1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "config/aom_config.h"
13 #include "config/aom_scale_rtcd.h"
14 
15 #include "aom_dsp/aom_dsp_common.h"
16 #include "aom_mem/aom_mem.h"
17 #include "av1/common/av1_loopfilter.h"
18 #include "av1/common/entropymode.h"
19 #include "av1/common/thread_common.h"
20 #include "av1/common/reconinter.h"
21 
22 // Set up nsync by width.
get_sync_range(int width)23 static INLINE int get_sync_range(int width) {
24   // nsync numbers are picked by testing. For example, for 4k
25   // video, using 4 gives best performance.
26   if (width < 640)
27     return 1;
28   else if (width <= 1280)
29     return 2;
30   else if (width <= 4096)
31     return 4;
32   else
33     return 8;
34 }
35 
36 #if !CONFIG_REALTIME_ONLY
get_lr_sync_range(int width)37 static INLINE int get_lr_sync_range(int width) {
38 #if 0
39   // nsync numbers are picked by testing. For example, for 4k
40   // video, using 4 gives best performance.
41   if (width < 640)
42     return 1;
43   else if (width <= 1280)
44     return 2;
45   else if (width <= 4096)
46     return 4;
47   else
48     return 8;
49 #else
50   (void)width;
51   return 1;
52 #endif
53 }
54 #endif
55 
56 // Allocate memory for lf row synchronization
loop_filter_alloc(AV1LfSync * lf_sync,AV1_COMMON * cm,int rows,int width,int num_workers)57 static void loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows,
58                               int width, int num_workers) {
59   lf_sync->rows = rows;
60 #if CONFIG_MULTITHREAD
61   {
62     int i, j;
63 
64     for (j = 0; j < MAX_MB_PLANE; j++) {
65       CHECK_MEM_ERROR(cm, lf_sync->mutex_[j],
66                       aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows));
67       if (lf_sync->mutex_[j]) {
68         for (i = 0; i < rows; ++i) {
69           pthread_mutex_init(&lf_sync->mutex_[j][i], NULL);
70         }
71       }
72 
73       CHECK_MEM_ERROR(cm, lf_sync->cond_[j],
74                       aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows));
75       if (lf_sync->cond_[j]) {
76         for (i = 0; i < rows; ++i) {
77           pthread_cond_init(&lf_sync->cond_[j][i], NULL);
78         }
79       }
80     }
81 
82     CHECK_MEM_ERROR(cm, lf_sync->job_mutex,
83                     aom_malloc(sizeof(*(lf_sync->job_mutex))));
84     if (lf_sync->job_mutex) {
85       pthread_mutex_init(lf_sync->job_mutex, NULL);
86     }
87   }
88 #endif  // CONFIG_MULTITHREAD
89   CHECK_MEM_ERROR(cm, lf_sync->lfdata,
90                   aom_malloc(num_workers * sizeof(*(lf_sync->lfdata))));
91   lf_sync->num_workers = num_workers;
92 
93   for (int j = 0; j < MAX_MB_PLANE; j++) {
94     CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j],
95                     aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows));
96   }
97   CHECK_MEM_ERROR(
98       cm, lf_sync->job_queue,
99       aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2));
100   // Set up nsync.
101   lf_sync->sync_range = get_sync_range(width);
102 }
103 
104 // Deallocate lf synchronization related mutex and data
av1_loop_filter_dealloc(AV1LfSync * lf_sync)105 void av1_loop_filter_dealloc(AV1LfSync *lf_sync) {
106   if (lf_sync != NULL) {
107     int j;
108 #if CONFIG_MULTITHREAD
109     int i;
110     for (j = 0; j < MAX_MB_PLANE; j++) {
111       if (lf_sync->mutex_[j] != NULL) {
112         for (i = 0; i < lf_sync->rows; ++i) {
113           pthread_mutex_destroy(&lf_sync->mutex_[j][i]);
114         }
115         aom_free(lf_sync->mutex_[j]);
116       }
117       if (lf_sync->cond_[j] != NULL) {
118         for (i = 0; i < lf_sync->rows; ++i) {
119           pthread_cond_destroy(&lf_sync->cond_[j][i]);
120         }
121         aom_free(lf_sync->cond_[j]);
122       }
123     }
124     if (lf_sync->job_mutex != NULL) {
125       pthread_mutex_destroy(lf_sync->job_mutex);
126       aom_free(lf_sync->job_mutex);
127     }
128 #endif  // CONFIG_MULTITHREAD
129     aom_free(lf_sync->lfdata);
130     for (j = 0; j < MAX_MB_PLANE; j++) {
131       aom_free(lf_sync->cur_sb_col[j]);
132     }
133 
134     aom_free(lf_sync->job_queue);
135     // clear the structure as the source of this call may be a resize in which
136     // case this call will be followed by an _alloc() which may fail.
137     av1_zero(*lf_sync);
138   }
139 }
140 
loop_filter_data_reset(LFWorkerData * lf_data,YV12_BUFFER_CONFIG * frame_buffer,struct AV1Common * cm,MACROBLOCKD * xd)141 static void loop_filter_data_reset(LFWorkerData *lf_data,
142                                    YV12_BUFFER_CONFIG *frame_buffer,
143                                    struct AV1Common *cm, MACROBLOCKD *xd) {
144   struct macroblockd_plane *pd = xd->plane;
145   lf_data->frame_buffer = frame_buffer;
146   lf_data->cm = cm;
147   lf_data->xd = xd;
148   for (int i = 0; i < MAX_MB_PLANE; i++) {
149     memcpy(&lf_data->planes[i].dst, &pd[i].dst, sizeof(lf_data->planes[i].dst));
150     lf_data->planes[i].subsampling_x = pd[i].subsampling_x;
151     lf_data->planes[i].subsampling_y = pd[i].subsampling_y;
152   }
153 }
154 
sync_read(AV1LfSync * const lf_sync,int r,int c,int plane)155 static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c,
156                              int plane) {
157 #if CONFIG_MULTITHREAD
158   const int nsync = lf_sync->sync_range;
159 
160   if (r && !(c & (nsync - 1))) {
161     pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1];
162     pthread_mutex_lock(mutex);
163 
164     while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) {
165       pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex);
166     }
167     pthread_mutex_unlock(mutex);
168   }
169 #else
170   (void)lf_sync;
171   (void)r;
172   (void)c;
173   (void)plane;
174 #endif  // CONFIG_MULTITHREAD
175 }
176 
sync_write(AV1LfSync * const lf_sync,int r,int c,const int sb_cols,int plane)177 static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c,
178                               const int sb_cols, int plane) {
179 #if CONFIG_MULTITHREAD
180   const int nsync = lf_sync->sync_range;
181   int cur;
182   // Only signal when there are enough filtered SB for next row to run.
183   int sig = 1;
184 
185   if (c < sb_cols - 1) {
186     cur = c;
187     if (c % nsync) sig = 0;
188   } else {
189     cur = sb_cols + nsync;
190   }
191 
192   if (sig) {
193     pthread_mutex_lock(&lf_sync->mutex_[plane][r]);
194 
195     lf_sync->cur_sb_col[plane][r] = cur;
196 
197     pthread_cond_broadcast(&lf_sync->cond_[plane][r]);
198     pthread_mutex_unlock(&lf_sync->mutex_[plane][r]);
199   }
200 #else
201   (void)lf_sync;
202   (void)r;
203   (void)c;
204   (void)sb_cols;
205   (void)plane;
206 #endif  // CONFIG_MULTITHREAD
207 }
208 
enqueue_lf_jobs(AV1LfSync * lf_sync,AV1_COMMON * cm,int start,int stop,int is_decoding,int plane_start,int plane_end)209 static void enqueue_lf_jobs(AV1LfSync *lf_sync, AV1_COMMON *cm, int start,
210                             int stop,
211 #if CONFIG_LPF_MASK
212                             int is_decoding,
213 #endif
214                             int plane_start, int plane_end) {
215   int mi_row, plane, dir;
216   AV1LfMTInfo *lf_job_queue = lf_sync->job_queue;
217   lf_sync->jobs_enqueued = 0;
218   lf_sync->jobs_dequeued = 0;
219 
220   for (dir = 0; dir < 2; dir++) {
221     for (plane = plane_start; plane < plane_end; plane++) {
222       if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1]))
223         break;
224       else if (plane == 1 && !(cm->lf.filter_level_u))
225         continue;
226       else if (plane == 2 && !(cm->lf.filter_level_v))
227         continue;
228 #if CONFIG_LPF_MASK
229       int step = MAX_MIB_SIZE;
230       if (is_decoding) {
231         step = MI_SIZE_64X64;
232       }
233       for (mi_row = start; mi_row < stop; mi_row += step)
234 #else
235       for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE)
236 #endif
237       {
238         lf_job_queue->mi_row = mi_row;
239         lf_job_queue->plane = plane;
240         lf_job_queue->dir = dir;
241         lf_job_queue++;
242         lf_sync->jobs_enqueued++;
243       }
244     }
245   }
246 }
247 
get_lf_job_info(AV1LfSync * lf_sync)248 static AV1LfMTInfo *get_lf_job_info(AV1LfSync *lf_sync) {
249   AV1LfMTInfo *cur_job_info = NULL;
250 
251 #if CONFIG_MULTITHREAD
252   pthread_mutex_lock(lf_sync->job_mutex);
253 
254   if (lf_sync->jobs_dequeued < lf_sync->jobs_enqueued) {
255     cur_job_info = lf_sync->job_queue + lf_sync->jobs_dequeued;
256     lf_sync->jobs_dequeued++;
257   }
258 
259   pthread_mutex_unlock(lf_sync->job_mutex);
260 #else
261   (void)lf_sync;
262 #endif
263 
264   return cur_job_info;
265 }
266 
267 // Implement row loopfiltering for each thread.
thread_loop_filter_rows(const YV12_BUFFER_CONFIG * const frame_buffer,AV1_COMMON * const cm,struct macroblockd_plane * planes,MACROBLOCKD * xd,AV1LfSync * const lf_sync)268 static INLINE void thread_loop_filter_rows(
269     const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm,
270     struct macroblockd_plane *planes, MACROBLOCKD *xd,
271     AV1LfSync *const lf_sync) {
272   const int sb_cols =
273       ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, MAX_MIB_SIZE_LOG2) >>
274       MAX_MIB_SIZE_LOG2;
275   int mi_row, mi_col, plane, dir;
276   int r, c;
277 
278   while (1) {
279     AV1LfMTInfo *cur_job_info = get_lf_job_info(lf_sync);
280 
281     if (cur_job_info != NULL) {
282       mi_row = cur_job_info->mi_row;
283       plane = cur_job_info->plane;
284       dir = cur_job_info->dir;
285       r = mi_row >> MAX_MIB_SIZE_LOG2;
286 
287       if (dir == 0) {
288         for (mi_col = 0; mi_col < cm->mi_params.mi_cols;
289              mi_col += MAX_MIB_SIZE) {
290           c = mi_col >> MAX_MIB_SIZE_LOG2;
291 
292           av1_setup_dst_planes(planes, cm->seq_params.sb_size, frame_buffer,
293                                mi_row, mi_col, plane, plane + 1);
294 
295           av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row,
296                                       mi_col);
297           sync_write(lf_sync, r, c, sb_cols, plane);
298         }
299       } else if (dir == 1) {
300         for (mi_col = 0; mi_col < cm->mi_params.mi_cols;
301              mi_col += MAX_MIB_SIZE) {
302           c = mi_col >> MAX_MIB_SIZE_LOG2;
303 
304           // Wait for vertical edge filtering of the top-right block to be
305           // completed
306           sync_read(lf_sync, r, c, plane);
307 
308           // Wait for vertical edge filtering of the right block to be
309           // completed
310           sync_read(lf_sync, r + 1, c, plane);
311 
312           av1_setup_dst_planes(planes, cm->seq_params.sb_size, frame_buffer,
313                                mi_row, mi_col, plane, plane + 1);
314           av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row,
315                                       mi_col);
316         }
317       }
318     } else {
319       break;
320     }
321   }
322 }
323 
324 // Row-based multi-threaded loopfilter hook
loop_filter_row_worker(void * arg1,void * arg2)325 static int loop_filter_row_worker(void *arg1, void *arg2) {
326   AV1LfSync *const lf_sync = (AV1LfSync *)arg1;
327   LFWorkerData *const lf_data = (LFWorkerData *)arg2;
328   thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
329                           lf_data->xd, lf_sync);
330   return 1;
331 }
332 
333 #if CONFIG_LPF_MASK
thread_loop_filter_bitmask_rows(const YV12_BUFFER_CONFIG * const frame_buffer,AV1_COMMON * const cm,struct macroblockd_plane * planes,MACROBLOCKD * xd,AV1LfSync * const lf_sync)334 static INLINE void thread_loop_filter_bitmask_rows(
335     const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm,
336     struct macroblockd_plane *planes, MACROBLOCKD *xd,
337     AV1LfSync *const lf_sync) {
338   const int sb_cols =
339       ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, MIN_MIB_SIZE_LOG2) >>
340       MIN_MIB_SIZE_LOG2;
341   int mi_row, mi_col, plane, dir;
342   int r, c;
343   (void)xd;
344 
345   while (1) {
346     AV1LfMTInfo *cur_job_info = get_lf_job_info(lf_sync);
347 
348     if (cur_job_info != NULL) {
349       mi_row = cur_job_info->mi_row;
350       plane = cur_job_info->plane;
351       dir = cur_job_info->dir;
352       r = mi_row >> MIN_MIB_SIZE_LOG2;
353 
354       if (dir == 0) {
355         for (mi_col = 0; mi_col < cm->mi_params.mi_cols;
356              mi_col += MI_SIZE_64X64) {
357           c = mi_col >> MIN_MIB_SIZE_LOG2;
358 
359           av1_setup_dst_planes(planes, BLOCK_64X64, frame_buffer, mi_row,
360                                mi_col, plane, plane + 1);
361 
362           av1_filter_block_plane_bitmask_vert(cm, &planes[plane], plane, mi_row,
363                                               mi_col);
364           sync_write(lf_sync, r, c, sb_cols, plane);
365         }
366       } else if (dir == 1) {
367         for (mi_col = 0; mi_col < cm->mi_params.mi_cols;
368              mi_col += MI_SIZE_64X64) {
369           c = mi_col >> MIN_MIB_SIZE_LOG2;
370 
371           // Wait for vertical edge filtering of the top-right block to be
372           // completed
373           sync_read(lf_sync, r, c, plane);
374 
375           // Wait for vertical edge filtering of the right block to be
376           // completed
377           sync_read(lf_sync, r + 1, c, plane);
378 
379           av1_setup_dst_planes(planes, BLOCK_64X64, frame_buffer, mi_row,
380                                mi_col, plane, plane + 1);
381           av1_filter_block_plane_bitmask_horz(cm, &planes[plane], plane, mi_row,
382                                               mi_col);
383         }
384       }
385     } else {
386       break;
387     }
388   }
389 }
390 
391 // Row-based multi-threaded loopfilter hook
loop_filter_bitmask_row_worker(void * arg1,void * arg2)392 static int loop_filter_bitmask_row_worker(void *arg1, void *arg2) {
393   AV1LfSync *const lf_sync = (AV1LfSync *)arg1;
394   LFWorkerData *const lf_data = (LFWorkerData *)arg2;
395   thread_loop_filter_bitmask_rows(lf_data->frame_buffer, lf_data->cm,
396                                   lf_data->planes, lf_data->xd, lf_sync);
397   return 1;
398 }
399 #endif  // CONFIG_LPF_MASK
400 
loop_filter_rows_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int start,int stop,int plane_start,int plane_end,int is_decoding,AVxWorker * workers,int nworkers,AV1LfSync * lf_sync)401 static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
402                                 MACROBLOCKD *xd, int start, int stop,
403                                 int plane_start, int plane_end,
404 #if CONFIG_LPF_MASK
405                                 int is_decoding,
406 #endif
407                                 AVxWorker *workers, int nworkers,
408                                 AV1LfSync *lf_sync) {
409   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
410 #if CONFIG_LPF_MASK
411   int sb_rows;
412   if (is_decoding) {
413     sb_rows = ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, MIN_MIB_SIZE_LOG2) >>
414               MIN_MIB_SIZE_LOG2;
415   } else {
416     sb_rows = ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, MAX_MIB_SIZE_LOG2) >>
417               MAX_MIB_SIZE_LOG2;
418   }
419 #else
420   // Number of superblock rows and cols
421   const int sb_rows =
422       ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, MAX_MIB_SIZE_LOG2) >>
423       MAX_MIB_SIZE_LOG2;
424 #endif
425   const int num_workers = nworkers;
426   int i;
427 
428   if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
429       num_workers > lf_sync->num_workers) {
430     av1_loop_filter_dealloc(lf_sync);
431     loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers);
432   }
433 
434   // Initialize cur_sb_col to -1 for all SB rows.
435   for (i = 0; i < MAX_MB_PLANE; i++) {
436     memset(lf_sync->cur_sb_col[i], -1,
437            sizeof(*(lf_sync->cur_sb_col[i])) * sb_rows);
438   }
439 
440   enqueue_lf_jobs(lf_sync, cm, start, stop,
441 #if CONFIG_LPF_MASK
442                   is_decoding,
443 #endif
444                   plane_start, plane_end);
445 
446   // Set up loopfilter thread data.
447   for (i = num_workers - 1; i >= 0; --i) {
448     AVxWorker *const worker = &workers[i];
449     LFWorkerData *const lf_data = &lf_sync->lfdata[i];
450 
451 #if CONFIG_LPF_MASK
452     if (is_decoding) {
453       worker->hook = loop_filter_bitmask_row_worker;
454     } else {
455       worker->hook = loop_filter_row_worker;
456     }
457 #else
458     worker->hook = loop_filter_row_worker;
459 #endif
460     worker->data1 = lf_sync;
461     worker->data2 = lf_data;
462 
463     // Loopfilter data
464     loop_filter_data_reset(lf_data, frame, cm, xd);
465 
466     // Start loopfiltering
467     if (i == 0) {
468       winterface->execute(worker);
469     } else {
470       winterface->launch(worker);
471     }
472   }
473 
474   // Wait till all rows are finished
475   for (i = 0; i < num_workers; ++i) {
476     winterface->sync(&workers[i]);
477   }
478 }
479 
av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int plane_start,int plane_end,int partial_frame,int is_decoding,AVxWorker * workers,int num_workers,AV1LfSync * lf_sync)480 void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
481                               MACROBLOCKD *xd, int plane_start, int plane_end,
482                               int partial_frame,
483 #if CONFIG_LPF_MASK
484                               int is_decoding,
485 #endif
486                               AVxWorker *workers, int num_workers,
487                               AV1LfSync *lf_sync) {
488   int start_mi_row, end_mi_row, mi_rows_to_filter;
489 
490   start_mi_row = 0;
491   mi_rows_to_filter = cm->mi_params.mi_rows;
492   if (partial_frame && cm->mi_params.mi_rows > 8) {
493     start_mi_row = cm->mi_params.mi_rows >> 1;
494     start_mi_row &= 0xfffffff8;
495     mi_rows_to_filter = AOMMAX(cm->mi_params.mi_rows / 8, 8);
496   }
497   end_mi_row = start_mi_row + mi_rows_to_filter;
498   av1_loop_filter_frame_init(cm, plane_start, plane_end);
499 
500 #if CONFIG_LPF_MASK
501   if (is_decoding) {
502     cm->is_decoding = is_decoding;
503     // TODO(chengchen): currently use one thread to build bitmasks for the
504     // frame. Make it support multi-thread later.
505     for (int plane = plane_start; plane < plane_end; plane++) {
506       if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1]))
507         break;
508       else if (plane == 1 && !(cm->lf.filter_level_u))
509         continue;
510       else if (plane == 2 && !(cm->lf.filter_level_v))
511         continue;
512 
513       // TODO(chengchen): can we remove this?
514       struct macroblockd_plane *pd = xd->plane;
515       av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame, 0, 0, plane,
516                            plane + 1);
517 
518       av1_build_bitmask_vert_info(cm, &pd[plane], plane);
519       av1_build_bitmask_horz_info(cm, &pd[plane], plane);
520     }
521     loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start,
522                         plane_end, 1, workers, num_workers, lf_sync);
523   } else {
524     loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start,
525                         plane_end, 0, workers, num_workers, lf_sync);
526   }
527 #else
528   loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start,
529                       plane_end, workers, num_workers, lf_sync);
530 #endif
531 }
532 
533 #if !CONFIG_REALTIME_ONLY
lr_sync_read(void * const lr_sync,int r,int c,int plane)534 static INLINE void lr_sync_read(void *const lr_sync, int r, int c, int plane) {
535 #if CONFIG_MULTITHREAD
536   AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
537   const int nsync = loop_res_sync->sync_range;
538 
539   if (r && !(c & (nsync - 1))) {
540     pthread_mutex_t *const mutex = &loop_res_sync->mutex_[plane][r - 1];
541     pthread_mutex_lock(mutex);
542 
543     while (c > loop_res_sync->cur_sb_col[plane][r - 1] - nsync) {
544       pthread_cond_wait(&loop_res_sync->cond_[plane][r - 1], mutex);
545     }
546     pthread_mutex_unlock(mutex);
547   }
548 #else
549   (void)lr_sync;
550   (void)r;
551   (void)c;
552   (void)plane;
553 #endif  // CONFIG_MULTITHREAD
554 }
555 
lr_sync_write(void * const lr_sync,int r,int c,const int sb_cols,int plane)556 static INLINE void lr_sync_write(void *const lr_sync, int r, int c,
557                                  const int sb_cols, int plane) {
558 #if CONFIG_MULTITHREAD
559   AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
560   const int nsync = loop_res_sync->sync_range;
561   int cur;
562   // Only signal when there are enough filtered SB for next row to run.
563   int sig = 1;
564 
565   if (c < sb_cols - 1) {
566     cur = c;
567     if (c % nsync) sig = 0;
568   } else {
569     cur = sb_cols + nsync;
570   }
571 
572   if (sig) {
573     pthread_mutex_lock(&loop_res_sync->mutex_[plane][r]);
574 
575     loop_res_sync->cur_sb_col[plane][r] = cur;
576 
577     pthread_cond_broadcast(&loop_res_sync->cond_[plane][r]);
578     pthread_mutex_unlock(&loop_res_sync->mutex_[plane][r]);
579   }
580 #else
581   (void)lr_sync;
582   (void)r;
583   (void)c;
584   (void)sb_cols;
585   (void)plane;
586 #endif  // CONFIG_MULTITHREAD
587 }
588 
589 // Allocate memory for loop restoration row synchronization
loop_restoration_alloc(AV1LrSync * lr_sync,AV1_COMMON * cm,int num_workers,int num_rows_lr,int num_planes,int width)590 static void loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm,
591                                    int num_workers, int num_rows_lr,
592                                    int num_planes, int width) {
593   lr_sync->rows = num_rows_lr;
594   lr_sync->num_planes = num_planes;
595 #if CONFIG_MULTITHREAD
596   {
597     int i, j;
598 
599     for (j = 0; j < num_planes; j++) {
600       CHECK_MEM_ERROR(cm, lr_sync->mutex_[j],
601                       aom_malloc(sizeof(*(lr_sync->mutex_[j])) * num_rows_lr));
602       if (lr_sync->mutex_[j]) {
603         for (i = 0; i < num_rows_lr; ++i) {
604           pthread_mutex_init(&lr_sync->mutex_[j][i], NULL);
605         }
606       }
607 
608       CHECK_MEM_ERROR(cm, lr_sync->cond_[j],
609                       aom_malloc(sizeof(*(lr_sync->cond_[j])) * num_rows_lr));
610       if (lr_sync->cond_[j]) {
611         for (i = 0; i < num_rows_lr; ++i) {
612           pthread_cond_init(&lr_sync->cond_[j][i], NULL);
613         }
614       }
615     }
616 
617     CHECK_MEM_ERROR(cm, lr_sync->job_mutex,
618                     aom_malloc(sizeof(*(lr_sync->job_mutex))));
619     if (lr_sync->job_mutex) {
620       pthread_mutex_init(lr_sync->job_mutex, NULL);
621     }
622   }
623 #endif  // CONFIG_MULTITHREAD
624   CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata,
625                   aom_malloc(num_workers * sizeof(*(lr_sync->lrworkerdata))));
626 
627   for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) {
628     if (worker_idx < num_workers - 1) {
629       CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rst_tmpbuf,
630                       (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE));
631       CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rlbs,
632                       aom_malloc(sizeof(RestorationLineBuffers)));
633 
634     } else {
635       lr_sync->lrworkerdata[worker_idx].rst_tmpbuf = cm->rst_tmpbuf;
636       lr_sync->lrworkerdata[worker_idx].rlbs = cm->rlbs;
637     }
638   }
639 
640   lr_sync->num_workers = num_workers;
641 
642   for (int j = 0; j < num_planes; j++) {
643     CHECK_MEM_ERROR(
644         cm, lr_sync->cur_sb_col[j],
645         aom_malloc(sizeof(*(lr_sync->cur_sb_col[j])) * num_rows_lr));
646   }
647   CHECK_MEM_ERROR(
648       cm, lr_sync->job_queue,
649       aom_malloc(sizeof(*(lr_sync->job_queue)) * num_rows_lr * num_planes));
650   // Set up nsync.
651   lr_sync->sync_range = get_lr_sync_range(width);
652 }
653 
654 // Deallocate loop restoration synchronization related mutex and data
av1_loop_restoration_dealloc(AV1LrSync * lr_sync,int num_workers)655 void av1_loop_restoration_dealloc(AV1LrSync *lr_sync, int num_workers) {
656   if (lr_sync != NULL) {
657     int j;
658 #if CONFIG_MULTITHREAD
659     int i;
660     for (j = 0; j < MAX_MB_PLANE; j++) {
661       if (lr_sync->mutex_[j] != NULL) {
662         for (i = 0; i < lr_sync->rows; ++i) {
663           pthread_mutex_destroy(&lr_sync->mutex_[j][i]);
664         }
665         aom_free(lr_sync->mutex_[j]);
666       }
667       if (lr_sync->cond_[j] != NULL) {
668         for (i = 0; i < lr_sync->rows; ++i) {
669           pthread_cond_destroy(&lr_sync->cond_[j][i]);
670         }
671         aom_free(lr_sync->cond_[j]);
672       }
673     }
674     if (lr_sync->job_mutex != NULL) {
675       pthread_mutex_destroy(lr_sync->job_mutex);
676       aom_free(lr_sync->job_mutex);
677     }
678 #endif  // CONFIG_MULTITHREAD
679     for (j = 0; j < MAX_MB_PLANE; j++) {
680       aom_free(lr_sync->cur_sb_col[j]);
681     }
682 
683     aom_free(lr_sync->job_queue);
684 
685     if (lr_sync->lrworkerdata) {
686       for (int worker_idx = 0; worker_idx < num_workers - 1; worker_idx++) {
687         LRWorkerData *const workerdata_data =
688             lr_sync->lrworkerdata + worker_idx;
689 
690         aom_free(workerdata_data->rst_tmpbuf);
691         aom_free(workerdata_data->rlbs);
692       }
693       aom_free(lr_sync->lrworkerdata);
694     }
695 
696     // clear the structure as the source of this call may be a resize in which
697     // case this call will be followed by an _alloc() which may fail.
698     av1_zero(*lr_sync);
699   }
700 }
701 
enqueue_lr_jobs(AV1LrSync * lr_sync,AV1LrStruct * lr_ctxt,AV1_COMMON * cm)702 static void enqueue_lr_jobs(AV1LrSync *lr_sync, AV1LrStruct *lr_ctxt,
703                             AV1_COMMON *cm) {
704   FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
705 
706   const int num_planes = av1_num_planes(cm);
707   AV1LrMTInfo *lr_job_queue = lr_sync->job_queue;
708   int32_t lr_job_counter[2], num_even_lr_jobs = 0;
709   lr_sync->jobs_enqueued = 0;
710   lr_sync->jobs_dequeued = 0;
711 
712   for (int plane = 0; plane < num_planes; plane++) {
713     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
714     num_even_lr_jobs =
715         num_even_lr_jobs + ((ctxt[plane].rsi->vert_units_per_tile + 1) >> 1);
716   }
717   lr_job_counter[0] = 0;
718   lr_job_counter[1] = num_even_lr_jobs;
719 
720   for (int plane = 0; plane < num_planes; plane++) {
721     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
722     const int is_uv = plane > 0;
723     const int ss_y = is_uv && cm->seq_params.subsampling_y;
724 
725     AV1PixelRect tile_rect = ctxt[plane].tile_rect;
726     const int unit_size = ctxt[plane].rsi->restoration_unit_size;
727 
728     const int tile_h = tile_rect.bottom - tile_rect.top;
729     const int ext_size = unit_size * 3 / 2;
730 
731     int y0 = 0, i = 0;
732     while (y0 < tile_h) {
733       int remaining_h = tile_h - y0;
734       int h = (remaining_h < ext_size) ? remaining_h : unit_size;
735 
736       RestorationTileLimits limits;
737       limits.v_start = tile_rect.top + y0;
738       limits.v_end = tile_rect.top + y0 + h;
739       assert(limits.v_end <= tile_rect.bottom);
740       // Offset the tile upwards to align with the restoration processing stripe
741       const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
742       limits.v_start = AOMMAX(tile_rect.top, limits.v_start - voffset);
743       if (limits.v_end < tile_rect.bottom) limits.v_end -= voffset;
744 
745       assert(lr_job_counter[0] <= num_even_lr_jobs);
746 
747       lr_job_queue[lr_job_counter[i & 1]].lr_unit_row = i;
748       lr_job_queue[lr_job_counter[i & 1]].plane = plane;
749       lr_job_queue[lr_job_counter[i & 1]].v_start = limits.v_start;
750       lr_job_queue[lr_job_counter[i & 1]].v_end = limits.v_end;
751       lr_job_queue[lr_job_counter[i & 1]].sync_mode = i & 1;
752       if ((i & 1) == 0) {
753         lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
754             limits.v_start + RESTORATION_BORDER;
755         lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
756             limits.v_end - RESTORATION_BORDER;
757         if (i == 0) {
758           assert(limits.v_start == tile_rect.top);
759           lr_job_queue[lr_job_counter[i & 1]].v_copy_start = tile_rect.top;
760         }
761         if (i == (ctxt[plane].rsi->vert_units_per_tile - 1)) {
762           assert(limits.v_end == tile_rect.bottom);
763           lr_job_queue[lr_job_counter[i & 1]].v_copy_end = tile_rect.bottom;
764         }
765       } else {
766         lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
767             AOMMAX(limits.v_start - RESTORATION_BORDER, tile_rect.top);
768         lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
769             AOMMIN(limits.v_end + RESTORATION_BORDER, tile_rect.bottom);
770       }
771       lr_job_counter[i & 1]++;
772       lr_sync->jobs_enqueued++;
773 
774       y0 += h;
775       ++i;
776     }
777   }
778 }
779 
get_lr_job_info(AV1LrSync * lr_sync)780 static AV1LrMTInfo *get_lr_job_info(AV1LrSync *lr_sync) {
781   AV1LrMTInfo *cur_job_info = NULL;
782 
783 #if CONFIG_MULTITHREAD
784   pthread_mutex_lock(lr_sync->job_mutex);
785 
786   if (lr_sync->jobs_dequeued < lr_sync->jobs_enqueued) {
787     cur_job_info = lr_sync->job_queue + lr_sync->jobs_dequeued;
788     lr_sync->jobs_dequeued++;
789   }
790 
791   pthread_mutex_unlock(lr_sync->job_mutex);
792 #else
793   (void)lr_sync;
794 #endif
795 
796   return cur_job_info;
797 }
798 
799 // Implement row loop restoration for each thread.
loop_restoration_row_worker(void * arg1,void * arg2)800 static int loop_restoration_row_worker(void *arg1, void *arg2) {
801   AV1LrSync *const lr_sync = (AV1LrSync *)arg1;
802   LRWorkerData *lrworkerdata = (LRWorkerData *)arg2;
803   AV1LrStruct *lr_ctxt = (AV1LrStruct *)lrworkerdata->lr_ctxt;
804   FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
805   int lr_unit_row;
806   int plane;
807   const int tile_row = LR_TILE_ROW;
808   const int tile_col = LR_TILE_COL;
809   const int tile_cols = LR_TILE_COLS;
810   const int tile_idx = tile_col + tile_row * tile_cols;
811   typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
812                            YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
813                            int vstart, int vend);
814   static const copy_fun copy_funs[3] = { aom_yv12_partial_coloc_copy_y,
815                                          aom_yv12_partial_coloc_copy_u,
816                                          aom_yv12_partial_coloc_copy_v };
817 
818   while (1) {
819     AV1LrMTInfo *cur_job_info = get_lr_job_info(lr_sync);
820     if (cur_job_info != NULL) {
821       RestorationTileLimits limits;
822       sync_read_fn_t on_sync_read;
823       sync_write_fn_t on_sync_write;
824       limits.v_start = cur_job_info->v_start;
825       limits.v_end = cur_job_info->v_end;
826       lr_unit_row = cur_job_info->lr_unit_row;
827       plane = cur_job_info->plane;
828       const int unit_idx0 = tile_idx * ctxt[plane].rsi->units_per_tile;
829 
830       // sync_mode == 1 implies only sync read is required in LR Multi-threading
831       // sync_mode == 0 implies only sync write is required.
832       on_sync_read =
833           cur_job_info->sync_mode == 1 ? lr_sync_read : av1_lr_sync_read_dummy;
834       on_sync_write = cur_job_info->sync_mode == 0 ? lr_sync_write
835                                                    : av1_lr_sync_write_dummy;
836 
837       av1_foreach_rest_unit_in_row(
838           &limits, &(ctxt[plane].tile_rect), lr_ctxt->on_rest_unit, lr_unit_row,
839           ctxt[plane].rsi->restoration_unit_size, unit_idx0,
840           ctxt[plane].rsi->horz_units_per_tile,
841           ctxt[plane].rsi->vert_units_per_tile, plane, &ctxt[plane],
842           lrworkerdata->rst_tmpbuf, lrworkerdata->rlbs, on_sync_read,
843           on_sync_write, lr_sync);
844 
845       copy_funs[plane](lr_ctxt->dst, lr_ctxt->frame, ctxt[plane].tile_rect.left,
846                        ctxt[plane].tile_rect.right, cur_job_info->v_copy_start,
847                        cur_job_info->v_copy_end);
848     } else {
849       break;
850     }
851   }
852   return 1;
853 }
854 
foreach_rest_unit_in_planes_mt(AV1LrStruct * lr_ctxt,AVxWorker * workers,int nworkers,AV1LrSync * lr_sync,AV1_COMMON * cm)855 static void foreach_rest_unit_in_planes_mt(AV1LrStruct *lr_ctxt,
856                                            AVxWorker *workers, int nworkers,
857                                            AV1LrSync *lr_sync, AV1_COMMON *cm) {
858   FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
859 
860   const int num_planes = av1_num_planes(cm);
861 
862   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
863   int num_rows_lr = 0;
864 
865   for (int plane = 0; plane < num_planes; plane++) {
866     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
867 
868     const AV1PixelRect tile_rect = ctxt[plane].tile_rect;
869     const int max_tile_h = tile_rect.bottom - tile_rect.top;
870 
871     const int unit_size = cm->rst_info[plane].restoration_unit_size;
872 
873     num_rows_lr =
874         AOMMAX(num_rows_lr, av1_lr_count_units_in_tile(unit_size, max_tile_h));
875   }
876 
877   const int num_workers = nworkers;
878   int i;
879   assert(MAX_MB_PLANE == 3);
880 
881   if (!lr_sync->sync_range || num_rows_lr != lr_sync->rows ||
882       num_workers > lr_sync->num_workers || num_planes != lr_sync->num_planes) {
883     av1_loop_restoration_dealloc(lr_sync, num_workers);
884     loop_restoration_alloc(lr_sync, cm, num_workers, num_rows_lr, num_planes,
885                            cm->width);
886   }
887 
888   // Initialize cur_sb_col to -1 for all SB rows.
889   for (i = 0; i < num_planes; i++) {
890     memset(lr_sync->cur_sb_col[i], -1,
891            sizeof(*(lr_sync->cur_sb_col[i])) * num_rows_lr);
892   }
893 
894   enqueue_lr_jobs(lr_sync, lr_ctxt, cm);
895 
896   // Set up looprestoration thread data.
897   for (i = num_workers - 1; i >= 0; --i) {
898     AVxWorker *const worker = &workers[i];
899     lr_sync->lrworkerdata[i].lr_ctxt = (void *)lr_ctxt;
900     worker->hook = loop_restoration_row_worker;
901     worker->data1 = lr_sync;
902     worker->data2 = &lr_sync->lrworkerdata[i];
903 
904     // Start loop restoration
905     if (i == 0) {
906       winterface->execute(worker);
907     } else {
908       winterface->launch(worker);
909     }
910   }
911 
912   // Wait till all rows are finished
913   for (i = 0; i < num_workers; ++i) {
914     winterface->sync(&workers[i]);
915   }
916 }
917 
av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,int optimized_lr,AVxWorker * workers,int num_workers,AV1LrSync * lr_sync,void * lr_ctxt)918 void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame,
919                                           AV1_COMMON *cm, int optimized_lr,
920                                           AVxWorker *workers, int num_workers,
921                                           AV1LrSync *lr_sync, void *lr_ctxt) {
922   assert(!cm->features.all_lossless);
923 
924   const int num_planes = av1_num_planes(cm);
925 
926   AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
927 
928   av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
929                                          optimized_lr, num_planes);
930 
931   foreach_rest_unit_in_planes_mt(loop_rest_ctxt, workers, num_workers, lr_sync,
932                                  cm);
933 }
934 #endif
935