1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "compiler/glsl_types.h"
25 #include "loop_analysis.h"
26 #include "ir_hierarchical_visitor.h"
27 
28 static void try_add_loop_terminator(loop_variable_state *ls, ir_if *ir);
29 
30 static bool all_expression_operands_are_loop_constant(ir_rvalue *,
31 						      hash_table *);
32 
33 static ir_rvalue *get_basic_induction_increment(ir_assignment *, hash_table *);
34 
35 /**
36  * Find an initializer of a variable outside a loop
37  *
38  * Works backwards from the loop to find the pre-loop value of the variable.
39  * This is used, for example, to find the initial value of loop induction
40  * variables.
41  *
42  * \param loop  Loop where \c var is an induction variable
43  * \param var   Variable whose initializer is to be found
44  *
45  * \return
46  * The \c ir_rvalue assigned to the variable outside the loop.  May return
47  * \c NULL if no initializer can be found.
48  */
49 static ir_rvalue *
find_initial_value(ir_loop * loop,ir_variable * var)50 find_initial_value(ir_loop *loop, ir_variable *var)
51 {
52    for (exec_node *node = loop->prev; !node->is_head_sentinel();
53         node = node->prev) {
54       ir_instruction *ir = (ir_instruction *) node;
55 
56       switch (ir->ir_type) {
57       case ir_type_call:
58       case ir_type_loop:
59       case ir_type_loop_jump:
60       case ir_type_return:
61       case ir_type_if:
62          return NULL;
63 
64       case ir_type_function:
65       case ir_type_function_signature:
66          assert(!"Should not get here.");
67          return NULL;
68 
69       case ir_type_assignment: {
70          ir_assignment *assign = ir->as_assignment();
71          ir_variable *assignee = assign->lhs->whole_variable_referenced();
72 
73          if (assignee == var)
74             return (assign->condition != NULL) ? NULL : assign->rhs;
75 
76          break;
77       }
78 
79       default:
80          break;
81       }
82    }
83 
84    return NULL;
85 }
86 
87 
88 static int
calculate_iterations(ir_rvalue * from,ir_rvalue * to,ir_rvalue * increment,enum ir_expression_operation op,bool continue_from_then,bool swap_compare_operands,bool inc_before_terminator)89 calculate_iterations(ir_rvalue *from, ir_rvalue *to, ir_rvalue *increment,
90                      enum ir_expression_operation op, bool continue_from_then,
91                      bool swap_compare_operands, bool inc_before_terminator)
92 {
93    if (from == NULL || to == NULL || increment == NULL)
94       return -1;
95 
96    void *mem_ctx = ralloc_context(NULL);
97 
98    ir_expression *const sub =
99       new(mem_ctx) ir_expression(ir_binop_sub, from->type, to, from);
100 
101    ir_expression *const div =
102       new(mem_ctx) ir_expression(ir_binop_div, sub->type, sub, increment);
103 
104    ir_constant *iter = div->constant_expression_value(mem_ctx);
105    if (iter == NULL) {
106       ralloc_free(mem_ctx);
107       return -1;
108    }
109 
110    if (!iter->type->is_integer()) {
111       const ir_expression_operation op = iter->type->is_double()
112          ? ir_unop_d2i : ir_unop_f2i;
113       ir_rvalue *cast =
114          new(mem_ctx) ir_expression(op, glsl_type::int_type, iter, NULL);
115 
116       iter = cast->constant_expression_value(mem_ctx);
117    }
118 
119    int64_t iter_value = iter->get_int64_component(0);
120 
121    /* Code after this block works under assumption that iterator will be
122     * incremented or decremented until it hits the limit,
123     * however the loop condition can be false on the first iteration.
124     * Handle such loops first.
125     */
126    {
127       ir_rvalue *first_value = from;
128       if (inc_before_terminator) {
129          first_value =
130             new(mem_ctx) ir_expression(ir_binop_add, from->type, from, increment);
131       }
132 
133       ir_expression *cmp = swap_compare_operands
134             ? new(mem_ctx) ir_expression(op, glsl_type::bool_type, to, first_value)
135             : new(mem_ctx) ir_expression(op, glsl_type::bool_type, first_value, to);
136       if (continue_from_then)
137          cmp = new(mem_ctx) ir_expression(ir_unop_logic_not, cmp);
138 
139       ir_constant *const cmp_result = cmp->constant_expression_value(mem_ctx);
140       assert(cmp_result != NULL);
141       if (cmp_result->get_bool_component(0)) {
142          ralloc_free(mem_ctx);
143          return 0;
144       }
145    }
146 
147    /* Make sure that the calculated number of iterations satisfies the exit
148     * condition.  This is needed to catch off-by-one errors and some types of
149     * ill-formed loops.  For example, we need to detect that the following
150     * loop does not have a maximum iteration count.
151     *
152     *    for (float x = 0.0; x != 0.9; x += 0.2)
153     *        ;
154     */
155    const int bias[] = { -1, 0, 1 };
156    bool valid_loop = false;
157 
158    for (unsigned i = 0; i < ARRAY_SIZE(bias); i++) {
159       /* Increment may be of type int, uint or float. */
160       switch (increment->type->base_type) {
161       case GLSL_TYPE_INT:
162          iter = new(mem_ctx) ir_constant(int32_t(iter_value + bias[i]));
163          break;
164       case GLSL_TYPE_INT16:
165          iter = new(mem_ctx) ir_constant(int16_t(iter_value + bias[i]));
166          break;
167       case GLSL_TYPE_INT64:
168          iter = new(mem_ctx) ir_constant(int64_t(iter_value + bias[i]));
169          break;
170       case GLSL_TYPE_UINT:
171          iter = new(mem_ctx) ir_constant(unsigned(iter_value + bias[i]));
172          break;
173       case GLSL_TYPE_UINT16:
174          iter = new(mem_ctx) ir_constant(uint16_t(iter_value + bias[i]));
175          break;
176       case GLSL_TYPE_UINT64:
177          iter = new(mem_ctx) ir_constant(uint64_t(iter_value + bias[i]));
178          break;
179       case GLSL_TYPE_FLOAT:
180          iter = new(mem_ctx) ir_constant(float(iter_value + bias[i]));
181          break;
182       case GLSL_TYPE_FLOAT16:
183          iter = new(mem_ctx) ir_constant(float16_t(float(iter_value + bias[i])));
184          break;
185       case GLSL_TYPE_DOUBLE:
186          iter = new(mem_ctx) ir_constant(double(iter_value + bias[i]));
187          break;
188       default:
189           unreachable("Unsupported type for loop iterator.");
190       }
191 
192       ir_expression *const mul =
193          new(mem_ctx) ir_expression(ir_binop_mul, increment->type, iter,
194                                     increment);
195 
196       ir_expression *const add =
197          new(mem_ctx) ir_expression(ir_binop_add, mul->type, mul, from);
198 
199       ir_expression *cmp = swap_compare_operands
200          ? new(mem_ctx) ir_expression(op, glsl_type::bool_type, to, add)
201          : new(mem_ctx) ir_expression(op, glsl_type::bool_type, add, to);
202       if (continue_from_then)
203          cmp = new(mem_ctx) ir_expression(ir_unop_logic_not, cmp);
204 
205       ir_constant *const cmp_result = cmp->constant_expression_value(mem_ctx);
206 
207       assert(cmp_result != NULL);
208       if (cmp_result->get_bool_component(0)) {
209          iter_value += bias[i];
210          valid_loop = true;
211          break;
212       }
213    }
214 
215    ralloc_free(mem_ctx);
216 
217    if (inc_before_terminator) {
218       iter_value--;
219    }
220 
221    return (valid_loop) ? iter_value : -1;
222 }
223 
224 static bool
incremented_before_terminator(ir_loop * loop,ir_variable * var,ir_if * terminator)225 incremented_before_terminator(ir_loop *loop, ir_variable *var,
226                               ir_if *terminator)
227 {
228    for (exec_node *node = loop->body_instructions.get_head();
229         !node->is_tail_sentinel();
230         node = node->get_next()) {
231       ir_instruction *ir = (ir_instruction *) node;
232 
233       switch (ir->ir_type) {
234       case ir_type_if:
235          if (ir->as_if() == terminator)
236             return false;
237          break;
238 
239       case ir_type_assignment: {
240          ir_assignment *assign = ir->as_assignment();
241          ir_variable *assignee = assign->lhs->whole_variable_referenced();
242 
243          if (assignee == var) {
244             assert(assign->condition == NULL);
245             return true;
246          }
247 
248          break;
249       }
250 
251       default:
252          break;
253       }
254    }
255 
256    unreachable("Unable to find induction variable");
257 }
258 
259 /**
260  * Record the fact that the given loop variable was referenced inside the loop.
261  *
262  * \arg in_assignee is true if the reference was on the LHS of an assignment.
263  *
264  * \arg in_conditional_code_or_nested_loop is true if the reference occurred
265  * inside an if statement or a nested loop.
266  *
267  * \arg current_assignment is the ir_assignment node that the loop variable is
268  * on the LHS of, if any (ignored if \c in_assignee is false).
269  */
270 void
record_reference(bool in_assignee,bool in_conditional_code_or_nested_loop,ir_assignment * current_assignment)271 loop_variable::record_reference(bool in_assignee,
272                                 bool in_conditional_code_or_nested_loop,
273                                 ir_assignment *current_assignment)
274 {
275    if (in_assignee) {
276       assert(current_assignment != NULL);
277 
278       if (in_conditional_code_or_nested_loop ||
279           current_assignment->condition != NULL) {
280          this->conditional_or_nested_assignment = true;
281       }
282 
283       if (this->first_assignment == NULL) {
284          assert(this->num_assignments == 0);
285 
286          this->first_assignment = current_assignment;
287       }
288 
289       this->num_assignments++;
290    } else if (this->first_assignment == current_assignment) {
291       /* This catches the case where the variable is used in the RHS of an
292        * assignment where it is also in the LHS.
293        */
294       this->read_before_write = true;
295    }
296 }
297 
298 
loop_state()299 loop_state::loop_state()
300 {
301    this->ht = _mesa_pointer_hash_table_create(NULL);
302    this->mem_ctx = ralloc_context(NULL);
303    this->loop_found = false;
304 }
305 
306 
~loop_state()307 loop_state::~loop_state()
308 {
309    _mesa_hash_table_destroy(this->ht, NULL);
310    ralloc_free(this->mem_ctx);
311 }
312 
313 
314 loop_variable_state *
insert(ir_loop * ir)315 loop_state::insert(ir_loop *ir)
316 {
317    loop_variable_state *ls = new(this->mem_ctx) loop_variable_state;
318 
319    _mesa_hash_table_insert(this->ht, ir, ls);
320    this->loop_found = true;
321 
322    return ls;
323 }
324 
325 
326 loop_variable_state *
get(const ir_loop * ir)327 loop_state::get(const ir_loop *ir)
328 {
329    hash_entry *entry = _mesa_hash_table_search(this->ht, ir);
330    return entry ? (loop_variable_state *) entry->data : NULL;
331 }
332 
333 
334 loop_variable *
get(const ir_variable * ir)335 loop_variable_state::get(const ir_variable *ir)
336 {
337    if (ir == NULL)
338       return NULL;
339 
340    hash_entry *entry = _mesa_hash_table_search(this->var_hash, ir);
341    return entry ? (loop_variable *) entry->data : NULL;
342 }
343 
344 
345 loop_variable *
insert(ir_variable * var)346 loop_variable_state::insert(ir_variable *var)
347 {
348    void *mem_ctx = ralloc_parent(this);
349    loop_variable *lv = rzalloc(mem_ctx, loop_variable);
350 
351    lv->var = var;
352 
353    _mesa_hash_table_insert(this->var_hash, lv->var, lv);
354    this->variables.push_tail(lv);
355 
356    return lv;
357 }
358 
359 
360 loop_terminator *
insert(ir_if * if_stmt,bool continue_from_then)361 loop_variable_state::insert(ir_if *if_stmt, bool continue_from_then)
362 {
363    void *mem_ctx = ralloc_parent(this);
364    loop_terminator *t = new(mem_ctx) loop_terminator(if_stmt,
365                                                      continue_from_then);
366 
367    this->terminators.push_tail(t);
368 
369    return t;
370 }
371 
372 
373 /**
374  * If the given variable already is recorded in the state for this loop,
375  * return the corresponding loop_variable object that records information
376  * about it.
377  *
378  * Otherwise, create a new loop_variable object to record information about
379  * the variable, and set its \c read_before_write field appropriately based on
380  * \c in_assignee.
381  *
382  * \arg in_assignee is true if this variable was encountered on the LHS of an
383  * assignment.
384  */
385 loop_variable *
get_or_insert(ir_variable * var,bool in_assignee)386 loop_variable_state::get_or_insert(ir_variable *var, bool in_assignee)
387 {
388    loop_variable *lv = this->get(var);
389 
390    if (lv == NULL) {
391       lv = this->insert(var);
392       lv->read_before_write = !in_assignee;
393    }
394 
395    return lv;
396 }
397 
398 
399 namespace {
400 
401 class loop_analysis : public ir_hierarchical_visitor {
402 public:
403    loop_analysis(loop_state *loops);
404 
405    virtual ir_visitor_status visit(ir_loop_jump *);
406    virtual ir_visitor_status visit(ir_dereference_variable *);
407 
408    virtual ir_visitor_status visit_enter(ir_call *);
409 
410    virtual ir_visitor_status visit_enter(ir_loop *);
411    virtual ir_visitor_status visit_leave(ir_loop *);
412    virtual ir_visitor_status visit_enter(ir_assignment *);
413    virtual ir_visitor_status visit_leave(ir_assignment *);
414    virtual ir_visitor_status visit_enter(ir_if *);
415    virtual ir_visitor_status visit_leave(ir_if *);
416 
417    loop_state *loops;
418 
419    int if_statement_depth;
420 
421    ir_assignment *current_assignment;
422 
423    exec_list state;
424 };
425 
426 } /* anonymous namespace */
427 
loop_analysis(loop_state * loops)428 loop_analysis::loop_analysis(loop_state *loops)
429    : loops(loops), if_statement_depth(0), current_assignment(NULL)
430 {
431    /* empty */
432 }
433 
434 
435 ir_visitor_status
visit(ir_loop_jump * ir)436 loop_analysis::visit(ir_loop_jump *ir)
437 {
438    (void) ir;
439 
440    assert(!this->state.is_empty());
441 
442    loop_variable_state *const ls =
443       (loop_variable_state *) this->state.get_head();
444 
445    ls->num_loop_jumps++;
446 
447    return visit_continue;
448 }
449 
450 
451 ir_visitor_status
visit_enter(ir_call *)452 loop_analysis::visit_enter(ir_call *)
453 {
454    /* Mark every loop that we're currently analyzing as containing an ir_call
455     * (even those at outer nesting levels).
456     */
457    foreach_in_list(loop_variable_state, ls, &this->state) {
458       ls->contains_calls = true;
459    }
460 
461    return visit_continue_with_parent;
462 }
463 
464 
465 ir_visitor_status
visit(ir_dereference_variable * ir)466 loop_analysis::visit(ir_dereference_variable *ir)
467 {
468    /* If we're not somewhere inside a loop, there's nothing to do.
469     */
470    if (this->state.is_empty())
471       return visit_continue;
472 
473    bool nested = false;
474 
475    foreach_in_list(loop_variable_state, ls, &this->state) {
476       ir_variable *var = ir->variable_referenced();
477       loop_variable *lv = ls->get_or_insert(var, this->in_assignee);
478 
479       lv->record_reference(this->in_assignee,
480                            nested || this->if_statement_depth > 0,
481                            this->current_assignment);
482       nested = true;
483    }
484 
485    return visit_continue;
486 }
487 
488 ir_visitor_status
visit_enter(ir_loop * ir)489 loop_analysis::visit_enter(ir_loop *ir)
490 {
491    loop_variable_state *ls = this->loops->insert(ir);
492    this->state.push_head(ls);
493 
494    return visit_continue;
495 }
496 
497 ir_visitor_status
visit_leave(ir_loop * ir)498 loop_analysis::visit_leave(ir_loop *ir)
499 {
500    loop_variable_state *const ls =
501       (loop_variable_state *) this->state.pop_head();
502 
503    /* Function calls may contain side effects.  These could alter any of our
504     * variables in ways that cannot be known, and may even terminate shader
505     * execution (say, calling discard in the fragment shader).  So we can't
506     * rely on any of our analysis about assignments to variables.
507     *
508     * We could perform some conservative analysis (prove there's no statically
509     * possible assignment, etc.) but it isn't worth it for now; function
510     * inlining will allow us to unroll loops anyway.
511     */
512    if (ls->contains_calls)
513       return visit_continue;
514 
515    foreach_in_list(ir_instruction, node, &ir->body_instructions) {
516       /* Skip over declarations at the start of a loop.
517        */
518       if (node->as_variable())
519 	 continue;
520 
521       ir_if *if_stmt = ((ir_instruction *) node)->as_if();
522 
523       if (if_stmt != NULL)
524          try_add_loop_terminator(ls, if_stmt);
525    }
526 
527 
528    foreach_in_list_safe(loop_variable, lv, &ls->variables) {
529       /* Move variables that are already marked as being loop constant to
530        * a separate list.  These trivially don't need to be tested.
531        */
532       if (lv->is_loop_constant()) {
533 	 lv->remove();
534 	 ls->constants.push_tail(lv);
535       }
536    }
537 
538    /* Each variable assigned in the loop that isn't already marked as being loop
539     * constant might still be loop constant.  The requirements at this point
540     * are:
541     *
542     *    - Variable is written before it is read.
543     *
544     *    - Only one assignment to the variable.
545     *
546     *    - All operands on the RHS of the assignment are also loop constants.
547     *
548     * The last requirement is the reason for the progress loop.  A variable
549     * marked as a loop constant on one pass may allow other variables to be
550     * marked as loop constant on following passes.
551     */
552    bool progress;
553    do {
554       progress = false;
555 
556       foreach_in_list_safe(loop_variable, lv, &ls->variables) {
557 	 if (lv->conditional_or_nested_assignment || (lv->num_assignments > 1))
558 	    continue;
559 
560 	 /* Process the RHS of the assignment.  If all of the variables
561 	  * accessed there are loop constants, then add this
562 	  */
563 	 ir_rvalue *const rhs = lv->first_assignment->rhs;
564 	 if (all_expression_operands_are_loop_constant(rhs, ls->var_hash)) {
565 	    lv->rhs_clean = true;
566 
567 	    if (lv->is_loop_constant()) {
568 	       progress = true;
569 
570 	       lv->remove();
571 	       ls->constants.push_tail(lv);
572 	    }
573 	 }
574       }
575    } while (progress);
576 
577    /* The remaining variables that are not loop invariant might be loop
578     * induction variables.
579     */
580    foreach_in_list_safe(loop_variable, lv, &ls->variables) {
581       /* If there is more than one assignment to a variable, it cannot be a
582        * loop induction variable.  This isn't strictly true, but this is a
583        * very simple induction variable detector, and it can't handle more
584        * complex cases.
585        */
586       if (lv->num_assignments > 1)
587 	 continue;
588 
589       /* All of the variables with zero assignments in the loop are loop
590        * invariant, and they should have already been filtered out.
591        */
592       assert(lv->num_assignments == 1);
593       assert(lv->first_assignment != NULL);
594 
595       /* The assignment to the variable in the loop must be unconditional and
596        * not inside a nested loop.
597        */
598       if (lv->conditional_or_nested_assignment)
599 	 continue;
600 
601       /* Basic loop induction variables have a single assignment in the loop
602        * that has the form 'VAR = VAR + i' or 'VAR = VAR - i' where i is a
603        * loop invariant.
604        */
605       ir_rvalue *const inc =
606 	 get_basic_induction_increment(lv->first_assignment, ls->var_hash);
607       if (inc != NULL) {
608 	 lv->increment = inc;
609 
610 	 lv->remove();
611 	 ls->induction_variables.push_tail(lv);
612       }
613    }
614 
615    /* Search the loop terminating conditions for those of the form 'i < c'
616     * where i is a loop induction variable, c is a constant, and < is any
617     * relative operator.  From each of these we can infer an iteration count.
618     * Also figure out which terminator (if any) produces the smallest
619     * iteration count--this is the limiting terminator.
620     */
621    foreach_in_list(loop_terminator, t, &ls->terminators) {
622       ir_if *if_stmt = t->ir;
623 
624       /* If-statements can be either 'if (expr)' or 'if (deref)'.  We only care
625        * about the former here.
626        */
627       ir_expression *cond = if_stmt->condition->as_expression();
628       if (cond == NULL)
629 	 continue;
630 
631       switch (cond->operation) {
632       case ir_binop_less:
633       case ir_binop_gequal: {
634 	 /* The expressions that we care about will either be of the form
635 	  * 'counter < limit' or 'limit < counter'.  Figure out which is
636 	  * which.
637 	  */
638 	 ir_rvalue *counter = cond->operands[0]->as_dereference_variable();
639 	 ir_constant *limit = cond->operands[1]->as_constant();
640 	 enum ir_expression_operation cmp = cond->operation;
641          bool swap_compare_operands = false;
642 
643 	 if (limit == NULL) {
644 	    counter = cond->operands[1]->as_dereference_variable();
645 	    limit = cond->operands[0]->as_constant();
646             swap_compare_operands = true;
647 	 }
648 
649 	 if ((counter == NULL) || (limit == NULL))
650 	    break;
651 
652 	 ir_variable *var = counter->variable_referenced();
653 
654 	 ir_rvalue *init = find_initial_value(ir, var);
655 
656          loop_variable *lv = ls->get(var);
657          if (lv != NULL && lv->is_induction_var()) {
658             bool inc_before_terminator =
659                incremented_before_terminator(ir, var, t->ir);
660 
661             t->iterations = calculate_iterations(init, limit, lv->increment,
662                                                  cmp, t->continue_from_then,
663                                                  swap_compare_operands,
664                                                  inc_before_terminator);
665 
666             if (t->iterations >= 0 &&
667                 (ls->limiting_terminator == NULL ||
668                  t->iterations < ls->limiting_terminator->iterations)) {
669                ls->limiting_terminator = t;
670             }
671          }
672          break;
673       }
674 
675       default:
676          break;
677       }
678    }
679 
680    return visit_continue;
681 }
682 
683 ir_visitor_status
visit_enter(ir_if * ir)684 loop_analysis::visit_enter(ir_if *ir)
685 {
686    (void) ir;
687 
688    if (!this->state.is_empty())
689       this->if_statement_depth++;
690 
691    return visit_continue;
692 }
693 
694 ir_visitor_status
visit_leave(ir_if * ir)695 loop_analysis::visit_leave(ir_if *ir)
696 {
697    (void) ir;
698 
699    if (!this->state.is_empty())
700       this->if_statement_depth--;
701 
702    return visit_continue;
703 }
704 
705 ir_visitor_status
visit_enter(ir_assignment * ir)706 loop_analysis::visit_enter(ir_assignment *ir)
707 {
708    /* If we're not somewhere inside a loop, there's nothing to do.
709     */
710    if (this->state.is_empty())
711       return visit_continue_with_parent;
712 
713    this->current_assignment = ir;
714 
715    return visit_continue;
716 }
717 
718 ir_visitor_status
visit_leave(ir_assignment * ir)719 loop_analysis::visit_leave(ir_assignment *ir)
720 {
721    /* Since the visit_enter exits with visit_continue_with_parent for this
722     * case, the loop state stack should never be empty here.
723     */
724    assert(!this->state.is_empty());
725 
726    assert(this->current_assignment == ir);
727    this->current_assignment = NULL;
728 
729    return visit_continue;
730 }
731 
732 
733 class examine_rhs : public ir_hierarchical_visitor {
734 public:
examine_rhs(hash_table * loop_variables)735    examine_rhs(hash_table *loop_variables)
736    {
737       this->only_uses_loop_constants = true;
738       this->loop_variables = loop_variables;
739    }
740 
visit(ir_dereference_variable * ir)741    virtual ir_visitor_status visit(ir_dereference_variable *ir)
742    {
743       hash_entry *entry = _mesa_hash_table_search(this->loop_variables,
744                                                   ir->var);
745       loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;
746 
747       assert(lv != NULL);
748 
749       if (lv->is_loop_constant()) {
750 	 return visit_continue;
751       } else {
752 	 this->only_uses_loop_constants = false;
753 	 return visit_stop;
754       }
755    }
756 
757    hash_table *loop_variables;
758    bool only_uses_loop_constants;
759 };
760 
761 
762 bool
all_expression_operands_are_loop_constant(ir_rvalue * ir,hash_table * variables)763 all_expression_operands_are_loop_constant(ir_rvalue *ir, hash_table *variables)
764 {
765    examine_rhs v(variables);
766 
767    ir->accept(&v);
768 
769    return v.only_uses_loop_constants;
770 }
771 
772 
773 ir_rvalue *
get_basic_induction_increment(ir_assignment * ir,hash_table * var_hash)774 get_basic_induction_increment(ir_assignment *ir, hash_table *var_hash)
775 {
776    /* The RHS must be a binary expression.
777     */
778    ir_expression *const rhs = ir->rhs->as_expression();
779    if ((rhs == NULL)
780        || ((rhs->operation != ir_binop_add)
781 	   && (rhs->operation != ir_binop_sub)))
782       return NULL;
783 
784    /* One of the of operands of the expression must be the variable assigned.
785     * If the operation is subtraction, the variable in question must be the
786     * "left" operand.
787     */
788    ir_variable *const var = ir->lhs->variable_referenced();
789 
790    ir_variable *const op0 = rhs->operands[0]->variable_referenced();
791    ir_variable *const op1 = rhs->operands[1]->variable_referenced();
792 
793    if (((op0 != var) && (op1 != var))
794        || ((op1 == var) && (rhs->operation == ir_binop_sub)))
795       return NULL;
796 
797    ir_rvalue *inc = (op0 == var) ? rhs->operands[1] : rhs->operands[0];
798 
799    if (inc->as_constant() == NULL) {
800       ir_variable *const inc_var = inc->variable_referenced();
801       if (inc_var != NULL) {
802          hash_entry *entry = _mesa_hash_table_search(var_hash, inc_var);
803          loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;
804 
805          if (lv == NULL || !lv->is_loop_constant()) {
806             assert(lv != NULL);
807             inc = NULL;
808          }
809       } else
810 	 inc = NULL;
811    }
812 
813    if ((inc != NULL) && (rhs->operation == ir_binop_sub)) {
814       void *mem_ctx = ralloc_parent(ir);
815 
816       inc = new(mem_ctx) ir_expression(ir_unop_neg,
817 				       inc->type,
818 				       inc->clone(mem_ctx, NULL),
819 				       NULL);
820    }
821 
822    return inc;
823 }
824 
825 
826 /**
827  * Detect whether an if-statement is a loop terminating condition, if so
828  * add it to the list of loop terminators.
829  *
830  * Detects if-statements of the form
831  *
832  *  (if (expression bool ...) (...then_instrs...break))
833  *
834  *     or
835  *
836  *  (if (expression bool ...) ... (...else_instrs...break))
837  */
838 void
try_add_loop_terminator(loop_variable_state * ls,ir_if * ir)839 try_add_loop_terminator(loop_variable_state *ls, ir_if *ir)
840 {
841    ir_instruction *inst = (ir_instruction *) ir->then_instructions.get_tail();
842    ir_instruction *else_inst =
843       (ir_instruction *) ir->else_instructions.get_tail();
844 
845    if (is_break(inst) || is_break(else_inst))
846       ls->insert(ir, is_break(else_inst));
847 }
848 
849 
850 loop_state *
analyze_loop_variables(exec_list * instructions)851 analyze_loop_variables(exec_list *instructions)
852 {
853    loop_state *loops = new loop_state;
854    loop_analysis v(loops);
855 
856    v.run(instructions);
857    return v.loops;
858 }
859