1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs several transformations to transform natural loops into a
10 // simpler form, which makes subsequent analyses and transformations simpler and
11 // more effective.
12 //
13 // Loop pre-header insertion guarantees that there is a single, non-critical
14 // entry edge from outside of the loop to the loop header.  This simplifies a
15 // number of analyses and transformations, such as LICM.
16 //
17 // Loop exit-block insertion guarantees that all exit blocks from the loop
18 // (blocks which are outside of the loop that have predecessors inside of the
19 // loop) only have predecessors from inside of the loop (and are thus dominated
20 // by the loop header).  This simplifies transformations such as store-sinking
21 // that are built into LICM.
22 //
23 // This pass also guarantees that loops will have exactly one backedge.
24 //
25 // Indirectbr instructions introduce several complications. If the loop
26 // contains or is entered by an indirectbr instruction, it may not be possible
27 // to transform the loop and make these guarantees. Client code should check
28 // that these conditions are true before relying on them.
29 //
30 // Similar complications arise from callbr instructions, particularly in
31 // asm-goto where blockaddress expressions are used.
32 //
33 // Note that the simplifycfg pass will clean up blocks which are split out but
34 // end up being unnecessary, so usage of this pass should not pessimize
35 // generated code.
36 //
37 // This pass obviously modifies the CFG, but updates loop information and
38 // dominator information.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #include "llvm/Transforms/Utils/LoopSimplify.h"
43 #include "llvm/ADT/DepthFirstIterator.h"
44 #include "llvm/ADT/SetOperations.h"
45 #include "llvm/ADT/SetVector.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/Analysis/AliasAnalysis.h"
49 #include "llvm/Analysis/AssumptionCache.h"
50 #include "llvm/Analysis/BasicAliasAnalysis.h"
51 #include "llvm/Analysis/BranchProbabilityInfo.h"
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LoopInfo.h"
56 #include "llvm/Analysis/MemorySSA.h"
57 #include "llvm/Analysis/MemorySSAUpdater.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/Instructions.h"
66 #include "llvm/IR/IntrinsicInst.h"
67 #include "llvm/IR/LLVMContext.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/InitializePasses.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/LoopUtils.h"
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "loop-simplify"
80 
81 STATISTIC(NumNested  , "Number of nested loops split out");
82 
83 // If the block isn't already, move the new block to right after some 'outside
84 // block' block.  This prevents the preheader from being placed inside the loop
85 // body, e.g. when the loop hasn't been rotated.
placeSplitBlockCarefully(BasicBlock * NewBB,SmallVectorImpl<BasicBlock * > & SplitPreds,Loop * L)86 static void placeSplitBlockCarefully(BasicBlock *NewBB,
87                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
88                                      Loop *L) {
89   // Check to see if NewBB is already well placed.
90   Function::iterator BBI = --NewBB->getIterator();
91   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
92     if (&*BBI == SplitPreds[i])
93       return;
94   }
95 
96   // If it isn't already after an outside block, move it after one.  This is
97   // always good as it makes the uncond branch from the outside block into a
98   // fall-through.
99 
100   // Figure out *which* outside block to put this after.  Prefer an outside
101   // block that neighbors a BB actually in the loop.
102   BasicBlock *FoundBB = nullptr;
103   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
104     Function::iterator BBI = SplitPreds[i]->getIterator();
105     if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
106       FoundBB = SplitPreds[i];
107       break;
108     }
109   }
110 
111   // If our heuristic for a *good* bb to place this after doesn't find
112   // anything, just pick something.  It's likely better than leaving it within
113   // the loop.
114   if (!FoundBB)
115     FoundBB = SplitPreds[0];
116   NewBB->moveAfter(FoundBB);
117 }
118 
119 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
120 /// preheader, this method is called to insert one.  This method has two phases:
121 /// preheader insertion and analysis updating.
122 ///
InsertPreheaderForLoop(Loop * L,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA)123 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
124                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
125                                          bool PreserveLCSSA) {
126   BasicBlock *Header = L->getHeader();
127 
128   // Compute the set of predecessors of the loop that are not in the loop.
129   SmallVector<BasicBlock*, 8> OutsideBlocks;
130   for (BasicBlock *P : predecessors(Header)) {
131     if (!L->contains(P)) {         // Coming in from outside the loop?
132       // If the loop is branched to from an indirect terminator, we won't
133       // be able to fully transform the loop, because it prohibits
134       // edge splitting.
135       if (P->getTerminator()->isIndirectTerminator())
136         return nullptr;
137 
138       // Keep track of it.
139       OutsideBlocks.push_back(P);
140     }
141   }
142 
143   // Split out the loop pre-header.
144   BasicBlock *PreheaderBB;
145   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
146                                        LI, MSSAU, PreserveLCSSA);
147   if (!PreheaderBB)
148     return nullptr;
149 
150   LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
151                     << PreheaderBB->getName() << "\n");
152 
153   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
154   // code layout too horribly.
155   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
156 
157   return PreheaderBB;
158 }
159 
160 /// Add the specified block, and all of its predecessors, to the specified set,
161 /// if it's not already in there.  Stop predecessor traversal when we reach
162 /// StopBlock.
addBlockAndPredsToSet(BasicBlock * InputBB,BasicBlock * StopBlock,SmallPtrSetImpl<BasicBlock * > & Blocks)163 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
164                                   SmallPtrSetImpl<BasicBlock *> &Blocks) {
165   SmallVector<BasicBlock *, 8> Worklist;
166   Worklist.push_back(InputBB);
167   do {
168     BasicBlock *BB = Worklist.pop_back_val();
169     if (Blocks.insert(BB).second && BB != StopBlock)
170       // If BB is not already processed and it is not a stop block then
171       // insert its predecessor in the work list
172       append_range(Worklist, predecessors(BB));
173   } while (!Worklist.empty());
174 }
175 
176 /// The first part of loop-nestification is to find a PHI node that tells
177 /// us how to partition the loops.
findPHIToPartitionLoops(Loop * L,DominatorTree * DT,AssumptionCache * AC)178 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
179                                         AssumptionCache *AC) {
180   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
181   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
182     PHINode *PN = cast<PHINode>(I);
183     ++I;
184     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
185       // This is a degenerate PHI already, don't modify it!
186       PN->replaceAllUsesWith(V);
187       PN->eraseFromParent();
188       continue;
189     }
190 
191     // Scan this PHI node looking for a use of the PHI node by itself.
192     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
193       if (PN->getIncomingValue(i) == PN &&
194           L->contains(PN->getIncomingBlock(i)))
195         // We found something tasty to remove.
196         return PN;
197   }
198   return nullptr;
199 }
200 
201 /// If this loop has multiple backedges, try to pull one of them out into
202 /// a nested loop.
203 ///
204 /// This is important for code that looks like
205 /// this:
206 ///
207 ///  Loop:
208 ///     ...
209 ///     br cond, Loop, Next
210 ///     ...
211 ///     br cond2, Loop, Out
212 ///
213 /// To identify this common case, we look at the PHI nodes in the header of the
214 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
215 /// that change in the "outer" loop, but not in the "inner" loop.
216 ///
217 /// If we are able to separate out a loop, return the new outer loop that was
218 /// created.
219 ///
separateNestedLoop(Loop * L,BasicBlock * Preheader,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,bool PreserveLCSSA,AssumptionCache * AC,MemorySSAUpdater * MSSAU)220 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
221                                 DominatorTree *DT, LoopInfo *LI,
222                                 ScalarEvolution *SE, bool PreserveLCSSA,
223                                 AssumptionCache *AC, MemorySSAUpdater *MSSAU) {
224   // Don't try to separate loops without a preheader.
225   if (!Preheader)
226     return nullptr;
227 
228   // Treat the presence of convergent functions conservatively. The
229   // transformation is invalid if calls to certain convergent
230   // functions (like an AMDGPU barrier) get included in the resulting
231   // inner loop. But blocks meant for the inner loop will be
232   // identified later at a point where it's too late to abort the
233   // transformation. Also, the convergent attribute is not really
234   // sufficient to express the semantics of functions that are
235   // affected by this transformation. So we choose to back off if such
236   // a function call is present until a better alternative becomes
237   // available. This is similar to the conservative treatment of
238   // convergent function calls in GVNHoist and JumpThreading.
239   for (auto BB : L->blocks()) {
240     for (auto &II : *BB) {
241       if (auto CI = dyn_cast<CallBase>(&II)) {
242         if (CI->isConvergent()) {
243           return nullptr;
244         }
245       }
246     }
247   }
248 
249   // The header is not a landing pad; preheader insertion should ensure this.
250   BasicBlock *Header = L->getHeader();
251   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
252 
253   PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
254   if (!PN) return nullptr;  // No known way to partition.
255 
256   // Pull out all predecessors that have varying values in the loop.  This
257   // handles the case when a PHI node has multiple instances of itself as
258   // arguments.
259   SmallVector<BasicBlock*, 8> OuterLoopPreds;
260   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
261     if (PN->getIncomingValue(i) != PN ||
262         !L->contains(PN->getIncomingBlock(i))) {
263       // We can't split indirect control flow edges.
264       if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator())
265         return nullptr;
266       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
267     }
268   }
269   LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
270 
271   // If ScalarEvolution is around and knows anything about values in
272   // this loop, tell it to forget them, because we're about to
273   // substantially change it.
274   if (SE)
275     SE->forgetLoop(L);
276 
277   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
278                                              DT, LI, MSSAU, PreserveLCSSA);
279 
280   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
281   // code layout too horribly.
282   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
283 
284   // Create the new outer loop.
285   Loop *NewOuter = LI->AllocateLoop();
286 
287   // Change the parent loop to use the outer loop as its child now.
288   if (Loop *Parent = L->getParentLoop())
289     Parent->replaceChildLoopWith(L, NewOuter);
290   else
291     LI->changeTopLevelLoop(L, NewOuter);
292 
293   // L is now a subloop of our outer loop.
294   NewOuter->addChildLoop(L);
295 
296   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
297        I != E; ++I)
298     NewOuter->addBlockEntry(*I);
299 
300   // Now reset the header in L, which had been moved by
301   // SplitBlockPredecessors for the outer loop.
302   L->moveToHeader(Header);
303 
304   // Determine which blocks should stay in L and which should be moved out to
305   // the Outer loop now.
306   SmallPtrSet<BasicBlock *, 4> BlocksInL;
307   for (BasicBlock *P : predecessors(Header)) {
308     if (DT->dominates(Header, P))
309       addBlockAndPredsToSet(P, Header, BlocksInL);
310   }
311 
312   // Scan all of the loop children of L, moving them to OuterLoop if they are
313   // not part of the inner loop.
314   const std::vector<Loop*> &SubLoops = L->getSubLoops();
315   for (size_t I = 0; I != SubLoops.size(); )
316     if (BlocksInL.count(SubLoops[I]->getHeader()))
317       ++I;   // Loop remains in L
318     else
319       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
320 
321   SmallVector<BasicBlock *, 8> OuterLoopBlocks;
322   OuterLoopBlocks.push_back(NewBB);
323   // Now that we know which blocks are in L and which need to be moved to
324   // OuterLoop, move any blocks that need it.
325   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
326     BasicBlock *BB = L->getBlocks()[i];
327     if (!BlocksInL.count(BB)) {
328       // Move this block to the parent, updating the exit blocks sets
329       L->removeBlockFromLoop(BB);
330       if ((*LI)[BB] == L) {
331         LI->changeLoopFor(BB, NewOuter);
332         OuterLoopBlocks.push_back(BB);
333       }
334       --i;
335     }
336   }
337 
338   // Split edges to exit blocks from the inner loop, if they emerged in the
339   // process of separating the outer one.
340   formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA);
341 
342   if (PreserveLCSSA) {
343     // Fix LCSSA form for L. Some values, which previously were only used inside
344     // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
345     // in corresponding exit blocks.
346     // We don't need to form LCSSA recursively, because there cannot be uses
347     // inside a newly created loop of defs from inner loops as those would
348     // already be a use of an LCSSA phi node.
349     formLCSSA(*L, *DT, LI, SE);
350 
351     assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
352            "LCSSA is broken after separating nested loops!");
353   }
354 
355   return NewOuter;
356 }
357 
358 /// This method is called when the specified loop has more than one
359 /// backedge in it.
360 ///
361 /// If this occurs, revector all of these backedges to target a new basic block
362 /// and have that block branch to the loop header.  This ensures that loops
363 /// have exactly one backedge.
insertUniqueBackedgeBlock(Loop * L,BasicBlock * Preheader,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU)364 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
365                                              DominatorTree *DT, LoopInfo *LI,
366                                              MemorySSAUpdater *MSSAU) {
367   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
368 
369   // Get information about the loop
370   BasicBlock *Header = L->getHeader();
371   Function *F = Header->getParent();
372 
373   // Unique backedge insertion currently depends on having a preheader.
374   if (!Preheader)
375     return nullptr;
376 
377   // The header is not an EH pad; preheader insertion should ensure this.
378   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
379 
380   // Figure out which basic blocks contain back-edges to the loop header.
381   std::vector<BasicBlock*> BackedgeBlocks;
382   for (BasicBlock *P : predecessors(Header)) {
383     // Indirect edges cannot be split, so we must fail if we find one.
384     if (P->getTerminator()->isIndirectTerminator())
385       return nullptr;
386 
387     if (P != Preheader) BackedgeBlocks.push_back(P);
388   }
389 
390   // Create and insert the new backedge block...
391   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
392                                            Header->getName() + ".backedge", F);
393   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
394   BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
395 
396   LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
397                     << BEBlock->getName() << "\n");
398 
399   // Move the new backedge block to right after the last backedge block.
400   Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
401   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
402 
403   // Now that the block has been inserted into the function, create PHI nodes in
404   // the backedge block which correspond to any PHI nodes in the header block.
405   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
406     PHINode *PN = cast<PHINode>(I);
407     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
408                                      PN->getName()+".be", BETerminator);
409 
410     // Loop over the PHI node, moving all entries except the one for the
411     // preheader over to the new PHI node.
412     unsigned PreheaderIdx = ~0U;
413     bool HasUniqueIncomingValue = true;
414     Value *UniqueValue = nullptr;
415     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
416       BasicBlock *IBB = PN->getIncomingBlock(i);
417       Value *IV = PN->getIncomingValue(i);
418       if (IBB == Preheader) {
419         PreheaderIdx = i;
420       } else {
421         NewPN->addIncoming(IV, IBB);
422         if (HasUniqueIncomingValue) {
423           if (!UniqueValue)
424             UniqueValue = IV;
425           else if (UniqueValue != IV)
426             HasUniqueIncomingValue = false;
427         }
428       }
429     }
430 
431     // Delete all of the incoming values from the old PN except the preheader's
432     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
433     if (PreheaderIdx != 0) {
434       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
435       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
436     }
437     // Nuke all entries except the zero'th.
438     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
439       PN->removeIncomingValue(e-i, false);
440 
441     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
442     PN->addIncoming(NewPN, BEBlock);
443 
444     // As an optimization, if all incoming values in the new PhiNode (which is a
445     // subset of the incoming values of the old PHI node) have the same value,
446     // eliminate the PHI Node.
447     if (HasUniqueIncomingValue) {
448       NewPN->replaceAllUsesWith(UniqueValue);
449       BEBlock->getInstList().erase(NewPN);
450     }
451   }
452 
453   // Now that all of the PHI nodes have been inserted and adjusted, modify the
454   // backedge blocks to jump to the BEBlock instead of the header.
455   // If one of the backedges has llvm.loop metadata attached, we remove
456   // it from the backedge and add it to BEBlock.
457   unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
458   MDNode *LoopMD = nullptr;
459   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
460     Instruction *TI = BackedgeBlocks[i]->getTerminator();
461     if (!LoopMD)
462       LoopMD = TI->getMetadata(LoopMDKind);
463     TI->setMetadata(LoopMDKind, nullptr);
464     TI->replaceSuccessorWith(Header, BEBlock);
465   }
466   BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
467 
468   //===--- Update all analyses which we must preserve now -----------------===//
469 
470   // Update Loop Information - we know that this block is now in the current
471   // loop and all parent loops.
472   L->addBasicBlockToLoop(BEBlock, *LI);
473 
474   // Update dominator information
475   DT->splitBlock(BEBlock);
476 
477   if (MSSAU)
478     MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader,
479                                                       BEBlock);
480 
481   return BEBlock;
482 }
483 
484 /// Simplify one loop and queue further loops for simplification.
simplifyOneLoop(Loop * L,SmallVectorImpl<Loop * > & Worklist,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,MemorySSAUpdater * MSSAU,bool PreserveLCSSA)485 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
486                             DominatorTree *DT, LoopInfo *LI,
487                             ScalarEvolution *SE, AssumptionCache *AC,
488                             MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
489   bool Changed = false;
490   if (MSSAU && VerifyMemorySSA)
491     MSSAU->getMemorySSA()->verifyMemorySSA();
492 
493 ReprocessLoop:
494 
495   // Check to see that no blocks (other than the header) in this loop have
496   // predecessors that are not in the loop.  This is not valid for natural
497   // loops, but can occur if the blocks are unreachable.  Since they are
498   // unreachable we can just shamelessly delete those CFG edges!
499   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
500        BB != E; ++BB) {
501     if (*BB == L->getHeader()) continue;
502 
503     SmallPtrSet<BasicBlock*, 4> BadPreds;
504     for (BasicBlock *P : predecessors(*BB))
505       if (!L->contains(P))
506         BadPreds.insert(P);
507 
508     // Delete each unique out-of-loop (and thus dead) predecessor.
509     for (BasicBlock *P : BadPreds) {
510 
511       LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
512                         << P->getName() << "\n");
513 
514       // Zap the dead pred's terminator and replace it with unreachable.
515       Instruction *TI = P->getTerminator();
516       changeToUnreachable(TI, PreserveLCSSA,
517                           /*DTU=*/nullptr, MSSAU);
518       Changed = true;
519     }
520   }
521 
522   if (MSSAU && VerifyMemorySSA)
523     MSSAU->getMemorySSA()->verifyMemorySSA();
524 
525   // If there are exiting blocks with branches on undef, resolve the undef in
526   // the direction which will exit the loop. This will help simplify loop
527   // trip count computations.
528   SmallVector<BasicBlock*, 8> ExitingBlocks;
529   L->getExitingBlocks(ExitingBlocks);
530   for (BasicBlock *ExitingBlock : ExitingBlocks)
531     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
532       if (BI->isConditional()) {
533         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
534 
535           LLVM_DEBUG(dbgs()
536                      << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
537                      << ExitingBlock->getName() << "\n");
538 
539           BI->setCondition(ConstantInt::get(Cond->getType(),
540                                             !L->contains(BI->getSuccessor(0))));
541 
542           Changed = true;
543         }
544       }
545 
546   // Does the loop already have a preheader?  If so, don't insert one.
547   BasicBlock *Preheader = L->getLoopPreheader();
548   if (!Preheader) {
549     Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA);
550     if (Preheader)
551       Changed = true;
552   }
553 
554   // Next, check to make sure that all exit nodes of the loop only have
555   // predecessors that are inside of the loop.  This check guarantees that the
556   // loop preheader/header will dominate the exit blocks.  If the exit block has
557   // predecessors from outside of the loop, split the edge now.
558   if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA))
559     Changed = true;
560 
561   if (MSSAU && VerifyMemorySSA)
562     MSSAU->getMemorySSA()->verifyMemorySSA();
563 
564   // If the header has more than two predecessors at this point (from the
565   // preheader and from multiple backedges), we must adjust the loop.
566   BasicBlock *LoopLatch = L->getLoopLatch();
567   if (!LoopLatch) {
568     // If this is really a nested loop, rip it out into a child loop.  Don't do
569     // this for loops with a giant number of backedges, just factor them into a
570     // common backedge instead.
571     if (L->getNumBackEdges() < 8) {
572       if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE,
573                                             PreserveLCSSA, AC, MSSAU)) {
574         ++NumNested;
575         // Enqueue the outer loop as it should be processed next in our
576         // depth-first nest walk.
577         Worklist.push_back(OuterL);
578 
579         // This is a big restructuring change, reprocess the whole loop.
580         Changed = true;
581         // GCC doesn't tail recursion eliminate this.
582         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
583         goto ReprocessLoop;
584       }
585     }
586 
587     // If we either couldn't, or didn't want to, identify nesting of the loops,
588     // insert a new block that all backedges target, then make it jump to the
589     // loop header.
590     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU);
591     if (LoopLatch)
592       Changed = true;
593   }
594 
595   if (MSSAU && VerifyMemorySSA)
596     MSSAU->getMemorySSA()->verifyMemorySSA();
597 
598   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
599 
600   // Scan over the PHI nodes in the loop header.  Since they now have only two
601   // incoming values (the loop is canonicalized), we may have simplified the PHI
602   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
603   PHINode *PN;
604   for (BasicBlock::iterator I = L->getHeader()->begin();
605        (PN = dyn_cast<PHINode>(I++)); )
606     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
607       if (SE) SE->forgetValue(PN);
608       if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
609         PN->replaceAllUsesWith(V);
610         PN->eraseFromParent();
611         Changed = true;
612       }
613     }
614 
615   // If this loop has multiple exits and the exits all go to the same
616   // block, attempt to merge the exits. This helps several passes, such
617   // as LoopRotation, which do not support loops with multiple exits.
618   // SimplifyCFG also does this (and this code uses the same utility
619   // function), however this code is loop-aware, where SimplifyCFG is
620   // not. That gives it the advantage of being able to hoist
621   // loop-invariant instructions out of the way to open up more
622   // opportunities, and the disadvantage of having the responsibility
623   // to preserve dominator information.
624   auto HasUniqueExitBlock = [&]() {
625     BasicBlock *UniqueExit = nullptr;
626     for (auto *ExitingBB : ExitingBlocks)
627       for (auto *SuccBB : successors(ExitingBB)) {
628         if (L->contains(SuccBB))
629           continue;
630 
631         if (!UniqueExit)
632           UniqueExit = SuccBB;
633         else if (UniqueExit != SuccBB)
634           return false;
635       }
636 
637     return true;
638   };
639   if (HasUniqueExitBlock()) {
640     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
641       BasicBlock *ExitingBlock = ExitingBlocks[i];
642       if (!ExitingBlock->getSinglePredecessor()) continue;
643       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
644       if (!BI || !BI->isConditional()) continue;
645       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
646       if (!CI || CI->getParent() != ExitingBlock) continue;
647 
648       // Attempt to hoist out all instructions except for the
649       // comparison and the branch.
650       bool AllInvariant = true;
651       bool AnyInvariant = false;
652       for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
653         Instruction *Inst = &*I++;
654         if (Inst == CI)
655           continue;
656         if (!L->makeLoopInvariant(
657                 Inst, AnyInvariant,
658                 Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) {
659           AllInvariant = false;
660           break;
661         }
662       }
663       if (AnyInvariant) {
664         Changed = true;
665         // The loop disposition of all SCEV expressions that depend on any
666         // hoisted values have also changed.
667         if (SE)
668           SE->forgetLoopDispositions(L);
669       }
670       if (!AllInvariant) continue;
671 
672       // The block has now been cleared of all instructions except for
673       // a comparison and a conditional branch. SimplifyCFG may be able
674       // to fold it now.
675       if (!FoldBranchToCommonDest(BI, /*DTU=*/nullptr, MSSAU))
676         continue;
677 
678       // Success. The block is now dead, so remove it from the loop,
679       // update the dominator tree and delete it.
680       LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
681                         << ExitingBlock->getName() << "\n");
682 
683       assert(pred_empty(ExitingBlock));
684       Changed = true;
685       LI->removeBlock(ExitingBlock);
686 
687       DomTreeNode *Node = DT->getNode(ExitingBlock);
688       while (!Node->isLeaf()) {
689         DomTreeNode *Child = Node->back();
690         DT->changeImmediateDominator(Child, Node->getIDom());
691       }
692       DT->eraseNode(ExitingBlock);
693       if (MSSAU) {
694         SmallSetVector<BasicBlock *, 8> ExitBlockSet;
695         ExitBlockSet.insert(ExitingBlock);
696         MSSAU->removeBlocks(ExitBlockSet);
697       }
698 
699       BI->getSuccessor(0)->removePredecessor(
700           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
701       BI->getSuccessor(1)->removePredecessor(
702           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
703       ExitingBlock->eraseFromParent();
704     }
705   }
706 
707   // Changing exit conditions for blocks may affect exit counts of this loop and
708   // any of its paretns, so we must invalidate the entire subtree if we've made
709   // any changes.
710   if (Changed && SE)
711     SE->forgetTopmostLoop(L);
712 
713   if (MSSAU && VerifyMemorySSA)
714     MSSAU->getMemorySSA()->verifyMemorySSA();
715 
716   return Changed;
717 }
718 
simplifyLoop(Loop * L,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,MemorySSAUpdater * MSSAU,bool PreserveLCSSA)719 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
720                         ScalarEvolution *SE, AssumptionCache *AC,
721                         MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
722   bool Changed = false;
723 
724 #ifndef NDEBUG
725   // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
726   // form.
727   if (PreserveLCSSA) {
728     assert(DT && "DT not available.");
729     assert(LI && "LI not available.");
730     assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
731            "Requested to preserve LCSSA, but it's already broken.");
732   }
733 #endif
734 
735   // Worklist maintains our depth-first queue of loops in this nest to process.
736   SmallVector<Loop *, 4> Worklist;
737   Worklist.push_back(L);
738 
739   // Walk the worklist from front to back, pushing newly found sub loops onto
740   // the back. This will let us process loops from back to front in depth-first
741   // order. We can use this simple process because loops form a tree.
742   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
743     Loop *L2 = Worklist[Idx];
744     Worklist.append(L2->begin(), L2->end());
745   }
746 
747   while (!Worklist.empty())
748     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
749                                AC, MSSAU, PreserveLCSSA);
750 
751   return Changed;
752 }
753 
754 namespace {
755   struct LoopSimplify : public FunctionPass {
756     static char ID; // Pass identification, replacement for typeid
LoopSimplify__anon58b350510211::LoopSimplify757     LoopSimplify() : FunctionPass(ID) {
758       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
759     }
760 
761     bool runOnFunction(Function &F) override;
762 
getAnalysisUsage__anon58b350510211::LoopSimplify763     void getAnalysisUsage(AnalysisUsage &AU) const override {
764       AU.addRequired<AssumptionCacheTracker>();
765 
766       // We need loop information to identify the loops...
767       AU.addRequired<DominatorTreeWrapperPass>();
768       AU.addPreserved<DominatorTreeWrapperPass>();
769 
770       AU.addRequired<LoopInfoWrapperPass>();
771       AU.addPreserved<LoopInfoWrapperPass>();
772 
773       AU.addPreserved<BasicAAWrapperPass>();
774       AU.addPreserved<AAResultsWrapperPass>();
775       AU.addPreserved<GlobalsAAWrapperPass>();
776       AU.addPreserved<ScalarEvolutionWrapperPass>();
777       AU.addPreserved<SCEVAAWrapperPass>();
778       AU.addPreservedID(LCSSAID);
779       AU.addPreserved<DependenceAnalysisWrapperPass>();
780       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
781       AU.addPreserved<BranchProbabilityInfoWrapperPass>();
782       if (EnableMSSALoopDependency)
783         AU.addPreserved<MemorySSAWrapperPass>();
784     }
785 
786     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
787     void verifyAnalysis() const override;
788   };
789 }
790 
791 char LoopSimplify::ID = 0;
792 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
793                 "Canonicalize natural loops", false, false)
794 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
795 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
796 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
797 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
798                 "Canonicalize natural loops", false, false)
799 
800 // Publicly exposed interface to pass...
801 char &llvm::LoopSimplifyID = LoopSimplify::ID;
createLoopSimplifyPass()802 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
803 
804 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
805 /// it in any convenient order) inserting preheaders...
806 ///
runOnFunction(Function & F)807 bool LoopSimplify::runOnFunction(Function &F) {
808   bool Changed = false;
809   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
810   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
811   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
812   ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
813   AssumptionCache *AC =
814       &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
815   MemorySSA *MSSA = nullptr;
816   std::unique_ptr<MemorySSAUpdater> MSSAU;
817   if (EnableMSSALoopDependency) {
818     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
819     if (MSSAAnalysis) {
820       MSSA = &MSSAAnalysis->getMSSA();
821       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
822     }
823   }
824 
825   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
826 
827   // Simplify each loop nest in the function.
828   for (auto *L : *LI)
829     Changed |= simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA);
830 
831 #ifndef NDEBUG
832   if (PreserveLCSSA) {
833     bool InLCSSA = all_of(
834         *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
835     assert(InLCSSA && "LCSSA is broken after loop-simplify.");
836   }
837 #endif
838   return Changed;
839 }
840 
run(Function & F,FunctionAnalysisManager & AM)841 PreservedAnalyses LoopSimplifyPass::run(Function &F,
842                                         FunctionAnalysisManager &AM) {
843   bool Changed = false;
844   LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
845   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
846   ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
847   AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
848   auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F);
849   std::unique_ptr<MemorySSAUpdater> MSSAU;
850   if (MSSAAnalysis) {
851     auto *MSSA = &MSSAAnalysis->getMSSA();
852     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
853   }
854 
855 
856   // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
857   // after simplifying the loops. MemorySSA is preserved if it exists.
858   for (auto *L : *LI)
859     Changed |=
860         simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false);
861 
862   if (!Changed)
863     return PreservedAnalyses::all();
864 
865   PreservedAnalyses PA;
866   PA.preserve<DominatorTreeAnalysis>();
867   PA.preserve<LoopAnalysis>();
868   PA.preserve<ScalarEvolutionAnalysis>();
869   PA.preserve<DependenceAnalysis>();
870   if (MSSAAnalysis)
871     PA.preserve<MemorySSAAnalysis>();
872   // BPI maps conditional terminators to probabilities, LoopSimplify can insert
873   // blocks, but it does so only by splitting existing blocks and edges. This
874   // results in the interesting property that all new terminators inserted are
875   // unconditional branches which do not appear in BPI. All deletions are
876   // handled via ValueHandle callbacks w/in BPI.
877   PA.preserve<BranchProbabilityAnalysis>();
878   return PA;
879 }
880 
881 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
882 // below.
883 #if 0
884 static void verifyLoop(Loop *L) {
885   // Verify subloops.
886   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
887     verifyLoop(*I);
888 
889   // It used to be possible to just assert L->isLoopSimplifyForm(), however
890   // with the introduction of indirectbr, there are now cases where it's
891   // not possible to transform a loop as necessary. We can at least check
892   // that there is an indirectbr near any time there's trouble.
893 
894   // Indirectbr can interfere with preheader and unique backedge insertion.
895   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
896     bool HasIndBrPred = false;
897     for (BasicBlock *Pred : predecessors(L->getHeader()))
898       if (isa<IndirectBrInst>(Pred->getTerminator())) {
899         HasIndBrPred = true;
900         break;
901       }
902     assert(HasIndBrPred &&
903            "LoopSimplify has no excuse for missing loop header info!");
904     (void)HasIndBrPred;
905   }
906 
907   // Indirectbr can interfere with exit block canonicalization.
908   if (!L->hasDedicatedExits()) {
909     bool HasIndBrExiting = false;
910     SmallVector<BasicBlock*, 8> ExitingBlocks;
911     L->getExitingBlocks(ExitingBlocks);
912     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
913       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
914         HasIndBrExiting = true;
915         break;
916       }
917     }
918 
919     assert(HasIndBrExiting &&
920            "LoopSimplify has no excuse for missing exit block info!");
921     (void)HasIndBrExiting;
922   }
923 }
924 #endif
925 
verifyAnalysis() const926 void LoopSimplify::verifyAnalysis() const {
927   // FIXME: This routine is being called mid-way through the loop pass manager
928   // as loop passes destroy this analysis. That's actually fine, but we have no
929   // way of expressing that here. Once all of the passes that destroy this are
930   // hoisted out of the loop pass manager we can add back verification here.
931 #if 0
932   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
933     verifyLoop(*I);
934 #endif
935 }
936