), gives us the
300 	 * following expression relating miter length, angle and line
301 	 * width:
302 	 *
303 	 *	1 /sin (psi/2) = miter_length / line_width
304 	 *
305 	 * The right-hand side of this relationship is the same ratio
306 	 * in which the miter limit (ml) is expressed. We want to know
307 	 * when the miter length is within the miter limit. That is
308 	 * when the following condition holds:
309 	 *
310 	 *	1/sin(psi/2) <= ml
311 	 *	1 <= ml sin(psi/2)
312 	 *	1 <= ml² sin²(psi/2)
313 	 *	2 <= ml² 2 sin²(psi/2)
314 	 *				2·sin²(psi/2) = 1-cos(psi)
315 	 *	2 <= ml² (1-cos(psi))
316 	 *
317 	 *				in · out = |in| |out| cos (psi)
318 	 *
319 	 * in and out are both unit vectors, so:
320 	 *
321 	 *				in · out = cos (psi)
322 	 *
323 	 *	2 <= ml² (1 - in · out)
324 	 *
325 	 */
326 	if (2 <= ml * ml * (1 - in_dot_out)) {
327 	    double		x1, y1, x2, y2;
328 	    double		mx, my;
329 	    double		dx1, dx2, dy1, dy2;
330 	    double		ix, iy;
331 	    double		fdx1, fdy1, fdx2, fdy2;
332 	    double		mdx, mdy;
333 
334 	    /*
335 	     * we've got the points already transformed to device
336 	     * space, but need to do some computation with them and
337 	     * also need to transform the slope from user space to
338 	     * device space
339 	     */
340 	    /* outer point of incoming line face */
341 	    x1 = _cairo_fixed_to_double (inpt->x);
342 	    y1 = _cairo_fixed_to_double (inpt->y);
343 	    dx1 = in->usr_vector.x;
344 	    dy1 = in->usr_vector.y;
345 	    cairo_matrix_transform_distance (stroker->ctm, &dx1, &dy1);
346 
347 	    /* outer point of outgoing line face */
348 	    x2 = _cairo_fixed_to_double (outpt->x);
349 	    y2 = _cairo_fixed_to_double (outpt->y);
350 	    dx2 = out->usr_vector.x;
351 	    dy2 = out->usr_vector.y;
352 	    cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2);
353 
354 	    /*
355 	     * Compute the location of the outer corner of the miter.
356 	     * That's pretty easy -- just the intersection of the two
357 	     * outer edges.  We've got slopes and points on each
358 	     * of those edges.  Compute my directly, then compute
359 	     * mx by using the edge with the larger dy; that avoids
360 	     * dividing by values close to zero.
361 	     */
362 	    my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) /
363 		  (dx1 * dy2 - dx2 * dy1));
364 	    if (fabs (dy1) >= fabs (dy2))
365 		mx = (my - y1) * dx1 / dy1 + x1;
366 	    else
367 		mx = (my - y2) * dx2 / dy2 + x2;
368 
369 	    /*
370 	     * When the two outer edges are nearly parallel, slight
371 	     * perturbations in the position of the outer points of the lines
372 	     * caused by representing them in fixed point form can cause the
373 	     * intersection point of the miter to move a large amount. If
374 	     * that moves the miter intersection from between the two faces,
375 	     * then draw a bevel instead.
376 	     */
377 
378 	    ix = _cairo_fixed_to_double (in->point.x);
379 	    iy = _cairo_fixed_to_double (in->point.y);
380 
381 	    /* slope of one face */
382 	    fdx1 = x1 - ix; fdy1 = y1 - iy;
383 
384 	    /* slope of the other face */
385 	    fdx2 = x2 - ix; fdy2 = y2 - iy;
386 
387 	    /* slope from the intersection to the miter point */
388 	    mdx = mx - ix; mdy = my - iy;
389 
390 	    /*
391 	     * Make sure the miter point line lies between the two
392 	     * faces by comparing the slopes
393 	     */
394 	    if (slope_compare_sgn (fdx1, fdy1, mdx, mdy) !=
395 		slope_compare_sgn (fdx2, fdy2, mdx, mdy))
396 	    {
397 		cairo_point_t p;
398 
399 		p.x = _cairo_fixed_from_double (mx);
400 		p.y = _cairo_fixed_from_double (my);
401 
402 		//*_cairo_contour_last_point (&outer->contour) = p;
403 		//*_cairo_contour_first_point (&outer->contour) = p;
404 		return;
405 	    }
406 	}
407 	break;
408     }
409 
410     case CAIRO_LINE_JOIN_BEVEL:
411 	break;
412     }
413     //contour_add_point (stroker, outer, outpt);
414 }
415 
416 static void
outer_join(struct stroker * stroker,const cairo_stroke_face_t * in,const cairo_stroke_face_t * out,int clockwise)417 outer_join (struct stroker *stroker,
418 	    const cairo_stroke_face_t *in,
419 	    const cairo_stroke_face_t *out,
420 	    int clockwise)
421 {
422     const cairo_point_t	*inpt, *outpt;
423 
424     if (in->cw.x == out->cw.x && in->cw.y == out->cw.y &&
425 	in->ccw.x == out->ccw.x && in->ccw.y == out->ccw.y)
426     {
427 	return;
428     }
429     if (clockwise) {
430 	inpt = &in->cw;
431 	outpt = &out->cw;
432     } else {
433 	inpt = &in->ccw;
434 	outpt = &out->ccw;
435     }
436 
437     switch (stroker->style.line_join) {
438     case CAIRO_LINE_JOIN_ROUND:
439 	/* construct a fan around the common midpoint */
440 	add_fan (stroker,
441 		 &in->dev_vector,
442 		 &out->dev_vector,
443 		 &in->point, inpt, outpt,
444 		 clockwise);
445 	break;
446 
447     case CAIRO_LINE_JOIN_MITER:
448     default: {
449 	/* dot product of incoming slope vector with outgoing slope vector */
450 	double	in_dot_out = -in->usr_vector.x * out->usr_vector.x +
451 			     -in->usr_vector.y * out->usr_vector.y;
452 	double	ml = stroker->style.miter_limit;
453 
454 	/* Check the miter limit -- lines meeting at an acute angle
455 	 * can generate long miters, the limit converts them to bevel
456 	 *
457 	 * Consider the miter join formed when two line segments
458 	 * meet at an angle psi:
459 	 *
460 	 *	   /.\
461 	 *	  /. .\
462 	 *	 /./ \.\
463 	 *	/./psi\.\
464 	 *
465 	 * We can zoom in on the right half of that to see:
466 	 *
467 	 *	    |\
468 	 *	    | \ psi/2
469 	 *	    |  \
470 	 *	    |   \
471 	 *	    |    \
472 	 *	    |     \
473 	 *	  miter    \
474 	 *	 length     \
475 	 *	    |        \
476 	 *	    |        .\
477 	 *	    |    .     \
478 	 *	    |.   line   \
479 	 *	     \    width  \
480 	 *	      \           \
481 	 *
482 	 *
483 	 * The right triangle in that figure, (the line-width side is
484 	 * shown faintly with three '.' characters), gives us the
485 	 * following expression relating miter length, angle and line
486 	 * width:
487 	 *
488 	 *	1 /sin (psi/2) = miter_length / line_width
489 	 *
490 	 * The right-hand side of this relationship is the same ratio
491 	 * in which the miter limit (ml) is expressed. We want to know
492 	 * when the miter length is within the miter limit. That is
493 	 * when the following condition holds:
494 	 *
495 	 *	1/sin(psi/2) <= ml
496 	 *	1 <= ml sin(psi/2)
497 	 *	1 <= ml² sin²(psi/2)
498 	 *	2 <= ml² 2 sin²(psi/2)
499 	 *				2·sin²(psi/2) = 1-cos(psi)
500 	 *	2 <= ml² (1-cos(psi))
501 	 *
502 	 *				in · out = |in| |out| cos (psi)
503 	 *
504 	 * in and out are both unit vectors, so:
505 	 *
506 	 *				in · out = cos (psi)
507 	 *
508 	 *	2 <= ml² (1 - in · out)
509 	 *
510 	 */
511 	if (2 <= ml * ml * (1 - in_dot_out)) {
512 	    double		x1, y1, x2, y2;
513 	    double		mx, my;
514 	    double		dx1, dx2, dy1, dy2;
515 	    double		ix, iy;
516 	    double		fdx1, fdy1, fdx2, fdy2;
517 	    double		mdx, mdy;
518 
519 	    /*
520 	     * we've got the points already transformed to device
521 	     * space, but need to do some computation with them and
522 	     * also need to transform the slope from user space to
523 	     * device space
524 	     */
525 	    /* outer point of incoming line face */
526 	    x1 = _cairo_fixed_to_double (inpt->x);
527 	    y1 = _cairo_fixed_to_double (inpt->y);
528 	    dx1 = in->usr_vector.x;
529 	    dy1 = in->usr_vector.y;
530 	    cairo_matrix_transform_distance (stroker->ctm, &dx1, &dy1);
531 
532 	    /* outer point of outgoing line face */
533 	    x2 = _cairo_fixed_to_double (outpt->x);
534 	    y2 = _cairo_fixed_to_double (outpt->y);
535 	    dx2 = out->usr_vector.x;
536 	    dy2 = out->usr_vector.y;
537 	    cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2);
538 
539 	    /*
540 	     * Compute the location of the outer corner of the miter.
541 	     * That's pretty easy -- just the intersection of the two
542 	     * outer edges.  We've got slopes and points on each
543 	     * of those edges.  Compute my directly, then compute
544 	     * mx by using the edge with the larger dy; that avoids
545 	     * dividing by values close to zero.
546 	     */
547 	    my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) /
548 		  (dx1 * dy2 - dx2 * dy1));
549 	    if (fabs (dy1) >= fabs (dy2))
550 		mx = (my - y1) * dx1 / dy1 + x1;
551 	    else
552 		mx = (my - y2) * dx2 / dy2 + x2;
553 
554 	    /*
555 	     * When the two outer edges are nearly parallel, slight
556 	     * perturbations in the position of the outer points of the lines
557 	     * caused by representing them in fixed point form can cause the
558 	     * intersection point of the miter to move a large amount. If
559 	     * that moves the miter intersection from between the two faces,
560 	     * then draw a bevel instead.
561 	     */
562 
563 	    ix = _cairo_fixed_to_double (in->point.x);
564 	    iy = _cairo_fixed_to_double (in->point.y);
565 
566 	    /* slope of one face */
567 	    fdx1 = x1 - ix; fdy1 = y1 - iy;
568 
569 	    /* slope of the other face */
570 	    fdx2 = x2 - ix; fdy2 = y2 - iy;
571 
572 	    /* slope from the intersection to the miter point */
573 	    mdx = mx - ix; mdy = my - iy;
574 
575 	    /*
576 	     * Make sure the miter point line lies between the two
577 	     * faces by comparing the slopes
578 	     */
579 	    if (slope_compare_sgn (fdx1, fdy1, mdx, mdy) !=
580 		slope_compare_sgn (fdx2, fdy2, mdx, mdy))
581 	    {
582 		cairo_point_t p;
583 
584 		p.x = _cairo_fixed_from_double (mx);
585 		p.y = _cairo_fixed_from_double (my);
586 
587 		//*_cairo_contour_last_point (&outer->contour) = p;
588 		return;
589 	    }
590 	}
591 	break;
592     }
593 
594     case CAIRO_LINE_JOIN_BEVEL:
595 	break;
596     }
597     //contour_add_point (stroker,outer, outpt);
598 }
599 
600 static void
add_cap(struct stroker * stroker,const cairo_stroke_face_t * f)601 add_cap (struct stroker *stroker,
602 	 const cairo_stroke_face_t *f)
603 {
604     switch (stroker->style.line_cap) {
605     case CAIRO_LINE_CAP_ROUND: {
606 	cairo_slope_t slope;
607 
608 	slope.dx = -f->dev_vector.dx;
609 	slope.dy = -f->dev_vector.dy;
610 
611 	add_fan (stroker, &f->dev_vector, &slope,
612 		 &f->point, &f->ccw, &f->cw,
613 		 FALSE);
614 	break;
615     }
616 
617     case CAIRO_LINE_CAP_SQUARE: {
618 	double dx, dy;
619 	cairo_slope_t	fvector;
620 	cairo_point_t	quad[4];
621 
622 	dx = f->usr_vector.x;
623 	dy = f->usr_vector.y;
624 	dx *= stroker->style.line_width / 2.0;
625 	dy *= stroker->style.line_width / 2.0;
626 	cairo_matrix_transform_distance (stroker->ctm, &dx, &dy);
627 	fvector.dx = _cairo_fixed_from_double (dx);
628 	fvector.dy = _cairo_fixed_from_double (dy);
629 
630 	quad[0] = f->ccw;
631 	quad[1].x = f->ccw.x + fvector.dx;
632 	quad[1].y = f->ccw.y + fvector.dy;
633 	quad[2].x = f->cw.x + fvector.dx;
634 	quad[2].y = f->cw.y + fvector.dy;
635 	quad[3] = f->cw;
636 
637 	//contour_add_point (stroker, c, &quad[1]);
638 	//contour_add_point (stroker, c, &quad[2]);
639     }
640 
641     case CAIRO_LINE_CAP_BUTT:
642     default:
643 	break;
644     }
645     //contour_add_point (stroker, c, &f->cw);
646 }
647 
648 static void
add_leading_cap(struct stroker * stroker,const cairo_stroke_face_t * face)649 add_leading_cap (struct stroker *stroker,
650 		 const cairo_stroke_face_t *face)
651 {
652     cairo_stroke_face_t reversed;
653     cairo_point_t t;
654 
655     reversed = *face;
656 
657     /* The initial cap needs an outward facing vector. Reverse everything */
658     reversed.usr_vector.x = -reversed.usr_vector.x;
659     reversed.usr_vector.y = -reversed.usr_vector.y;
660     reversed.dev_vector.dx = -reversed.dev_vector.dx;
661     reversed.dev_vector.dy = -reversed.dev_vector.dy;
662 
663     t = reversed.cw;
664     reversed.cw = reversed.ccw;
665     reversed.ccw = t;
666 
667     add_cap (stroker, &reversed);
668 }
669 
670 static void
add_trailing_cap(struct stroker * stroker,const cairo_stroke_face_t * face)671 add_trailing_cap (struct stroker *stroker,
672 		  const cairo_stroke_face_t *face)
673 {
674     add_cap (stroker, face);
675 }
676 
677 static inline double
normalize_slope(double * dx,double * dy)678 normalize_slope (double *dx, double *dy)
679 {
680     double dx0 = *dx, dy0 = *dy;
681     double mag;
682 
683     assert (dx0 != 0.0 || dy0 != 0.0);
684 
685     if (dx0 == 0.0) {
686 	*dx = 0.0;
687 	if (dy0 > 0.0) {
688 	    mag = dy0;
689 	    *dy = 1.0;
690 	} else {
691 	    mag = -dy0;
692 	    *dy = -1.0;
693 	}
694     } else if (dy0 == 0.0) {
695 	*dy = 0.0;
696 	if (dx0 > 0.0) {
697 	    mag = dx0;
698 	    *dx = 1.0;
699 	} else {
700 	    mag = -dx0;
701 	    *dx = -1.0;
702 	}
703     } else {
704 	mag = hypot (dx0, dy0);
705 	*dx = dx0 / mag;
706 	*dy = dy0 / mag;
707     }
708 
709     return mag;
710 }
711 
712 static void
compute_face(const cairo_point_t * point,const cairo_slope_t * dev_slope,struct stroker * stroker,cairo_stroke_face_t * face)713 compute_face (const cairo_point_t *point,
714 	      const cairo_slope_t *dev_slope,
715 	      struct stroker *stroker,
716 	      cairo_stroke_face_t *face)
717 {
718     double face_dx, face_dy;
719     cairo_point_t offset_ccw, offset_cw;
720     double slope_dx, slope_dy;
721 
722     slope_dx = _cairo_fixed_to_double (dev_slope->dx);
723     slope_dy = _cairo_fixed_to_double (dev_slope->dy);
724     face->length = normalize_slope (&slope_dx, &slope_dy);
725     face->dev_slope.x = slope_dx;
726     face->dev_slope.y = slope_dy;
727 
728     /*
729      * rotate to get a line_width/2 vector along the face, note that
730      * the vector must be rotated the right direction in device space,
731      * but by 90° in user space. So, the rotation depends on
732      * whether the ctm reflects or not, and that can be determined
733      * by looking at the determinant of the matrix.
734      */
735     if (! _cairo_matrix_is_identity (stroker->ctm_inverse)) {
736 	/* Normalize the matrix! */
737 	cairo_matrix_transform_distance (stroker->ctm_inverse,
738 					 &slope_dx, &slope_dy);
739 	normalize_slope (&slope_dx, &slope_dy);
740 
741 	if (stroker->ctm_det_positive) {
742 	    face_dx = - slope_dy * (stroker->style.line_width / 2.0);
743 	    face_dy = slope_dx * (stroker->style.line_width / 2.0);
744 	} else {
745 	    face_dx = slope_dy * (stroker->style.line_width / 2.0);
746 	    face_dy = - slope_dx * (stroker->style.line_width / 2.0);
747 	}
748 
749 	/* back to device space */
750 	cairo_matrix_transform_distance (stroker->ctm, &face_dx, &face_dy);
751     } else {
752 	face_dx = - slope_dy * (stroker->style.line_width / 2.0);
753 	face_dy = slope_dx * (stroker->style.line_width / 2.0);
754     }
755 
756     offset_ccw.x = _cairo_fixed_from_double (face_dx);
757     offset_ccw.y = _cairo_fixed_from_double (face_dy);
758     offset_cw.x = -offset_ccw.x;
759     offset_cw.y = -offset_ccw.y;
760 
761     face->ccw = *point;
762     translate_point (&face->ccw, &offset_ccw);
763 
764     face->point = *point;
765 
766     face->cw = *point;
767     translate_point (&face->cw, &offset_cw);
768 
769     face->usr_vector.x = slope_dx;
770     face->usr_vector.y = slope_dy;
771 
772     face->dev_vector = *dev_slope;
773 }
774 
775 static void
add_caps(struct stroker * stroker)776 add_caps (struct stroker *stroker)
777 {
778     /* check for a degenerative sub_path */
779     if (stroker->has_sub_path &&
780 	! stroker->has_first_face &&
781 	! stroker->has_current_face &&
782 	stroker->style.line_cap == CAIRO_LINE_CAP_ROUND)
783     {
784 	/* pick an arbitrary slope to use */
785 	cairo_slope_t slope = { CAIRO_FIXED_ONE, 0 };
786 	cairo_stroke_face_t face;
787 
788 	/* arbitrarily choose first_point */
789 	compute_face (&stroker->first_point, &slope, stroker, &face);
790 
791 	add_leading_cap (stroker, &face);
792 	add_trailing_cap (stroker, &face);
793 
794 	/* ensure the circle is complete */
795 	//_cairo_contour_add_point (&stroker->ccw.contour,
796 				  //_cairo_contour_first_point (&stroker->ccw.contour));
797     } else {
798 	if (stroker->has_current_face)
799 	    add_trailing_cap (stroker, &stroker->current_face);
800 
801 	//_cairo_polygon_add_contour (stroker->polygon, &stroker->ccw.contour);
802 	//_cairo_contour_reset (&stroker->ccw.contour);
803 
804 	if (stroker->has_first_face) {
805 	    //_cairo_contour_add_point (&stroker->ccw.contour,
806 				      //&stroker->first_face.cw);
807 	    add_leading_cap (stroker, &stroker->first_face);
808 	    //_cairo_polygon_add_contour (stroker->polygon,
809 					//&stroker->ccw.contour);
810 	    //_cairo_contour_reset (&stroker->ccw.contour);
811 	}
812     }
813 }
814 
815 static cairo_status_t
move_to(void * closure,const cairo_point_t * point)816 move_to (void *closure,
817 	 const cairo_point_t *point)
818 {
819     struct stroker *stroker = closure;
820 
821     /* Cap the start and end of the previous sub path as needed */
822     add_caps (stroker);
823 
824     stroker->has_first_face = FALSE;
825     stroker->has_current_face = FALSE;
826     stroker->has_sub_path = FALSE;
827 
828     stroker->first_point = *point;
829 
830     stroker->current_face.point = *point;
831 
832     return CAIRO_STATUS_SUCCESS;
833 }
834 
835 static cairo_status_t
line_to(void * closure,const cairo_point_t * point)836 line_to (void *closure,
837 	 const cairo_point_t *point)
838 {
839     struct stroker *stroker = closure;
840     cairo_stroke_face_t start;
841     cairo_point_t *p1 = &stroker->current_face.point;
842     cairo_slope_t dev_slope;
843 
844     stroker->has_sub_path = TRUE;
845 
846     if (p1->x == point->x && p1->y == point->y)
847 	return CAIRO_STATUS_SUCCESS;
848 
849     _cairo_slope_init (&dev_slope, p1, point);
850     compute_face (p1, &dev_slope, stroker, &start);
851 
852     if (stroker->has_current_face) {
853 	int clockwise = join_is_clockwise (&stroker->current_face, &start);
854 	/* Join with final face from previous segment */
855 	outer_join (stroker, &stroker->current_face, &start, clockwise);
856 	inner_join (stroker, &stroker->current_face, &start, clockwise);
857     } else {
858 	if (! stroker->has_first_face) {
859 	    /* Save sub path's first face in case needed for closing join */
860 	    stroker->first_face = start;
861 	    _cairo_tristrip_move_to (stroker->strip, &start.cw);
862 	    stroker->has_first_face = TRUE;
863 	}
864 	stroker->has_current_face = TRUE;
865 
866 	_cairo_tristrip_add_point (stroker->strip, &start.cw);
867 	_cairo_tristrip_add_point (stroker->strip, &start.ccw);
868     }
869 
870     stroker->current_face = start;
871     stroker->current_face.point = *point;
872     stroker->current_face.ccw.x += dev_slope.dx;
873     stroker->current_face.ccw.y += dev_slope.dy;
874     stroker->current_face.cw.x += dev_slope.dx;
875     stroker->current_face.cw.y += dev_slope.dy;
876 
877     _cairo_tristrip_add_point (stroker->strip, &stroker->current_face.cw);
878     _cairo_tristrip_add_point (stroker->strip, &stroker->current_face.ccw);
879 
880     return CAIRO_STATUS_SUCCESS;
881 }
882 
883 static cairo_status_t
spline_to(void * closure,const cairo_point_t * point,const cairo_slope_t * tangent)884 spline_to (void *closure,
885 	   const cairo_point_t *point,
886 	   const cairo_slope_t *tangent)
887 {
888     struct stroker *stroker = closure;
889     cairo_stroke_face_t face;
890 
891     if (tangent->dx == 0 && tangent->dy == 0) {
892 	const cairo_point_t *inpt, *outpt;
893 	cairo_point_t t;
894 	int clockwise;
895 
896 	face = stroker->current_face;
897 
898 	face.usr_vector.x = -face.usr_vector.x;
899 	face.usr_vector.y = -face.usr_vector.y;
900 	face.dev_vector.dx = -face.dev_vector.dx;
901 	face.dev_vector.dy = -face.dev_vector.dy;
902 
903 	t = face.cw;
904 	face.cw = face.ccw;
905 	face.ccw = t;
906 
907 	clockwise = join_is_clockwise (&stroker->current_face, &face);
908 	if (clockwise) {
909 	    inpt = &stroker->current_face.cw;
910 	    outpt = &face.cw;
911 	} else {
912 	    inpt = &stroker->current_face.ccw;
913 	    outpt = &face.ccw;
914 	}
915 
916 	add_fan (stroker,
917 		 &stroker->current_face.dev_vector,
918 		 &face.dev_vector,
919 		 &stroker->current_face.point, inpt, outpt,
920 		 clockwise);
921     } else {
922 	compute_face (point, tangent, stroker, &face);
923 
924 	if (face.dev_slope.x * stroker->current_face.dev_slope.x +
925 	    face.dev_slope.y * stroker->current_face.dev_slope.y < 0)
926 	{
927 	    const cairo_point_t *inpt, *outpt;
928 	    int clockwise = join_is_clockwise (&stroker->current_face, &face);
929 
930 	    stroker->current_face.cw.x += face.point.x - stroker->current_face.point.x;
931 	    stroker->current_face.cw.y += face.point.y - stroker->current_face.point.y;
932 	    //contour_add_point (stroker, &stroker->cw, &stroker->current_face.cw);
933 
934 	    stroker->current_face.ccw.x += face.point.x - stroker->current_face.point.x;
935 	    stroker->current_face.ccw.y += face.point.y - stroker->current_face.point.y;
936 	    //contour_add_point (stroker, &stroker->ccw, &stroker->current_face.ccw);
937 
938 	    if (clockwise) {
939 		inpt = &stroker->current_face.cw;
940 		outpt = &face.cw;
941 	    } else {
942 		inpt = &stroker->current_face.ccw;
943 		outpt = &face.ccw;
944 	    }
945 	    add_fan (stroker,
946 		     &stroker->current_face.dev_vector,
947 		     &face.dev_vector,
948 		     &stroker->current_face.point, inpt, outpt,
949 		     clockwise);
950 	}
951 
952 	_cairo_tristrip_add_point (stroker->strip, &face.cw);
953 	_cairo_tristrip_add_point (stroker->strip, &face.ccw);
954     }
955 
956     stroker->current_face = face;
957 
958     return CAIRO_STATUS_SUCCESS;
959 }
960 
961 static cairo_status_t
curve_to(void * closure,const cairo_point_t * b,const cairo_point_t * c,const cairo_point_t * d)962 curve_to (void *closure,
963 	  const cairo_point_t *b,
964 	  const cairo_point_t *c,
965 	  const cairo_point_t *d)
966 {
967     struct stroker *stroker = closure;
968     cairo_spline_t spline;
969     cairo_stroke_face_t face;
970 
971     if (stroker->has_limits) {
972 	if (! _cairo_spline_intersects (&stroker->current_face.point, b, c, d,
973 					&stroker->limit))
974 	    return line_to (closure, d);
975     }
976 
977     if (! _cairo_spline_init (&spline, spline_to, stroker,
978 			      &stroker->current_face.point, b, c, d))
979 	return line_to (closure, d);
980 
981     compute_face (&stroker->current_face.point, &spline.initial_slope,
982 		  stroker, &face);
983 
984     if (stroker->has_current_face) {
985 	int clockwise = join_is_clockwise (&stroker->current_face, &face);
986 	/* Join with final face from previous segment */
987 	outer_join (stroker, &stroker->current_face, &face, clockwise);
988 	inner_join (stroker, &stroker->current_face, &face, clockwise);
989     } else {
990 	if (! stroker->has_first_face) {
991 	    /* Save sub path's first face in case needed for closing join */
992 	    stroker->first_face = face;
993 	    _cairo_tristrip_move_to (stroker->strip, &face.cw);
994 	    stroker->has_first_face = TRUE;
995 	}
996 	stroker->has_current_face = TRUE;
997 
998 	_cairo_tristrip_add_point (stroker->strip, &face.cw);
999 	_cairo_tristrip_add_point (stroker->strip, &face.ccw);
1000     }
1001     stroker->current_face = face;
1002 
1003     return _cairo_spline_decompose (&spline, stroker->tolerance);
1004 }
1005 
1006 static cairo_status_t
close_path(void * closure)1007 close_path (void *closure)
1008 {
1009     struct stroker *stroker = closure;
1010     cairo_status_t status;
1011 
1012     status = line_to (stroker, &stroker->first_point);
1013     if (unlikely (status))
1014 	return status;
1015 
1016     if (stroker->has_first_face && stroker->has_current_face) {
1017 	/* Join first and final faces of sub path */
1018 	outer_close (stroker, &stroker->current_face, &stroker->first_face);
1019 	inner_close (stroker, &stroker->current_face, &stroker->first_face);
1020     } else {
1021 	/* Cap the start and end of the sub path as needed */
1022 	add_caps (stroker);
1023     }
1024 
1025     stroker->has_sub_path = FALSE;
1026     stroker->has_first_face = FALSE;
1027     stroker->has_current_face = FALSE;
1028 
1029     return CAIRO_STATUS_SUCCESS;
1030 }
1031 
1032 cairo_int_status_t
_cairo_path_fixed_stroke_to_tristrip(const cairo_path_fixed_t * path,const cairo_stroke_style_t * style,const cairo_matrix_t * ctm,const cairo_matrix_t * ctm_inverse,double tolerance,cairo_tristrip_t * strip)1033 _cairo_path_fixed_stroke_to_tristrip (const cairo_path_fixed_t	*path,
1034 				      const cairo_stroke_style_t*style,
1035 				      const cairo_matrix_t	*ctm,
1036 				      const cairo_matrix_t	*ctm_inverse,
1037 				      double			 tolerance,
1038 				      cairo_tristrip_t		 *strip)
1039 {
1040     struct stroker stroker;
1041     cairo_int_status_t status;
1042     int i;
1043 
1044     if (style->num_dashes)
1045 	return CAIRO_INT_STATUS_UNSUPPORTED;
1046 
1047     stroker.style = *style;
1048     stroker.ctm = ctm;
1049     stroker.ctm_inverse = ctm_inverse;
1050     stroker.tolerance = tolerance;
1051 
1052     stroker.ctm_det_positive =
1053 	_cairo_matrix_compute_determinant (ctm) >= 0.0;
1054 
1055     status = _cairo_pen_init (&stroker.pen,
1056 		              style->line_width / 2.0,
1057 			      tolerance, ctm);
1058     if (unlikely (status))
1059 	return status;
1060 
1061     if (stroker.pen.num_vertices <= 1)
1062 	return CAIRO_INT_STATUS_NOTHING_TO_DO;
1063 
1064     stroker.has_current_face = FALSE;
1065     stroker.has_first_face = FALSE;
1066     stroker.has_sub_path = FALSE;
1067 
1068     stroker.has_limits = strip->num_limits > 0;
1069     stroker.limit = strip->limits[0];
1070     for (i = 1; i < strip->num_limits; i++)
1071 	_cairo_box_add_box (&stroker.limit, &strip->limits[i]);
1072 
1073     stroker.strip = strip;
1074 
1075     status = _cairo_path_fixed_interpret (path,
1076 					  move_to,
1077 					  line_to,
1078 					  curve_to,
1079 					  close_path,
1080 					  &stroker);
1081     /* Cap the start and end of the final sub path as needed */
1082     if (likely (status == CAIRO_INT_STATUS_SUCCESS))
1083 	add_caps (&stroker);
1084 
1085     _cairo_pen_fini (&stroker.pen);
1086 
1087     return status;
1088 }
1089