1 /*
2  * (c) Copyright 1993, 1994, Silicon Graphics, Inc.
3  * ALL RIGHTS RESERVED
4  * Permission to use, copy, modify, and distribute this software for
5  * any purpose and without fee is hereby granted, provided that the above
6  * copyright notice appear in all copies and that both the copyright notice
7  * and this permission notice appear in supporting documentation, and that
8  * the name of Silicon Graphics, Inc. not be used in advertising
9  * or publicity pertaining to distribution of the software without specific,
10  * written prior permission.
11  *
12  * THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS"
13  * AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
14  * INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
15  * FITNESS FOR A PARTICULAR PURPOSE.  IN NO EVENT SHALL SILICON
16  * GRAPHICS, INC.  BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT,
17  * SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
18  * KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION,
19  * LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF
20  * THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC.  HAS BEEN
21  * ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON
22  * ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
23  * POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE.
24  *
25  * US Government Users Restricted Rights
26  * Use, duplication, or disclosure by the Government is subject to
27  * restrictions set forth in FAR 52.227.19(c)(2) or subparagraph
28  * (c)(1)(ii) of the Rights in Technical Data and Computer Software
29  * clause at DFARS 252.227-7013 and/or in similar or successor
30  * clauses in the FAR or the DOD or NASA FAR Supplement.
31  * Unpublished-- rights reserved under the copyright laws of the
32  * United States.  Contractor/manufacturer is Silicon Graphics,
33  * Inc., 2011 N.  Shoreline Blvd., Mountain View, CA 94039-7311.
34  *
35  * OpenGL(TM) is a trademark of Silicon Graphics, Inc.
36  */
37 /*
38  * Trackball code:
39  *
40  * Implementation of a virtual trackball.
41  * Implemented by Gavin Bell, lots of ideas from Thant Tessman and
42  *   the August '88 issue of Siggraph's "Computer Graphics," pp. 121-129.
43  *
44  * Vector manip code:
45  *
46  * Original code from:
47  * David M. Ciemiewicz, Mark Grossman, Henry Moreton, and Paul Haeberli
48  *
49  * Much mucking with by:
50  * Gavin Bell
51  */
52 #include <math.h>
53 #include "trackball.h"
54 
55 /*
56  * This size should really be based on the distance from the center of
57  * rotation to the point on the object underneath the mouse.  That
58  * point would then track the mouse as closely as possible.  This is a
59  * simple example, though, so that is left as an Exercise for the
60  * Programmer.
61  */
62 #define TRACKBALLSIZE  (0.8)
63 
64 /*
65  * Local function prototypes (not defined in trackball.h)
66  */
67 static float tb_project_to_sphere(float, float, float);
68 static void normalize_quat(float[4]);
69 
vzero(float * v)70 void vzero(float *v)
71 {
72     v[0] = 0.0;
73     v[1] = 0.0;
74     v[2] = 0.0;
75 }
76 
vset(float * v,float x,float y,float z)77 void vset(float *v, float x, float y, float z)
78 {
79     v[0] = x;
80     v[1] = y;
81     v[2] = z;
82 }
83 
vsub(const float * src1,const float * src2,float * dst)84 void vsub(const float *src1, const float *src2, float *dst)
85 {
86     dst[0] = src1[0] - src2[0];
87     dst[1] = src1[1] - src2[1];
88     dst[2] = src1[2] - src2[2];
89 }
90 
vcopy(const float * v1,float * v2)91 void vcopy(const float *v1, float *v2)
92 {
93     register int i;
94     for (i = 0; i < 3; i++)
95 	v2[i] = v1[i];
96 }
97 
vcross(const float * v1,const float * v2,float * cross)98 void vcross(const float *v1, const float *v2, float *cross)
99 {
100     float temp[3];
101 
102     temp[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]);
103     temp[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]);
104     temp[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]);
105     vcopy(temp, cross);
106 }
107 
vlength(const float * v)108 float vlength(const float *v)
109 {
110     return sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
111 }
112 
vscale(float * v,float div)113 void vscale(float *v, float div)
114 {
115     v[0] *= div;
116     v[1] *= div;
117     v[2] *= div;
118 }
119 
vnormal(float * v)120 void vnormal(float *v)
121 {
122     vscale(v, 1.0 / vlength(v));
123 }
124 
vdot(const float * v1,const float * v2)125 float vdot(const float *v1, const float *v2)
126 {
127     return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
128 }
129 
vadd(const float * src1,const float * src2,float * dst)130 void vadd(const float *src1, const float *src2, float *dst)
131 {
132     dst[0] = src1[0] + src2[0];
133     dst[1] = src1[1] + src2[1];
134     dst[2] = src1[2] + src2[2];
135 }
136 
137 /*
138  * Ok, simulate a track-ball.  Project the points onto the virtual
139  * trackball, then figure out the axis of rotation, which is the cross
140  * product of P1 P2 and O P1 (O is the center of the ball, 0,0,0)
141  * Note:  This is a deformed trackball-- is a trackball in the center,
142  * but is deformed into a hyperbolic sheet of rotation away from the
143  * center.  This particular function was chosen after trying out
144  * several variations.
145  *
146  * It is assumed that the arguments to this routine are in the range
147  * (-1.0 ... 1.0)
148  */
trackball(float q[4],float p1x,float p1y,float p2x,float p2y)149 void trackball(float q[4], float p1x, float p1y, float p2x, float p2y)
150 {
151     float a[3];			/* Axis of rotation */
152     float phi;			/* how much to rotate about axis */
153     float p1[3], p2[3], d[3];
154     float t;
155 
156     if (p1x == p2x && p1y == p2y) {
157 	/* Zero rotation */
158 	vzero(q);
159 	q[3] = 1.0;
160 	return;
161     }
162 
163     /*
164      * First, figure out z-coordinates for projection of P1 and P2 to
165      * deformed sphere
166      */
167     vset(p1, p1x, p1y, tb_project_to_sphere(TRACKBALLSIZE, p1x, p1y));
168     vset(p2, p2x, p2y, tb_project_to_sphere(TRACKBALLSIZE, p2x, p2y));
169 
170     /*
171      *  Now, we want the cross product of P1 and P2
172      */
173     vcross(p2, p1, a);
174 
175     /*
176      *  Figure out how much to rotate around that axis.
177      */
178     vsub(p1, p2, d);
179     t = vlength(d) / (2.0 * TRACKBALLSIZE);
180 
181     /*
182      * Avoid problems with out-of-control values...
183      */
184     if (t > 1.0)
185 	t = 1.0;
186     if (t < -1.0)
187 	t = -1.0;
188     phi = 2.0 * asin(t);
189 
190     axis_to_quat(a, phi, q);
191 }
192 
193 /*
194  *  Given an axis and angle, compute quaternion.
195  */
axis_to_quat(float a[3],float phi,float q[4])196 void axis_to_quat(float a[3], float phi, float q[4])
197 {
198     vnormal(a);
199     vcopy(a, q);
200     vscale(q, sin(phi / 2.0));
201     q[3] = cos(phi / 2.0);
202 }
203 
204 /*
205  * Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet
206  * if we are away from the center of the sphere.
207  */
tb_project_to_sphere(float r,float x,float y)208 static float tb_project_to_sphere(float r, float x, float y)
209 {
210     float d, t, z;
211 
212     d = sqrt(x * x + y * y);
213     if (d < r * 0.70710678118654752440) {	/* Inside sphere */
214 	z = sqrt(r * r - d * d);
215     } else {			/* On hyperbola */
216 	t = r / 1.41421356237309504880;
217 	z = t * t / d;
218     }
219     return z;
220 }
221 
222 /*
223  * Given two rotations, e1 and e2, expressed as quaternion rotations,
224  * figure out the equivalent single rotation and stuff it into dest.
225  *
226  * This routine also normalizes the result every RENORMCOUNT times it is
227  * called, to keep error from creeping in.
228  *
229  * NOTE: This routine is written so that q1 or q2 may be the same
230  * as dest (or each other).
231  */
232 
233 #define RENORMCOUNT 97
234 
add_quats(float q1[4],float q2[4],float dest[4])235 void add_quats(float q1[4], float q2[4], float dest[4])
236 {
237     static int count = 0;
238     float t1[4], t2[4], t3[4];
239     float tf[4];
240 
241     vcopy(q1, t1);
242     vscale(t1, q2[3]);
243 
244     vcopy(q2, t2);
245     vscale(t2, q1[3]);
246 
247     vcross(q2, q1, t3);
248     vadd(t1, t2, tf);
249     vadd(t3, tf, tf);
250     tf[3] = q1[3] * q2[3] - vdot(q1, q2);
251 
252     dest[0] = tf[0];
253     dest[1] = tf[1];
254     dest[2] = tf[2];
255     dest[3] = tf[3];
256 
257     if (++count > RENORMCOUNT) {
258 	count = 0;
259 	normalize_quat(dest);
260     }
261 }
262 
263 /*
264  * Quaternions always obey:  a^2 + b^2 + c^2 + d^2 = 1.0
265  * If they don't add up to 1.0, dividing by their magnitued will
266  * renormalize them.
267  *
268  * Note: See the following for more information on quaternions:
269  *
270  * - Shoemake, K., Animating rotation with quaternion curves, Computer
271  *   Graphics 19, No 3 (Proc. SIGGRAPH'85), 245-254, 1985.
272  * - Pletinckx, D., Quaternion calculus as a basic tool in computer
273  *   graphics, The Visual Computer 5, 2-13, 1989.
274  */
normalize_quat(float q[4])275 static void normalize_quat(float q[4])
276 {
277     int i;
278     float mag;
279 
280     mag = (q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]);
281     for (i = 0; i < 4; i++)
282 	q[i] /= mag;
283 }
284 
285 /*
286  * Build a rotation matrix, given a quaternion rotation.
287  *
288  */
build_rotmatrix(float m[4][4],float q[4])289 void build_rotmatrix(float m[4][4], float q[4])
290 {
291     m[0][0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2]);
292     m[0][1] = 2.0 * (q[0] * q[1] - q[2] * q[3]);
293     m[0][2] = 2.0 * (q[2] * q[0] + q[1] * q[3]);
294     m[0][3] = 0.0;
295 
296     m[1][0] = 2.0 * (q[0] * q[1] + q[2] * q[3]);
297     m[1][1] = 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0]);
298     m[1][2] = 2.0 * (q[1] * q[2] - q[0] * q[3]);
299     m[1][3] = 0.0;
300 
301     m[2][0] = 2.0 * (q[2] * q[0] - q[1] * q[3]);
302     m[2][1] = 2.0 * (q[1] * q[2] + q[0] * q[3]);
303     m[2][2] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0]);
304     m[2][3] = 0.0;
305 
306     m[3][0] = 0.0;
307     m[3][1] = 0.0;
308     m[3][2] = 0.0;
309     m[3][3] = 1.0;
310 }
311